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Abstract

Software needs to grow up and become responsible for itself 
and its own future by participating in its own installation and 
customization, maintaining its own health, and adapting itself 
to new circumstances, new users, and new uses. To create such 
software will require us to change some of our underlying as-
sumptions about how we write programs. A promising approach 
seems to be to separate software that does the work (allopoietic) 
from software that keeps the system alive (autopoietic).

Categories and Subject Descriptors D.2.5. [Software Engineer-
ing] Testing and Debugging—Error handling and recovery; D.2.11. 
[Software Engineering] Software Architectures; D.3.0. [Program-
ming Languages] General; H.1.2. [Models and Principles] User/
Machine Systems—Human factors

General Terms Design, Human Factors, Languages, Reliability

Keywords Robustness, software, self-sustaining systems, emer-
gence, autopoiesis, stigmergy, continuous (re)design, self-testing, 
feedback, software complexity, repair

1.	 Introduction

Software systems today are produced according to a manufac-
turing model: A finished product is constructed at the factory 

and shipped to its final destination where it is expected to act 
like any other machine—reliable but oblivious to its surround-
ings and its own welfare. Responsibility for testing and devising 
how to install the software rests with the development team. 
Once deployed, software is on its own, along with the people who 
must use it. The result of this way of doing development has been 
brittle, buggy software where the only recourse for end-users is 
to hope the next release will fix the problems (and not add too 
many new ones).

We believe that software needs to grow up and become re-
sponsible for itself and its own future. Moreover, the people us-
ing the software every day must be able to shape and customize 
it without reliance on the software’s original developers. In this 
paper we will argue that future innovations in software will need 
to produce systems that actively monitor their own activity and 
their environment, that continually perform self-testing, that 
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catch errors and automatically recover from them, that automati-
cally configure themselves during installation, that participate 
in their own development and customization, and that protect 
themselves from damage when patches and updates are installed. 
Such software systems will be self-contained, including within 
themselves their entire source code, code for testing, and any-
thing else needed for their evolution. 

Furthermore, we need to make the state of each component 
more visible and make our components interact more richly & 
more fully. We need to use softer, more dynamic architectures 
that support adding or replacing modules after deployment (e.g. 
plug-ins, dynamic loading of classes) and architectures where 
objects can be repaired in situ, methods changed / added, inter-
nal state restructured, and object hierarchies rewired). We also 
need new types of languages to describe the architecture of our 
systems. We will not “program” in these new languages—they 
probably won’t have arithmetic operators, data structures, or low-
level control statements—but instead express things like when to 
create and kill components, where components are run, when to 
run tests, and which components interact with each other.

As our software becomes ever more interdependent, with appli-
cations relying on (remote) services developed by other organiza-
tions, it also must paradoxically become more independent, able 
to maintain its integrity in a changing environment. Interfaces 
between components need to become less brittle and more ac-
commodating—not requiring an exact match like a key in a lock, 
but based more on pattern recognition such as phenotropics [20]. 
We also need to better isolate components from each other—in 
biology this is referred to as spatial compartmentalization [19], 
for computing it may translate into components not sharing 
common memory or other resources.

Recent applications are beginning to exhibit these proper-
ties and this trend will increase, reflecting the need for software 
systems to change continuously over their lifetimes. Many of the 
ideas we present in this paper are based on the changes we see 
occurring in current software. We use the term “conscientious 
software” to describe code that takes responsibility for itself and 
its future. The following is our vision for the future.

2.	 Software	Complexity

Over the last forty years we have attempted to create ever more 
ambitious systems, but their complexity often exceeds our abili-
ties as witnessed by how brittle most software is and how many 
software projects fail. While our current methods have many good 
characteristics they do not successfully address the complexity 



of modern software systems. We need to adopt new principles 
and approaches if we are to progress.

Software complexity arises in large part from the inherent 
complexity of the problems we are trying to solve. We lack good 
models to describe the organization of complex systems. We know 
how to decompose large problems into smaller ones, but we are 
not so good at describing the interactions among subcomponents. 
For example, we do not have a good vocabulary to discuss multiple 
feedback loops and the emergent behavior they can generate.

We also have trouble when different aspects of a problem re-
quire fundamentally different decompositions. For example, when 
designing a spacecraft control system there is a “natural” decom-
position into subsystems and devices. However when dealing with 
the limited power budget or the attitude control system, there 
are “a tangle of special-case subsystem-to-subsystem couplings 
behind a façade of modular decomposition” [7]—consider that 
spinning up a disk drive consumes power, generates heat, and 
acts as a gyroscope. This interaction of concerns goes beyond the 
idea of separation of concerns that aspect-oriented programming 
(AOP) tries to address.

The sheer complexity of the problem and its solution makes 
it practically impossible to capture such interactions in a static 
specification. The experience at Tandem Computers of trying 
to create reliable systems found that many failures were due to 
faults in the specifications. Specifications are always incomplete 
and often just plain wrong—moreover requirements are always 
changing. Methodologies with an incremental approach of con-
tinuous (re)design are a better match to changing specifications. 
Related to this is the realization that errors are unavoidable, due 
to bugs in the implementation and also from unexpected inputs 
from the environment, so we must design our systems to continu-
ally run tests and repair errors.

Going from problem requirements to system design creates 
an explosion of derived requirements (the requirements for a 
particular design solution); the list of implicit requirements can 
be 50 times greater than the original problem-focused require-
ments. [11] Lots of details need to be filled in when translating 

“what to do” (describing the problem to be solved) into “how to 
do” (describing how the problem is to be solved). This includes 
translating the problem into computer terms, specifying required 
components, and even mapping the work to the organization of 
the people developing the solution. Again we lack good models 
and higher-level abstractions to talk about complex, interacting 
processes. 

Another major source of complexity is unplanned interactions 
between components—cross-talk where bugs or changes in one 
piece of code affect quite distant, seemingly unrelated pieces of 
code. These implementation combinatorics make it impossible 
to thoroughly test software: Even 100% test coverage cannot ac-
count for code interactions, e.g. an error manifests only when a 
particular combination of logic paths is executed. And beyond 
the lowest level of unplanned direct interactions there are the 
unplanned indirect ones. Examples would be feedback loops cre-
ated which cause new and complex behavior to emerge. Another 
would be system-wide interactions which could cause oscilla-
tions (again this involves feedback)—sometimes via unplanned 
and unthought-of shared paths like indirectly shared resources. 
Lastly would be emergent behavior resulting from new interac-
tion patterns. Hardware is generally more robust because it is 
more modular (and less state dependent). Where it relies on 

history / state information hardware too is subject to bugs (e.g. 
the Pentium math bug [28] in which the results of the division 
algorithm depend on intermediate partial results and the path 
taken through a faulty lookup table). 

As if our problems with current systems were not enough, even 
bigger systems are on the drawing board. Plans for ultra-large-
scale (ULS) systems consisting of billions of lines of code spread 
over thousands of widely distributed multi-cpu computers are 
now being proposed. These systems must run continuously, even 
as individual components / computers come and go. In order to 
create such systems we need new approaches to how we design 
software. [35]

3.	 Continuous	(Re)Design

The practice of continuous (re)design will move from the factory 
to the field and large lump development will fade away. Develop-
ment strategies have changed over time as it’s become clear that 
it’s not possible to get static requirements right the first time 
around. From heavy design-before-coding methodologies to agile, 
people have tried to capture via processes the elusive nature of 
getting things right. The trend has been toward entangled inter-
actions with end-users and customers in order to find out what 
the software needs to do and how it is most congenially used. 
However, the watchword is still getting things right.

But because requirements are static doesn’t mean that soft-
ware viewed over time stands still. Programs evolve and change, 
but only through a development process back at the factory. Bug 
reports, comments, suggestions and requirements determined by 
a marketing group, bright ideas, and new technology combined 
with a development group produce the next version of the soft-
ware. Static requirements change over time, and in this narrow 
sense, it’s possible to view software as a living entity—adaptable, 
flexible, malleable, resistant to failure. But not self-sustaining.

Design is less a result of pre hoc planning than of slowly dawn-
ing insights—insights derived from seeing how the thing turns 
out and is used. Continuous (re)design will move out into the 
field because the field is where the observations are immediate 
and changes can be tested rapidly in situ.

Already some programs offer personalization and customiza-
tion allowing users to participate in the design of the software. 
Some basic looks, feels, and behaviors can be changed by tailor-
ing menus, adding keyboard shortcuts, and defining macros and 
scripts that add behavior and provide workarounds. Many of the 
options are available through a mechanism called “preferences,” 
which is a set of attributes whose values can be set, such as colors, 
field placement, and the like. Preferences are like wall coverings 
and color, window treatments, artwork, and, to a degree, furnish-
ings. (Furnishings are perhaps more like plug-ins.)

4.	 Soft	/	Dynamic	Architectures

With the advent of softer / more dynamic architectures, change 
to programs will be welcome, even encouraged. Today, software 
development is a process of building static artifacts—static mean-
ing the program will not change once delivered, remaining inflex-
ible or subject only to foreseen adaptations. A good metaphor is 
a highway. Constructing a highway takes a lot of effort including 
expensive and disruptive land purchases. Once the dimensions 
and course of a highway are set, they are stable and static until a 
major change is made. Word processors are near the extreme of 



such static programs: useful for writing and revising documents 
with a wide variety of styles both visual and artistic, but its own 
future on a writer’s computer is rigid—nothing changes. 

Not all software is totally static, and such programs begin 
to point the way to change. Plug-in architectures and web-ser-
vice-based applications can be changed once installed by add-
ing modules that provide services based on defined protocols 
and interfaces. Adobe Photoshop™ is the classic example; and 
browsers, integrated development environments, and operating 
systems are built this way. Here the good metaphor is a house, 
which is also (usually) carefully planned (by an architect), but 
which can be and frequently is customized by its occupants in 
both small and large ways. 

Stewart Brand looks at buildings as having six layers: the physi-
cal site, the load-bearing structure, the exterior surfaces, the guts 
of services like wiring and plumbing, the interior layout, and the 
stuff in the building like desks and phones. The timescale and 
effort needed to make a change varies across these layers; site 
is eternal, while stuff can easily be changed daily. [3] Our com-
puter systems also consist of layers: programming languages are 
at the bottom,1 then hardware, operating system, libraries, and 
applications. Applications generally consist of one or more levels 
of compiled code (e.g. a framework and application logic) with a 
few preference settings so that the user can modify the look and 
feel. On top of that is the layer of the user data, corresponding to 
Brand’s stuff in the building—though in many applications the 

“desks” are bolted to the floor. 
When thinking of software architecture, you probably are 

imagining an architecture diagram made of bubbles with lines 
between them—perhaps a framework (a big bubble maybe) with 
components (the little ones) where the lines mean communica-
tion through a small pipe, like an interface. This is what we have 
today. But what would it be like to imagine a diagram like this 
where two components (red star and blue ellipse) have melded 
with the framework (orange blob)? [Figure 1]

� Brand’s layers correspond to permanence. For software, changing to a 
programming language with semantics not like Fortran, C, or Java would 
(rationally) require a new hardware platform. In fact, hardware (even in-
struction sets) has changed more than the basic semantic structures of 
our programming languages, and so the languages form the most basic 
layer for us. Sometimes the stack is drawn as an hourglass with hardware 
at the bottom, programming languages at the narrow waist, and applica-
tions at the top. This emphasizes how applications are decoupled from the 
hardware through the use of a standardized programming language.

Some applications, such as spreadsheets, enable their users 
to collaborate by adding new macros and sharing templates. Not 
everyone can write macros, but one or two tinkerers in a company 
can make extensions to the spreadsheet primitives that others 
can then easily use in their formulas. [26] An architecture that 
supports scripting or a macro language adds another layer that 
enables users to modify an application’s behavior without needing 
to send it back to the factory for the professional programmers 
to rework. If such an architecture also supports adding plug-in 
modules then that opens the door for the do-it-yourself user to 
really customize the application to his or her local needs.

Beyond such softnesses are software architectures that make 
changes to themselves over time: dynamic adjustments to both 
state and behavior as the stuff (components / architecture) adapts 
to the environment in which it finds itself. We can imagine ob-
jects augmenting themselves, changing their algorithms, evolv-
ing through competition,2 and rewiring their relationships as 
they evolve.

5.	 In(ter)dependent	Software

Software will be constructed from components that want to form 
a community. Systems will be components—either within the 
same address space or not—that interact as needed, even suppos-
edly / originally monolithic systems. This will enable us to treat 
every system as if it were a distributed system, which might mean 
that systems can be more robust to single-point failures.

Components will be constructed to minimize or ameliorate 
version differences and calling convention mismatches. Today, 
strange as it seems, components are written—such as dynamic 
link libraries (DLLs)—with inflexible interfaces so that slight 
mismatches halt reasonable operation of a system. The result is 
almost as if the designers of the components (or more properly, 
the overall OS-level system architecture) were more interested 
in their code and designs punishing simple mistakes rather than 
trying to make that code work around those mistakes to get 
something running.

An approach like Lanier’s phenotropics could help. Phenotropic 
computing uses “surfaces” for interfaces rather than direct argu-
ment-based / protocol-based interfaces. Each component has a 
surface on which is displayed information about what it is doing 
and that it would like to communicate to another component 
(or other components). Two components interacting observe 

� Digital software evolution

soft architectural elementsoft architectural element

Figure 1: Soft Architecture



each other’s surfaces and react to what they “see” or “sample.” 
Approximation replaces perfection, and the result can be more 
accommodating but perhaps less optimized behavior. This is in 
contrast to our current use of rigid, minimalistic APIs where one 
agent essentially reaches inside another and commands it to do 
some function (i.e. a remote procedure call). Instead the first 
agent would present a request that the second could interpret 
and deal with as best it can. Other agents might also choose to 
participate by transforming / translating the original request, 
forwarding the request to an appropriate agent, or working on 
it themselves. The agent making the request need not even know 
which agent(s) will eventually handle it.

6.	 Self-Installation

Software in the future will take an active role in its own instal-
lation. At present, many programs are considered properly in-
stalled once the correct bits are in the right locations. And even 
this problem is not as well addressed as it could be: There are 
numerous interdependencies that go into proper installation. In 
recent years—with software updates—the installation scripts 
have become more sophisticated, but when more permanent 
layers (in the Brand sense) are installed, the process can require 
extensive human in(ter)vention. In fact, the outermost (appli-
cationmost) layers are the places where installation has become 
easier for the installer.

Ignored as part of installation are the sometimes dozens of ad-
justments people make to the entire set of installed programs to 
make the computing / digital nest comfortable (again).3 First are 
the obvious, such as: Although there are a handful of commands 
for moving through text, the gestures a person likes for various 
of them—though knowable—are never addressed. If it’s even 
possible to make a program that manipulates text use Emacs� 
command gestures, why should a person have to figure out how 
to program / customize / personalize the software? Gestures 
are just part of it. The look and feel should be adaptable too. As 
stylesheets for application look and feel become more prevalent, 
these can form the basis for adapting to a preferred use scheme.

Each program should endeavor to discover such customiza-
tions. Further, it should be possible for one person to transfer his 
or her customizations to someone else who could then apply some 
or all of them either temporarily or permanently.

In the same vein, other aspects of the preferred use of software 
can be deduced and accommodated. For example, when installing 
a web browser, the browser can notice that one of its potential 
users is also an ardent user of Adobe™ products and to configure 
the browser to use Acrobat™’s PDF browser plug-in instead of 
some other one. The overall user color scheme can be intelligently 
guessed at and compatible colors can be chosen. A program that 
manipulates text can try to determine how spellchecking is done 
around here.5 For example, I (one of the authors), like many in 
my generation, like to use Emacs for manipulating text. Many 
programs manipulate text. I am not particularly interested in the 
next person’s bright idea of how to do it (unless it is a fabulous 

� And this is the problem of (re)installing inner, permanent layers.

� Emacs is a text editor widely used by programmers. It is highly custom-
izable but has a distinct set of default key bindings.

� At one extreme this can be taken as an example of the idea of common 
modules, typically selected by the user for some specific advantage.

idea), so why can’t I use not only the style I like (Emacs commands 
as mentioned before), but the very same Emacs in every situation, 
which I may have customized beyond recognition?

Another approach, of course, is a systemwide preference mech-
anism where specific preferences would be looked up in a hierar-
chical structure. This is the standardization approach. Although 
this would work fine were it to happen, the realistic likelihood of 
that is low. To get the majority of operating system / application 
writers to use such a system would require a mandated standard, 
which is unlikely for user experience. Moreover, for a long time 
there will be a significant population of legacy code that will not 
use the standard. And then there are the renegades.

Moreover, there is a real question about whether and when 
standardization is the right solution to a problem. Standardiza-
tion requires universal adoption, and, when achieved, tends to 
promote inflexibility. And once standardization is taken as the 
key, it is typically taken too far, so that we end up, for example, 
with a monoculture.

Better, we think, is ad hoc and independent flexibility, recog-
nizing that multiple standards / dialects will always exist, each 
of which will change over time.

7.	 Continual	Installation

In our vision, the installation process never ends: As new software 
and hardware are installed, already installed software should 
continue the installation process, learning how the interests and 
habits of its users are changing over time. What it learns—not the 
personal things like where its users surf and the kinds of books 
and videos he or she prefers—can be sent back to the sleepy de-
velopers back at the plant who can move their agile fingers into 
gear to keep progress happening. Later or someday, this knowl-
edge can be used to self-adapt the software.

Related to installation is the massive upgrade: buying that new 
heavy-lifting desktop machine or the spry and miniscule portable 
laptop / palmtop / fingertop / pintop. When a new computer sys-
tem is acquired, all that should need be done is to point the old 
system at the new and have them “sync.” “Sync” in the sense of 
compatibly installing everything and readjusting to the new sur-
roundings. Most software manufacturers treat the upgrade as an 
opportunity (provided for free) for the users to clean house—to 
reinstall everything that was previously installed.6 However, the 
massive upgrade is not a fresh start: It’s an increment over the 
old environment because people expect the continuity of their 
lives to dominate the stutter of technological progress. And a 
new system should consider itself (anthropomorphically) to be 
installing itself in an old, established environment. Both the old 
and new must adapt.

Of course, none of this should be irrevocable. Any customiza-
tions and installations should be trivial to back out of or alter. It 
should always be the case that any installation can be completely 
and accurately undone. 

� Apple’s OS X has a Migration Assistant which performs the easier half 
of this when a new version of the operating system is installed—it copies 
files from the old system, ignoring files supplied by the new version. It 
doesn’t do any “readjustments.”



8.	 Beyond	Installation

Someday the manufacturing model may become passé. Con-
sider the notion of no installation or certainly no re-installation 
at all. In such a world, perhaps the only starting point would be 
a single object which would, like a seed, begin to use resources 
available to it to compose the “application,” if it even makes 
sense to use that word. The seed would assemble components, 
download clones, etc. to custom build and wire itself into the 
world in which it lives. When an update was desired, the objects 
themselves might morph, according to instructions received 
from the original authors, while retaining customizations they 
had adaptively designed. In this way, objects change in situ and 
the system / application never really restarts nor does it lose the 
benefit it has had from living in the world with its users.

9.	 Buildable	Packaging

We imagine that software will be more completely packaged. In-
stead of just binaries and some support files, each piece of soft-
ware will contain everything it needs to be further developed by 
local software developers.7 Today, if any sort of local development 
is possible, it’s because the source code and required supporting 
material can be loaded onto a local machine or such a machine is 
accessible over the internet. In general, only open source and other 
source-available systems present this option—and even when the 
source code is available, the right compiler might not be, etc.

A system delivered completely packaged like this would be 
easy to modify for those capable of it; those whose knowledge 
and skills are limited will still be able to make stylesheet-based 
and other configuration-file–based changes. Some of the expected 
customizations include the ability to adapt the code more pre-
cisely to the local environment, perhaps by the encapsulated de-
velopment system being able to sense its environment and shape 
the code a little better.

How to implement this is problematic at the moment because 
there are many sorts and levels of dependencies software can have 
on its build and execution environments. For example, how can 
the dependence on a particular version of a library or of the oper-
ating system for that matter be captured? These sorts of difficul-
ties can be handled by packaging up all the dependencies (and 
perhaps storing them in a central location for all instances that 
share dependencies), but such an approach doesn’t handle the 
executables, like the compilers. The problem is that a compiler 
needs to execute on a machine that exists, and it needs to pro-
duce code for the target machine. This is probably a case where 
standardization can help: A given platform is very likely to have 
a compiler for a popular or mandated standard programming 
language. Another possibility for executables is a virtual machine 
that executes the compiler; porting the virtual machine should 
be relatively easy and possibly standardly done.

There can be other advantages that derive from complete 
packaging. For example, the existence of slightly different ver-
sions of some software—which could very well end up interacting 
with each other—raises such questions as what constitutes the 
essence of a program and what kinds of variations are permitted 
while retaining its identity. With such a self-enclosed mechanism 

� Such a packaging has numerous copyright and intellectual property is-
sues, similar to those found in open source software.

comes the reality of a population of individuals8—individual 
instances of the same program, software, component, or sys-
tem—and with this it becomes possible to think about advanc-
ing the species by selective crossbreeding and other means typi-
cally used in husbandry. Whereas today a monoculture is highly 
valued, in the future not only will it have lesser or no value but 
it may become obsolete. In such a world, the value of common, 
nonprogram-specific standards for data, control, and behavior 
exchange will increase.

Another good result is the possibility of eliminating the prob-
lem of lost source code, which is a surprisingly pervasive problem 
with legacy software. The company that created the software 
you run goes out of business and no one cares about the source 
code or thinks it’s important; an outside group wrote the soft-
ware for your company and it’s backed up on a tape that’s then 
lost. This would never happen were software always packaged 
with everything you need. And there would be fewer problems 
re-establishing the work environment.

10.	 Software	as	an	Active	Collaborator	/	
Participant

Software should take responsibility for its own future—not mean-
ing software broadly construed but meaning each recognizable 
program, package, and application. After all, software can act, 
it can sense some part of its environment, and it can react to 
changes, so why should software remain passive once it’s been 
unleashed to the world? The attitude that a program’s actions 
should be limited to what was planned at the factory reminds 
us of what Marvin Minsky wrote in “Why Programming Is a 
Good Medium for Expressing Poorly-Understood and Sloppily 
Formulated Ideas”:

There is a popular, widespread belief that computers 
can do only what they are programmed to do. This false 
belief is based on a confusion between form and content. 
A rigid grammar need not make for precision in describ-
ing processes. The programmer must be very precise in 
following the computer grammar, but the content he 
wants to be expressed remains free. The grammar is 
rigid because of the programmer who uses it, not because 
of the computer. The programmer does not even have to 
be exact in his own ideas—he may have a range of ac-
ceptable computer answers in mind and may be content 
if the computer’s answers do not step out of this range. 
The programmer does not have to fixate the computer 
with particular processes. In a range of uncertainty he 
may ask the computer to generate new procedures, or 
he may recommend rules of selection and give the com-
puter advice about which choices to make. Thus, com-
puters do not have to be programmed with extremely 
clear and precise formulations of what is to be executed, 
or how to do it.

Marvin Minksy [25]

Software should be able to examine its environment prior to 
installation, monitor changes to its operating conditions and 
adapt to them as best it can, observe the state of its own health 

� This already is true but not widely recognized. Any real running system 
runs a variety of release and patch levels.



and attend to it, pay attention to how its human users use it and 
become easier to use, provide for its own improvement at the 
hands of local developers (perhaps by noticing and remarking 
on places where users had difficulties such as frequent requests 
in one spot to undo an operation), accept extensions and cus-
tomizations, and, finally accept and provide for its own death 
and replacement.

In short, software should act like a living collaborator in its 
own future and not like a manufactured machine waiting for ob-
solescence to overtake it—there isn’t even any minimally valuable 
scrap metal or plastics to salvage. Just about everything else we 
buy as consumers is subject to being repaired or tinkered with 
given enough knowledge and/or bravery—this is the legacy of the 
physical world: It’s just not possible to wall off easily the business 
end of most macroscopic physical machines the way it’s possible 
to wall off from reasonable intrusion the parts of software (and 
microscopic machines like CPUs) that make it readily malleable. 
That is, the source code for a corporeal machine is not behind a 
firewall on its makers’ server. 

Some languages—Lisp [23, 2�, 36], Smalltalk [12], Self [37], 
and others—provided some steps in this direction by being re-
active. Terms used in those times to describe such systems / 
environments / languages include “exploratory programming,” 

“rapid application development,” and “interpreted.” In a reactive 
environment changes are immediate—the response to a change 
is instantaneous—so not as much “bravery” is needed to dive in 
and see what happens. Such systems increase the possibility of 
salvaging an old bit of software. How often has it been just one 
thing you’d like to change about an application’s behavior? In 
a reactive world you could just make that change and see what 
happens.

11.	 Failure	is	Common

We will assume it. This has been substantiated by numerous 
studies of software failures and famously long bug lists for most 
software systems. David Hovemeyer and William Pugh have 
reported:

we have found that even well tested code written by ex-
perts contains a surprising number of obvious bugs.

David Hovemeyer [14]

To write a program or system assuming that nothing will go 
wrong—even in the parts being written at that very moment—is 
foolish, and software written this way in a few years will not be 
tolerated and people who design and program that way will be 
barred from practicing the art. Here Joseph Weizenbaum’s point 
of view is illuminating:

The psychological situation the compulsive program-
mer find himself in while [fixing a bug in his code] is 
strongly determined by two apparently opposing facts: 
first, he knows that he can make the computer do any-
thing he wants it to do; and second, the computer con-
stantly displays undeniable evidence of his failures to 
him. It reproaches him. There is no escaping this bind. 
The engineer can resign himself to the truth that there 
are some things he doesn’t know. But the programmer 
moves in a world entirely of his own making. The com-
puter challenges his power, not his knowledge.

Indeed, the compulsive programmer’s excitement rises 
to a fevered pitch when he is on the trail of a most re-
calcitrant error, when everything ought to work but the 
computer nevertheless reproaches him by misbehaving 
in a number of mysterious, apparently unrelated ways. It 
is then that the system the programmer has created gives 
every evidence of having taken on a life of its own, and 
certainly, of having slipped from his control. This too is 
the point where the idea that the computer can be “made 
to do anything” becomes most relevant and most sound-
ly based in reality. For, under such circumstances, the 
misbehaving artifact is, in fact, the programmer’s own 
creation. Its very misbehavior can, as we have already 
said, be the consequence only of what he has done. 

Joseph Weizenbaum [40]

To understand the source of invasive and pervasive failure 
consider that no apple failed to fall because someone forgot to 
tell it to.

12.	 Seek	Out	and	Repair	Errors

We expect software will become like living organisms. We are 
talking about self-sustaining and self-repairing programs—run-
ning code that is buggy but coping with those bugs and perhaps 
repairing some of them9 or repairing the damage done. Moreover, 
we are talking about software that continually adapts to its en-
vironment, both at installation time and afterward.

In most software there are data structures which are used by 
the processes the software embodies. Typically these data struc-
tures are by-products of the computation but sometimes they are 
used to direct parts of it. Such data can be tested for integrity, 
consistency, and, sometimes, correctness—repairing data can 
be a potent form of self-repair.

Self-sustaining and self-repairing programs are possible and 
necessary. Today, safety-critical systems are deployed for which 
stopping and awaiting human intervention after a failure has 
occurred is simply out of the question. Even a system for which 
shutdown is reasonable needs to shutdown safely. Some research-
ers (Rinard: [31], [32]; Patterson & Fox: [5], [6], [27]; Evans: [10]) 
have been exploring ideas for self-repair, rapid recovery from er-
rors, and failure tolerance. To many practitioners today, the idea of 
recovering from an error goes against the grain: the error should 
never have happened—it’s the result of bad design or bad coding. 
Or bad requirements or specifications, or because the software 
ends up in an unexpected environment, perhaps because the 
environment is being updated / upgraded. 

The changes we foresee have as much to do with vocabulary 
and metaphors as with new techniques and technologies. Let’s 
look at one of the first instances of a program that used self-re-
pair rather than absolute correctness. 

<story>

In 1958, John McCarthy was thinking about a symbolic dif-
ferentiation program in a programming language that was later 
to become Lisp. He was concerned about the “erasure problem”: 

� Self-repair of code can be approached variously. One promising vein is 
to think about building software through generation—from some model 
or specification or by some process whose initial conditions can be varied 
and the code regenerated.



no-longer-needed list structure needs to be recycled for future use. 
In subsequent languages, such problems were handled either by 
the structure of the program being restricted to trees (stack al-
location of data and its trivially automatic deallocation through 
stack popping) or by explicit allocation and deallocation (mal-
loc/free). His comment on erasure / explicit deallocation:

The recursive definition of differentiation made no provi-
sion for erasure of abandoned list structure. No solution 
was apparent at the time, but the idea of complicating 
the elegant definition of differentiation with explicit 
erasure was unattractive.

John McCarthy [24]

It’s worth a pause to notice the style of research described. Mc-
Carthy and his colleagues were trying to design a programming 
language. Part of their methodology was to write the program 
they thought should be able to do the job and not the program 
that a compiler or execution system would require to make the 
program run well. In fact, the beauty of the program was foremost 
in their minds, not correctness down to the last detail. Beauty. 
Remember that word.

Eventually the first Lisp implementers decided to ignore the 
bug—the fault of not explicitly erasing abandoned list cells, caus-
ing the error of unreachable cells accumulating in memory, lead-
ing to a failure to locate a free cell when one is expected—until the 
failure occurred and to repair it then. This avoided the problem 
of entangling a common set of functionality (keeping available 
all the memory that should be) with a pure and clear program 
(symbolic differentiation). The failure the fault eventually caused 
was repaired, along with a lot of other similar errors in a process 
named at the time and still called garbage collection.

</story>

The entanglement of erasure code with the symbolic differen-
tiation code reminds us of the problem aspects address:

We have found many programming problems for which 
neither procedural nor object-oriented programming 
techniques are sufficient to clearly capture some of the 
important design decisions the program must imple-
ment. This forces the implementation of those design 
decisions to be scattered throughout the code, resulting 
in “tangled” code that is excessively difficult to develop 
and maintain.

Gregor Kiczales et al [16]

The combination of inelegance and the foolishness of pursu-
ing perfection seem to combine:

The Goal of Perfection is Counterproductive: The 
aspiration to eliminate as many programming errors as 
possible creates a development process that diffuses the 
focus of the project, wastes engineering resources, and 
produces brittle software that is helpless in the presence 
of the inevitable errors or faults. A more productive as-
piration is to develop systems that contain errors and 
sometimes behave imperfectly, but remain within their 
acceptable operating envelope.

Flawed Software Has Enormous Value: The most 
productive path to better software systems will involve 
the combination of partially faulty software with tech-

niques that monitor the execution and, when necessary, 
respond to faults or errors by taking action to appropri-
ately adjust the state or behavior.

Martin Rinard [31]

The moral is not that Lisp researchers scooped the aspects 
and recovery-oriented programming guys by about �0 years but 
to note that the metaphor of conscientious computing can be 
effective if thoroughly adopted. The people who wrote the first 
garbage collectors weren’t bogged down by the belief that a pro-
gram is manufactured in one place for use in another, but believed 
that a programming language was based at least in part on a 
runtime environment in which the software would continually 
evolve—possibly in response to changing requirements or the 
changing nature of interdependent software.

In this case, the simplicity and elegance of the program (sym-
bolic differentiation was the example that drove the thinking) 
was not to be compromised by the intrusion of an unrelated as-
pect of the program (its memory management needs). Instead 
the program was allowed to fail (to run out of storage because 
the programmer “forgot” to deallocate used memory cells), and 
by a process of observing its environment (noticing it was out of 
memory), it was able to avert disaster and initiate a process of 
repair to fix the mess the programmer’s faults created. Impor-
tantly, the memory management concern has become isolated in a 
separate module—separate from the program the programmer is 
interested in, and in fact, separate from every other program.10

This is the sort of thought process we believe will become 
prevalent in the future, but executed with more gusto (and—let’s 
face it—more guts, too).

Garbage collection is not the only example of the sort of pro-
gramming practices we are talking about. We include as exam-
ples utilities that repair and defragment disks, that rotate log 
files and otherwise cleanup from the normal (and abnormal) 
activities of a complex system, and that are used as preventa-
tives. Virus-protection software similarly looks from the outside 
at messages and other downloaded or created files for signs of 
errors or pathology. 

Some of these utilities are triggered by events (like a file being 
downloaded) and others are scheduled (like log file rotation). But 
in all cases the problem-detection and repair code are indepen-
dent of the code that experiences the problem. The code repaired 
and the repair code are decoupled, which is central in the same 
way that by being decoupled from the design and implementa-
tion of the tested code, testing code is effective. Such a decou-
pling, though, is not effective when there are similar or common 
design / implementation points. If both the repair and repaired 
code need to (correctly) implement the same difficult-to-imple-

�0 A related idea is leasing: A resource is allocated to a particular process 
or program, but only for a specified time. If the process or program “de-
sires” to retain the resource beyond its lease duration, it must renew the 
lease before it runs out. If the process or program fails—crashes, goes into 
a loop—the lease will not be renewed and the resource will be returned 
to the system. This is like the garbage collection scenario except it is not 
the failure of a particular component within a system that is at stake 
but the failure of the entire system. And in the garbage collection case, 
a program notices that it has allowed its memory to fall into disrepair, 
while in the leasing situation, the overall system notices the failure only 
through a form of insurance policy—or one might view it as a form of 
emergence: nothing is specifically looking for the failure of a component, 
but the effects of such a thing happening are handled by a mechanism 
that assumes failure.



ment algorithm, then perhaps the same errors will appear in both 
pieces of code, and the repair will not be effective.

Moreover, some of the preventatives, such as anti-virus soft-
ware, perform automatic self-updates over the internet. This is 
in concert with our belief that software is continually installing 
itself and actively improving. Such updates are provided by peo-
ple, but they need not be: They might be from a design farm that 
is continually improving software through a process of digital 
software evolution or other automatic mechanisms.

Errors are typically handled by exception handlers—code that 
is activated when a failure occurs. But the ultimate cause of the 
failure—the fault—might not be apparent. Therefore, errors must 
be sought out, through aggressive means like continual testing 
and other bad smell detection. And as some researchers are now 
discovering (and the inventors of garbage collection discovered 
a long time ago), repairing damage and the results of erroneous 
execution can be an effective way to keep a program or system 
operating properly.

12.1	 Don’t	Seek	Out	and	Repair	Errors

Some errors don’t need to be fixed, and in fact, the very act of 
fixing them can cause more harm than good. [32] Sometimes it 
makes more sense to observe and note problems, perhaps trying 
to keep track of coincidental events, files open, etc., with the idea 
that perhaps with this information—if the error turns out to be 
serious enough to fix—repairs can be made. 

As noted by Rinard and his colleagues, code can be parti-
tioned into forgiving and unforgiving regions. Errors in unfor-
giving regions lead to fatal errors or unacceptable results. Errors 
in forgiving regions may result in bad or marginal results, but 
typically useful results. The example they give is of software that 
decodes and plays mpeg files. The part of the code that locates 
important metadata in the input stream—which enables the rest 
of the code to properly display the video stream—is unforgiving; 
an error here causes an infinite loop, early termination, or no 
video to be displayed. The code that displays video information 
from the input stream—once that information is found—is for-
giving because generally errors there cause only degraded video 
/ audio quality.

Ideally, the system would be able to determine for itself which 
errors are bad enough to be fixed and which not, perhaps by ob-
serving the amount of pain the error causes in users of the soft-
ware or in other parts of the system.

13.	 Write	Tests	and	Continually	Run	Them

Components of a system will be continually running tests—self 
tests, environment tests, communications tests, etc. This will 
form a matrix within which various feedback loops will keep 
the overall system running well. At the moment, most programs 
and software operate like bulls in a china shop: They blast ahead 
assuming everything will go their way. Instead, well-designed 
software in the future will constantly be adjusting to circum-
stances, righting itself, keeping clear of bad situations. Such 
feedback loops will exist within the software and also between 
the software and the software’s environment, correcting small 
errors and making incremental improvements to the organiza-
tion and performance of the system.

Self-tests and other sorts of tests will help a system discover 
problems early, so that their correction or amelioration is effec-

tive;11 such tests can be useful to determine whether the environ-
ment is changing or degrading. In such a regime, tests should 
look outward as well as inward—out toward the environment as 
well as measuring the effects of the environment on the software. 
When an update is downloaded—along with its new tests—all 
tests will be (eventually) run and the results sent back to wherever 
the changes reflected in the update were made. This way, the soft-
ware developers will have the benefit of the testing environments 
of all instances of the code, and there won’t be as much need for 
an extensive and varied testing farm. Almost every installation is 
different, because the exact needs of users depends on the com-
plete local computing environment: different hardware, differ-
ent drivers, different optional or custom packages and libraries, 
different patches and patch levels, and on and on. Perhaps even 
the order of installation makes a difference, particularly when 
software is customized based on what is already in the system. 
We don’t need to imagine some complicated learning environ-
ment—the person or people using a system can customize it, and 
how they do so depends on what they know, the experiences they 
have, and the work they do, which are all influenced by what is 
already installed on the computer. 

Many software developers don’t like to write tests, although 
those in the agile software development movement put writ-
ing tests at the center of design and implementation. For them, 
the tests are executable requirements. Their fervor over testing 
doesn’t go far enough: Tests should be designed to run all the time 
after the software is installed. If the tests are also continually 
sampling and testing the environment, they can help a program 
avoid disasters and alert the users of the host computer of prob-
lems. Such testing is part of the concept of feedback, a principle 
on which life depends.

When testing is part of the culture of programs, and once 
software is shipped with everything needed to modify it, the pos-
sibility arises of users creating tests that reflect their usage pat-
terns. Such tests would be useful to the original programmers.12

14.	 Exercise

Many of the behaviors we expect to see in future software come 
from the idea of exercise. When we currently think about “ex-
ercising software,” we imagine simply using it or testing it—or 
perhaps it’s closer to the details of walking the dog. But for people, 
exercise is a way to strengthen, and when we exercise our minds 
our mental faculties can be improved. Many of our expectations 
for the future involve the idea of experience changing software. 
We have known for decades that one of the deep difficulties of 

�� Coupling tests with repair means that the effect of a software bug can be 
corrected or mitigated (possibly through rebooting, reinitializing a data 
structure, or returning an acceptable value), but the actual bug remains 
in the code until fixed by developers.

�� To the first order, unit testing does its job: Components are verified to 
work according to the designer’s notion of what the component is intended 
to do. Problems occur when the component is used in an unanticipated 
way and/or the component becomes a piece of a larger complex system. 
The system dynamics can cause unexpected behavior resulting from a 
combination of unanticipated use of components and interactions be-
tween components. State and behavior are stored in unlikely places in 
the system (like the communication pathways between the components); 
our hope is that a new paradigm of testing could find ways to exercise / 
test such system dynamics.



producing software is that discovering requirements is hard and 
trying to do so before some working version of the software is 
available is impossible. So why should the discovery of require-
ments stop once the software is installed when the requirements 
that depend on the local context are all around?

This requires writing software differently—in a way that per-
mits changes in situ, something that is difficult but not impos-
sible. [12, 23, 2�, 36, 37]

15.	 Use	Feedback

Software should adapt to its surroundings and prevailing condi-
tions. Feedback is a mechanism found in nature and in numerous 
mechanical designs to provide stability and adaptation in the 
face of changing conditions. 

In biological systems, feedback plays a decisive role in main-
taining cellular functions. Chemotaxis [Figure 2] is an excellent 
example of nested feedback being used by bacteria such as E. coli 
to bias their swimming motion toward food sources and away 
from toxins. The outmost feedback loop involves sensors that con-
trol when the bacteria changes its direction. An inner feedback 
loop causes the sensors to adapt so they stay sensitive to small 
differences over a very wide range of concentrations. Together the 
two loops enable E. coli to robustly follow a gradient. [1]

Some algorithms and software that control physical devices 
use feedback, but otherwise it is a rare component of software. 
That is, no programming language incorporates feedback as an 
essential mechanism, but it is, instead, relegated to the program-
mer to explicitly construct out of low-level language features.13 
Building feedback requires variables, numbers, comparisons, 
and loops. Therefore, software developers—especially junior 
ones—don’t think in terms of feedback.

—Even though feedback is essential to living systems.

16.	 Make	Things	Visible

System components will be able to see out into their environ-
ments and into other components. When software has just in-
stalled itself, it doesn’t have enough experience (or enough time) 

�� Constraint languages—which are not widely used for application pro-
gramming—may be exceptions, though feedback is typically buried in 
control algorithms.

to scope out how the system is being used, so it needs to come 
up in a default mode—with text editing, spellchecking, etc., ex-
actly as some developer imagined them back at the factory. By 
observing other software in action or by looking at the recorded 
histories of other software running on the system, the newly 
installed software can learn about the usage patterns and pre-
dilections of its users.

Visibility into the environment is restricted today—not be-
cause of privacy concerns or inadequate design, but because 
the concept is not in play. Encapsulation inadvertently is in ef-
fect in both directions. It is not desirable to look into a software 
component by design and it is not possible to look outside of a 
component (from within it) because it’s not a concept in contem-
porary computing. Communication across a software cell barrier 
is through an interface—sometimes through arguments as in 
procedural code or through method calls (or message-passing) 
in object-oriented code. But as any software developer knows, 
once inside the conceptual boundary between inside and outside, 
the programmer (and one might also say, the code) has a specific 
vocabulary and set of concepts and ontologies, as does the envi-
ronment outside the component. The bridge that is normally / 
exclusively built between the two is the signature (the name and 
shape of the communication) and the types of the pieces of infor-
mation that go back and forth. This is a very information-poor 
medium. The very narrowness of the communication channel is 
the source of many advances in conventional computing. When 
correctness and optimality is foremost, the narrower the chan-
nels of communication the better. 

Visibility requires descriptions that are continually updat-
ed1�—for example, descriptions of what’s inside a system’s soft-
ware components, how a running system is currently configured 
and what it’s working on, which users use which software and in 
what ways, etc. And visibility benefits from abundance—a rich 

�� A description is not a representation. A representation can sometimes 
be thought of as a model of something else, usually in the real world. Ma-
nipulations of the representation typically mean something regarding 
that model. A description cannot be manipulated to create a change in 
the thing described. A description can be understood, compared to other 
descriptions, and actions can be taken based upon them. A representa-
tion is typically efficient in some way—representing just what is neces-
sary—while a description can be extravagant and mention a number of 
apparently inessential things.
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interface where perhaps pattern matching and some degree of 
understanding is possible.

This sort of visibility is partly what Lanier is aiming at with 
phenotropic computing. Lanier thinks of surfaces that can be 
pattern-recognized or sampled. We are not particular how this is 
accomplished—perhaps only (translatable) blackboards can suf-
fice with simple textual pattern matching. Or even extensions of 
something like Common Lisp’s keyword / optional argument lists 
and calling conventions. Or even just posting XML documents.

Making continual testing effective is another reason for vis-
ibility: Such things as the overall state of the system, what user-
visible windows and processes are available, and what the user’s 
physical environment is like should be visible and, in some cases, 
alterable. For example, as I (one of the authors) type this sentence, 
I am also digitizing some old band tapes (the authors were in a 
rock band together). It would nice if the program I’m writing this 
paper with knew about the recording software and that it was 
running, so that it wouldn’t interfere with the program captur-
ing all the data in the bitstream from the digitizing hardware, 
which can happen because the operating system, OS X, doesn’t 
know, aside from some heuristics, how I differentially value the 
operation of the two programs, nor, more importantly, how dis-
ruptions affect the flow of the document-preparation program 
(typically, not at all) and my perception of my interaction with 
it (minimal or not at all). The document preparation program 
could easily surmise that the real-time–like recording is likely to 
be a lot happier if the program responding to typing were to get a 
little less priority—such a diminishment would be unnoticeable 
to me but degradation of the data stream would be noticeable 
on the recording to everyone who listens to it. And the record-
ing software could likewise look out for itself, noticing I have a 
multi-CPU machine and conversing with the operating system 
about how to handle the situation.

17.	 Continual	Noticing

Systems will be aware. For a system to maintain itself, it needs 
to see itself, it needs some level of self-awareness.15 [33, 3�] It 
must be possible for a programmer who wishes to write software 
that operates on behalf of its own well-being to write that code. 
A current trend is telemetry. A system sends a stream of data 
to another which is monitoring its health. A model like this is 
part of the solution, but only part. Telemetry represents a time-
varying look at one or a few aspects of a system. The visibility 
required for continual noticing includes the entire status of the 
system—hardware and software—as well as some information 
about each component: exceptions thrown, errors trapped, popu-
lation of inputs handled (for example). 

This principle also enables the use of stigmergy as a self-or-
ganizing mechanism. According to the Wikipedia:

Stigmergy is a method of communication in decen-
tralised systems in which the individual parts of the 
system communicate with one another by modifying 
their local environment.

[http://en.wikipedia.org/wiki/Stigmergy]

Stigmergy is a concept proposed by Pierre-Paul Grassé in 
the 1950’s to describe the indirect communication taking place 

�� “Self-aware” does not require AI or consciousness. A thermostat has 
awareness. A car’s electronic ignition system is self-aware. 

among individuals in social insect societies. [13] A termite will 
pick up some mud (for instance) and invest it with her phero-
mones. This mudball will tend to attract other termites carry-
ing their own mudballs, and the local effect will be to concen-
trate the mudballs in a single place, and the global effect will be 
to create towers and arches which are then made into termite 
palaces. See also Prigogine [29] and Camazine [�]. In comput-
ing an example of this would be a process that writes data into 
a JavaSpace that other processes can then read, do some compu-
tation based on what they’ve read, and then possibly write new 
data into the JavaSpace.

An explicit description of the state and history of the software 
system would enable the construction of self-organizing software 
systems—not necessarily systems that would self-organize to ac-
complish their designed functions16 but that would self-organize 
to stay alive and healthy.

18.	 Autopoiesis	/	Allopoiesis

Programmed systems will become as living. One way that biologi-
cal systems use feedback, visibility, and continual noticing is as 
part of their self-generating nature: Many of the feedback loops 
in a living system are involved with the regulation of production 
of components, proteins, and other biochemical material that 
regulates the production of other things including the regulators 
just mentioned. This is essentially the concept of autopoiesis. 
Autopoietic systems are

systems that are defined as unities, as networks of pro-
ductions of components, that recursively through their 
interactions, generate and realize the network that pro-
duces them and constitute, in the space in which they 
exist, the boundaries of the network as components that 
participate in the realization of the network. 

Humberto Maturana [21] (see also [22])

(Simply:) An autopoietic system is one that is continually 
(re)creating itself. It is an interrelated network of components 
that build that interrelated network of components—that is, itself. 
And even though there might be deep connections to an outer 
environment, the boundaries of the system are distinct.

In living systems, living is the ultimate goal. And so the pro-
duction of more living stuff and its adaptation of that living stuff 
to the surrounding conditions is in many ways more important 
than the nature of the living stuff itself—as long as it can self-per-
petuate (more or less). Our programmed systems are not thought 
of this way. What is important about a programmed system is 
what it does. In this sense the software systems we produce are 
allopoietic: Allopoiesis is the process whereby a system produces 
something other than the system itself. We are interested in this 
other stuff and don’t care about the mechanism that creates it 
beyond the fact that it creates it. The health and stability of the 
mechanism is beside the point as long as the desired production 
happens. Allopoiesis is the manufacturing process abstracted.

This explains a lot about our currently fairly fragile systems—
but to see it requires examining longevity. Until recently, not 
many programs needed to run for extensive periods of time—op-
erating systems, certain equipment- and human-health–monitor-

�� Most programs have requirements that prevent them from naturally 
being written as self-organizing systems, but this shouldn’t stop us from 
trying to look for ways to write such systems.



ing software, and some embedded systems—and therefore our 
educational system has become geared toward teaching how to 
design and code programs that are used once or for short periods 
of time. With the advent of the Web we’ve seen more systems that 
need to run for long periods. For example, web servers. These op-
erate on essentially a regenerative basis: Each server request is 
handled as if it were the first and only request, and the context 
for the execution is created afresh. That is, no state is carried 
over from request to request, and it’s as if the server were being 
created each time it is needed.17

When a complex, programmed system needs to live for a long 
time, living becomes the ultimate goal. Coupling this with the 
need to produce the right answers, we face the following daunt-
ing problem: How can we structure a system which needs to 
recursively generate, realize, and produce itself as well as cor-
rectly produce something other than itself? —That is, how do 
we combine the correct and efficient function of an allopoietic 
system with the urge to live of an autopoietic one that is continu-
ally recreating itself?

If we try to make a system more robust by adding lots of ex-
plicit exception handlers and error detection code the program 
becomes hard to understand and very difficult to maintain. It 
goes beyond what people can really write. 

An obvious alternative answer—one that was pursued a bit 
during the late 1970s and early 1980s, mostly in the artificial in-
telligence community—is to create autopoietic systems instead 
of the allopoietic ones that are too fragile and don’t know about 
living, and for that autopoietic system to also produce the al-
lopoietic result.

One way of doing this requires the process that produces ulti-
mate results (the allopoietic stuff) also to be aware of itself, the 
state its in, and how well it is producing both itself and its results. 
The simple garbage collection example demonstrates this. The 
allocation of fresh storage is part of the correct functioning of the 
program, while the details of the garbage collection algorithm 
are concerned with properly and reasonably locating unreach-
able storage for reclamation. Some garbage collection algorithms 
don’t locate all such storage, leading to memory leaks18 or use less-
than-perfectly timely reclamation. That is, some collectors do a 
good job, but not a perfect job. Most importantly, the operation 
of the code that does symbolic differentiation (for example) is 
separate from that which does the memory management / era-
sure / garbage collection.

Even this simple example demonstrates the fundamental prob-
lem with this approach: Techniques and languages suitable to 
create an autopoietic system—such as the less-than-perfect gar-
bage collectors—are (probably) not suitable for writing correct, 
predictable, and deterministic code; code that correctly does 
banking, for example.

Moreover … it is instructive to note that the concept of garbage 
collection was resisted by mainstream language designers until 
the mid-1990s on the grounds that it was too slow or that the in-
terruptions were too unpleasant or intolerable. Today—almost 
50 years after the first garbage collector was written—research 
papers on how to improve or ameliorate these bad effects of sepa-

�� To some approximation.

�� A memory leak occurs when a program allocates a data structure us-
ing storage that is never re-used (i.e. deallocated or reclaimed) once the 
structure is no longer needed.

rate garbage collection flood peer-reviewed venues, signaling the 
growing acceptance of the idea. Nevertheless, software develop-
ers today will sometimes still prefer to write a program that will 
leak memory until the program halts from memory exhaustion 
over using an automatic system.

The lesson from this is that there will be resistance to the 
creation of an autopoietic mechanism if it is slow or, worse, bug-
gy.19

The flaw in the earlier research programme was to attempt to 
define a single programming language or programming system to 
serve both purposes—to operate both at the level of arithmetic 
and logic, procedure calls and method invocations, and also at 
the level of feedback, visibility, noticing, and living. Any program-
ming language that can operate at the allopoietic level is neces-
sarily fragile, and so injecting those elements in the autopoietic 
system will break it as well.

Moreover, the principles of the two sorts of systems are incon-
gruous. For example, think about visibility. There is an elegance, or 
perhaps it’s just a symmetry, that the principle of visibility would 
apply to the autopoietic part of a system while the principle of 
information hiding would apply to the allopoietic part:

In computer science, the principle of information hid-
ing is the hiding of design decisions in a computer pro-
gram that are most likely to change, thus protecting 
other parts of the program from change if the design 
decision is changed. 

[http://en.wikipedia.org/wiki/Information_hiding]

The purpose of information hiding plays no role in the execu-
tion of a program—no role whatsoever. Only a role during the 
development of the software.20 Therefore, information hiding is 
part of the process of software creation, which takes place within 
something called the programming environment (in the old days) 
or the integrated development environment (nowadays). There 
is no reason that the software cannot be visible (not necessarily 
alterable) during execution—or even while the software is idle. 
Here’s an example of why.

When a new piece of software is installed, it might wonder—as 
mentioned earlier—how spellchecking is done in these parts. One 
way would be to inspect programs that are used a lot and have 
been used frequently to see whether they provide spellchecking 
and whether there is a common module or at least a dictionary 
that the user has augmented. Then the new software could adopt 
(/ adapt to) the existing preferred method.

That is, visibility / invisibility should be valued differently 
when viewed vis-à-vis the two different aspects of a program: au-
topoietic and allopoietic. Invisibility (ignorance of what’s really 
inside a module, a function, an object, etc.) is valuable when a soft-
ware development team is working to produce a system that will 
then, while executing, go on to produce something else—there 
are two allopoietic processes in play: the design / implementa-
tion team producing the system, and the system producing its 
results.21 Limited visibility—of the module interfaces—at system 

�� Even if there is a simplification in the expression of the mechanism. Note 
that it takes less effort to write code in a garbage collected language, but 
programmers didn’t / don’t accept it because of performance worries.

�0 There are, however, execution-time repercussions.

�� But note: During the design process, the insides of a module are visible 



construction time and at execution time is valuable because it 
reduces the possibility of change to known interfaces, and the 
use of an interface enables the ability of the potentially changed 
module to supplant the old one. When interfaces are visible, it is 
readily noticeable when they change—compile-time, link-time, 
and execution-time errors are timely.

Visibility is valuable to the operation of the autopoietic part 
of a software system, though it may be a hazard to the allopoi-
etic creation of the initial autopoietic system. Perhaps it would 
make sense to separate the allopoietic part of a system from the 
autopoietic part; schematically [Figure 3].

The encompassing autopoietic system needs to observe itself 
and its environment to know how to change and recreate itself. 
It must also have some ability to observe and affect the operation 
of components of the allopoietic system. 

Other principles are similarly in opposition [Table 1]. 
Because of this, the requirements of the two types of systems 

don’t line up, and so designing an autopoietic language / environ-
ment for allopoietic purposes is unlikely to succeed. The figure 
[Figure 3] contains the answer. The allopoietic part of the sys-
tem must remain in an allopoietic language (and runtime when 
that’s appropriate) while the autopoietic part can be in a separate 
language—designed to do different things and with radically dif-
ferent characteristics.

The autopoietic language must (perhaps) have no ingredients 
that can cause errors of a nature as to crash a program written 
in it. A way to think of this is that it must be impossible to write 
a program with a certain class of bugs in it. Naturally, it’s not 
possible for a person to write a program with no bugs, so what 
we mean by this must be elaborated. Some bugs are about the 
ultimate problem, such as getting differential equations wrong, 
updating cells in the wrong order, or forgetting parts of a specifica-
tion, while others seem centered around the business of program-
ming per se, such as typos, fencepost errors, failing to initialize 
variables, etc. These two classes of errors feel very different. One 
is when we are surprised or discouraged that the program doesn’t 
do what we want and the other is when we are upset the program 
falls over, perhaps after getting nowhere. One is a failure to write 
the right program and the other is a failure to rightly write the 
program (we intended). 

to some people: Design decisions made within a module are visible to the 
local decision- and software makers.

In a lithe language, it must not be possible to write a program 
that falls over. As an example, consider the game of life [9]. It has 
3 simple rules for the birth, death and survival of counters on an 
infinite checkerboard:

Survivals. Every counter with two or three neighboring coun-
ters survives for the next generation.
Deaths. Each counter with four or more neighbors dies (is re-
moved) from overpopulation. Every counter with one neigh-
bor or none dies from isolation.
Births. Each empty cell adjacent to exactly three neigh-
bors—no more, no fewer—is a birth cell. A counter is 
placed on it at the next move.

We have all seen animations of life configurations. A “program” 
in the game of life is just any initial configuration of counters on 
an infinite 2-d plane. Some configurations don’t do anything in-
teresting at all: They grow forever or die off or fall into a cyclic 
state. Others are quite interesting—in fact, the mathematician 
John Conway proved life is universal: That is, it can simulate a 
Turing machine. But, consider that no initial configuration can 
have a fatal bug in it in the sense that the game of life will halt or 
experience some failure. The configuration might not do what 
you want (due to a fault in placing an initial counter), but any 
initial configuration will run. This is not true in a general-pur-
pose programming language. 

Of course, this is what the type theorists aim at with (allopoi-
etic) type theory, but they will fail in the sense that fatal bugs 
will always be possible in the languages they work on because, 
after all, those languages deal with numbers and arrays and 
other inflexible and insensible data structures—data structures 
that don’t, for example, enforce application and domain-specific 
semantics.22 And if they were to succeed, well, we would simply 
use what they produce.

But we see autopoietic languages being lithe. Lithe:

Readily bent; supple. Marked by effortless grace.23

�� This is true of essentially all programming languages—both statically 
and dynamically typed.

�� This definition is adapted from “The American Heritage® Dictionary 
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The structure of a system made this way would be of the allo-
poietic part of it—the part that does what the designers intended, 
such as banking or web serving—embedded in the autopoietic 
part, which would be responsible, in a sense, for keeping the 
overall system alive. In one possible metaphor, it would be like 
Einstein’s body keeping his brain / mind working properly.

<digression>

We imagine a possible structure for this by the attachment 
(we favor this way of thinking of it rather than as a traditional 
interface, for reasons described later) of a monitor or autopoietic 
interface—we will call it an epimodule—to each or some allo-
poietic components in an allopoietic system. The purpose of the 
epimodule is to monitor the behavior of the component and to 
alter it when needed. For example, in a conscientious allopoietic 
system, the component would include all its test code. The epi-
module would be able to pause the component, execute its tests, 
and examine the results. If a new version of a subcomponent 
becomes available—say a new text processing component—the 
epimodule can direct the component to unload / unpatch / ig-
nore the old version, install the new one, run tests, and then either 
proceed or undo the whole operation.

One of the more important sets of capabilities of epimodules 
would be to be able to clone and then kill a module. Imagine a 
scenario in which a component / module has a memory leak or 
other error whose bad effects accumulate. The autopoietic sys-
tem through the intermediation of the epimodule can observe 
and track this problem and at some point decide to clone the 
component. If the component has no persistent state, the traffic 
to the old component can be shunted to the new one. If the com-
ponent has persistent state, the old instance of the component 
can be directed to clone itself, copying over the persistent state. 
In some cases—in fact, in most cases—this will have the effect 
of doing a stop-and-copy garbage collection of the internal state 
of the component, thereby cleaning up / leaving behind the ac-
cumulated damage to the component.2�

Instead of killing the module, it could be instructed to self-
destruct. This mechanism could have similar advantages as 
apoptosis, or programmed cell death, does in living systems. 

 of the English Language, Fourth Edition.”

�� Maybe …. If the problem is in a persistent part, other techniques will 
be needed.

In apoptosis, the destruction of a cell is triggered by an internal 
or external signal, and the way the apoptotic process is execut-
ed—how the cell commits suicide—facilitates the safe disposal 
of cell corpses and fragments. Likewise, a system module asked 
to kill itself can cleanly stop (if possible) by explicitly releasing 
any system resources it has acquired, thereby working toward 
the health of the system.

Epimodules, taken in the aggregate, should be able to rewire 
and hence recreate an entire allopoietic system, and by continu-
ally regenerating it, keep it healthy and alive. The requirement, 
though, is to keep the allopoietic system operating properly: It 
is performing some precisely specified task, and that must con-
tinue. Perhaps some degree of tolerance for uneven performance 
exists, but even that might not be permitted. The autopoietic sys-
tem is there to make the overall system more robust, less fragile, 
more accommodating to users, and its own correct functioning 
should not become a factor in the correct functioning of the al-
lopoietic system.

Schematically [Figure �].
A more radical and interesting example suggested by Armando 

Fox [6] is for an epimodule to observe a module’s mutterings. A 
module can be instrumented with a series of mutter statements 
which when captured as telemetry provides the module’s inner 
dialog. When punctuated by input and output boundaries, the 
mutterings can be considered messages, and a Bayesian learn-
ing process can be applied to a testing corpus to learn what are 
good and bad messages. Then the epimodule can run the Bayes-
ian network over the messages of a live module to get a sense of 
whether the module is acting normally, regardless of whether its 
behavior is correct. These judgments can lead perhaps to a clon-
ing and subsequent death of the original component.

Another possible way to envision the allopoietic / autopoietic 
structure is to look at a speculative, different, more detailed pic-
ture [Figure 5]. The blue boxes represent allopoietic code—the 
code that does the real work and red blobs indicate autopoietic 
code. The main big blue box is a component in a larger (allopoietic) 
system. The bump and string on top represent its normal inter-
face and connections—think of it as the method signature and 
call graph. The darker (lower) bluish box inside can be thought 
of as the epimodule interface. Its job is to implement health- and 
repair-related operations within the component. We see things 
like the ability to run tests—this includes packaging up the tests 

autopoietic interface

allopoietic component

Figure 4: Epimodules Figure 5: Autopoiesis / Allopoiesis

Run
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themselves and some way of characterizing the results—to clone 
the component, to safely kill the component, or to repair data 
structures. There could be others as well, such as a tap into the 
local exception handling and event environments. 

The red shapes outside the box, including the encompassing 
reddish rectangle with the rounded corners, represent autopoi-
etic code. The odd shapes that change shapes and shades from 
the outside to the inside of the component (from oval to square 
and from red to blue or from a darker grey to a lighter one) rep-
resent the epimodules that assist that component by keeping it 
healthy and keeping healthy the entire system within which that 
component exists.

Epimodules can either be developed by the original developers 
of the allopoietic code25 or be developed / supplied by the devel-
opers or users of the installation site. There might be a standard 
ecology of health maintenance code at the local site that appli-
cation systems tie into.

Further, there is no need for epimodules to execute on the 
same computer systems as the allopoietic code it oversees. Epi-
modules can execute on another computer system or systems 
onsite or offsite, perhaps where the developers of the allopoietic 
system are located. This will reduce the performance impact of 
the architecture on the implementation.

Epimodule execution can also be asynchronous with respect 
to allopoietic execution. For example, the epimodules (the auto-
poietic system) can include extensive simulations to set param-
eters (e.g. recompiling an allopoietic component with different 
compiler switches to better tune it for actual use), determine the 
best configuration, design and implement more appropriate glue, 
monitoring, or protection code.26

The red, blobby, autopoietic components communicate with 
each other through the reddish background substrate and perhaps 
by the action of autopoietic entities that operate in the substrate 
but which are not attached to specific allopoietic components.

We don’t know much about what the autopoietic parts should 
be like. And in particular we have not much of an idea what lithe 
languages will be like. There is probably a continuum of likely 
possibilities. But our intuition says that nudging, tendencies, 
pressure, and influence will be more important than exchanging 
control and data or traditional control structures and composi-
tion techniques.

At the conservative end, lithe languages could be declarative, 
mostly descriptive—perhaps a set of wiring diagrams for putting 
together the system from its components, and specifications of 
the conditions under which to run tests, to clone components, 
to do internal repair, etc. These descriptions and specifications 
would be interpreted much as a constraint system is to maintain 
the functioning of the system and its components. As such, the 
descriptions might be ineffective but never broken.

At the more speculative (and intriguing) end, the lithe lan-
guage might be able to express only programs that are dimly 
aware of themselves and their surroundings, but aware never-
theless. The red, blobby epimodules could be like living cells or 
other living organisms that are attracted to components either 
generally or specifically—that is, some epimodules might be tai-
lored for certain components while others could be general. The 

�� Perhaps as a paid service.

�� Modulo bandwidth constraints. Note that a multicore CPU could mini-
mize even this problem.

epimodules would attach themselves to components and sense 
conditions, both inside and outside the component, and exert 
pressure on the component to run tests, etc. Not interact through 
a traditional interface, but sense as if sensing the density of chemi-
cals and exert pressure as if by a suggestion or a push.

The substrate could be thought of as a medium for “smells” 
that would influence the activities of the epimodules. So, per-
formance monitoring of a component could exude a hotspot 
smell, which when sensed by other epimodules would cause a 
migration of a set of components to a stronger cluster or a faster 
machine. Perhaps it would be useful for the substrate to have a 
geometry so that concepts of distance and expanding signals 
could be used to model accumulating evidence or disregard ir-
relevant, anomalous spikes.

At this end of the spectrum, concepts like population and 
crossbreeding could make sense so that the epimodules could 

“learn” or “evolve” to be more effective. Perhaps epimodules would 
live from nourishment provided by a healthy system and its com-
ponents. Perhaps epimodules would effect the initial installation 
using surrogates27 to optimize placement and connectivity, the 
real installation taking place after some initial experimenta-
tion—or perhaps the surrogates would assemble components or 
grow them from found / sought parts and pieces in a sort of in-
place development / growth process. And so on.

</digression>

The concept of autopoiesis flows, in a way, from Immanuel 
Kant’s analysis, where he compares living organisms to mechani-
cal devices. Living organisms:

… In such a natural product as this every part is thought 
as owing its presence to the agency of all the remaining 
parts and also as existing for the sake of the others and 
of the whole… the part must be an organ producing the 
other parts, each consequently reciprocally producing 
the others. 

Immanuel Kant [15]

Mechanical devices:

In a watch, one part is the instrument by which the move-
ment of the others is affected, but one wheel is not the 
efficient cause of the production of the other. One part is 
certainly present for the sake of another, but it does not 
owe its presence to the agency of that other. For this rea-
son also the producing cause of the watch and its form is 
not contained in the nature of this material. Hence one 
wheel in the watch does not produce the other and still 
less does one watch produce other watches by utilizing 
or organizing foreign material. Hence it does not of itself 
replace parts of which it has been deprived.

Immanuel Kant [15]

Allopoietic systems are like watches: The components are 
there for each other, but not by each other. In other words, each 
component does not create the others. Order, perhaps, requires 
continual remaking because the nature of the universe is to 
unmake order. The digital world is thought to be immune from 
such effects, being timeless, but what is sometimes forgotten is 
the fallibility of the makers—the software designers, developers, 

�� We imagine a sort of digital stem cell.



and programmers—who continually create flaws or fail to grasp 
the fullness of the requirements. And these flaws accumulate and 
operate on the whole and each other rendering errors over time. 
This is why rebooting is a common resort.

19.	 More	Principles

Although people have talked about dynamic languages, reflec-
tion, meta-models, and the like, conscientious software written 
as an embedded allopoietic system within an autopoietic system 
has never really been attempted before. The trip-up has been that 
while the initial impulse for a programming model might be to-
ward an autopoietic system, the needs of the allopoietic require-
ments eventually come to the fore and any attempts at a radical 
design fold back into a traditional mold.

The autopoietic should not harm the allopoietic system. This 
might mean that the epimodules should not be enabled to actu-
ally kill a module. One approach to this is to create a design lan-
guage for autopoietic systems that is not Turing complete, and 
in fact quite dramatically limited in its abilities. The autopoietic 
system might be programmed in terms of flows, where informa-
tion seeps through the system rather than being instantaneously 
transmitted from point to point. Markets work because currency 
flows, because goods flow. The immune system works because 
blood and other fluids flow. eBay works because reputation (re-
lating to buyers and sellers) flows. 

In many cases, flow is slow / through diffusion. A web server 
component can emit a slowly dispersing overload or hotspot 

“smell”—perhaps its input queues are overflowing. If the overload 
persists, the smell around the component will grow stronger and 
as it disperses it transmits its distress to autopoietic components 
that, when triggered by a suitable threshold, might replicate the 
stressed component to relieve the overload. On the other hand, if 
the overload diminishes, the smell diminishes and doesn’t trig-
ger the replication. 

Then gradients. This is related to locality. A flow can follow a 
gradient, perhaps from some region where self-recognizers / non-
self–killers are created to an area where non-self has appeared. 
Another example is in a network: The autopoietic system can send 
out two flows that disperse at different rates from a persistent 
store. One flow is to enable a copy of the store to create a replicated 
site and the other flow disables copying. A copy is made at a site 
with a probability proportional to the ratio of the concentration 
of enabler to disabler. In effect, replicants are made not too close, 
not too far, and not in a predictable manner. [10]

Think in terms of layers. A system doesn’t have to be mono-
lithic or based on interacting components. A system based on 
stigmergy—reacting to elements of the environment—can react 
to events, to reactions, to reactions to reactions, etc. A different 
concern can be handled by a separate layer. It can be useful to 
think in terms of layers rather than components, because a com-
ponent is an allopoietic concept.

Diversity creates innovation and safety. We learned this from 
biology and from any creative activity. We’ve seen many instances 
in ordinary life of the fact that a diverse base creates fewer points 
of catastrophic failure. Even Charles Babbage recognized this in 
the realm of computation:

…if care is demanded from the attendants for the inser-
tion of the numbers which are changed at every new 
calculation of a formula, any neglect would be abso-

lutely unpardonable in combining the proper cards in 
proper order, for the much more important purpose of 
constructing the formula itself…

When the formula is very complicated, it may be algebra-
ically arranged for computation in two or more distinct 
ways, and two or more sets of cards may be made. If the 
same constants are now employed with each set, and 
if under these circumstances the results agree, we may 
then be quite secure of the accuracy of them all.

Charles Babbage [2]

This is not about fault tolerance of the allopoietic part of the 
system, though there may be some lessons of value there too. An 
approach to fault tolerance that has been explored and seems like 
it is an application of diversity is the use of n-version program-
ming and voting ([17], for example). Such an approach might be 
an example were the diversity in the versions to be true diversity.28 
What we are concerned about is keeping the autopoietic part of 
the overall system working. Therefore, it is not correctness of 
result that is important but survivability. 

When survivability is essential, redundancy may help. Re-
dundancy achieves two things: tolerance of single fatal errors 
and the possibility of randomness. When there are numerous 
members of a population that in the aggregate are achieving 
some purpose, the loss of a fraction of that population due to 
error is not important—this is obvious; randomness is less so. 
For an anthill to forage for food, a number of individuals search 
each using a random path but leaving a pheromone trail. If one 
finds a food source, she returns with some food by following her 
trail back—and adding pheromones to the trail. When other ants 
sense the trail they follow it, further reinforcing it with phero-
mones. In this way, the redundancy enables a form of creativity 
or problem solving.

20.	Pandora
Hope sole remain’d within, nor took her flight, 

Beneath the vessel’s verge conceal’d from light.

“Works and Days,” Hesiod [8]

Aside from parts of some operating systems—including virus 
protection and some of the other examples we’ve given—we in-
habit a world with no autopoietic software. The fear is that with 
software that is more like a living system—including software 
that exploits digital software evolution—we (people) will lose 
control of our software, both as individuals and as a society we 
might become frustrated that our software takes our require-
ments more as suggestions than commands. In the worst case, 
software that is obeying its own imperatives could run amok. 
This is reminiscent of Pandora’s problem. 

�� Knight and Leveson report on an experiment where a group of students 
from two universities are given the same specification, have the nature 
of the experiment (to study n-version programming) explained to them, 
and are required to use the same programming language, compiler, and 
platform—but any methodology they wished—to implement the specifi-
cation. True diversity would require (vastly) different languages, different 
language implementations, relatively independent or even poorly related 
specifications, and design and implementation groups that not only don’t 
know of each other, but are oblivious to the situation. And even then, 
whether by voting or some other means the correct answer could more 
reliably be gotten is not certain.



Pandora was created by the gods and given as a gift—along 
with a jar—to Epimetheus, Prometheus’s brother. The gods were 
upset that the brothers had brought fire to humankind, and they 
placed disease, death, and sorrow in the jar, and told Pandora 
never to open it. But they had created her with an unconquerable 
curiosity. Eventually Pandora could not hold back any more and 
she opened the lid, letting loose the evils inside. Shocked, she 
closed the lid—but not before the evils had escaped.

Fear of control loss has always been the issue for robots and 
other intelligent software from the sci-fi point of view. We feel 
we are in control of our current software applications because 
they are the result of a conscious design process based on explicit 
specifications and they undergo rigorous testing. But we know 
that those applications contain many bugs, some of which may 
be quite destructive. We have learned to live with this, establish-
ing a certain level of comfort based on the effort put in to testing 
and debugging the software. 

Self-sustaining systems because of their more active nature 
will require us to get comfortable with a new set of criteria to de-
termine that a program will do what we expect it to. In addition 
to explicit testing, we will need to rely on the various feedback 
loops and constraints defined to keep the system in check.

Moving forward with any technology that has the potential of 
being independent of human control is a touchy affair. One con-
solation comes from the ending of Pandora’s story The gods, in an 
unusual fit of compassion, had placed Elpis—Hope—in the box. 
The evils had escaped but Elpis was still in the jar. Seeing Elpis, 
Pandora let her out and from then on there was the possibility / 
hint / (false?) hope of cure, of life, and of happiness.

We should start slowly and constantly build systems that self 
sustain. Feedback loops at all levels of scale can help.

21.	 Getting	There

Getting to conscientious software can be done only in steps, 
though some of them require breakthroughs and new thinking. 
Already some steps are being taken: some software automatically 
updates itself; S.M.A.R.T. hard drive technology monitors disks 
and predicts errors; some systems support global preferences; 
and some operating systems engage in a small degree of self-re-
pair, using telemetry or events; web servers spawn small server 
processes with fixed lifetimes. These are just examples.

Several researchers have been working in this area for a while, 
and research is getting more daring. A couple of prominent re-
searchers in the area have already been referred to: Martin Rinard, 
David Evans, Armando Fox, and David Patterson. Others include 
Tom Knight and Gerry Sussman [18, 38, 39]. Several companies, 
notably IBM, have had projects in this area whose purpose has 
been to create near-term mechanisms and products.

More importantly, as we continue to make larger and larger 
software distributed over a variety of computers in a network, 
producing more and more variability of co-existing versions, the 
results based on our current old-fashioned approaches will only 
get worse. This is not pessimism speaking but an observation of 
the ways in which the need for accelerated work in this area will 
become apparent. 

We can start on the ideas in this paper by designing systems 
with epimodules based on software services that are like plug-ins 
or that operate remotely (like telemetry) to provide some self-re-
pair capabilities. Another simple step would be to make more of 

the insides of modules visible from the outside in order to observe 
normal and anomalous behaviors and take corrective action.

22.	Conclusions

We are starting to make progress; and once progress is being 
made, perhaps it will accelerate. We are still in the infancy of 
computing. It is foolish to think that we have already found all 
the central concepts. For years we have been struggling to come 
up with the best metaphor for developing software: is it like writ-
ing, or engineering, or like architecture, like horticulture, like 
voodoo? Few people are ready to realize that programming is 
not like other things, but other things are like it. Programming 
is unlike anything people have done before, so the ways are lim-
ited in which it is like other things. 

It is therefore still ok to pull ideas from lots of disciplines and 
areas of interest. We have been pulling from a variety of sources 
to come up with our vision for future software directions.

h h h

Our software is like children. For a time parents must provide 
everything and be prepared to step in to prevent the next disaster. 
It’s not uncommon for a waking child to never be out of one of its 
parents’ sight for years on end. We expect that after a time the 
child will mature, will grow up, will be able to take care of itself, 
to solve problems, to cope, and perhaps to contribute something 
new. Initially selfish—for what other options are there?—the child 
becomes responsible. With luck or persistence or as the result of 
good upbringing, the child may become conscientious.

Shall we hope similarly for our software?

Acknowledgements

Thanks: Gary T. Leavens, Kristen McIntyre, Meg Withgott.

23.	References

[1] Alon, U., Surette, M. G., Barkai, N., Leibler, S., “Robustness 
in Bacterial Chemotaxis,” Nature, Vol. 397, pp. 168–171, 
January 1�, 1999.

[2] Babbage, C., “On the Mathematical Powers of the Calculat-
ing Engine,” in The Origins of Digital Computers: Selected 
Papers (3rd ed.), Brian Randell (Ed.), Heidelberg, Springer-
Verlag, 1982.

[3] Brand, S., How Buildings Learn: What Happens After 
They’re Built, Penguin, 199�.

[�] Camazine, S., Deneubourg, J., Franks, N., Sneyd, J., The-
raula, G., Bonabeau, E., Self-Organization in Biological 
Systems (Princeton Studies in Complexity), Princeton Uni-
versity Press, 2003.

[5] Candea, G., Brown, A., Fox, A., Patterson, D., “Recovery 
Oriented Computing: Building Multi-Tier Dependability,” 
IEEE Computer, Vol. 37, No. 11, November 200�.

[6] Candea, G., Fox, A., “Recursive Restartability: Turning the 
Reboot Sledgehammer into a Scalpel,” Proceedings of the 
8th Workshop on Hot Topics in Operating Systems (HotOS-
VIII), Schloss Elmau, Germany, May 2001.



[7] Dvorak, D., “Challenging Encapsulation in the Design of 
High-Risk Control Systems,” Proceedings of Onward! at 
OOPSLA 2002, November 2002.

[8] Elton, C., “The Remains of Hesiod translated from the 
Greek into English Verse,” in The Works of Hesiod, Calli-
machus, and Theognis, London, G. Bell, 1879.

[9] Gardner, M., “The Fantastic Combinations of John Con-
way’s New Solitaire Game ‘Life’,” Mathematical Games, 
Scientific American, 223, pp. 120–123, October 1970,  
http://ddi.cs.uni-potsdam.de/ HyFISCH/Produzieren/lis_projekt/  

proj_gamelife/ConwayScientificAmerican.htm.

[10] George, S., Evans, D., Marchette, S., “A Biological Program-
ming Model for Self-Healing,” First ACM Workshop on 
Survivable and Self-Regenerative Systems, 2003.

[11] Glass, R., “Practical Programmer: Sorting Out Software 
Complexity,” Communications of the ACM, Vol. �5, No. 11, 
pp 19–21, 2002.

[12] Goldberg, A., Robson, D., Smalltalk-80: The Language and 
Its Implementation, Addison-Wesley, 1983.

[13] Grassé, P., “La Reconstruction du nid et les Coordina-
tions Inter-Individuelles chez Bellicositermes Natalen-
sis et Cubitermes sp. La theorie de la Stigmergie: Essai 
d’interpretation du Comportement des Termites Con-
structeurs,” Insectes Sociaux, 6:�1–81, 1959.

[1�] Hovemeyer, D., Pugh, W., “Finding Bugs is Easy,” SIGPLAN 
Notices (Proceedings of Onward! at OOPSLA 200�), De-
cember 200�. 

[15] Kant, I., The Critique of Judgment, 1790; Prometheus 
Books, 2000.

[16] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, 
C., Loingtier, J., Irwin, J., “Aspect-Oriented Programming,” 
11th European Conference on Object-Oriented Program-
ming, LNCS 12�1, pp. 220–2�2, 1997.

[17] Knight, J., Leveson, N., “An Experimental Evaluation of 
the Assumption of Independence in Multi-Version Pro-
gramming,” IEEE Transactions on Software Engineering, 
Vol. SE-12, No. 1, pp. 96–109, January 1986.

[18] Knight, T., Sussman, G., “Cellular Gate Technology,” Pro-
ceedings of UMC98, First International Conference on 
Unconventional Models of Computation, Auckland, NZ, 
January 1998.

[19] Krakauer, D., “Robustness in Biological Systems: A Provi-
sional Taxonomy,” Santa Fe Institute Working Paper #03-
02-008, 2003.

[20] Lanier, J., “Why Gordian Software has Convinced Me to 
Believe in the Reality of Cats and Apples,” in Edge 128, 
November 20, 2003, http://www.edge.org/documents/archive/ 

edge128.html.

[21] Maturana, H., “Autopoiesis,” in Autopoiesis: A Theory of 
Living Organization, Milan Zeleny (ed.), pp. 21–30, New 
York, North Holland, 1981.

[22] Maturana, H., Varela, F., “Autopoiesis: The Organization 

of the Living,” in Autopoiesis and Cognition: The Realiza-
tion of the Living, (1980), pp. 59–138, 1973. 

[23] McCarthy, J., Abrahams, P., Edwards, D., Hart, T., Levin, 
M., LISP 1.5 Programmer’s Manual, MIT Press, Cambridge, 
Massachusetts, 1962.

[2�] McCarthy, J., “History of Programming Languages,” The 
First ACM SIGPLAN Conference on the History of Pro-
gramming Languages, pp. 217–223, Los Angeles, 1978.

[25] Minsky, M., “Why Programming Is a Good Medium for 
Expressing Poorly-Understood and Sloppily Formulated 
Ideas,” a slight revision of a chapter in Design and Plan-
ning II—Computers in Design and Communication, Mar-
tin Krampen and Peter Seitz (Eds.), Visual Committee 
Books, Hastings House Publishers, New York, 1967,  
http://rafael_es_son.typepad.com/ metainformaciones/files/ 

minsky_essay_1967.pdf.

[26] Nardi, B., A Small Matter of Programming: Perspectives on 
End User Computing, MIT Press, 1993.

[27] Patterson, D., Brown, A., Broadwell, P., Candea, G., Chen, 
M., Cutler, J., Enriquez, P., Fox, A., Kiciman, E., Merzbach-
er, M., Oppenheimer, D., Sastry, N., Tetzlaff, W., Traupman, 
J., Treuhaft, N., “Recovery-Oriented Computing (ROC): 
Motivation, Definition, Techniques, and Case Studies,” UC 
Berkeley Computer Science Technical Report UCB CSD-02-
1175, March 15, 2002.

[28] A good summary of the Pentium math bug by Ivars Peter-
son can be found at http://www.maa.org/mathland/ 

mathland_5_12.html.

[29] Prigogine, I., Stengers, I., Order Out of Chaos: Man’s Dia-
logue with Nature, Bantam Books, New York, 198�.

[30] Randell, D., “Facing Up to Faults,” Department of Comput-
ing Science, University of Newcastle upon Tyne, January 
2000.

[31] Rinard, M., “Automatic Detection and Repair of Errors 
in Data Structures,” Companion to the 18th Annual ACM 
SIGPLAN Conference on Object-Oriented Programming 
Systems, Languages and Applications, Anaheim, CA, pp. 
221–239, 2003.

[32] Rinard, M., Cadar, C., Nguyen, H., “Exploring the Accept-
ability Envelope,” Companion to the 20th Annual ACM 
SIGPLAN Conference on Object-Oriented Programming, 
Systems, Languages, and Applications, San Diego, Califor-
nia, 2005.

[33] des Rivières J., Smith, B., “The Implementation of Proce-
durally Reflective Languages,” Proceedings of the ACM 
Symposium on LISP and Functional Programming, 198�.

[3�] Smith, B., On the Origin of Objects, A Bradford Book, The 
MIT Press, Cambridge, 1996.

[35] The Software Engineering Institute (SEI), “The Software 
Challenge of the Future: Ultra-Large-Scale Systems,” June 
2006, http://www.sei.cmu.edu/uls/.

[36] Steele Jr, G., Gabriel, R., “The Evolution of Lisp,” ACM 
Conference on the History of Programming Languages, II, 



published in ACM SIGPLAN Notices, Vol. 28, No. 3, March 
1993,http://dreamsongs.com/NewFiles/HOPL2-Uncut.pdf.

[37] Ungar, D., Smith, R., “Self: The Power of Simplicity,” Pro-
ceedings of the ACM Conference on Object-Oriented 
Programming, Systems, Languages and Applications, Or-
lando, Florida, 1987.

[38] Weiss, R., Knight, T., Sussman, G., “Genetic Process Engi-
neering,” in Cellular Computing, Martyn Amos (Ed.), pp. 
�3–73, Oxford University Press, 200�.

[39] Weiss, R., Knight, T., Sussman, G., “Cellular Computation 
and Communication Using Engineered Genetic Regulato-
ry Networks,” in Cellular Computing, Martyn Amos (Ed.), 
pp. 120–1�7, Oxford University Press, 200�.

[�0]  Weizenbaum, J., Computer Power and Human Reason: 
From Judgement to Calculation, W.H. Freeman & Compa-
ny, 1976.

Principles for Conscientious Software

Continuous (re)design happens over the full lifecycle of 
a piece of software.
Soft / dynamic architectures are needed to allow 
adding / changing code at runtime.
Software is in(ter)dependent: It must maintain its own 
integrity while it depends on services provided by other 
software.
Continual customization and adaptation is required 
if software is to meet the user’s needs in the local 
computing environment.
Make software self-contained: Everything necessary 
to build the software should be packaged with it, e.g. 
source code, tests, etc.
Software should actively participate in its own 
development, customization, and operation.
Failure is common.
Seek out and repair errors, or tolerate them gracefully.
Write tests and continually run them.
Use feedback.
Make things visible.
Software needs to be aware of itself and of other 
software it connects with.
Software consists of an allopoietic part and an 
autopoietic part.
Autopoiesis involves flow, gradients and layers.
Software needs to support diversity and redundancy.
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