Building Diverse Computer Systems'

Stephanid-orrest
Dept. of ComputerScience
Universityof New Mexico

AlbuquerqueNM 87131
forrest@cs.unm.edu

Abstract

Diversityis animportantsource of robustnessn biological
systemsComputersby contrast, are notablefor their lack
of diversity Althoughhomogeneousystemé&avemanyad-
vantagesthe beneficial effects of diversity in computing
systemdhave beenoverlooked specificallyin the area of
computersecurity Several methodsof achieving softwae
diversity are discussedasedon randomizationghat re-
spectthe specifiedoehaviorof the program. Sud random-
izationcouldpotentiallyincreasetherobustnessf softwae
systemsvith minimalimpacton corvenienceysability, and
eficiency Randomizatiorof the amountof memoryalloc-
atedon a stak frameis shownto disrupta simplebuffer
overflowattack.

1 Introduction: Diversity isvaluable

Diversity is an importantsourceof robustnessn biolo-
gical systems.A stableecosystemfor example,contains
mary differentspeciesvhichoccurin highly-conseredfre-
guengy distributions. If this diversityis lost anda few spe-
ciesbecomedominantthe ecosystenbecomesusceptible
to perturbationsuchascatastrophidires, infestationsand
disease Similarly, healthproblemscanemege whenthere
is low genetiadiversitywithin aspeciesasin thecaseof en-
dangeredpecie®r animalbreedingorograms Theverteb-
rateimmunesystemoffers a third example,providing each
individual with a unique set of immunologicaldefenses,
helpingto controlthe spreacf diseasavithin a population.

Computerspy contrastarenotablefor their lack of di-
versity Manufacturerproducemultitudesof identicalcop-
ies from a single design, with the goal of making every
hardwareand softwarecomponentdentical. Beyond the

tIn Proceedingsf The 6th Workshopon Hot Topicsin OperatingSys-
tems,|EEE ComputerSocietyPressl os Alamitos,CA, pp. 67-72(1997).

tCcurrentaddressMIT Artificial Intelligencelaboratory 545 Techno-
logy Sq.,CambridgeMA 02139.

Anil Somayaji
Dept. of ComputerScience
University of New Mexico

AlbuquerqueNM 87131
soma@cs.unm.edu

David H. Ackley
Dept. of ComputerScience
University of New Mexico

AlbuquerqueNM 87131
ackly@cs.unm.edu

economideverageprovided by the massie cloning of one
design,suchhomogeneousystemahave otheradvantages:
They behae consistentlyapplicationsoftwareis moreport-
able and more likely to run identically acrossmachines,
deluggingis simplified, and distribution and maintenance
tasksare eased. Standardizatiorefforts are a further ex-
ample of the almostuniversalbelief that homogeneityis
beneficial.

As computersincreasinglybecomemass-marketom-
modities,the declinein the diversity of availablehardware
andsoftwareis likely to continue,andasin biologicalsys-
tems,sucha developmentcarriesseriousrisks. All the ad-
vantage®f uniformity becomepotentialweaknessewhen
they replicateerrorsor can be exploited by an attacker
Onceamethodis createdor penetratinghesecurityof one
computer all computerswith the sameconfigurationbe-
comesimilarly vulnerable Thepotentialdangegrowswith
the populationof interconnectecand homogeneousom-
puters.

In this paperwe amgue that the beneficialeffects of di-
versityin computingsystemsave beenoverlooked andwe
discusanethodsy which diversitycouldbeenhanceavith
minimal impacton corvenience,usability, and efficiency.
Althoughdiversityconsiderationaffectcomputingatmary
levels, herewe focus primarily on computersecurity and
our emphasiss on diversity at the softwarelevel, particu-
larly for operatingsystemswhich area commonpoint of
intrusion.

Computersecurityis a growing concernfor opencom-
puting ervironments. Maliciousintrusionsare multiplying
ashugenumberf peopleconnectothelnternet.exchange
electronicmail andcommerciallyvaluabledata,download
files, and run computerprogramsremotely often across
internationalboundaries. Traditional approacheso com-
puter security—basean passwordsaccessontrols,and
soforth—areineffective whenanattacketis ableto bypass
themby exploiting someunintendedoropertyof a system.
Findingwaysto mitigate suchattacksis likely to beanin-
creasingconcerrfor the operatingsystemsommunity



Deliberatelyintroducingdiversityinto computesystems
can make them more robust to easily replicatedattacks.
More speculatiely, it mightalsoenhancearlydetectionof
timing problemsin softwareandotherfaults. Today each
new discovery of a securityhole in ary operatingsystem
is a seriousproblem, becauseall of the installed baseof
that operatingsystem—thousand#, not millions, of ma-
chinesrunningalmostexactly the samesystemsoftware—
maywell bevulnerable.An attackscriptdevelopedonone
machineis likely to work on thousand®f othermachines.
If everyintrusion,virus,or wormhadto becraftedexplicitly
to a particularmachine the costof trying to penetrateom-
puter systemswould go up dramatically Only siteswith
high-valueinformationwould beworth attacking andthese
couldbesecuredisingstrongemethods.The relevanceof
diversity to computersecuritywas recognizedas early as
1989in theaftermathof the Morris Worm, whenit wasob-
senedthatonly afew machinetypeswerevulnerableto in-
fection[2]. Yet, this simpleprinciple hasnot beenadopted
in ary computersecuritysystemthatwe know of.

2 Strategy: Avoid Unnecessary Consistency

Our goal is to prevent widespreadattacks by mak-
ing intrusions much harderto replicate. Can we intro-
ducediversityin a way thatwill tendto disruptmalicious
attacks—eenthroughsecurityholesthathave notyetbeen
discovered—withoutcompromisingreliability, efficiency,
andcorveniencefor legitimate users?We believe thatthe
answeris yes, becauseomputerdoday arefar morecon-
sistentthannecessaryFor example,all but thelowest-level
computationatasksare now implementedn a high-level
programminglanguage and for eachsuchprogramthere
aremary differenttranslationsnto machinecodethat will
accomplishthe sametask. Eachaspectof a programming
languagehatis “arbitrary” or “implementatiordependent”
is an opportunity for randomizedcompilationtechniques
to introducediversity Here we extend the term “compil-
ation” beyond its usualmeaningto includebothload-and
execution-timetransformationgl]. Suchdiversity would
presere thefunctionalityof well-behaedprogramsandbe
highly likely to disruptothersby remaving unnecessameg-
ularities. We referto the strict virtual machineimplied by
a programminganguages semanticsas “the box” As far
aspossibleall functional propertiesnot requiredby a lan-
guages semanticshouldvary acrossindividuals, a prin-
ciplethatwereferto as“surroundingheboxwith noise” In
short,whena propertyis describedby a programmindan-
guageas“arbitrary;” thatshouldmean“random? not “un-
specifiedout usuallyconstant.

We have adoptedthe following guidelinesto help us
identify themostpromisingdirectionsto explore:

1. Presere high-level functionality. At theuserlevel, the

behaior of different systemsshould be predictable,
andthe input/output behaior of programsshouldbe
identicalon differentcomputers.

2. Introducediversityin placesthatwill be mostdisrupt-
iveto known or anticipatedntrusionmethods.

3. Minimize costs,both run-time performancecostsand
the costof introducingand maintainingdiversity We
believe thatthe latteris likely to berelateddirectly to
wherethevariationsareintroducedn the softwarede-
velopmentprocessA load-timemaodificationis likely
to belessexpensie thana compile-timemodification
which in turn is less expensve than requiring a de-
veloperto write multiple versionsof applicationcode.

4. Introduce diversity through randomization. Tech-
niguesbasedon prior knowledgeof the semanticof
the propertybeingvariedwould alsobe possible but
they areunlikely to scaleaswell asmethodsasedon
randomization.

3 Possible Implementations

There are a wide variety of possibleimplementation
stratgiesfor introducingdiversity, In this section,we dis-
cussseveralof theseandtheirimplicationsfor security Our
emphasiss on variability that canbe introducedinto soft-
warebetweerthetime thatthesoftwareis writtenandwhen
it is executed andaswe mentionedearlier we believe that
variationsintroducedlate in the compilation processare
mostlikely to be successful.The expenseof producinga
unigueexecutablefor every differentmachineis high, and
there are mary ways that variationscould be introduced
after an executableis written. In our initial explorations,
however, we cover asmary differentkinds of transforma-
tionsaspossible.We considermethodgangingfrom those
thatproducevariability in the physicallocationof executed
instructions,the orderin which instructionsare executed,
thelocationof instructionsn memoryat run-time,andthe
ability of executingcodeto accessexternalroutines,files,
andotherresources.

3.1 Addingor deleting nonfunctional code

Perhapghe simplestmethodis to insertno-opsor other
nonfunctionalsequence®f instructionsat randomloca-
tionsin compiledcode.Dependingnthearchitecturethis
could potentially affect timing relationsat execution-time
andwould slightly changethe physicallocationof instruc-
tions. It would alsointeractwith compiler optimizations
thatinsertno-opsto presere cachealignment,but it might
be possibleto insertthe nonfunctionalcodein sucha way
asto respectachealignmentconstraints.



Thetiming attackgeportedon RSA[3] couldpotentially
be disruptedusingthis method althoughotherremediedor
this particularattackhave alsobeenproposed.

3.2 Reordering code

Optimizing and parallelizingcompilersusemary tech-
niguesto improve performanceandsomeof thesecouldbe
usedto generateodevariations.For example,

1. Basicblocks: Rearrangéhe basicblocksof compiled
codein randomorder This would causeinstructions
to be storedin differentlocationsbut would not affect
the orderin which they areexecuted.However, basic-
block placemenis an importantperformanceoptim-
ization[6], sotheimpacton execution-timeefficiengy
for this methodis likely to belarge.

Basic-blockrearrangementsould potentially disrupt
someviruses. However, mostfile-infector virusesin-
serta singlejump instructionthat transferscontrol to
thevirus code(storedat the endof the program),and
thenreturncontrolto the original program. Thus, re-
arrangingbasicblocksin the programsegmentwould
beunlikely to affect this large classof viruses.

2. Optimizationsfor parallel processing: Mary tech-
niguesexist for producingblocksof instructionsthat

can be run simultaneouslyon multiple processors.

Theseechniquesouldbeappliedto codeintendedor

executionon a single processarresultingin a unique
orderof execution.We do notknow whatif ary intru-

sion methodghis would disrupt. Further the amount
of variability thatcould be producedwith this method
would be limited to the amountof parallelismthat
couldbe extractedfrom the original program.

3. Instructionscheduling:Vary the orderof instructions
within abasicblock,while respectinghedataandcon-
trol dependenciepresentin the sourcecode. A pre-
liminary study of the sourcecodefor the Linux ker
nel concludedthat the numberof differentorderings
that could be automaticallygeneratedvas very high
[5]. Asin thecasefor basic-blockrearrangement#n-
teractionswith code optimizationswould needto be
considerectarefully to avoid seriousdegradationsof
execution-timeperformance.

3.3 Memory layout

Therearestandardvaysof allocatingmemorywhenpro-
gramsexecuteandof orderingthe component®f memory
Thesearearbitraryandcouldbevariedin mary ways.Here
areafew examples:

1. Pad eachstackframeby a randomamount(so return
addressearenotlocatedn predictabldocations).The
amounbf paddingcouldbefixedfor eachcompilation
andvariedbetweercompilationsor it couldbevaried
within a singlecompilation.

2. Randomizethe locationsof global variables,and the
offsetsassignedo local variableswithin astackframe.

3. Assigneachnewly allocatedstackframein anunpre-
dictable(e.g.,randomlychosen)ocationinsteadof in
the next contiguoudocation. This would have the ef-
fect of treatingthe stackasa heap,which would in-
creasememory-managemerverhead. Mary func-
tional languageshave this capability for constructs
suchasclosures.

Someof theseamemory-layouschemesvouldlikely disrupt
a penasive form of attack—thebuffer overflov—in which
aninputbuffer is intentionallyoverflovedto gainaccesso
anadjacenstackframe.

Thereare several potentialcomplications however, in-
cluding whetherand how to presere Application Binary
Interface(ABI) compatibility, preservinghe correctfunc-
tionality for certainuserfunctions(e.g.,the C function“al-
loca”), and how to maintain compatibility with dynamic
libraries. In spite of thesecomplications,we consider
memory-layoumodificationsto be a promisinginitial dir-
ection,becauséuffer overflovs aresuchanimportantpath
of intrusion.

3.4 Other transformations

1. Procesdnitialization: Instructionsthat are executed
beforeusercodecouldbevaried. Suchchangesould
involve varying objectfiles suchascrt 0. o thatare
linked into every executableand are responsiblefor
callingmai n. Alternatively, it wouldbepossibleoin-
troducevariationsin thekernel(e.g.,in execve) such
thatdatalocations(e.g.,command-lineagumentsand
ervironmentvariableslarerandomized.

2. Dynamic libraries and systemcalls: For a program
to run on differentmachines,t mustknow the cor
rectnamesandargumentdor dynamiclibrary routines
and systemcalls. By varying namesand permuting
amguments binariescould be mademachine-specific.
An importationprocesscould also be developedthat
would allow usersto convert foreign binariesinto the
localformat. Suchchangesvouldmakeit muchharder
for virusesandwormsto propagate.

3. Uniquenamedor systenfiles: Varying the namesof
commonsystenfiles sothey aredifficult for intruding
codeto find would be highly effective againstattacks



targeting thesefiles. However, such changeswould

complicatesystemadministratiorunreasonablynless
authorizedadministratorsvere providedwith asecure
interfaceundertheinversemapping(from therandom-
izednamedackto their standardcounterparts).

4. Magic numbersn certainfiles, e.g.,executablesThe
type of information containedin mary files can be
(at leasttentatively) identified by searchingfor char
acteristicsignaturesat the beginning of thefile. In-
dividual systemsouldre-mapsuchsignaturego ran-
domly chosenalternatvesand convert the signatures
of externally obtainedfiles via an explicit importation
process.

5. Randomizedun-timechecks:Many successfuintru-
sions could be preventedif all compiled code per
formed dynamic array boundschecking. However,
suchchecksarerarely performedin productioncode
becausef percevedperformanceosts.Insteadof re-
quiring every programto pay the costof doing com-
pletedynamicchecking gachexecutingprogramcould
performsomeof thesecheckgpotentiallyavery small
numberof them).Which checkswereto beperformed
could be determineckitherat compile-timeor at run-
time.

4 Preliminary Results

As aninitial demonstratiorof theseideas,we have im-
plementedh simplemethodfor randomizingthe amountof
memoryallocatedon a stackframe andshavn thatit dis-
ruptsa simplebuffer overflow attack(item 1 from Section
3.3). Buffer overflow attacksarisebecausenary programs
staticallyallocatestoragefor input on the stack,andthen
do not ensurethat their receved input fits within the al-
lotted space. BecauseC doesnot requirearray boundsto
be checkeddynamically overflons canresultin the cor
ruption of variablesandreturnaddressesBuffer overflows
areproblematidn the contet of programshatrun asroot
in UNIX, primarily becausehey provide a way for a non-
privilegeduserto obtainroot access.However, ary script
exploiting suchvulnerabilitieds brittle. To overwritethere-
turnaddressthedistancebetweerthestartof thebufferand
thefunction'sreturnaddres®n thestackmustbe known as
well astheexactlocationof the codeto beexecuted.

If every compilationproducedan executablewith a dif-
ferent stacklayout, then exploit scriptsdevelopedon one
executablenvould have alow probabilityof successn other
executablesTo changehe layoutof the stack,we increase
the sizeof the stackframeby a randomamount by adding
arandomamountof spaceo certainstackslots. Suchaddi-
tions affect both the stacklayout for the modifiedfunction
andthe exact locationsof every function calledby it. To

implementhis, we madea smallmodificationto gcc (ver
sion2.7.2.1),sothatit addsa randomnumberof bytesto
ary stackallocationrequestargerthan16 bytes wherethe
numberof extra bytesis randomlyselectedo bebetweer8
and64in increment®f 8. Thatis, oneachnew stackalloc-
ationrequestabove the 16-bytethreshold) arandomnum-
beris selectedoneof 8, 16, 24, ..., 64) which designates
thenumberof bytesof paddingfor thatcall. This givesone
exampleof how a compilercould help userscreateunique
systemswhich are vulnerableto attackbut vulnerablein
waysdifferentfrom every othercomputer

Theideabehindthe 16-bytethresholds to minimizethe
amountof unnecessarpadding. Becausehe buffer over
flow techniquerequiresarelatively large buffer in whichto
storetheintrusion,it is unnecessarp padstackallocations
smallerthan somethreshold. We have not experimented
with differentthresholdsizesbut choseonethatwe believe
is well below the thresholdneededor buffer-overflow at-
tacks.

Therevisedversionof gcc producesa programthatdis-
ruptsa simplebuffer overflow attackagainst pr onLinux
2.0.28,DebianLinux 1.1[4]. This attackworks by giv-
ing | pr alarge agumentfor the- C (class)command-line
switch. In the functioncar d, | pr copiesthe command-
line agumentinto a fixed sizelocal buffer causinganover
flow. Asaresult,car d transfergontrolto theoriginalcopy
(locatedn ar gv), whichexecsashellrunningasroot. This
attackis disruptedby changingthe size of the buffer, pre-
ventingcar d's returnaddresgrom beingoverwritten.

Thesemodificationshave a relatively small impact on
execution-timeperformance. In testsof gzi p andgcc
(compiled by both the modified and unmodifiedversions
of gcc) the differencesn CPU time werenggligible. Be-
causeour modificationscausea programto expandits use
of stackmemory we expectedsomereductionin perform-
ance,which testingon additional programsmight reveal.
An importantquestionis how muchextra stackspaceds re-
quiredfor this methodto be effective. In termsof static
stackspacetheanswerappearso be 10-15%.In thegzi p
example,17 slotsexceedthe 16-bytethresholdthus,quali-
fying for modification)out of atotal of 125. Notably, these
17 slotsconsumemostof the stackusagefor the program
(93%). Similarly, in the caseof gcc, 313 slots exceed
the threshold,out of 6183total. The 313slotsaccountfor
64.7%o0f the stackusage.

Thereare several partsto a buffer-overflow attack: (1)
overflowing the original buffer to gain accesso a return
address(?2) transferringcontrol to a known location con-
taining intrusive instructions,and (3) executingthe intrus-
ive instructions. The stack-framevariationswe described
affect thefirst of thesebut not necessarilyhe second.For
example,in Linux, command-linergumentpassedo agv
arestoredin a predictabldocationdetermineday the ker-



nelandarenot affectedby stack-framemodifications.The
contentsof argv are later copiedinto a stack frame (this
is the buffer that is targetedfor the overflow), but the at-
tackerhasthe option of transferringcontrolto the original
copy (storedin a highly predictablelocation). Although
our methodsuccessfullyisruptsthe overflov andsubverts
theattack theseconsiderationsuggesyetanotheipossible
randomization—on¢hatwe planto explorein futurework.

5 Impact on Computer Security

Herewe give a brief overview of commonsecurityprob-
lemsandour assessmeraf which diversitymethodswvould
be most effective againstthem. Unfortunately assessing
and documentinghe most commonroutesof intrusionis
difficult: (1) new routesof intrusion are continually be-
ing discovered, (2) old routesof intrusion are sometimes
patched(3) therearefew if ary reliable statisticson suc-
cessfulintrusions,and(4) thereis a distinctionbetweerthe
variety of intrusionmethodsandthe frequeng with which
they areexploited.

Softwareerrors(e.qg., buffer overflows, insecurelypro-
cessingcommand-lineoptions, symlink errors, temp file
problems,etc.) leadto several commonforms of attack.
Memory-layoutvariations,suchasthe one we implemen-
ted,would primarily affect buffer overflows. A racecondi-
tion is aninteractionbetweertwo normally operatingpro-
gramsvia somesharedesourceoften,afile). Compilation
techniquessuchasthe onesve have discussedareunlikely
to preventraceconditions. However, diversity at the level
of the sharedresourcewould likely be effective. For con-
figuration problems(e.g., setuperrorsin how a serviceis
provided or file permissionproblems),unique naming of
systenfileswouldbehighly effective. Denial-of-servicet-
tacksaresometimesiueto softwareerrorsandsometimes
dueto lackof resourcecheckingor poorpolicies.Thus,one
diversity techniquealoneis unlikely to addressall denial-
of-serviceproblems.For problemsassociatedvith insecure
channelge.qg.,IP spoofing terminalhijacking,etc.),we ex-
pectthat cryptographytechniquesre probablymorehelp-
ful thandiversitytechniquesatleastfor diversitygenerated
on a singlehost. Trust akuse,including key management
problemsandinappropriatelytrusted P addressegouldbe
addressedy generating uniqueprofile of eachcomputers
behaior andusingit to establishidentity. A final security
problemthat hasbeenwell-studiedis that of covert chan-
nels. It might be possibleto introducediversityto prevent
exploitation of covert channelsalthoughwe have not stud-
iedit well enoughto have specificsuggestions.

Within computersecurity there is widespreaddistrust
of “security throughobscurity”—for example, proprietary
cryptographialgorithmsthatarekeptsecrebnthegrounds
that publishingtheir algorithmswould weakentheir secur

ity. Suchdistrustis warranted—proprietargryptographic
algorithms,oncerevealed, often turn out to have serious
flaws. Neverthelessit is worth noting that at the level of
whole systemsall securityis ultimately basedon making
someaspecbf thesystemobscurewhetherit be passwords
or privatekeys. Possessionf a secreis the basisfor grant-
ing differentialaccessBy randomizingmplementatiorde-
pendenciesyurapproaclktanbethoughtof asaddinganew
level of automatically-generatédecrets thataretranspar
ent to properly functioning code, but which misbehaing
codemustpossesso crackthe systemsuccessfully Fur-
ther, atthelevel of algorithmsour approactwouldactually
reduceobscurity by eliminating obscureimplementation-
dependentonsistencie®f which the algorithm designer
wasunavareand certainlydid not intend, but which, once
discovered,might form the basisof anattack.

For somesecurityapplicationst is importantto certify
that a computersystemis trustworthy througha combin-
ation of proving formal propertiesaboutthe specification
and testing and analyzingthe implementation. Although
the methodwe proposewould complicatethe testingpro-
cedure,ary systemthat stayedwithin its formal specifica-
tions (“in the box”) would be robustto variationsoutside
the box. Thus,an implementatiorthat successfullywith-
stoodrandomvariationsof the sort we proposewould be
moretrustworthythanonethatdid not.

6 Conclusion

Diversity techniquessuch as thosewe have proposed
here can sene an importantrole in the developmentof
more robust and securecomputingsystems.They cannot,
by themseles, solve all securityproblems,becausemary
exploitable holesare createdcompletely“within the box”
of a programfunctioning underthe semanticsof the lan-
guagein which it is written. And indeed,diversity tech-
niguesmay sometimedisruptlegitimate use by unmask-
ing unintendedmplementatiordependencief.e., “bugs”)
in benigncode. Nonethelessthe essentialprinciples of
diversity—"avoid unnecessargonsisteny,” and“surround
theboxwith noise”—epressa stratgy thatis likely to find
usein thecomputerf thefuture.

This approachcan only be successfulf it is low-cost,
having minimal impact on run-time efficiengy and main-
tainability. In this papeywe have concentratedn outlining
a wide variety of possibleapproachedp stimulatefurther
ideasandsuggestionsAn importantareaof futureresearch
is to assestheseandotherideasmoresystematicallyo de-
terminewhich onesareworthimplementing.



Acknowledgments

Overthepastcoupleof yearswe have discussedhegen-
eralideaof diversity with mary peopleand solicitedtheir
commentsandideasfor possiblemplementatiorstrateies.
In particular A. Davis, T. Knight, B. Maccabe M. Oprea,
M. SeltzerH. ShrobeE. Stoltz,G. SussmarandC. Young
have all listenedwith more or lessopenmindsand made
helpful suggestions.The authorsgratefully acknaviedge
supportfrom the National ScienceFoundation(grantIRI-
9157644),the Office of Naval Research(grant NOO0O14-
95-1-0364),DefenseAdvancedResearchProjectsAgenc
(grants NO0014-96-1-0680and N66001-96-C-8509)the
MIT Al Lah, Interval ResearchCorp., and the SantaFe
Institute.

References

[1] J.B.ChenM. Smith,andB. N. BershadMorph,aframevork
for platform-specifioptimization. TechnicalReportTR-04-
96, Harvard University, Division of Engineeringand Applied
SciencesCambridgeMA, 1996.

[2] M. W. EichinandJ. A. Rochlis. With microscopendtweez-
ers: An analysisof the internetvirus of november1988. In
Proceedingof the IEEE Symposiumon Reseach in Com-
puter Securityand Privacy, Los Alamitos, CA, 1989.IEEE,
IEEE ComputerSocietyPress.

[3] E. EnglishandS. Hamilton. Network securityundersiege:
thetiming attack. ComputerMarch1996.

[4] V. Kolontsar. Bugtragmailing list, Oct. 25, 1996. Linux &
BSD's lpr exploit.

[5] M. Oprea.Towardscompilerinducedobjectcodevariability.
UnpublishedVianuscript Junel996.

[6] C. Young,D. S. JohnsonD. R. Karger, and M. D. Smith.
Nearoptimalintraprocedurabranchalignment. In Proceed-
ingsof ACM SIGPLAN'97Confeenceon ProgrammingLan-
guageDesignandImplementation(to appear).



