
Building Diverse Computer Systems
�

StephanieForrest�
Dept.of ComputerScience
Universityof New Mexico
Albuquerque,NM 87131

forrest@cs.unm.edu

Anil Somayaji�
Dept.of ComputerScience
Universityof New Mexico
Albuquerque,NM 87131

soma@cs.unm.edu

David H. Ackley
Dept.of ComputerScience
Universityof New Mexico
Albuquerque,NM 87131

ackley@cs.unm.edu

Abstract

Diversityis an importantsourceof robustnessin biological
systems.Computers,by contrast,are notablefor their lack
of diversity. Althoughhomogeneoussystemshavemanyad-
vantages,the beneficialeffects of diversity in computing
systemshavebeenoverlooked,specificallyin the area of
computersecurity. Several methodsof achieving software
diversity are discussedbasedon randomizationsthat re-
spectthespecifiedbehaviorof theprogram. Such random-
izationcouldpotentiallyincreasetherobustnessof software
systemswith minimalimpactonconvenience,usability, and
efficiency. Randomizationof the amountof memoryalloc-
atedon a stack frameis shownto disrupt a simplebuffer
overflowattack.

1 Introduction: Diversity is valuable

Diversity is an importantsourceof robustnessin biolo-
gical systems.A stableecosystem,for example,contains
many differentspecieswhichoccurin highly-conservedfre-
quency distributions. If this diversityis lost anda few spe-
ciesbecomedominant,theecosystembecomessusceptible
to perturbationssuchascatastrophicfires,infestations,and
disease.Similarly, healthproblemscanemergewhenthere
is low geneticdiversitywithin aspecies,asin thecaseof en-
dangeredspeciesor animalbreedingprograms.Theverteb-
rateimmunesystemoffersa third example,providing each
individual with a unique set of immunologicaldefenses,
helpingto controlthespreadof diseasewithin apopulation.

Computers,by contrast,arenotablefor their lack of di-
versity. Manufacturersproducemultitudesof identicalcop-
ies from a single design,with the goal of making every
hardwareand softwarecomponentidentical. Beyond the

�
In Proceedingsof The6th Workshopon Hot Topicsin OperatingSys-

tems,IEEEComputerSocietyPress,LosAlamitos,CA, pp. 67-72(1997).�
Currentaddress:MIT Artificial IntelligenceLaboratory, 545Techno-

logy Sq.,Cambridge,MA 02139.

economicleverageprovidedby themassive cloningof one
design,suchhomogeneoussystemshave otheradvantages:
They behaveconsistently,applicationsoftwareis moreport-
able and more likely to run identically acrossmachines,
debuggingis simplified, anddistribution andmaintenance
tasksare eased. Standardizationefforts are a further ex-
ampleof the almostuniversalbelief that homogeneityis
beneficial.

As computersincreasinglybecomemass-marketcom-
modities,thedeclinein thediversityof availablehardware
andsoftwareis likely to continue,andasin biologicalsys-
tems,sucha developmentcarriesseriousrisks. All thead-
vantagesof uniformity becomepotentialweaknesseswhen
they replicateerrors or can be exploited by an attacker.
Onceamethodis createdfor penetratingthesecurityof one
computer, all computerswith the sameconfigurationbe-
comesimilarly vulnerable.Thepotentialdangergrowswith
the populationof interconnectedand homogeneouscom-
puters.

In this paperwe argue that the beneficialeffectsof di-
versityin computingsystemshavebeenoverlooked,andwe
discussmethodsby whichdiversitycouldbeenhancedwith
minimal impacton convenience,usability, and efficiency.
Althoughdiversityconsiderationsaffectcomputingatmany
levels, herewe focusprimarily on computersecurity, and
our emphasisis on diversityat the softwarelevel, particu-
larly for operatingsystems,which area commonpoint of
intrusion.

Computersecurityis a growing concernfor opencom-
putingenvironments.Maliciousintrusionsaremultiplying
ashugenumbersof peopleconnectto theInternet,exchange
electronicmail andcommerciallyvaluabledata,download
files, and run computerprogramsremotely, often across
internationalboundaries.Traditional approachesto com-
puter security—basedon passwords,accesscontrols,and
soforth—areineffective whenanattackeris ableto bypass
themby exploiting someunintendedpropertyof a system.
Findingwaysto mitigatesuchattacksis likely to beanin-
creasingconcernfor theoperatingsystemscommunity.



Deliberatelyintroducingdiversityinto computersystems
can make them more robust to easily replicatedattacks.
Morespeculatively, it mightalsoenhanceearlydetectionof
timing problemsin softwareandotherfaults. Today, each
new discovery of a securityhole in any operatingsystem
is a seriousproblem,becauseall of the installedbaseof
that operatingsystem—thousands,if not millions, of ma-
chines,runningalmostexactly thesamesystemsoftware—
maywell bevulnerable.An attackscriptdevelopedonone
machineis likely to work on thousandsof othermachines.
If everyintrusion,virus,or wormhadto becraftedexplicitly
to a particularmachine,thecostof trying to penetratecom-
putersystemswould go up dramatically. Only siteswith
high-valueinformationwouldbeworthattacking,andthese
couldbesecuredusingstrongermethods.Therelevanceof
diversity to computersecuritywasrecognizedasearly as
1989in theaftermathof theMorris Worm,whenit wasob-
servedthatonly afew machinetypeswerevulnerableto in-
fection[2]. Yet, this simpleprinciplehasnot beenadopted
in any computersecuritysystemthatweknow of.

2 Strategy: Avoid Unnecessary Consistency

Our goal is to prevent widespreadattacks by mak-
ing intrusionsmuch harder to replicate. Can we intro-
ducediversity in a way that will tendto disruptmalicious
attacks—eventhroughsecurityholesthathave notyetbeen
discovered—withoutcompromisingreliability, efficiency,
andconveniencefor legitimateusers?We believe that the
answeris yes,becausecomputerstodayarefar morecon-
sistentthannecessary. For example,all but thelowest-level
computationaltasksare now implementedin a high-level
programminglanguage,and for eachsuchprogramthere
aremany differenttranslationsinto machinecodethatwill
accomplishthe sametask. Eachaspectof a programming
languagethatis “arbitrary” or “implementationdependent”
is an opportunity for randomizedcompilation techniques
to introducediversity. Herewe extend the term “compil-
ation” beyond its usualmeaningto includeboth load-and
execution-timetransformations[1]. Suchdiversity would
preserve thefunctionalityof well-behavedprogramsandbe
highly likely todisruptothersby removing unnecessaryreg-
ularities. We refer to the strict virtual machineimplied by
a programminglanguage's semanticsas“the box.” As far
aspossibleall functionalpropertiesnot requiredby a lan-
guage's semanticsshouldvary acrossindividuals,a prin-
ciplethatwereferto as“surroundingtheboxwith noise.” In
short,whena propertyis describedby a programminglan-
guageas“arbitrary,” thatshouldmean“random,” not “un-
specifiedbut usuallyconstant.”

We have adoptedthe following guidelinesto help us
identify themostpromisingdirectionsto explore:

1. Preserve high-level functionality. At theuserlevel, the

behavior of different systemsshouldbe predictable,
andthe input/output behavior of programsshouldbe
identicalondifferentcomputers.

2. Introducediversityin placesthatwill bemostdisrupt-
ive to known or anticipatedintrusionmethods.

3. Minimize costs,bothrun-timeperformancecostsand
thecostof introducingandmaintainingdiversity. We
believe that the latter is likely to berelateddirectly to
wherethevariationsareintroducedin thesoftwarede-
velopmentprocess.A load-timemodificationis likely
to belessexpensive thana compile-timemodification
which in turn is lessexpensive than requiring a de-
veloperto write multipleversionsof applicationcode.

4. Introduce diversity through randomization. Tech-
niquesbasedon prior knowledgeof the semanticsof
the propertybeingvariedwould alsobe possible,but
they areunlikely to scaleaswell asmethodsbasedon
randomization.

3 Possible Implementations

There are a wide variety of possibleimplementation
strategiesfor introducingdiversity. In this section,we dis-
cussseveralof theseandtheir implicationsfor security. Our
emphasisis on variability thatcanbe introducedinto soft-
warebetweenthetimethatthesoftwareis writtenandwhen
it is executed,andaswe mentionedearlier, we believe that
variationsintroducedlate in the compilation processare
most likely to be successful.The expenseof producinga
uniqueexecutablefor every differentmachineis high, and
thereare many ways that variationscould be introduced
after an executableis written. In our initial explorations,
however, we cover asmany differentkindsof transforma-
tionsaspossible.We considermethodsrangingfrom those
thatproducevariability in thephysicallocationof executed
instructions,the order in which instructionsareexecuted,
thelocationof instructionsin memoryat run-time,andthe
ability of executingcodeto accessexternal routines,files,
andotherresources.

3.1 Adding or deleting nonfunctional code

Perhapsthesimplestmethodis to insertno-opsor other
nonfunctionalsequencesof instructionsat randomloca-
tionsin compiledcode.Dependingon thearchitecture,this
could potentiallyaffect timing relationsat execution-time
andwould slightly changethephysicallocationof instruc-
tions. It would also interactwith compileroptimizations
thatinsertno-opsto preserve cachealignment,but it might
bepossibleto insertthe nonfunctionalcodein sucha way
asto respectcachealignmentconstraints.

2



ThetimingattacksreportedonRSA[3] couldpotentially
bedisruptedusingthismethod,althoughotherremediesfor
thisparticularattackhave alsobeenproposed.

3.2 Reordering code

Optimizing andparallelizingcompilersusemany tech-
niquesto improveperformance,andsomeof thesecouldbe
usedto generatecodevariations.For example,

1. Basicblocks:Rearrangethebasicblocksof compiled
codein randomorder. This would causeinstructions
to bestoredin differentlocationsbut wouldnot affect
theorderin which they areexecuted.However, basic-
block placementis an importantperformanceoptim-
ization[6], sotheimpactonexecution-timeefficiency
for thismethodis likely to belarge.

Basic-blockrearrangementscould potentiallydisrupt
someviruses.However, mostfile-infectorvirusesin-
serta singlejump instructionthat transferscontrol to
thevirus code(storedat theendof theprogram),and
thenreturncontrol to theoriginal program.Thus,re-
arrangingbasicblocksin theprogramsegmentwould
beunlikely to affect this largeclassof viruses.

2. Optimizationsfor parallel processing: Many tech-
niquesexist for producingblocksof instructionsthat
can be run simultaneouslyon multiple processors.
Thesetechniquescouldbeappliedto codeintendedfor
executionon a singleprocessor, resultingin a unique
orderof execution.We donot know whatif any intru-
sionmethodsthis would disrupt. Further, the amount
of variability thatcouldbeproducedwith this method
would be limited to the amountof parallelismthat
couldbeextractedfrom theoriginalprogram.

3. Instructionscheduling:Vary the orderof instructions
within abasicblock,while respectingthedataandcon-
trol dependenciespresentin the sourcecode. A pre-
liminary studyof the sourcecodefor the Linux ker-
nel concludedthat the numberof differentorderings
that could be automaticallygeneratedwas very high
[5]. As in thecasefor basic-blockrearrangements,in-
teractionswith codeoptimizationswould needto be
consideredcarefully to avoid seriousdegradationsof
execution-timeperformance.

3.3 Memory layout

Therearestandardwaysof allocatingmemorywhenpro-
gramsexecuteandof orderingthecomponentsof memory.
Thesearearbitraryandcouldbevariedin many ways.Here
area few examples:

1. Pad eachstackframeby a randomamount(so return
addressesarenotlocatedin predictablelocations).The
amountof paddingcouldbefixedfor eachcompilation
andvariedbetweencompilations,or it couldbevaried
within a singlecompilation.

2. Randomizethe locationsof global variables,and the
offsetsassignedto localvariableswithin astackframe.

3. Assigneachnewly allocatedstackframein anunpre-
dictable(e.g.,randomlychosen)locationinsteadof in
thenext contiguouslocation. This would have theef-
fect of treatingthe stackasa heap,which would in-
creasememory-managementoverhead. Many func-
tional languageshave this capability for constructs
suchasclosures.

Someof thesememory-layoutschemeswouldlikely disrupt
a pervasive form of attack—thebuffer overflow—in which
aninputbuffer is intentionallyoverflowedto gainaccessto
anadjacentstackframe.

Thereareseveral potentialcomplications,however, in-
cluding whetherand how to preserve Application Binary
Interface(ABI) compatibility, preservingthe correctfunc-
tionality for certainuserfunctions(e.g.,theC function“al-
loca”), and how to maintain compatibility with dynamic
libraries. In spite of thesecomplications,we consider
memory-layoutmodificationsto bea promisinginitial dir-
ection,becausebuffer overflows aresuchanimportantpath
of intrusion.

3.4 Other transformations

1. Processinitialization: Instructionsthat are executed
beforeusercodecouldbevaried.Suchchangescould
involve varying objectfiles suchascrt0.o that are
linked into every executableand are responsiblefor
callingmain. Alternatively, it wouldbepossibleto in-
troducevariationsin thekernel(e.g.,in execve) such
thatdatalocations(e.g.,command-lineargumentsand
environmentvariables)arerandomized.

2. Dynamic libraries and systemcalls: For a program
to run on different machines,it must know the cor-
rectnamesandargumentsfor dynamiclibrary routines
and systemcalls. By varying namesand permuting
arguments,binariescould be mademachine-specific.
An importationprocesscould alsobe developedthat
would allow usersto convert foreignbinariesinto the
localformat.Suchchangeswouldmakeit muchharder
for virusesandwormsto propagate.

3. Uniquenamesfor systemfiles: Varying thenamesof
commonsystemfiles sothey aredifficult for intruding
codeto find would behighly effective againstattacks

3



targeting thesefiles. However, suchchangeswould
complicatesystemadministrationunreasonablyunless
authorizedadministratorswereprovidedwith a secure
interfaceundertheinversemapping(from therandom-
izednamesbackto their standardcounterparts).

4. Magic numbersin certainfiles, e.g.,executables:The
type of information containedin many files can be
(at leasttentatively) identifiedby searchingfor char-
acteristicsignaturesat the beginning of the file. In-
dividual systemscouldre-mapsuchsignaturesto ran-
domly chosenalternativesandconvert the signatures
of externallyobtainedfiles via anexplicit importation
process.

5. Randomizedrun-timechecks:Many successfulintru-
sions could be prevented if all compiled code per-
formed dynamic array boundschecking. However,
suchchecksarerarely performedin productioncode
becauseof perceivedperformancecosts.Insteadof re-
quiring every programto pay the costof doing com-
pletedynamicchecking,eachexecutingprogramcould
performsomeof thesechecks(potentiallyaverysmall
numberof them).Whichcheckswereto beperformed
couldbedeterminedeitherat compile-timeor at run-
time.

4 Preliminary Results

As an initial demonstrationof theseideas,we have im-
plementeda simplemethodfor randomizingtheamountof
memoryallocatedon a stackframeandshown that it dis-
ruptsa simplebuffer overflow attack(item 1 from Section
3.3). Buffer overflow attacksarisebecausemany programs
staticallyallocatestoragefor input on the stack,and then
do not ensurethat their received input fits within the al-
lotted space.BecauseC doesnot requirearrayboundsto
be checkeddynamically, overflows can result in the cor-
ruptionof variablesandreturnaddresses.Buffer overflows
areproblematicin thecontext of programsthatrun asroot
in UNIX, primarily becausethey provide a way for a non-
privilegeduserto obtainroot access.However, any script
exploiting suchvulnerabilitiesis brittle. Tooverwritethere-
turnaddress,thedistancebetweenthestartof thebufferand
thefunction'sreturnaddresson thestackmustbeknown as
well astheexactlocationof thecodeto beexecuted.

If every compilationproducedanexecutablewith a dif-
ferentstacklayout, then exploit scriptsdevelopedon one
executablewouldhavealow probabilityof successonother
executables.To changethelayoutof thestack,we increase
thesizeof thestackframeby a randomamount,by adding
arandomamountof spaceto certainstackslots.Suchaddi-
tionsaffect both thestacklayout for themodifiedfunction
andthe exact locationsof every function calledby it. To

implementthis,wemadea smallmodificationto gcc (ver-
sion 2.7.2.1),so that it addsa randomnumberof bytesto
any stackallocationrequestlargerthan16 bytes,wherethe
numberof extrabytesis randomlyselectedto bebetween8
and64in incrementsof 8. Thatis, oneachnew stackalloc-
ationrequest(above the16-bytethreshold),a randomnum-
ber is selected(oneof 8, 16, 24, ..., 64) which designates
thenumberof bytesof paddingfor thatcall. Thisgivesone
exampleof how a compilercouldhelpuserscreateunique
systems,which arevulnerableto attackbut vulnerablein
waysdifferentfrom everyothercomputer.

Theideabehindthe16-bytethresholdis to minimizethe
amountof unnecessarypadding. Becausethe buffer over-
flow techniquerequiresa relatively largebuffer in which to
storetheintrusion,it is unnecessaryto padstackallocations
smallerthan somethreshold. We have not experimented
with differentthresholdsizesbut choseonethatwebelieve
is well below the thresholdneededfor buffer-overflow at-
tacks.

Therevisedversionof gcc producesaprogramthatdis-
ruptsa simplebuffer overflow attackagainstlpr onLinux
2.0.28,DebianLinux 1.1 [4]. This attackworks by giv-
ing lpr a largeargumentfor the-C (class)command-line
switch. In the functioncard, lpr copiesthe command-
line argumentinto a fixedsizelocalbuffer causinganover-
flow. As aresult,card transferscontrolto theoriginalcopy
(locatedin argv), whichexecsashellrunningasroot.This
attackis disruptedby changingthe sizeof the buffer, pre-
ventingcard's returnaddressfrom beingoverwritten.

Thesemodificationshave a relatively small impact on
execution-timeperformance. In testsof gzip and gcc
(compiledby both the modified and unmodifiedversions
of gcc) the differencesin CPU time werenegligible. Be-
causeour modificationscausea programto expandits use
of stackmemory, we expectedsomereductionin perform-
ance,which testingon additionalprogramsmight reveal.
An importantquestionis how muchextra stackspaceis re-
quired for this methodto be effective. In termsof static
stackspace,theanswerappearsto be10-15%.In thegzip
example,17slotsexceedthe16-bytethreshold(thus,quali-
fying for modification)out of a total of 125. Notably, these
17 slotsconsumemostof the stackusagefor the program
(93%). Similarly, in the caseof gcc, 313 slots exceed
the threshold,out of 6183total. The 313slotsaccountfor
64.7%of thestackusage.

Thereareseveral partsto a buffer-overflow attack: (1)
overflowing the original buffer to gain accessto a return
address,(2) transferringcontrol to a known locationcon-
taining intrusive instructions,and(3) executingthe intrus-
ive instructions. The stack-framevariationswe described
affect thefirst of thesebut not necessarilythesecond.For
example,in Linux, command-lineargumentspassedto argv
arestoredin a predictablelocationdeterminedby the ker-

4



nel andarenot affectedby stack-framemodifications.The
contentsof argv are later copiedinto a stackframe (this
is the buffer that is targetedfor the overflow), but the at-
tackerhasthe optionof transferringcontrol to theoriginal
copy (storedin a highly predictablelocation). Although
ourmethodsuccessfullydisruptstheoverflow andsubverts
theattack,theseconsiderationssuggestyetanotherpossible
randomization—onethatweplanto explorein futurework.

5 Impact on Computer Security

Herewegiveabrief overview of commonsecurityprob-
lemsandourassessmentof whichdiversitymethodswould
be most effective againstthem. Unfortunately, assessing
anddocumentingthe mostcommonroutesof intrusionis
difficult: (1) new routesof intrusion are continually be-
ing discovered,(2) old routesof intrusion are sometimes
patched,(3) therearefew if any reliablestatisticson suc-
cessfulintrusions,and(4) thereis a distinctionbetweenthe
varietyof intrusionmethodsandthe frequency with which
they areexploited.

Softwareerrors(e.g., buffer overflows, insecurelypro-
cessingcommand-lineoptions, symlink errors, temp file
problems,etc.) lead to several commonforms of attack.
Memory-layoutvariations,suchas the onewe implemen-
ted,would primarily affect buffer overflows. A racecondi-
tion is an interactionbetweentwo normallyoperatingpro-
gramsvia somesharedresource(often,a file). Compilation
techniques,suchastheoneswehavediscussed,areunlikely
to prevent raceconditions. However, diversityat the level
of the sharedresourcewould likely be effective. For con-
figurationproblems(e.g.,setuperrorsin how a serviceis
provided or file permissionproblems),uniquenamingof
systemfileswouldbehighly effective. Denial-of-serviceat-
tacksaresometimesdueto softwareerrorsandsometimes
dueto lackof resourcecheckingor poorpolicies.Thus,one
diversity techniquealoneis unlikely to addressall denial-
of-serviceproblems.For problemsassociatedwith insecure
channels(e.g.,IP spoofing,terminalhijacking,etc.),weex-
pectthatcryptographytechniquesareprobablymorehelp-
ful thandiversitytechniques,at leastfor diversitygenerated
on a singlehost. Trust abuse,including key management
problemsandinappropriatelytrustedIP addresses,couldbe
addressedby generatingauniqueprofileof eachcomputer's
behavior andusingit to establishidentity. A final security
problemthat hasbeenwell-studiedis that of covert chan-
nels. It might bepossibleto introducediversity to prevent
exploitationof covert channels,althoughwehave not stud-
ied it well enoughto have specificsuggestions.

Within computersecurity there is widespreaddistrust
of “security throughobscurity”—for example,proprietary
cryptographicalgorithmsthatarekeptsecretonthegrounds
thatpublishingtheir algorithmswould weakentheir secur-

ity. Suchdistrustis warranted—proprietarycryptographic
algorithms,oncerevealed,often turn out to have serious
flaws. Nevertheless,it is worth noting that at the level of
whole systems,all securityis ultimately basedon making
someaspectof thesystemobscure,whetherit bepasswords
or privatekeys. Possessionof a secretis thebasisfor grant-
ing differentialaccess.By randomizingimplementationde-
pendencies,ourapproachcanbethoughtof asaddinganew
level of automatically-generated“secrets”thataretranspar-
ent to properly functioning code,but which misbehaving
codemustpossessto crack the systemsuccessfully. Fur-
ther, at thelevel of algorithms,ourapproachwouldactually
reduceobscurityby eliminating obscureimplementation-
dependentconsistenciesof which the algorithm designer
wasunawareandcertainlydid not intend,but which, once
discovered,might form thebasisof anattack.

For somesecurityapplicationsit is importantto certify
that a computersystemis trustworthy, througha combin-
ation of proving formal propertiesaboutthe specification
and testingand analyzingthe implementation. Although
the methodwe proposewould complicatethe testingpro-
cedure,any systemthat stayedwithin its formal specifica-
tions (“in the box”) would be robust to variationsoutside
the box. Thus,an implementationthat successfullywith-
stoodrandomvariationsof the sort we proposewould be
moretrustworthythanonethatdid not.

6 Conclusion

Diversity techniquessuch as thosewe have proposed
here can serve an important role in the developmentof
morerobust andsecurecomputingsystems.They cannot,
by themselves,solve all securityproblems,becausemany
exploitableholesarecreatedcompletely“within the box”
of a programfunctioningunderthe semanticsof the lan-
guagein which it is written. And indeed,diversity tech-
niquesmay sometimesdisrupt legitimate useby unmask-
ing unintendedimplementationdependencies(i.e., “bugs”)
in benign code. Nonetheless,the essentialprinciples of
diversity—“avoid unnecessaryconsistency,” and“surround
theboxwith noise”—expressastrategy thatis likely to find
usein thecomputersof thefuture.

This approachcan only be successfulif it is low-cost,
having minimal impact on run-time efficiency and main-
tainability. In thispaper, wehave concentratedonoutlining
a wide variety of possibleapproaches,to stimulatefurther
ideasandsuggestions.An importantareaof futureresearch
is to assesstheseandotherideasmoresystematicallyto de-
terminewhichonesareworth implementing.

5



Acknowledgments

Overthepastcoupleof yearswehavediscussedthegen-
eral ideaof diversity with many peopleandsolicitedtheir
commentsandideasfor possibleimplementationstrategies.
In particular, A. Davis, T. Knight, B. Maccabe,M. Oprea,
M. Seltzer, H. Shrobe,E. Stoltz,G. Sussman,andC. Young
have all listenedwith moreor lessopenmindsandmade
helpful suggestions.The authorsgratefully acknowledge
supportfrom the NationalScienceFoundation(grantIRI-
9157644),the Office of Naval Research(grant N00014-
95-1-0364),DefenseAdvancedResearchProjectsAgency
(grants N00014-96-1-0680and N66001-96-C-8509),the
MIT AI Lab., Interval ResearchCorp., and the SantaFe
Institute.

References

[1] J.B. Chen,M. Smith,andB. N. Bershad.Morph,aframework
for platform-specificoptimization. TechnicalReportTR-04-
96,HarvardUniversity, Divisionof EngineeringandApplied
Sciences,Cambridge,MA, 1996.

[2] M. W. EichinandJ.A. Rochlis.With microscopeandtweez-
ers: An analysisof the internetvirus of november1988. In
Proceedingsof the IEEE Symposiumon Research in Com-
puterSecurityandPrivacy, Los Alamitos,CA, 1989.IEEE,
IEEEComputerSocietyPress.

[3] E. EnglishandS. Hamilton. Network securityundersiege:
thetiming attack.Computer, March1996.

[4] V. Kolontsov. Bugtraqmailing list, Oct. 25, 1996. Linux &
BSD's lpr exploit.

[5] M. Oprea.Towardscompiler-inducedobjectcodevariability.
UnpublishedManuscript,June1996.

[6] C. Young,D. S. Johnson,D. R. Karger, and M. D. Smith.
Near-optimal intraproceduralbranchalignment. In Proceed-
ingsof ACM SIGPLAN'97ConferenceonProgrammingLan-
guageDesignandImplementation, (to appear).

6


