In memory of
Professor Meir (Manny) Lehman

Nazim H. Madhaviji
University of Western Ontario
Canada
madhavji@gmail.com

2 Sept., 2011 (c) N.H. Madhaviji, IWPSE 2011

Manny’s contributions

Most know “Manny” as:

— the “Father of Software Evolution”

or as the proponent of:

— the “Laws of Software Evolution”.

Laws of Software Evolution

\[e} Brief Name
| Continuing
1974 Change

Il Increasing
1974 Complexity

Il Self-regulation
1974

IV Conservation of
1978 Organisational
Stability

V Conservation of
1978 Familiarity

VI Continuing
1991 Growth

VIl Declining
1996 Quality

VIII Feedback System

1971, (Recognised 1971,
1996 formulated 1996)

Law
Unless continually adapted, an E-type system must decline in
use and become ever more difficult to maintain satisfactory

As an E-type system is evolved its complexity increases unless
work is done to maintain or reduce it

Global E-type system evolution is feedback regulated

Rate of work of organisation evolving E-type software tends to
be constant over phases of the operational lifetime of system

Growth rate trend of E-type systems constrained by need to
maintain familiarity

Functional capability of E-type systems must be continually
enhanced to maintain user satisfaction

Quality of E-type systems declines unless rigorously evolved to
take into account changes in the operational environment

E-type evolution processes are multi-level, multi-loop, muilti-
agent feedback systems

Derived from observation and metrics

Provides base for empirical Theory of Software Evolution

17th Oct., 2001

© N.H. Madhavji, Inaugural Talk, Univ. of Otago, Dunedin, NZ.

Why the term “Laws”?

Lehman’s use of the term is often misunderstood.

Unlike laws in sciences (e.g., physics), Lehman’s laws do
not specify precise invariant mathematical relationships
between directly observable quantities, and were never

intended to.

Their purpose is to capture knowledge about the
common features of frequently observed behaviour in

evolving software systems.

As this knowledge becomes more detailed and reliable,
it is likely that future versions of the laws may be
expressed in more precisely quantified terms.

Why the term “Laws”?

 Lehman’s use of the term is similar to that of social
scientists -- to describe general principles that are
believed to apply to some class of social situation.

 For example, Say’s Law in economics describes a
general principle about the relationship between
demand and supply, which may need to be modified

when it is applied to particular situations.

* Since the theory of software evolution is similarly
describing social situations that are extremely variable

in practice, this use of the term ‘law’ is appropriate.

-- [Ch. 5 in Madhaviji, F-Ramil, Perry: Wiley 2006]

On the term “Evolution”
* Dictionary definition:
“a gradual process of change and development.”

e Lehman:

‘a...process of discrete, progressive, change over
time in the characteristics, attributes, [or] properties
of some material or abstract, natural or artificial,

entity or system or of a sequence of these [changes]'.

-- [Ch. 5 in Madhaviji, F-Ramil, Perry: Wiley 2006]

’

Lehman’s definition of “Evolution’

* It captures important characteristics of evolution in
many situations, including software systems.

* Itis applicable to both natural and artificial systems,
and to abstractions such as ideas.

* It provides a very general, universal definition of
evolution that can be specialised for particular
domains, such as software, natural languages and
genes.

-- [see Ch. 5 in Madhaviji, F-Ramil, Perry: Wiley 2006]

Darwin’s definition of “Evolution”

* The idea of organic evolution was proposed by some
ancient Greek thinkers but was long rejected in Europe
as contrary to the literal interpretation of the Bible.

e Lamarck: a theory that organisms became transformed
by their efforts to respond to the demands of their
environment.

* Darwin: atheory of gradual evolution over a long
period by the natural selection of those organisms
slightly better adapted to the environment and hence
more likely to produce descendants.

-- [Online Oxford dictionary]

Lehmanian vs. Darwinian definitions

 Lehman leaves it open as to who actually does
the “evolving”. For example:

— Humans can change the software system themselves (e.g.,
through modifications).

— Software’s behaviour changes due to automatic recognition
of conditions by autonomic systems (constrained/guided by
policies and learning mechanisms).

e Darwin focuses on natural selection.

Evolving Laws

 Lehman’s Laws capture knowledge of the time
but are open for refinement and improvement:

‘Though termed “laws”, always recognised

7

as initial hypotheses subject to change".

[Int. Workshop on Software Evolvability, 2005, Budapest]

Our History:
excerpts from Proc. 1968 NATO SE Conf.,
(eds.) P. Naur and B. Rendall.

 |[n Autumn 1967, a Study Group on Computer
Science, established by the NATO Science
Committee proposed a working conference in 1968

-- the NATO Conf. On Soft. Eng. (Garmisch,
Germany, 7th to 11th October 1968).
* The following were the three key concerns:
— Design of Software
— Production of Software

— Service of Software

Life-cycle Strategy

* Today we tend to go on for years, with tremendous
investments to find that the system, which was not

well understood to start with, does not work as
anticipated.

* We build systems like the Wright brothers built

airplanes build the whole thing, push it off the cliff,
let it crash, and start over again.

— Professor R.M. Graham, Project MAC, M.I.T. Cambridge,
Massachusetts, USA., (1968 NATO SE Conf.)

3. Software Engineering

12

AYos a[eas-a8ie Jo uononpod ap uy swqoud auog yseN wor ‘| amSiy
SNOILONNE ANY 3SYHd
$SID0¥d LINIWJOT13AIA WALSAS FHL NOILLYILINI
~——3IWIL 103ro¥d
————_ _______NOUYYSININGY ONYIOUINOD _ - ——— i
lllllllllllllll
fjfrfllf[_vlmi.mrqml)m._umrlllll
NOILYINIWND0Q
(@ ‘sisdpuo ‘swoibosd poddns oﬂ%
‘SBNAIRS LO| H.vvo..ﬁ .»Co‘io oun
dNMOTIOE ONY : W N MW AQNLS
FONYNIAUNIVW 14OddNS TYOINHOIL NOISIa
WaLSAS
_ NOIS3
1NN NOISIa B
_ ININOIWOD g
| LNIWdO13A30 Y
_ UNN 8
NOUYZNUN | 191 6)
¥IWOLSND _ WIS A 1531 UNN .w.
_ e
_
_
ESERED 1531 ININOIWOD
®
L]
)
(]
]
®
(
®

Mr. J. Nash, IBM UK Laboratories, Hursley Park, England.

NATO SOFTWARE ENGINEERING CONFERENCE 1968

13

(c) N.H. Madhaviji, IWPSE 2011

2 Sept., 2011

Corrects and
Modifies System 13

1
{1
i

Dr. F. Selig, Mobil Research and Development Corporation,
Dallas, Texas, USA.

NATO SOFTWARE ENGINEERING CONFERENCE 1968

2 Sept.’ 2011 \“) IN.L . IVIGUIIGVJI’ IvVvi JL vl

14

Iterative Design

 The design process is an iterative one.

— 1. Flowchart; 2. Write code; 3. Go back and re-do the flowchart; 4,
Write some more code and iterate to what you feel is the correct
solution.

* Inalarge production project, ... You know you are going to
iterate, so you don’t do a complete job the first time.

 This is why there is version 0, version 1, version N.

e If you are ...writing specifications, you don’t have the chance to
iterate, the iteration is cut short by an arbitrary deadline. This
is a fact that must be changed.

Mr. H.A. Kinslow, Computer Systems Consultant, Connecticut, USA.

Correctness vs. Relevance

« The most deadly thing in software is the concept, which
almost universally seems to be followed, that you are

going to specify what you are going to do, and then do
it.

e And that is where most of our troubles come from.

 The projects that are called successful, have met their
specifications. But those specifications were based
upon the designers’ ignorance before they started the
job.

-Mr. D.T. Ross, Electronic Systems Laboratory, M.I.T., Cambridge,
Massachusetts, USA.

Problems of Scale of Systems

0S/360 growth:
1--5+ MLOC — 1966-68+

47000
" 500K J.mw
8 ZaN
e 1401
G 200K -
@ o
= 7070 @ / .
3 100K 700

/" ek

. o708

20K DATATRON

5K650

56 58 60 62 64 66 68
YEAR

GROWTH IN SOFTWARE REQUIREMENTS

Figure 6. Provided by McClure

The'rate of growth of the size

of different software systems (code)
for a variety of computers.
Logarithmic scale.

Note the OS/360 growth!

Dr. R.M. McClure,
Southern Methodist University,
Dallas, Texas, USA.

ji, IWPSE 2011 17

System Releases -- 1

e Kolence: Large systems must evolve, and
cannot be produced all at one time.

* Babcock: Fewer releases, containing major
functional improvements ... that work well are
more desirable than frequent releases of
versions containing only minor improvements.

System Releases -- 2

* Opler: The latest release of OS/360 was intended
to introduce 16 changes (many complex), and to
correct 1074 errors.

* Current policy is 90 day release intervals (i.e., over
11 corrections per day between versions).

 While it is obviously better to batch improvements,
customers need quick responses. Once a year
would be much too infrequent.

System Releases -- 3

* Pinkerton: With less frequent releases there
would be increased stability, and more
opportunity for users to generate responsible

feedback

* Galler: 0S/360 has had 16 releases in two and
a half years. We should have frequent updates
for corrections, but decrease the frequency of
traumatic upheavals.

2 Sept., 2011 (c) N.H. Madhaviji, IWPSE 2011 20

Maintenance

* Gillette: ... cost of maintenance frequently
exceeds that of the original development.

e ... a basic OS [and system utilities] ... > 250
KLOC ... requires about 2-3 year effort.
Maintenance ... an unending process which
lasts for the life of the machine...

* |n summary, then, the maintenance ...involves
corrective code, improvement code, and
extensive code.

User vs. Developer Responsibility

* Babcock: As a user, | think it is a manufacturer’s
responsibility to generate systems to fit a
particular user’s need, but | haven’t been able to
convince my account representative of that fact.

e Kolence: Users should ... ensure that it works in
their environment. A large manufacturer cannot
test out his software on all the environments in
which it will operate. It is for this reason that
manufacturers typically provide an on-site
representative

Three Feedback Control Loops

 Haller: There is feedback of different entities,
on different paths, leading to three separate
control loops with different time-lag:

— 1. ...correctness ... to the maintenance group; up to
a week.

— 2. ... performance, to the production group; within,
say, a month.

— 3. ... extra facilities to the design group; and, if
accepted, a year.

Some observations

e Focus in the late ‘60s was more on problems of
the day: Escalating costs, Completion,
Reliability, Estimation and other management
problems, Scale of systems, Tools, Design
problems, Release quality, and system
maintenance, etc.

 [ijttle focus on studying scientific properties of:
system growth (evolution), feedback control,
etc., and impact on practice.

Single release vs. Multiple releases

 |f there is anyone in our community who has
been driving with the “high beams” on, ...,
then in my mind this is ... Lehman.

* While most of us were either in our infancy or
fire-fighting software problems, Lehman had
his sight set far ahead — on the programming
process, as evidenced by a seminal paper

published in 1969 [1].

-- Madhaviji, ICSM 2003 Panel session on Lehman’s Laws.

[1] Lehman M.M. (1969), “The Programming Process”, IBM Research Report RC 2722,
IBM Research Centre, Yorktown Heights, NY, September.

Single release vs. Multiple releases

* For about thirty-five years now, Lehman has
peen concerned about, ..., software’s long term
nealth, ..., while most others...have had “low
peams” on as if the next release is the final
release of the software product or system.

* It needs no further explanation as to why we
encounter surprises when we drive in the pitch-
dark roads of software engineering.

-- Madhavji, ICSM 2003 Panel session on Lehman’s Laws

2 Sept., 2011 (c) N.H. Madhaviji, IWPSE 2011 26

Empirical Approach

 The “Laws” and recognition of software process as a

feedback system have roots in empirical observations as
early as 1968-69 of IBM’s 0OS/360-370.

e Later studies (Belady and Lehman 1972 and Lehman
1974, Lehman 1980, Lehman and Belady 1985) and the
FEAST projects (1994-2002 with Turski, Perry and Ramil)
involved other systems.

e This triggered studies of Program Growth (or Evolution)
Dynamics.

e Refined versions of the Laws were subsequently
proposed as tools for planning, management and control
of sequences of releases (Belady and Lehman 1972,
Lehman 1974, 1980).

-- [see Ch. 1 in Madhaviji, F-Ramil, Perry: Wiley 2006]

Continuing Growth - Linear or Inverse Square?

0S/360-370
08/360 | relative Size in Modules over Releases |

6 1toRSN1 and Linear Growth Treqd

 Linear growth to release 19
* End result - instability leading to

* Trigger - excessive growth?

Operating System Kemel - - S/S1 Information System
Size in Modules over Releases] Size very Large Real-Time System ¢

12 reIatiSve and Inv. Square Trends | relative Size in Modules over Releases 1 Size in Modules over System Age
to RSN 1 :
10 -

cesees] to RSN 1 and Inv. Square Trends - and Inv. Square Trends 4
W : -

- Size

RSN

1970s-90s j 1980s-90s

13

o Inverse square growth : S.,, =S + E/S2 (1<=i<=n-1)
— where i are (rsn) of the n for which data is available

« Suggests complexity constrained growth

10/05/11 06:31 PM o8 © jfr67c[charts]

Empirical Approach

 From the very start (1968-69) the study demonstrated
that software evolution is a phenomenon that can be
observed, measured and analysed, with feedback
playing a major role in determining the behaviour.

 Though there was empirical evidence of system growth
(McClure) and thoughts on feedback (Haller) and
evolution (Kolence) at the 1968 NATO SE Conf,, it was
Lehman who relentlessly pursued to find the truth for

over 35 years.

 This makes Lehman the “Galileo” of our time.

Communication with Vic Basili — 16 August, 2011

* | remember Manny as a
dedicated, driven
observer, trying to identify
rules and laws. He was the
first one out there. He was
committed and had an
enormous amount of
energy, even in his waning

The Belady-Lehman work had years. He coined and made

a big influence on my real the concept of

thinking, leading me to be a evolution of systems,

proponent of observation. rather than maintenance.

2 Sept., 2011 (c) N.H. Madhaviji, IWPSE 2011 30

The Global Software Process

* Incorporates —
activity of all /‘ N - \\
iInvolved —— m ~<
7 Marketeers
® C te N\
Process not // Users Management ~
sequential 5 User Support % g{\
{ Exogenous C oolication | |
- Involves more | SR S T 1 (
than just '\]' K\\\ | views \
technological r , [Operationat |- 3N LT Oy
S —_— |—— Program ____
activity / e |~ = - | I
rojec P
7 = Process / y I 4_: _Z:_g:}f"-{f Evolving I \
Managers Program «— .0‘9}:;?;1!'?5_ = | Understanding
T - \
r j x I I I -— — -;}“%ﬁ L _7 and Structure ,’
LY | lemEsier, 7N
<7 r || gt =
Global process 92 Compusti :| N A
roceaurces sabn 1 1
is, in general, ac _ N s I "sfyi?é’rﬁ%ga?&d /J/ J
multi-level \ ot ————=
1 t | ~
¥ |
ml.lltl-lOOp I I — — Program | 2= ~%| Requirements | 4 | ((\
' ogram |2 = o
multi-agent I | — L -
D) B N
~_ ~7 N - - =~ % -~
10/05/11 06:31 PM 31 © jfr67c[charts]

Lehman’s Multi-level loops vs. Basili’s QIP

* Thereis a relationship between QIP and Manny's multi-
level loops, but they are not the same.

 Manny was trying to connect to control theory while |
was closer to Deming's Plan Do Check Act, with the
distinction being that there were two loops in QIP.
— The project loop and the learning loop which tried to create

models with a sparsity of data, unlike the situation in
manufacturing.

* |n fact QIP is really about observing your own activities
to see how to characterize, understand, evaluate,

predict, and improve. —- Vic Basili: 16 August, 2011

Global Software Process and Feedback

* Two broad levels of feedback in the process:

— Product-level (e.g., code inspections) to developer.

— Process-level (e.g., product-quality data, resource
consumption, time consumed, etc.) to process

group.
* Feedback can be used to improve the product
or the process.

Regulatory vs. Step-function Feedback Control

* An interesting question is whether (say)
product-feedback control is:

— “regulatory” (as in a home thermostat), i.e., can
be increased/decreased with a knob, or

— a “step-function”, i.e., difficult to “turn back”
controllably once the process-change has been
made.

[see Ch. 17 in Madhavji, F-Ramil, Perry: Wiley 2006]

SPE classification of systems

* E-type includes all programs that ‘operate in,
or address, a problem or activity of the real

world’.

* This type must be continually adapted and
changed if it is to remain satisfactory in use.

* Very central to the notion of “evolution”.

SPE classification of systems

A program is defined as being of S-Type if it can be
shown that it satisfies the necessary and sufficient
condition that it is correct in the full mathematical
sense relative to a pre-stated formal specification

(Lehman 1980, 1982) —e.g., a function in home
appliance.

 There is no good reason for changing it
subsequently. The program cannot be improved
since, by definition, it already completely satisfies
Its acceptance criteria.

SPE classification of systems

e |n P-type systems, the satisfaction of its stakeholders
depends on the system maintaining consistency with a
single paradigm over the system’s lifetime. (e.g.,
external standard to be followed).

e Thus, the evolution of a P-type system is constrained by
the strategic decision of its stakeholders to keep the

system consistent with a paradigm. For example:
— |t will prevent some kinds of change that might otherwise
have occurred.

— |t may also induce change, either when the paradigm is
updated or when opportunities arise, for example, through
technological change, to improve the system’s consistency

with its paradigm.

[see Ch. 5 in Madhavji, F-Ramil, Perry: Wiley 2006]

Assumptions & Software Uncertainty

* Assumptions and uncertainty in software

development are extremely difficult to
manage.

* A major cause for system problem:s.

Fact of Life

* Real world is dynamic with changes in application and
domains continual, inevitable

* Systems kept in tune by being evolved

* Adaptation attempts to regain any loss in validity,
utility, performance, functionality - may in fact
increase the last three

* Adaptation and extension is an inescapable, almost
natural, phenomenon intrinsic to E-type systems

* Effective direction, management, control of evolution,
reduction of cost, impact, requires understanding of
phenomenon and its causes

2 Sept., 2011 (c) N.H. Madhaviji, IWPSE 2011 Adapted from MML 39

Assumptions

* Unbounded number of real world (domain)
properties must be rejected or ignored in
system development and evolution.

* This leads to the principle of software
uncertainty.

Adapted from MML

Principle of Software Uncertainty

No matter how often a system executed
satisfactorily, satisfaction on its next execution is
uncertain.

Adapted from MML

Sources of Uncertainty
 Assumption that excluded properties are irrelevant at desired level of
precision and
detail may become progressively invalid because of domain/application
changes

« Similarly, previously valid assumptions about properties reflected in software
may
become invalid

* In general, application and domain changes may falsify assumptions reflected
in
system

* Impact and consequences will range from trivial to disastrous

Hypothesis: assumptions that are or become invalid major
source of project or computer failure during development and use

© 730c][charts-

26 September 2005 42 mml]

Assumptions and their Implications

* Embedding assumptions during system
development intrinsic to E-type systems

e Also, usage, itself, implies real world changes and
hence drives application and domain evolution

e Continual monitoring of assumptions key to
satisfactory (i.e., correct, safe, reliable, efficient,

and controlled) computer usage

Assumption management vital for development and
evolution management, stabilisation, and control.

Adapted from MML

Software evolution, assumptions, and software uncertainty

Software evolution, assumptions, and software uncertainty

REAL WORLD

Software evolution, assumptions, and software uncertainty

REAL WORLD

Software evolution, assumptions, and software uncertainty

B C [\ \ON

ACTUAL APPLi~ATION Pp\,\
DOMAIN

[\
peRCENEgoN\NN

pCY-

REAL WORLD

Software evolution, assumptions, and software uncertainty

MODEL

CREATE

4
1 5 0b000000000000000004
1 666666666606606666660664
FrYYYYN rY 3
b

P o o N N A N N Y

.
a
s 00000
&

S eod
0 0

QpuEmpgn™

ACTUAL APPL\"ATION
DOMAIN

REAL WORLD

Software evolution, assumptions, and software uncertainty

A 2
|
|
&

QpuEmpgn™

ACTUAL APPL\"ATION
DOMAIN

REAL WORLD

L ol
L oo
P OPPPS

CREATE

R R R kg R
LOLLLOLLOLLVTLOTLOT OO g

b 2

MODEL

Software evolution, assumptions, and software uncertainty

A 2
|
|
&

QpuEmpgn™

ACTUAL APF. “ATION
DOMAIN

REAL WORLD

L ol
L oo
P OPPPS

CREATE

R R R kg R
LOLLLOLLOLLVTLOTLOT OO g

b 2

MODEL

Software evolution, assumptions, and software uncertainty

MODEL

CREATE

)
1 500000000000000000004
0 6666666666660606606664
NN NN FYYYYIYIIIIIY 2
b

Ny

oS
*o00o,
* o

rveys

REAL we.

Software evolution, assumptions, and software uncertainty

MODEL

SYSTEM

Software evolution, assumptions, and software uncertainty

Z
o
<
o
=
o
o
<
o
S
-
o
>
w

SYSTEM

Software evolution, assumptions, and software uncertainty

1388883875009 i«i\{%
A | POOOOLY P9 -l GO CD| =

EVOLVED APPLICATION
e\

Process and Model evolution

* Processes are often the cause of many delays;
with their products displaying defects and
deficiencies.

* Processes thus need to be improved:

— Process change: CMMI, SPICE, etc. methods; or

— A process model can first be changed in vitro prior
to changing the process itself.

[see Ch. 5 in Madhaviji, F-Ramil, Perry: Wiley 2006]

Process Modelling vs. Programming

* At 1987 ICSE, Osterweil proposed the idea of
Process programming — that, like software,
processes too can be programmed.

* Lehman’s response was to promote process
models as a way of understanding and guiding
processes and coping with uncertainty.

* Their respective positions seemed to polarise
the research community.

Rules and Tools

take each of the eight Laws
and make , e.8.:

e 8t Law — Feedback system

— Determine the organisational structures and
domains within which the technical software
development process operates, including
information flow, work flow and management
control, both forward and feedback, and monitor
changes.

— There are tons of recommendations in all.

[see Ch. 27 in Madhavji, F-Ramil, Perry: Wiley 2006]

Theory of Software Evolution

Based on the formulation of the Laws, various
observations and conceptual frameworks,
were on a quest for a

They had elaborated the various objectives and activities
that would lead them to this goal.

They had not yet formulated the theory.

Once established, a theory would serve several purposes,
such as: providing well-founded and plausible
interpretations of empirical evidence derived from
observed phenomena; and provide a growing base and
framework to guide further empirical work.

[see Ch. 16 in Madhaviji, F-Ramil, Perry: Wiley 2006]

Communication with Dewayne Perry

Manny's pre-FEAST work had a
lot of influence on mine. It is
particularly manifested in my
1993 keynote talk at ICSM -
dimensions of software
evolution.

[see Ch. 2 in Madhavji, F-Ramil, Perry:

Wiley 2006]

— 18 August, 2011

Manny and | had been a
participants in the software
process workshops (ISPW).

At ICSE as well - where
obviously Manny and | were
on the same side in the
Osterweil/Lehman
discussion on process
programming vs. process
modeling.

This paved the way for the
work later, on FEAST. Our
mutual interest obviously
was in software evolution.

2 Sept., 2011 (c) N.H. Madhaviji, IWPSE 2011

49

Communication with Wlad Turski
— 18 August, 2011

* In the late 70s or early 80s, we were
returning from an IFIP WG 2.3 (Prog.
Methodology) meeting... By chance we
chose the same train, sat in the same
compartment.

* On scientific side,... Manny looked for
phenomenological regularities, | was
interested in its calculational (formal)

We liked talking to each other ~ properties.

which was quite amazing: an
orthodox Jew of German e Success: measurable phenomenology of

childhood and an atheist Pole, s ft\ware process Challenge: no
a liberal descendant of a

small-nobility family with measurable feed-back controls in
roots in 14th century. software process have been discovered.

Communication with Juan Ramil
— 18-25 August, 2011

« When | joined Manny in Oct 1996 he had
already stated and published his 8 laws.

 The statement of the laws were [then]
refined to align them to the metric data
that the FEAST projects analysed.

 The most notorious refinements are in
law 3, where instead of talking of
"normal distributions”, the refined law
Manny enjoyed very much tallfs of "feedl?ack regula!tion", and law 4
interacting with young which recognised the existence of
researchers and students: 'phases’ in the evolution of the system.

he has himself a fresh
mind and a young heart.

Despite his deep thoughts
and scientific aspirations,

Communication with Juan Ramil
—18-25 August, 2011

* VERY difficult to get reliable data to test the laws. The
way software systems are constructed and evolved
today do not seem to help in studying their evolution.
INHM: agile processes?]

* One very interesting aspect of Manny's work is his
approach to data analysis and interpretation.
Empirical software engineers should be educated to
follow Manny's approach. In particular, Manny
avoided complicated statistics and instead promoted
thinking about the data in a direct and intuitive way.
This could (should?) be further developed...

Communication with Vic B

w - ,
T RS <. A e
B IR & POl iV e LW Y RS e RNl -,‘:-
m RS e R A o S
sl " ’"_;;K Pl
Pt ~® g
T LR L e
ey 4. f 7 A

s

Manny was truly a pioneer and a major
contributor to software engineering
research.

2 Sept., 2011 (c) N.H. Madhaviji, IWPSE 2011

asili—16 August, 2011

53

Communication with Brian Rendall — 16 August, 2011

Manny was above all a
gentleman, kindly and

thoughtful - and someone °

who thought long and
hard (and successfully)
about worthwhile issues in
computing science.

| met him before | left the UK in 1964 to
join IBM Research where | worked on
Project Y. He joined later, and after a
year | was transferred to the IBM West
Coast.

After a year, | returned to IBM Research,
and joined Project IMP (Manny's very
innovative multiprocessor system design
research project), which he was by then
leading there.

| worked on dynamic storage allocation,
with Carl Kuehner and Les Belady (both
were members of Project IMP).

Communication with Les Belady— 15 August, 2011

They became
close friends for
life

2 Sept., 2011

1970: Manny’s project on parallel
processing is terminated. Manny is asked
to look into quality and cost problems in
the development of IBM’s OS/360 .
Manny gets project data and starts
examining.

Manny approaches Les to join him in the
study of the software process. They
realise that this would be novel.

The two-man project was called “Meta
Dynamics of Software under dev. and
continuous change.”

1972: Presentation under new name --
Growth Dynamics.

(c) N.H. Madhaviji, IWPSE 2011 55

Communication with Les Belady— 15 August, 2011

1972: Manny resigns from IBM to join Imperial College;
works remotely with Les.

1974 — Les takes a sabbatical to Imperial College; several
staff work with Les and Manny.

— One staff recommends the name for the study: Program
Evolution.

By 1980, Les stopped contributing to evolution studies
(for other initiatives).

Manny and Les complemented each other very well.

Brainstorming together Manny was pushing hard for
creating a new branch of science while Les was the

engineer with design background looking for differences/
similarities between HW and SW and the interplay
between process and structure.

Process Award Committee

e With Vic Basili, Watts Humphrey, Barry Boehm,
and Bill Riddle, Lehman served on the first

for several years.

“I and was always amazed by his insights and
articulation of those insights.”

Personal Memories -1

1985: Nazim meets Manny at ICSE at Imperial.

Met Manny at ISPWs (process workshops) and
|ICSMs.

— Got on like “House on Fire”.

1993: Manny attends “Process Evolution”
workshop (Co-Chaired by Nazim and Bill
Riddle) in Quebec.

Mid-90s: Manny visits Nazim at McGill
(Montreal).

2000: Nazim attends FEAST-4 workshop at
Imperial.

Personal Memories - 2
Manny invites Nazim to Edit the FEAST-4
workshop papers.

Nazim (naively) convinces Manny to instead do
a new, edited book project, a sequel to the
seminal 1985 Lehman-Belady book “Program

Evolution”

Manny agrees. Perry and Ramil are invited to
join the editorial team.

Mountain to climb, with 27 chapters.
2000: Nazim moves to NZ.
2002 Manny moves to Middlesex University.

Personal Memories - 3

* 2003: Manny and Ramil visit Nazim (who had
moved to) Ontario.

* Book published in 2006, Wiley.

Software ,
Evolution =g

Theory and Practice

—

FIWILEY

N.H. Madhavji, IWPSE 2011 60

T -
2 Sept., 2011 (c)

Final thought

Manny’s work was different from most researchers’. He
didn’t do research in language notations and mechanismes,
design methods, program structure, tool development,
testing and analysis of systems, single release concern, and
the like. He marched at the beat of his own drum.

He was always concerned about the “big picture”: the laws,
how systems change over time, feedback, uncertainty,
assumptions, theory, etc.

He was thus a “software evolution philosopher” with an
acute sense for empiricism.

For those of us researching in these areas, there are
numerous inroads Manny has left behind for us to explore
for “Manny” years to come.

Bio-1

Lehman studied mathematics at Imperial College
London.

Was involved in the design of the Imperial College
Computing Engine’s Digital Computer Arithmetic Unit.

Worked for Ferranti (1956—1957), the Scientific
Department of Israel Ministry of Defence (1957-1964)
and IBM (1964-1972).

1972 to 2002: was with Imperial College, where he
headed Section and later Department.

2002: moved to Middlesex University.

After retiring from Middlesex, he moved to Jerusalem,
Israel, where he passed away on December 29, 2010.

Bio -2

 Manny received numerous awards, including:

— the IEEE Computer Society ‘Harlan D. Mills Award’
in 2001 ‘For pioneering contributions to the
empirical study of software processes and program
evolution’ and

— the Re-engineering Forum ‘Stevens Award’ in 2003.

[JSME, April 2011]

