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Abstract

This article analyses the work of Robert Rosen on an interpretation of metabolic networks that he called ðM;RÞ systems. His
main contribution was an attempt to prove that metabolic closure (or metabolic circularity) could be explained in purely formal
terms, but his work remains very obscure and we try to clarify his line of thought. In particular, we clarify the algebraic formulation
of ðM;RÞ systems in terms of mappings and sets of mappings, which is grounded in the metaphor of metabolism as a mathematical
mapping. We define Rosen’s central result as the mathematical expression in which metabolism appears as a mapping f that is the
solution to a fixed-point functional equation. Crucially, our analysis reveals the nature of the mapping, and shows that to have a
solution the set of admissible functions representing a metabolism must be drastically smaller than Rosen’s own analysis suggested
that it needed to be. For the first time, we provide a mathematical example of an ðM;RÞ system with organizational invariance, and
we analyse a minimal (three-step) autocatalytic set in the context of ðM;RÞ systems. In addition, by extending Rosen’s construction,
we show how one might generate self-referential objects f with the remarkable property f ðf Þ ¼ f , where f acts in turn as function,
argument and result. We conclude that Rosen’s insight, although not yet in an easily workable form, represents a valuable tool for
understanding metabolic networks.
r 2005 Elsevier Ltd. All rights reserved.
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1. Background

The massive, extended and often cryptic scientific
output of Robert Rosen poses a scientific dilemma.
While the great majority of biologists are unaware of his
work, a few regard it as being of the kind to be expected
once in a thousand years,1 and a few others are trying to
bring understanding of it to the point where its

importance for biology can be objectively assessed.2

An essential step in gauging its relevance is to under-
stand the core of Rosen’s thinking, which concerns a
formal theory of metabolic networks and the notion of
circularity or metabolic closure. For this reason we shall
concentrate here on his investigations of metabolic
systems and his definition of living systems; we shall not
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1A measure of this admiration can be seen in a recent paper with the
unexpected title of ‘‘Robert Rosen (1934–1998): a snapshot of
biology’s Newton’’ (Mikulecky, 2001). More realistically, the mathe-

(footnote continued)
matician John Casti recently said ‘‘The work of Rosen will keep
scholars busy for decades’’ (Casti, 2002).

2Rosen summarized his work in his opaque but important book Life
Itself: a Comprehensive Inquiry into the Nature, Origin and Fabrication
of Life (Rosen, 1991).
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touch on some other aspects of his work, such as his
epistemological research and his definition of complex
systems.

The central motto of Rosen’s research programme
(‘‘Organisms are closed to efficient causes’’) (Rosen,
1991) can be traced to an insight on the nature of
cellular metabolic networks (Rosen, 1958a,b, 1959); this
consists of a semi-formal method to explain how the
network of biochemical processes that constitutes
metabolism bootstraps itself without the help of external
agents generated outside the network, thus keeping cell
organization invariant in spite of continuous structural
change. He based a large part of the development of his
ideas on a branch of mathematics known as Category
Theory, and in mathematical terms his major insight
appears as a peculiar result about sets and admissible
transformations between them. Rosen appears to have
been aware of the rather peculiar nature of this result
and he gave several slightly different proofs with slightly
different interpretations (Rosen, 1958b, 1959, 1966,
1967, 1971, 1972, 1991, 2000); maddeningly, however,
he never provided any concrete examples, not even
mathematical ones, let alone ones that would be
intelligible to biologists. This result, here called Rosen’s
Central Result, is, without doubt, the core of his view of
theoretical biology, as well as the unavoidable starting
point for analysing his views on complexity.

The central result has been used recently in attempts
to expand his ideas to other areas, such as bioinfor-
matics (Wolkenhauer, 2001, 2002), control theory
(Casti, 2002), and even sociology (Nomura, 2002).
Although these recent publications seem to imply
increasing acceptance of Rosen’s ideas, we must point
out that recently his entire approach has been called into
question and even declared ‘‘false’’ (Landauer and
Bellman, 2002). Because of this, and because it is such
a special result, with important implications for
theoretical biology and computer science, we have
found it necessary to revisit and clarify it, trying to give
some examples and connect it to other theoretical ideas.
In doing so, we have changed somewhat the nomen-
clature and notations that he used. Renaming estab-
lished terms is not, of course, something to be done
lightly, but we believe it to be unavoidable in this
instance because Rosen used a number of words, such as
replication, in ways that can only confuse readers
familiar with their usual meanings in biology. We shall,
however, take care to be explicit whenever we alter one
of his terms, and will note why we regard it as
unsatisfactory.

The structure of this paper is as follows: in Sections 2
and 3 we introduce ðM;RÞ systems, in Section 4 we
enunciate the central result, and in Section 5 we set out
its mathematical context. In Section 6 we show two
examples of ðM ;RÞ systems, and in Section 7 we
introduce what we consider a possible generalization

of Rosen’s result about infinite regress and closure.
Finally, in Section 8, we discuss the many implications
of Rosen’s ideas for the study of metabolic networks.
Although category theory was central to Rosen’s
thinking, we do not use it here because it is this that
gives much of his writing its abstract character, making
it opaque to most biologists. Nonetheless, a full under-
standing of his work requires some appreciation of what
categories are and how they are relevant to his analysis
of metabolism (Pierce, 1991; Joslyn, 1993). Some of
these ideas have been briefly addressed in a previous
article (Letelier et al., 2004).

2. Introduction to ðM ;RÞ systems

Rosen’s basic ideas appeared initially in three papers
(Rosen, 1958a,b, 1959), where he introduced a formal
model of metabolic networks that he called ðM;RÞ
systems. These systems owe many of their properties to
graph theory and the 1950s-style black-box analysis of
electronic circuits, but (more crucially) to an interpreta-
tion that identified an enzyme with a mathematical
mapping. Grasping the details of the formal structure of
ðM ;RÞ systems is an essential first step in understanding
Rosen’s ideas on circularity. In our description we have
found it necessary to change the original nomenclature
as detailed in Table 1.

2.1. The M components

The theoretical model that Rosen applied to metabo-
lism and metabolic networks starts with a simple
formalization of biochemical reactions. According to
him every metabolic reaction, such as the one catalysed
by the enzyme glucokinase:

GlucoseþATP%!Glucose 6-phosphateþADP

can be formalized as

a1 þ a2%!b1 þ b2. (1)

This process can be viewed as the action of an operator
M that transforms molecules a1 and a2 into b1 and b2:

a1 þ a2 %!
M

b1 þ b2, (2)
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Table 1
Comparison of Rosen’s terminology with that used in this paper

Rosen’s terminology Terminology used in this paper

Component Catalyst (or enzyme)
Repair Replacement
Replication Organizational invariance
Replicative ðM;RÞ system Organizationally invariant ðM;RÞ system
Transformable molecule Metabolite
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here M behaves like an enzyme, or, more generally, a
catalyst, but Rosen called these operators components,
whereas for a1, a2, b1 and b2, which correspond to
metabolites in normal biochemical usage, he used the
term transformable materials. Thus, a component trans-
forms input materials into output materials according
to:

Input materials%!
M

Output materials. (3)

The catalyst M, therefore, acts formally as a mathema-
tical mapping, because it transforms some variables
(from the admissible set of input materials) into some
variables belonging to the set of admissible output
materials. As enzymes are not totally specific for the
types of molecules that they transform, Rosen inter-
preted M as a mapping between two sets defined by
Cartesian products:

M : A1 & A2%!B1 & B2,

ða1; a2Þ7!Mðða1; a2ÞÞ ¼ ðb1; b2Þ. ð4Þ

From this point of view the catalyst M can accept for a
given input not only a1 2 A1 but also molecules
a01; a

00
1 ; a

000
1 ; . . . ;2 A1 that are similar to but not identical

to a1. With this model the action of an enzyme can thus
be framed in the language of mappings, as M acts as
a particular mapping between sets ðA1 & A2Þ and
ðB1 & B2Þ.

Although Rosen did not mention it, this over-reach-
ing formalization is extreme. An enzyme can be
presented in vitro with artificially produced molecules
that are accepted and processed as substrates because of
their structural resemblance to the natural substrate,
and it then appears that the set A1 is ‘‘large’’. However,
matters are radically different in vivo because in the
organism only one (or a few) acceptable substrates exist.
For example, in some bacteria the enzyme glucokinase
mentioned above will not accept any natural sugar
substrate other than glucose. Higher organisms typically
use somewhat less specific enzymes known as hexoki-
nases to catalyse the same reaction, but even these
accept only a small range of sugar substrates, typically
including mannose and fructose but not galactose
(Cárdenas et al., 1998).

Using this mathematical model for a single metabolic
reaction Rosen generalized it to take account of the
complete network of biochemical reactions that con-
stitute a living metabolism. Consider the following
(simplified) metabolic network composed of three
elementary reactions, which correspond to the very
simple metabolic network shown in Fig. 1:

M1 : A1 & A2%!B1 & B2,

ða1; a2Þ7!M1ðða1; a2ÞÞ ¼ ðb1; b2Þ, ð5Þ

M2 : A1 & B2%!B3 & B4,

ða1; b2Þ7!M2ðða1; b2ÞÞ ¼ ðb3; b4Þ, ð6Þ

M3 : A3 & B3%!B5 & B6,

ða3; b3Þ7!M3ðða3; b3ÞÞ ¼ ðb5; b6Þ. ð7Þ

Rosen interpreted the simultaneous action of M1, M2

and M3 as the action of a generalized catalyst Mmet

defined between the following sets (Fig. 2):3

Mmet : A1 & A2 & A3%!B1 & B2 & B3 & B4 & B5 & B6,

ða1; a2; a3Þ7!Mmetðða1; a2; a3ÞÞ ¼ ðb1; b2; b3; b4; b5; b6Þ. ð8Þ

If we apply the same procedure for the complete
metabolism of a real organism, composed of thousands
of steps, we can interpret the overall metabolismMmet as
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A3

M1

M2

M3

B2 B1

B3
B4

B6 B5

A1 A2

Fig. 1. An initial view of a metabolic network as a collection of
catalysts (components in Rosen’s terminology: see Table 1)
ðM1;M2;M3Þ that transform metabolites from specific sets
ðA1;A2;A3; . . .Þ into specific sets ðB1;B2;B3; . . .Þ.

3Other approaches are possible, such as:

Mmet : ðA1 & A2Þ & ðA1 & B2Þ & ðA3 & B3Þ
%!ðB1 & B2Þ & ðB3 & B4Þ & ðB5 & B6Þ

This is more than a notational difference, as the application of Rosen’s
ideas to real metabolic networks would certainly demand changes in
his initial formulation.
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the following mapping:

Mmet : A ¼ ðA1 & A2 & A3 & ' ' ' & ApÞ
%!B ¼ ðB1 & B2 & ' ' ' & BqÞ,

a ¼ ða1; a2; a3; . . . ; apÞ
7!MmetðaÞ ¼ ðb1; b2; . . . ; bqÞ ¼ b. ð9Þ

In a very compact notation, therefore, we can write
the complete metabolism as the (huge) mapping Mmet

between the (huge) sets A and B.4

Mmet : A%!B,

a 7%!MmetðaÞ ¼ b, ð10Þ

where Mmet represents the action of the overall
metabolism and can be interpreted as a type of
generalized enzyme that transforms one instance of
input molecules ða1; a2; a3; . . . ; apÞ 2 A into an instance
of output molecules ðb1; b2; . . . ; bqÞ 2 B. As many
metabolisms are theoretically possible between sets A
and B we define M conceptually as the set of all possible
metabolisms between A and B.

Does the set M have a structure? After all, a
metabolic network is much more than just a random
collection of transformations between molecules. As we
will see, this is a crucial point that was never clarified by
Rosen. In his original arguments he assumed that

M ¼ MapðA;BÞ ¼ set of all mappings between

sets A and B.

We shall see that this identification is too general, and
thatMmust be a proper subset ofMapðA;BÞ. Up to this
point Rosen’s contribution has been to use the language
of mappings to interpret the overall metabolism in the

context of graph theory, with the added complication of
considering the sets of intermediate metabolites. If this
had been his main contribution, it would have only
anticipated, without exploiting, some of the approaches
developed in metabolic control analysis (Hofmeyr and
Cornish-Bowden, 2000).

2.2. The R subsystems

Rosen’s crucial insight concerns the long-term stabi-
lity of a metabolic network. Because catalysts
M1;M2; . . . etc. represent physical objects (enzymes, in
the case of cellular metabolism) they must be subject to
wear and tear, i.e. they must inevitably become degraded
by a wide variety of processes. EveryMi has only a finite
lifespan before disappearing, and if the overall meta-
bolic network representing an autonomous cell must
continue operating in a steady state it must be replaced
as fast as it is degraded. A large part of enzyme
degradation in practice is specifically catalysed by
enzymes and is not simply due to protein lability.
However, although this is important it does not affect
the main points to be discussed; indeed, rather than
simplifying the problem of infinite regress that we shall
consider, it greatly complicates it. But what elements (or
reactions) allow such replacement? Rosen posited that
for every catalyst Mi there must exist a subsystem Ri,
made of subnetworks of biochemical reactions, that uses
intermediate molecules, from the set B, to replace Mi or,
in Rosen’s terminology, to ‘‘repair’’ it (Fig. 3).5

This insight is essential for understanding the biological
relevance of Rosen’s work. In contrast to a man-made
machine, for which worn-out components can be replaced
by an agency external to the machine itself, a living
organism is a self-made machine, and all of its catalysts
must be made and, when necessary, replaced within the
system by catalysts that are themselves products of the
system, are themselves degraded, and must also be
replaced, again by components within the system, that
are likewise degraded, and need to be replaced, and so on
indefinitely. In such a system the possibility of infinite
regress is obvious, and Rosen’s work can be interpreted as
a search for a way to escape this, or in other words a
search for closure.

Although a highly sophisticated machine may contain
gauges to warn its operator that certain parts are worn out
or faulty and need to be replaced, no machine provides
such information about all of its components, and even if
it did it would still need to rely on an external agency to
carry out the actual replacement. But a completely
autonomous living organism needs to encode all of the
information about the state of all of its catalysts, and,
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A3

Mmet

B6 B5 B4 B3 B2 B1

A1 A2

Fig. 2. The network of Fig. 1 viewed as the action of a single catalyst
ðMmetÞ. All the intermediate steps have disappeared, though the
intermediate metabolites (B2 and B3) have not.

4Here we are departing slightly from Rosen’s texts. In his papers he
viewed a as an input and b as an output. We view a as the collection of
left-hand sides of biochemical equations, and b as the collection of
right-hand sides.

5To maintain by replacement is the real concept behind the notion of
repair. The word repair was not a very happy choice, and in this paper
we use the term replacement.
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when necessary, make the necessary replacements itself.
According to Rosen, the only way this information can be
encoded is in the connectivity of the network itself, i.e. the
network must be constructed in such a way that all of its
connectivity is uniquely encoded: knowledge of the
products of all the reactions should allow the substrates
and catalysts to be deduced. Designing a machine to work
in this way is vastly more difficult than is recognized in
almost any current writing about the nature of life. A
recent article of Barbieri (2005), for example, which argues
that life is essentially ‘‘artifact-making’’, describes some of
the same characteristics of living systems that we mention
here, but does not address what we see as the fundamental
problem of organizational invariance.

Rosen’s insight is an attempt to understand how a
system must be organized if it is to continue in operation
indefinitely. The crux of the matter is thus to understand
how the Ri are replaced while avoiding infinite regress.
But, as we have seen, the same wear-and-tear argument
that was applied to Mi applies equally well to the Ri. It
is possible, of course, but not elegant or useful, to
invoke a second-level repair enzyme to replace each Ri.
But this ‘‘solution’’ just raises the new question of how
to replace the second-level repair enzymes, and is thus
no solution at all. Rosen’s main result was an insight

about the systemic nature (i.e. a property that depends
on the connectivity of the network) of this maintenance
or ‘‘replication’’ function.6 Thus, in some ðM;RÞ
systems, the total network regenerates all of the Ri:
these systems are the ðM ;RÞ systems with organizational
invariance (Rosen called these ‘‘replicative ðM ;RÞ
systems’’),7 and they constitute the model of living
systems for Rosen. Remarkably, he found a mathema-
tical expression of this interpretation, and this constitu-
tes his central result, which depends on the
mathematical properties of functions and sets8 (Fig. 4).

3. Algebraic representation of ðM ;RÞ systems

In the formalism of Section 2.1, the collective action
of the thousands of catalysts Mi is represented by a
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A3

M3

B3 B4

B6 B5

R3

M2 R2

M1 R1

B2 B1

A1 A2

Fig. 3. A small ðM;RÞ system with three enzymes (‘‘components’’)
ðM1;M2;M3Þ and three ‘‘repairers’’ ðR1;R2;R3Þ. Associated with each
Mi is a subsystem (a collection of processes) Ri that maintains by
replacement a functional amount of each Mi. Each subsystem is
specific to a particular enzyme. Rosen called this process repair, but the
term replacement indicates more clearly what is involved. For
simplicity, we treat enzyme degradation as an uncatalysed and
unavoidable process, though in real organisms much of it is catalysed.

M1

M3

B6 B5

R3

M2 R2

R1

Organizationally invariant (M,R) system

B3 B4

B2

A2A1A3

B1

Fig. 4. Logical structure of an organizationally invariant ðM;RÞ
system (‘‘replicative ðM;RÞ system’’). In this system the replacement of
each Ri is a systemic property that depends on the system considered as
a whole. The hatched arrows arriving at each Ri , and departing from
the system’s border, represent this dependence. The proof that this
dependence is possible constitutes Rosen’s central result.

6Replication was another unfortunate choice of term, evoking ideas
of biological reproduction whereas the essential notion is organiza-
tional invariance (i.e. the network maintains its connectivity) under
continuous structural change.

7ðM;RÞ systems without organizational invariance would be
transient entities.

8In his initial papers Rosen also obtained some generic systemic
laws, such as the necessary existence of at least one catalyst Mc that if
destroyed would imply the destruction of the complete network of
processes. These results are a direct application of the use of graph
theory to ðM;RÞ systems and are not central to the theory.
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single mapping Mmet. Following Rosen, we refer to
Mmet as f 2 M ( MapðA;BÞ.9 But how can the collec-
tive action of subsystems Ri be represented in the
context of mappings? The replacement mechanism is a
procedure, denoted by F, that, starting with b 2 B as
input, produces f according to:

FðbÞ ¼ f with the condition

b ¼ f ðaÞ ðfor some a 2 AÞ. ð11Þ

Because the net effect of F is to select from the relatively
large set M ( MapðA;BÞ the unique f that fulfills this
last equation, using b 2 B as an input, it is called a
selector. Thus, as f represents metabolism, F represents
replacement. As with metabolism, the selector F can
also be represented by a mapping between the sets of
metabolic configurations (B) and the set of possible
metabolisms ðMÞ. Again, Rosen assumed the most
general structure for the set of selectors S.

F 2 S ¼ MapðB;MÞ ¼ MapðB;MapðA;BÞÞ,
S ¼ set of selectors between B and M. ð12Þ

With these definitions it is possible to specify F as a
mapping with the following properties:

F : B%!MapðA;BÞ,
b 7%!FðbÞ ¼ f ðwith b ¼ f ðaÞ for some a 2 AÞ,
F 2 MapðB;MapðA;BÞÞ ¼ set of possible selectors. ð13Þ

Then an ðM;RÞ system has the following algebraic
structure based on two mappings ðf ;FÞ acting in
synergy:

A%!
f

B%!
F

MapðA;BÞ,
a 7%!f ðaÞ ¼ b 7%!FðbÞ ¼ f .

Now, in the full language of maps, we can rephrase
the closure result sought by Rosen. How can the selector
map F be produced by the network when the system is
capable of organizational invariance (a replicative
ðM;RÞ system in Rosen’s terminology), without imply-
ing infinite regress?

4. Summary of Rosen’s central result

Rosen’s solution to avoid infinite regress,10 was to
posit the possible existence of a formal entity b with the
property that bðf Þ ¼ F. On purely formal grounds,
therefore, b is a mapping between MapðA;BÞ (the set M
of possible metabolisms) and MapðB;MapðA;BÞÞ (the
set S of possible selectors). Then b acts as a procedure

that, given a metabolism f, produces the corresponding
selector F that selects metabolism f from M. Thus,
without any doubt, b is a rather subtle and difficult
entity, because for b to exist it is required that the
equation FðbÞ ¼ f , for F must have one and only one
solution, a very demanding constraint. Rosen was
unable to produce a clear-cut mathematical description
or an algorithm to calculate b; he only showed that its
existence was logically possible (see Rosen, 1959, 1972,
1991), and sometimes he recognized that its existence
was mathematically difficult (Rosen, 2000, pp. 261–265).
The beauty of the concept of b is that it is in some sense
‘‘equivalent’’ to an element b 2 B, in the sense that b
sends f to the unique F such that FðbÞ ¼ f . It is in this
sense that Rosen claims that his construction solves the
problem of infinite regress.

The operation of an organizationally invariant ðM;RÞ
system can, therefore, be viewed as three mappings
ðf ;F; bÞ acting in synergy:

A%!
f

B%!
F

MapðA;BÞ %!
b

MapðB;MapðA;BÞÞ,
f ðaÞ ¼ b,

FðbÞ ¼ f ,

bðf Þ ¼ F with b equivalent to b. ð14Þ

Up to this point we have introduced ðM ;RÞ systems
(with or without organizational invariance) as Rosen
did in his writings (specifically in Rosen, 1958b, 1959,
1972, 1991). In this brief presentation, as in all of
Rosen’s writings, the precise nature of b has been left
open. As b encapsulates the notion of metabolic closure,
we clarify the nature of b in the next section.

5. The nature of b and the conditions in which Rosen’s
central result is valid

Rosen unfortunately never defined the specific condi-
tions under which his central result is valid. Later
researchers have also left these conditions unexplained.
In this section we clarify some of these conditions as well
as the nature of b, which has also remained obscure. To
achieve this it is necessary to express Rosen’s central
result mathematically, and to state and clarify a
mathematical proposition involving evaluation maps.

5.1. Generic properties of evaluations

Notation. For any sets X and Y, we denote by MapðX ;Y Þ
the set of all possible mappings from X to Y and by
HðX ;Y Þ a given subset of MapðX ;Y Þ. For any x 2 X we
denote by Evx the mapping from HðX ;Y Þ to Y which
evaluates every mapping f 2 HðX ;Y Þ at x:

Evx : HðX ;Y Þ%!Y ,

f 7%!Evxðf Þ :¼f ðxÞ. ð15Þ
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9We adopt this change (f instead of Mmet) to follow Rosen’s writings
since 1959 as closely as possible. Without any doubt his aim in using f
to refer to metabolism was to emphasize that metabolism was a
mapping (i.e. a function).

10The clearest enunciation is found in Rosen (1972).
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Intuitively, if X and Y bear some extra structure, the
set HðX ;Y Þ could consist of all ‘‘structure-preserving’’
mappings from X to Y. For instance if X ¼ R2 and Y ¼
R then one choice for HðX ;Y Þ could be the set of all
differentiable mappings from X to Y; another choice
could be the set of polynomial mappings from X to Y.

Notice that as soon as we can find, for any pair of
distinct points x;x0 2 X , a function f 2 HðX ;Y Þ such
that f ðxÞaf ðx0Þ, the correspondence x7!Evx is one-to-
one. This allows us to identify the element x with the
mapping Evx, thus embedding the set X as a subset X̂ of
HðX ;Y Þ.

Rosen’s central result depends crucially on finding the
special circumstances under which the evaluation map-
pings Evx may be one-to-one.11 Evaluation mappings, in
the many different contexts where they arise, are not
normally one-to-one. For example, in the generic, non-
specific case where X and Y are just sets and HðX ;Y Þ is
the set MapðX ;Y Þ of all mappings from X to Y, we see
that for any given x in X there are many mappings f that
take a prescribed value y at x, unless X or Y are one-
point sets. On the other hand, if the set HðX ;Y Þ is
constrained to be a suitable proper subset of MapðX ;Y Þ
there can be one-to-one evaluation maps Evx at many
points x in X (see Fig. 5).

In the case where Evx happens to be one-to-one, it in
fact defines an embedding of the setHðX ;Y Þ into Y, and
so the following Remark holds.

Remark. If Evx : HðX ;Y Þ ! Y is invertible for some
x 2 X , then we have jHðX ;Y ÞjpjY j.12

A corollary is that for Evx to be one-to-one it is
necessary that HðX ;Y Þ be a proper subset of
MapðX ;Y Þ.

Conjecture. There are meaningful circumstances under
which Evb may be invertible, i.e. one-to-one (mathematical
version of Rosen’s Central Result).

Rosen’s insight was to realize that, although evalua-
tion mappings are not in general invertible (one-to-one),
it is possible to envisage situations where they are, at
least for some (generic) points x in X. In these
hypothetical situations (of which, unfortunately, he
never gave any examples) the assumption of invertibility
does not introduce any inconsistencies. Instead, the
invertibility of an evaluation map Evx suggests some
sort of implicit mathematical structure on X and Y that
is preserved by the mappings f in HðX ;Y Þ, and admits x
as some sort of ‘‘generator’’, so that every f in HðX ;Y Þ
is ‘‘betrayed’’ by its value f ðxÞ at x. This corresponds to

the idea that our mappings f are rather ‘‘rigid’’, as their
behaviour is completely determined by the value they
assign to the single point x (Fig. 5).

Thus, Rosen’s conjecture demands:

) Heavy restrictions on the type of allowed functions
between X and Y. If HðX ;Y Þ ¼ MapðX ;Y Þ, Rosen’s
conjecture is definitely false; it only holds under the
very restricted condition jHðX ;Y ÞjpjY j.

) The elements x 2 X , where evaluations are one-to-
one, must have special properties.

5.2. b in ðM ;RÞ systems with organizational invariance

Rosen applied the previous result about invertibility
to ðM ;RÞ systems with organizational invariance. His
first step was to consider the functional relations of
generic ðM;RÞ systems (i.e. ones that are not necessarily
organizationally invariant), which can be described by
the following set of relations between maps:13

A%!
f

B%!
F

HðA;BÞ.

To apply the conjecture about invertibility, let us
take X ¼ B and Y ¼ HðA;BÞ. The construction
Evx : HðX ;Y Þ%!Y is transformed to Evb : HðB;HðA;BÞÞ
%!HðA;BÞ.

This rather imposing formalism can be made a little
more accessible by noticing that:

HðA;BÞ represents the set M of possible metabolisms,

HðB;HðA;BÞÞ represents the set S of possible selectors.

Then, Evb is a mapping that evaluates all possible
selectors (i.e. all possible choices for F) at the element b,
and Evb 2 MapðS;MÞ

Evb : S%!M,

F7%!EvbðFÞ ¼ FðbÞ. ð16Þ
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Fig. 5. Rigidity implied by invertible evaluations. Let X ¼ Y ¼ ½0; 1+
and HðX ;Y Þ to be the infinite family of bell-shaped graphs ðy ¼
f aðxÞ ¼ expð%ððx% 0:5Þ=aÞ2ÞÞ sketched in the figure. Note that Evx is
one-to-one for almost every x in ½0; 1+ (for example at x ¼ 0:3). The
only exception is x ¼ 0:5 because all curves collapse at this point.

11It is clear that Rosen demanded, not the invertibility of Evx, but
that Evx should be one-to-one (injective). In fact to say ‘‘one-to-one’’ is
equivalent to saying that Evx is invertible from X to X̂ . We maintain
Rosen’s term invertibility in most of the text.

12jAj is the number of elements of the set A. 13This corresponds to the construction in Rosen (1972, p. 236).
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The embedding

X +
Ev

MapðHðX ;Y Þ;Y Þ

becomes

B+
Ev

MapðHðB;HðA;BÞÞ;HðA;BÞÞ

or, in a more biological version,

B+
Ev

MapðS;MÞ.

This apparently trivial result is heavy in consequences.
It states that metabolic configurations (represented by
b 2 B), produced by a given metabolism, are equivalent
(via the embedding construction) to Evb mappings. This
statement is true for all ðM;RÞ systems. But if at least
one Evb is invertible (Conjecture) it means that there
exists a mapping Ev%1

b 2 MapðM;SÞ such that

Ev%1
b ðf Þ ¼ F.

This mapping, which is none other than Rosen’s b, is
then given by (and may be identified with) an element
b 2 B. It follows that an organizationally invariant
ðM;RÞ system, represented by Rosen as

A%!
f

B%!
F

HðA;BÞ %!
b

HðB;HðA;BÞÞ

may be interpreted as two ðM ;RÞ systems acting in
parallel:

ðM ;RÞinternal : A%!
f

B%!
F

M,

ðM ;RÞexternal : B%!
F

M%!
b

S.

) In these two coupled ðM ;RÞ systems F is the
replacement function for one and the metabolic
function for the second.

) For this decomposition to hold, b must be the inverse
of some evaluation map Evb 2 MapðS;MÞ.

) Invertible evaluations exist if the set S is small
enough (hence M should also be small). To a first
approximation jBj ¼ jMj ¼ jSj.

) If b exists, since it must be the inverse of some
evaluation map Evb 2 MapðS;MÞ, for some b 2 B, it
may be identified with this b 2 B, i.e. with a metabolic
configuration.

) Rosen’s formulation, which sometimes appears
to indicate that M ¼ MapðA;BÞ and S ¼ MapðB;
MapðA;BÞÞ, is incorrect, because M and S are too
big.

Rosen represented all these relations by Fig. 6.

6. Examples of ðM ;RÞ systems

A problem that every student of Rosen’s works must
confront is the astonishing lack of examples of the

theoretical ideas in them. In this section, therefore, we
introduce two examples of ðM ;RÞ systems. One is an
arithmetical construction and the other uses a minimal,
and ideal, metabolic network made of three reactions.
Both examples serve to exemplify the notions of F and
b. Neither is entirely satisfying; the arithmetical example
is too remote from biological reality, and the metabolic
one does not satisfy all of the requirements for an
organizationally invariant system. Nonetheless, we
consider these examples useful as steps towards a better
understanding of Rosen’s ideas.

6.1. An arithmetical example of a ðM;RÞ system

Let A ¼ B ¼ Z12, the integers modulo 12 endowed
with the operations of addition and multiplication
modulo 12.14 Note that some non-zero elements may
have 0 as product (e.g. 3 ' 4 ¼ 0mod 12), while others,
called invertible elements, may be cancelled (e.g.
5 ' x ¼ 5 ' y ) x ¼ y).

We take M ¼ HðA;BÞ ¼ HðA;AÞ to consist only of
the mappings f from A to B that preserve addition
modulo 12, i.e. f ðxþ yÞ ¼ f ðxÞ þ f ðyÞmod 12. This
amounts to define M as M ¼ ff c j c 2 Ag, where
f cðxÞ ¼ c ' xmod 12. For example, the metabolism f 7
transforms metabolic state a ¼ 5 into state b ¼ 11, as
f 7ð5Þ ¼ 7 ' 5 ¼ 11mod 12. We remark that the set M is
naturally endowed with the operation of pointwise
addition:

f c þ f d : x 7! f cðxÞ þ f dðxÞ ¼ cxþ dx ¼ ðcþ dÞx ¼
f cþdðxÞ. Notice that f c þ f d is just f cþd .

Thus, using this simple algebraic framework, an
ðM ;RÞ system is represented by

A%!
f c

A%!
F

HðA;AÞ ¼ M.

ARTICLE IN PRESS

A B Φ

f

Fig. 6. This diagram represents Rosen’s explanation of the closure of
an ðM;RÞ system. The broken arrows indicate that a function (located
at the start of the arrow) uses a variable (at the destination) to produce
a result. Each solid arrow indicates a transformation. The interesting
aspect of this diagram is that every biological function (metabolism (f),
replacement ðFÞ or organizational invariance (the implied b which is
equivalent to some element b 2 B)) is entailed by another element in
the diagram. No outside causality is needed. This is the basic
bootstrapping property of a living system that justifies Rosen’s
statement that ‘‘Organisms are closed to efficient causes’’. A full
discussion is in Chapter 10 of Life Itself, but note that Diagram 10.5C
therein contains an error in defining the arrows.

14Z12:¼Z=12Z ¼ f0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11g and, for instance, 8þ
7 ¼ 15 ¼ 3mod12 and 7 ' 4 ¼ 28 ¼ ð2 ' 12þ 4Þ ¼ 4mod12.
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We now need to specify the set S ¼ HðA;MÞ where
the selectors F are to be chosen. Since we have addition
modulo 12 on A ¼ Z12, and an analogous addition
modulo 12 on M, we will ask that the mappings F in S
transform addition modulo 12 in A into addition
modulo 12 in M, according to

Fðcþ dÞ ¼ FðcÞ þ FðdÞ.

It follows that S consists of the elements Fk ðk 2 AÞ
given by15

Fkð1Þ ¼ f k,

FkðcÞ ¼ cFkð1Þ ¼ cf k ¼ f ck.

Thus, the basic ðM ;RÞ system (where f ¼ f c) can now
be written as

A%!
f c

A%!
Fk

M

with the following equations:

b ¼ f cðaÞ ðMetabolismÞ,
FkðbÞ ¼ f c ðReplacementÞ. ð17Þ

These translate to the following equations:

b ¼ f cðaÞ i.e. b ¼ camod 12,

f bk ¼ f c i.e. bk ¼ cmod12

which, as b ¼ ca, reduce to cak ¼ cmod12, which is
equivalent to ak ¼ 1mod 12 if c is invertible. Thus, the
equation Fkðf cðaÞÞ ¼ f c, for k, may have a unique
solution, several solutions or no solution at all,
depending on the invertibility of c (which defines f c)
and a. We illustrate these properties with some
examples:

Case 1: (a invertible, c non-invertible, two solutions).
Let us choose a ¼ 5, f ¼ f 2. Then b ¼ f 2ð5Þ ¼

2 ' 5 ¼ 10mod 12. Let us look for F ¼ Fk such that
Fkð10Þ ¼ f 2. This is equivalent to solving the equation
10k ¼ 2 in A, which has solutions k ¼ 5 and 11mod 12.
We see that in this case there are two mappings F,
namely F5 and F11, such that FðbÞ ¼ f .

Case 2: (a invertible, c non-invertible, three solutions).
Let us choose a ¼ 5, f ¼ f 3. Then b ¼ f 3ð5Þ ¼

3 ' 5 ¼ 15 ¼ 3mod 12. Let us look for F ¼ Fk such that
Fkð3Þ ¼ f 3. This is equivalent to solving the equation
3k ¼ 3 in A, which has solutions k ¼ 1; 5 and 9mod 12.
So in this case there are three mappings F, namely F1,
F5 and F9, such that FðbÞ ¼ f . Note that the difference
with the previous example arises from the fact that the

equation 3k ¼ 0 has three solutions (0, 4 and 8) while
2k ¼ 0 has only two (0 and 6).

Case 3: (a non-invertible, c invertible, no solution).
Let us choose a ¼ 4, f ¼ f 5. Then b ¼ f 5ð4Þ ¼

5 ' 4 ¼ 20 ¼ 8mod 12. Let us look for F ¼ Fk such that
Fkð8Þ ¼ f 5. This is equivalent to the equation 8k ¼ 5,
which has no solution in A.

Case 4: (a invertible, c invertible, one solution).
Let us choose a ¼ 5, f ¼ f 7. Then b ¼ f 7ð5Þ ¼

7 ' 5 ¼ 35 ¼ 11mod 12. We need to find Fk such that
Fkð11Þ ¼ f 7. But this is equivalent to solving the
equation 11k ¼ 7 in A, which has the unique solution
k ¼ 5mod 12. We have therefore, only one F, namely F5

such that FðbÞ ¼ f . We now see that, for b ¼ f cðaÞ ¼ 11,
which forces a and c to be invertible, we can find a
unique F such that FðbÞ ¼ f c, namely F ¼ Fk where k is
the only solution of the equation 11k ¼ c in A, i.e.
k ¼ 11c. So for this particular choice of b the invert-
ibility of the evaluation at b is fulfilled, i.e. the
core of Rosen’s central result is satisfied. Following
Rosen’s terminology, we have then bðf cÞ ¼ F11c, for all
f c 2 M.

This example suggests that, in order to have an
organizationally invariant ðM ;RÞ system it is necessary
to restrict both the elements b and the type of allowed
mappings f (metabolisms) and F (selectors). The
example also disposes of the suggestion by Landauer
and Bellman (2002) that the invertibility required by
Rosen is not possible, even in a formal sense.

6.2. A metabolic example of an ðM ;RÞ system

An example with a more biological flavour, built on
one suggested by Morán et al. (1996), can be constructed
from simplified rules representing idealized metabo-
lisms. Consider the following three reactions, without
specifying the nature of the catalysts M1, M2, and M3,
which represent a minimal metabolism:

sþ t%!
M1

st,

sþ u%!
M2

su,

stþ u%!
M3

stu.

These three equations specify a particular instance of
a metabolism M between the sets A ¼ fag ¼
fðs; tÞ; ðs; uÞ; ðst; uÞg and B ¼ fbg ¼ fðst; su; stuÞg. Here the
set M is simply one transformation f such that
f ððs; tÞ; ðs; uÞ; ðst; uÞÞ ¼ ðst; su; stuÞ, i.e. f ðaÞ ¼ b.

To specify the corresponding R part, the subsystem of
metabolic reactions producing each Ri must be specified.
In this simplified network this specification is simply to
identify one of the outputs fst; su; stug with one of theMi

(thus we are specifying the production mechanism by
which a given Ri is continuously generated). A great
number of assignments are possible, in total 33, but
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15Note that in this example sets M and S contain the same number
of elements (12) and this number is not bigger than jAj ¼ 12. We claim
that this property is a general characteristic of ðM;RÞ systems with
organizational invariance.

J.-C. Letelier et al. / Journal of Theoretical Biology 238 (2006) 949–961 957



this number16 is decreased substantially by excluding
‘‘self-catalytic’’ assignments such as M1 ¼ st, or
M3 ¼ stu, in which the product of a reaction catalyses
the same reactions that produce it. Although the point is
arguable, and others may arrive at a different conclu-
sion, we think that autocatalysis of this kind should be
avoided in the theory of ðM ;RÞ systems as we are
seeking systems in which the circularity is a property of
the global connectivity in the entire network and not a
property of a single reaction. This restriction requires,

for example, the only valid assignment for stþ u%!
M3

stu
to be M3 ¼ su (as su is neither a substrate nor a product
of reaction 3). This kind of argument decreases the
initial 27 possibilities to the following four valid
assignments for F:

F1 : ðM1;M2;M3Þ%!ðstu; stu; suÞ,
F2 : ðM1;M2;M3Þ%!ðstu; st; suÞ,
F3 : ðM1;M2;M3Þ%!ðsu; stu; suÞ,
F4 : ðM1;M2;M3Þ%!ðsu; st; suÞ.

Each of these selectors generates a different ðM ;RÞ
system, where the M part is similar:

ðM ;R1Þ ¼

sþ t%!
stu

st

sþ u%!
stu

su

stþ u%!
su

stu

ðM ;R2Þ ¼

sþ t%!
stu

st

sþ u%!
st

su

stþ u%!
su

stu

ðM ;R3Þ ¼

sþ t%!
su

st

sþ u%!
stu

su

stþ u%!
su

stu

ðM ;R4Þ ¼

sþ t%!
su

st

sþ u%!
st

su

stþ u%!
su

stu:

Among these F4 is special, as the third reaction of
ðM;R4Þ ðstþ u%!

su
stuÞ does not participate in the

network because stu is neither the substrate nor the
catalyst of another reaction in this small network. We
therefore discard F4. Thus, from the 27 choices for F
that are theoretically compatible with this simple
metabolism f we have discarded 24, leaving only three
as valid assignments, and so the set of selectors is
reduced to S ¼ fF1;F2;F3g.

The procedure outlined here, starting with the
information provided by f and serving to define the set
of possible selectors F is an embodiment of the function
b, which turns out here to be a ‘‘multivalued function’’:

bðf Þ ¼ fF1;F2;F3g.

The fact that bðf Þ is not single-valued (as any honest
function should be) shows that the condition of
invertibility, which is the defining property of ðM;RÞ
systems with organizational invariance, fails for this
simple metabolic network. Thus, although this meta-
bolic network is an ðM ;RÞ system, and also an
autocatalytic network (Kauffman, 1993), it cannot be
construed as an organizationally invariant ðM ;RÞ
system because the rule for assigning F starting from f
gives more than one result. This example is also
interesting as it shows that an autocatalytic set (such
as the one discussed in this section) is not necessarily
an ðM ;RÞ system with organizational invariance. The
two ideas, although related, are different in a funda-
mental way.

7. Infinite regress, self-reference and endomorphisms

As we have stated, Rosen’s central result was the
escape route he devised to avoid the infinite chain of
repairers of repairers of repairers that is implied by the
core mechanism of ðM ;RÞ systems. Surprisingly, the
three-step chain of mappings and sets that constitutes
the framework of the central result suggests a construc-
tion that generates mathematical objects that are
solutions to the puzzling-looking equation f ðf Þ ¼ f .

As previously shown, the algebraic construction of an
organizationally invariant ðM ;RÞ system is given by

A%!
f

B%!
F

HðA;BÞ %!
b

HðB;HðA;BÞÞ

with the following crucial ingredients:

f ðaÞ ¼ b with f 2 HðA;BÞ ¼ C0,

FðbÞ ¼ f with F 2 HðB;HðA;BÞÞ ¼ C1,

bðf Þ ¼ F with b 2 HðHðA;BÞÞ;HðB;HðA;BÞÞ ¼ C2,

b being the inverse of the (putatively invertible)
‘‘evaluation at b’’ mapping Evb.

This construction has two peculiarities: f plays, in the
different steps, the roles of function, variable and result;
the sets Ci are built according to a recursive rule, namely
Cn ¼ HðCn%2;Cn%1Þ. If we intend to set up an infinite
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16This may not appear so huge, but bear in mind that the model,
with just three steps, is very small. A biologically more realistic
example with, say, 3000 steps, would have 30003000 possible assign-
ments, a truly gigantic number (much bigger than 1010 000).
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extension of this chain, notation must be consolidated as
C0 ¼ A, C1 ¼ B;C2 ¼ HðC0;C1Þ, and in general

Cn ¼ HðCn%2;Cn%1Þ.

With respect to the mappings involved, we define
F0 ¼ f ;F1 ¼ F;F2 ¼ b. For the transformed elements
we define c0 ¼ a, c1 ¼ b, c2 ¼ f .

Thus, the three building relations of an ðM;RÞ system
become

c1 ¼ F0ðc0Þ ðequivalent to f ðaÞ ¼ bÞ,
c2 ¼ F1ðc1Þ ¼ F0 ðequivalent to FðbÞ ¼ f Þ,
c3 ¼ F2ðc2Þ ¼ F1 ðequivalent to bðf Þ ¼ FÞ.

Under mild assumptions on the sets HðCn%2;Cn%1Þ of
structure-preserving mappings from Cn%2 to Cn%1, we
may extend these recurrence relations as

cnþ1 ¼ FnðcnÞ ¼ Fn%1; so that FnðFn%2Þ ¼ Fn%1.

Thus, a natural extension of the three steps of Rosen’s
central result is

C0 %!
F0

C1 %!
F1

C2 %!
F2 ' ' 'Cn %!

Fn
Cnþ1 ¼ HðCn%1;CnÞ,

co 7%!c1 7%!c2 7%!' ' ' cn 7%!cnþ1 ¼ FnðcnÞ ¼ Fn%1,

where F2 is no longer assumed to be the inverse of the
‘‘evaluation at c1’’ map Evb.

If we assume that these sequences converge to limits
F1 and C1, which is indeed always the case, at least
formally (Soto-Andrade and Varela, 1984), then passing
to the limit in the above equations, we have that

Cn ¼ HðCn%2;Cn%1Þ %!
n!1

C1 ¼ HðC1;C1Þ,

Fn%1 ¼ FnðFn%2Þ %!
n!1

F1ðF1Þ ¼ F1.

These two limits exhibit two fundamental properties:

) C1 ¼ HðC1;C1Þ, which means that C1 is a
reflexive domain, a structured set that is equal to
the set of its endomorphisms;

) F1ðF1Þ ¼ F1 and so F1 is a self-referential object,
i.e. a solution to f ðf Þ ¼ f .

Thus, Rosen’s basic construction behind his central
result could be extended to an infinite chain to define
limiting objects with interesting properties for the study
of circularity. Surprisingly, it seems that Rosen, starting
from a biological insight, was the first to notice how to
define this type of mathematical object. A question not
addressed here is to find the relation between F1 and
Rosen’s b (the inverse to the evaluation at b map Evb),
as our infinite chain can be constructed without any
reference to the possibility or otherwise of inverting the
Evci maps (unpublished work).

8. Discussion

As stated in the introduction, Rosen’s work is often
cryptic and unknown, and the main objective of this
paper has been to clarify some central aspects of his
ideas. Without such clarification his work would suffer
40 more years of obscurity. We hope that the clarifica-
tion achieved here will encourage other researchers to
read his publications critically and to apply them to
current problems in metabolic analysis and the origin of
living systems.

Apart from clarifying Rosen’s theory, in itself a major
task, our main theoretical contribution has been to show
that the central result holds when the sets M and S are
restricted. This is an important result, as it shows that,
as well as the purely logical constraints hinted at by
Rosen, it is necessary to add to the model of ðM;RÞ
systems ad hoc restrictions on the types of metabolisms
and selectors that are allowed. The generic statement
A%!

f
B, with f 2 MapðA;BÞ is simply too general.

Metabolism should be more complex than a single
arrow connecting two sets. A similar argument applies
of course to F 2 MapðB;MapðA;BÞÞ. We have discov-
ered that jBj ¼ jMj ¼ jSj; thus the amount of selectors
ðjSjÞ must be of the order of the elements of molecules
in the metabolism ðjBjÞ. These restrictions may take
many forms, from forbidding all autocatalytic reactions,
to the obvious necessity that in every real biochemical
reaction the law of conservation of mass must hold.

The difficulty for understanding Rosen’s ideas arises
from several causes. First, his ideas may appear on first
reading to be little more than an application of graph
theory to metabolic networks. This misidentification
may then wrongly suggest that ðM ;RÞ systems are just a
1950s version of current topics in metabolic analysis
(Hofmeyr and Cornish-Bowden, 2000). Any such
interpretation misses the essential fact that ðM;RÞ
systems embody a unique attempt to prove that
metabolic networks, which constitute the foundation
of living systems, must satisfy certain logical regularities
that go beyond stoichiometric or thermodynamic con-
straints. These logical regularities arise from the circular
nature of biological organization, which can be sum-
marized by saying that the three-step chain of mappings
and sets that constitutes the framework of the central
result suggests a construction that generates mathema-
tical objects that are solutions to the puzzling-looking
equation f ðf Þ ¼ f .

Second, Rosen’s main idea is out of the mainstream of
current theoretical models, as it is an algebraic theory
totally uncoupled from the usual language of differential
equations. His central result refers to something most
biologists will find extremely esoteric: an attempt to
prove (from purely logical grounds) the circularity or
closure of metabolic networks. Furthermore, the math-
ematical concept used to introduce this notion, the
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invertibility of evaluation mappings, is unusual enough
to make it very difficult to explain the context of the
result even to mathematicians. Rosen’s use of category
theory erects a further barrier to comprehension for
many readers.

Third, Rosen, for reasons that are difficult to under-
stand, never specified the mathematical context where
his insight could hold true, and never gave an example,
either mathematical or biological. The very few people
who have tried to follow his scientific path have quoted
his conclusions, but have rarely explained them and
have almost never provided examples.

As may be surmised, we have adopted the point of
view that Rosen had a powerful insight on the nature of
metabolic networks and the necessary (but otherwise
ignored) requirement of circularity. Our analysis differs
radically from a recent analysis of Rosen’s ideas which
states that ‘‘unfortunately, the mathematics [of his
analysis] is incorrect, and the assertions remain un-
proven (and some of them are simply false)’’ (Landauer
and Bellman, 2002). Landauer and Bellman are mis-
taken, and their conclusions are incorrect, as they are
based only on the summary of his ideas that Rosen
provided in Life Itself (Chapter 10) and not in the study
of the notion of invertibility of b and the essential papers
of 1958, 1959 and 1972. Our arithmetical ðM ;RÞ
example explicitly invalidates Landauer and Bellman’s
critique, as it has a mathematical structure with all the
properties that the central result demands. Our analysis
also differs from the extensive work of Casti (1988), in
which he analysed a subset of ðM ;RÞ systems with the
techniques of linear analysis (and systems identifica-
tion). In his analysis the true nature of b again appears
to be problematical, to the point that Casti has to
introduce its existence as a specific postulate (Casti,
1988, p. 116). Our analysis goes further than his, as we
tackled the nature of b and found a condition,
jBj ¼ jMj ¼ jSj, under which a non-trivial b can exist
for a generic ðM ;RÞ system, not just the special case of
linear behaviour.

However, Rosen’s insight is far from being workable
and ready to apply to current network analysis without
major efforts, both to clarify the circumstances in which
his central theorem applies, and to explain its meaning
in biological terms. An intriguing possibility could be to
combine his analysis with the notion of autopoietic
systems, another theory that posits metabolic closure as
the core of biological organization (Maturana and
Varela, 1980; Varela et al., 1974; Letelier et al., 2003).
This paper is intended to make a step in the proper
direction, as we have isolated from Rosen’s extensive
work what we think is its main point, and we have
advanced, albeit not to a stage that will satisfy everyone,
in clarifying concepts like, f : A ! B (metabolism
viewed as a mapping), F : B ! HðA;BÞ (‘‘repair’’, in
Rosen’s sense, as replacement) and b : HðA;BÞ !

HðB;HðA;BÞÞ (organizational invariance). We have
explained the mathematical insight behind the idea of
organizational invariance as embodied in the operator b,
a crucial concept that essentially acts as a generator of
the complete formal structure of an ðM ;RÞ system. In
effect it is possible to reformulate the definition of an
organizationally invariant ðM ;RÞ system as the kind of
system where for some b the equation FðbÞ ¼ f has
exactly one solution F, for any given f, giving rise to the
operator b, which sends any f to its associated F and
then implicitly giving the structure of the whole system.
The explicit construction of b was referred to by Rosen
as the realization problem (Rosen, 2000, p. 262) and he
conceded that it was difficult at the level of the theory,
or at the level of a physical model, to construct a
metabolic network that would embody the notion of b.

Although we have not as yet been as successful in
providing a satisfactory metabolic example of a minimal
ðM ;RÞ system with organizational invariance, we believe
that our analysis of why our ðM;RÞ system of three
reactions failed to be organizationally invariant is
nonetheless informative and illuminates Rosen’s main
ideas.

As must be clear by now, the core of Rosen’s view of
metabolic organization cannot be summarized or
explained in few pages. Furthermore, here we have not
touched on his contributions to the theory of complex
systems (Rosen, 1985, 1991). His framework is unique in
the sense that he approaches biological organization in
an intrinsically non-reductionist manner. In fact he
never talks about physical particles (genes, enzymes,
etc.) at all, but instead considers system-wide functions
(metabolism, organizational invariance). In this way his
approach is a step towards understanding components
in relation to whole systems (Cornish-Bowden et al.,
2004), moving away from the reductionist tradition of
treating whole systems as little more than the sum of
their parts.
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