
ObSec: Declassification policies using type abstraction

ObSec is a simple object-oriented language that supports type-based declassification. ObSec was introduced in the paper Type Abstraction for
Relaxed Noninterference to be presented at ECOOP 2017 (http://conf.researchr.org/home/ecoop-2017)

This tutorial covers:

how to install a web interpreter (ObSec Pad) for the ObSec language
a basic presentation of the language syntax
the type-based declassification examples that appears in the paper.

Installation instructions

We provide three ways to access to the ObSec Pad (although we strongly recommend the first one!):

Using the online ObSec Pad at https://pleiad.cl/obsec (https://pleiad.cl/obsec) .1.
With the virtual machine, which can be downloaded here (https://pleiad.cl/paper_53_ubuntu_vm_obsec.ova)2.
Local execution of the ObSec Pad, which can be downloaded here (https://pleiad.cl/_media/research/software/obsec/obsec-web.zip) .3.

The online ObSec Pad does not require any installation and is always up-to-date. If you want to get a snapshot of the current state of the interpreter
(as of April 18, 2017), then follow the instructions for points 2 or 3.

The virtual machine

We have set up a virtual machine with an Ubuntu installation and Java 1.8. The virtual machine image was created with Virtual Box 5.1.18.

Install Virtual Box 5.1.18 or higher.1.
Import the Virtual Machine Image2.
Start the Virtual Machine3.
Use the following credentials to log in: username: dev , password: qwe1234.
Open a terminal. (Make sure you are at home.)5.
Run

./obsec-web/bin/obsec-web

6.

This should start a server on port 9000. To open the ObSec Pad go to http://localhost:9000/obsec/ (http://localhost:9000/obsec/)

Local execution of the ObSec Pad

To run the ObSec Pad locally, all you need is Java 1.8. Also check that you have Java 1.8 in the path.

The following instructions are Unix valid commands. If you have Windows installed in your machine, you need to perform the corresponding
commands.

Unzip the file.

unzip obsec-web.zip

1.

Go to the “obsec-web ” folder:

cd obsec-web

2.

Add run permissions to the binary file:

chmod +x bin/obsec-web

3.

And then run:

./bin/obsec-web

This should start a server in the port 9000. To open the ObSec Pad, go to http://localhost:9000/obsec/ (http://localhost:9000/obsec/)

4.

In case the port 9000 is already taken, run:

./bin/obsec-web -Dhttp.port=<available-port-number>

5.

ObSec Pad: Functionality

The following screenshot shows how the ObSec Pad looks like

Note that even though we provide some predefined examples, we suggest you finish this tutorial first. It will help you understand the syntax of
ObSec and how to define and use type-based declassification policies.

The ObSec Pad has the minimal functionality you expect for an interpreter:

Details of the language syntax.
Type checking. It gives you the type of the program or an error if the program is not well-typed or if it has a syntax error.
Execution. If the program was well-typed (as the result of clicking “TYPECHECK!”), the interface will show a button to execute the program.

Introduction to ObSec : Warm up

ObSec is a minimal object-oriented language, which includes the following expressions: variables, object definitions, method invocations as well as
built-in values. The implementation of ObSec also includes a number of convenient forms (not present in the formal core in the paper): integers,
strings, boolean, string lists, as well as local variable definitions and type alias declarations.

Example of valid programs in ObSec are:

1.+(2)

"qwe123".length()

if "qwe123".length().==(6) then 1 else 0

mklist("b","c","a")

let{
 val s = "qwe123"
 val l = s.length()
} in
if l.==(6) then 1 else 0

Types

The distinguishing feature of ObSec are security types: a security type S is a two-faceted type T<U, where T (resp. U) is the private (resp. public) facet.
However for the sake of presentation of the language syntax, the first examples will contain only types of the form T<T. To write such types
(where the private and public facet are equals), you can use either the syntax T<L or just T.

ObSec includes predefined types Int, String, Bool, and StrList lists of strings). You can see the type interface of built-in types in the Syntax
Dialog in the ObSec Pad.

You can define and use object types in different ways. Below, we illustrate by creating an object type with a login method that takes two public
strings and returns a public integer:

Inline structural type definition: the type is defined (anonymously) where it is used

[{login: String String -> Int}]

Type alias declaration: gives a name (type alias) to an object type, convenient to reuse the same object type definition.

type AuthServer = [{login: String String -> Int}]

Type definition: this is just a syntactic sugar for a type alias declaration, which additionally allows the definition of recursive object types, as
discussed in the following paragraph.

deftype AuthServer {
 {login: String String -> Int}
 }

Recursive types

The convenient way to define recursive types in the implementation of ObSec is using the deftype keyword. For example, the following code
snippet defines the type of binary trees of strings. Methods left and right use the defined type BinTree.

deftype BinTree{
 {isEmpty: -> Bool}
 {value: -> String}
 {left: -> BinTree}
 {right: -> BinTree}
}

The above code is equivalent to:

type BinTree = [X
 {isEmpty: -> Bool}
 {value: -> String}
 {left: -> X}
 {right: -> X}
]

where the type variable X represents the defined recursive type. This core syntax is the one adopted in the paper, but which is less convenient to use
than deftype.

Objects

ObSec does not have classes, instead one defines literal objects. An object is a collection of method definitions, where method names are unique. The
object definition explicitly names the self variable (z in the example below) and binds it in method bodies. The self variable is ascribed with the type
of the object: AuthServer<L indicating that the created object is public. The object below just has a method login that receives two arguments:
password and guess. The type of the arguments are obtained from the login method signature in AuthServer.

new {z : AuthServer<L =>
 def login password guess = if password.==(guess) then 1 else 0
}

Executable example:

let {
 type AuthServer = [{login : String String -> Int}]
 val auth = new {z : AuthServer<L =>
 def login password guess = if password.==(guess) then 1 else 0
 }
} in
auth.login("qwe123","qwe123")

Recursive methods

We now present an example with a recursive method definition. The following code shows how to use the self variable (z) to implement a recursive
method contains over a list. The type of listHelper is defined in the type ascription of z:

let {
 val listHelper = new {z : [{contains : StrList<L -> Bool<L}] <L =>
 def contains myList =
 if myList.isEmpty()
 then false
 else
 if myList.head().==("a")

 then true
 else z.contains(myList.tail())
 }
}
in
listHelper.contains(mklist("b","c","a"))

Once you warm up with the examples, you can inspect the full syntax supported by the ObSec Pad. The syntax is essentially the one of the paper
extended with built-in types and surface language constructions that makes programming more convenient.

Syntax

S ::= T < T (Security types)
T ::= Bool |Int |String | StrList | X | OT (Types)
OT ::= [X M*] | [M*] (Object Type)
M ::= { name : S* -> S } (Method signature)
t ::= o | x | t.m(t) | b | n | s |if t then t else t | mkList(t*) | let { TD* TA* VD* } in t (Terms)
o ::= new { x : S => (def name x* = t)* } (Object)
TD ::= deftype{ M* } (Type Declaration)
TA ::= type X = OT (Type Alias)
VD ::= val x = t (Value declaration)
b ::= true | false (Booleans)
n ::= natural numbers (Natural numbers)
s ::= string literals (String literals)
X ::= identifier (Type Variable)

You also can access the syntax definition in the ObSec Pad.

Security Typing in ObSec

The distinguishing feature of ObSec are security types T<U, where T (resp. U) is the private (resp. public) facet. For instance the type String<H (a
shortcut to String<[]) represents to a private string, while String<L (a shortcut to String<String represents a public string. Note that for a security
type T<U to be well-formed, T must be a subtype of U.

In other words, the empty interface type (the root of the subtyping hierarchy) denotes an object that hides all its attributes, which intuitively coincides
with secret data, while the interface that coincides with the implementation type of an object exposes all of them, which coincides with public data.

The following example changes the type of the password argument in method login signature to String<[] making the password argument secret.

let{
 type AuthServer = [{login : String<[] String -> Int<L}]
 val auth = new {z : AuthServer<L =>
 def login password guess = if password.==(guess) then 1 else 0
 }
} in
auth.login("qwe123","qwe123")

This program is not well-typed because the implementation of the login method is using the == method, which is not available in the public facet.
Hence the conditional expression password.==(guess) has type Bool<H and the whole if expression has type Int<H, which is not a subtype of
Int<L. (As you can expect, T1<U1 is a subtype of T2<U2 if T1 is a subtype of U1 and T2 is a subtype if U2). The ObSec type checker rejects this
program to prevent an invalid information flow (from the secret password to a public result).

Declassification Policies in ObSec

As explained in the Sections “Introduction” and “Type-Based Declassification Policies” of the paper, in some scenarios, programs need to declassify
some information about secrets as part of their functionality (as in the password checking algorithm).

Our main observation is that any interface between the empty type and the implementation type denotes declassification opportunities, and hence we
can provide a controlled declassification approach.

For example we can just expose the == method for the password by including it in the public facet of the argument type.

let{
 type StringEq = [{== : String -> Bool}]
 type AuthServer = [{login : String<StringEq String -> Int<L}]
 val auth = new {z : AuthServer<L =>
 def login password guess = if password.==(guess) then 1 else 0
 }
} in
auth.login("qwe123","qwe123")

Now the program is well typed and we have a guarantee that only the == method of the password argument is invoked.

For instance, try to change the condition in the if to password.hash().==(guess.hash()). The resulting program is not well-typed, because hash

is not in the public facet of the password security type.

Progressive declassification policies

Declassification can be progressive, requiring several operations to be performed in order to obtain public data. For instance, “the result of
comparing the hash of the password for equality can be made public”. This policy can be expressed with the type:

type StringHashEq = [{hash : -> Int<[{== : Int -> Bool}]}]

The implementation of the login method now adheres to the password policy and then the program is well typed.

let{
 type StringHashEq = [{hash : -> Int<[{== : Int -> Bool}]}]
 type AuthServer = [{login : String<StringHashEq String -> Int<L}]
 val auth = new {z : AuthServer<L =>
 def login password guess = if password.hash().==(guess.hash()) then 1 else 0
 }
} in
auth.login("qwe123","qwe123")

Variations to the above program that do not respect the policy and hence are not well-typed:

Change the conditional expression to password.hash().+(1).==(guess.hash().+(1)).
Change the conditional expression to password.length().==(guess.length()).

Recursive declassification

Recursive declassification policies are desirable to express interesting declassification of either inductive data structures or object interfaces (whose
essence are recursive types). Consider for instance a secret list of strings, for which we want to allow traversal of the structure and comparison of its
elements with a given string. This can be captured by the recursive type StrEqList defined as:

deftype StrEqList{
 {isEmpty: -> Bool<L}
 {head: -> String<StringEq}
 {tail: -> StrList<StrEqList}
}

To allow traversal, the declassification policy exposes the methods isEmpty, head and tail, with the specific constraints that a) accessing an element
through head yields a StringEq (not a full String) and b) the tail method returns the tail of the list with the same declassification policy
StrEqList.

The following program shows an implementation of a contains method over a list with the declassification policy StrEqList

let{
 type StringEq = [{== : String -> Bool}]
 deftype StrEqList{
 {isEmpty: -> Bool<L}
 {head: -> String<StringEq }
 {tail: -> StrList<StrEqList}
 }
 val listHelper = new {z : [{contains : StrList<StrEqList -> Bool<L}]<L =>
 def contains myList =
 if myList.isEmpty()
 then false
 else
 if myList.head().==("a")
 then true
 else z.contains(myList.tail())
 }
}
in
listHelper.contains(mklist("b","c","a"))

Any method invocation over the head of the list (different than ==) renders the program ill-typed. For instance, changing the inner if condition to
myList.head().hash().==(“a”.hash()): the type checker reports “Both branches of an if expression must have the same type”. This is because
the else branch of the outer if has type Bool<H while the then branch has type Bool<L.

Simple Case of Study: Web App with Payment System

The following program illustrates a more elaborated example where different declassification policies are used in an application that processes user
payments. The application has 4 modules:

Controller. It manages the user requests to pay the “television”.
View. It models the application web page and contains a method show to “display” a message in the application web page. The method show

models the public channel in the application.
PaymentGateWay. It models a payment gateway with the method pay that receives the user name, her credit card and the service that she wants
to pay. PaymentGateWay is a trusted component that can use the internal representation of a CreditCard. We return just true as the
implementation of the pay method. Since ObSec does not model “trusted declassification” (Hicks et al. [2006]), we cannot give a proper
implementation for the method pay. This limitation is discussed in the paper (section “Expressiveness of Declassification Policies”, paragraph
“More advanced scenarios”).
UserManager. It contains two methods: verifyCredentials and getUserCreditCard. The UserManager instance uses an internal backend (of
type Backend). The backend instance contains the sensible information. It has a method findUser that returns the user with the UserPolicy
type as the public policy for a user. The UserPolicy type reuses the policies StringHashEq and CCPolicy to restrict the return type of the
methods password and creditCard of User type. The CCPolicy type exposes the last four digits of a credit card. The signature for the method
getUserCreditCard also uses this declassification policy (CCPolicy). The method verifyCredentials returns a boolean value indicating if
the supplied credentials “are in” the backend. It adheres to the password policy (StringHashEq) in its implementation.

The types PaymentGateWay, Backend and View have “toy” implementations because the ObSec language is just a “proof-of-concept” language and it
does not include all the necessary features for a proper implementation of these types.

The implementation of the method payInternet in the Controller instance (controller) orchestrates the payment process. First it verifies the
credential of the user, then it uses the payment gateway to pay the service. It the payment is successful, the payInternet method uses the View
instance to show the last four digits of the credit card. The method last4Digits is in the declassification policy (CCPolicy) of the user credit card
and its result is public. It means that method call view.show(cc.last4Digits()) is valid.

let{
 type StringHashEq = [{hash : -> Int<[{== : Int -> Bool}]}]
 type CCPolicy = [{last4Digits: -> String}]

 type CreditCard = [{number: -> String}
 {securityNumber: -> String}
 {last4Digits: -> String}]

 type UserPolicy = [{name: ->String}
 {password: -> String<StringHashEq}
 {creditCard: -> CreditCard<CCPolicy}]
 type User = [{name: ->String}
 {password: -> String}
 {creditCard: -> CreditCard<CCPolicy}]

 type Controller = [{payInternet: String String -> String}]
 type View = [{show : String -> String}]
 type PaymentGateWay = [{pay: String CreditCard<[] String -> Bool}]

 type UserManager = [{verifyCredentials: String String -> Bool}
 {getUserCreditCard: String -> CreditCard<CCPolicy}]

 val paymentGateWay = new {pg:PaymentGateWay =>
 def pay user cc service = true
 }
 val userManager = let{
 type Backend = [{findUser: String -> User<UserPolicy}]
 val backend = new {b:Backend =>
 def findUser login =
 new {u:User =>
 def name = login
 def password = "qwe123"
 def creditCard =
 new {cc : CreditCard =>
 def number = "5500-0000-0000-0004"
 def securityNumber = "678"
 def last4Digits = "0004"
 }
 }
 }

 } in
 new {z:UserManager =>
 def verifyCredentials login password =
 let{
 val dbUser = backend.findUser(login)
 }
 in
 if dbUser.password().hash().==(password.hash())
 then true
 else false

 def getUserCreditCard login = backend.findUser(login).creditCard()
 }

 val view = new {v:View =>
 def show s = s
 }
 val controller = new {z : Controller =>
 def payInternet loginFromWeb passFromWeb =
 if userManager.verifyCredentials(loginFromWeb,passFromWeb)
 then
 let{
 val cc = userManager.getUserCreditCard(loginFromWeb)
 }
 in
 if paymentGateWay.pay(loginFromWeb,cc,"television")
 then
 view.show(cc.last4Digits())
 else
 view.show("Oops. We are unable to process your payment now")
 else
 view.show("Oops. Invalid credentials!")
 }
}
in
controller.payInternet("john","qwe123")

Variations to the above program that do not respect the policies and hence are not well-typed:

change the expression view.show(cc.last4Digits()) to view.show(cc.number()). The number method is not in the public policy of a
credit card object (returned by a UserManager).
remove the method last4Digits from type CCPolicy = [{last4Digits: → String}]
change the signature of the method getUserCreditCard in the UserManager type to: {getUserCreditCard: String → CreditCard}

