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Summary. This is a comprehensive (and friendly) introduction to membrane com-
puting (MC), meant to offer both computer scientists and non-computer scientists
an up-to-date overview of the field. That is why the set of notions introduced here
is rather large, but the presentation is informal, without proofs and with rigorous
definitions given only for the basic types of P systems – symbol object P systems
with multiset rewriting rules, systems with symport/antiport rules, systems with
string objects, tissue-like P systems, and neural-like P systems. Besides a list of
(biologically inspired or mathematically motivated) ingredients/features which can
be used in systems of these types, we also mention a series of results, as well as a
series of research trends and topics.

1 (The Impossibility of) A Definition of Membrane
Computing

Membrane computing (MC) is an area of computer science aiming to abstract
computing ideas and models from the structure and the functioning of living
cells, as well as from the way the cells are organized in tissues or higher order
structures.

In short, MC deals with distributed and parallel computing models,
processing multisets of symbol objects in a localized manner (evolution rules
and evolving objects are encapsulated into compartments delimited by mem-
branes), with an essential role played by the communication between compart-
ments (and with the environment). Of course, this is just a rough description
of a membrane system – hereafter called P system – of the very basic type,
as many different classes of such devices exist.
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The essential ingredient of a P system is its membrane structure, which can
be a hierarchical arrangement of membranes, as in a cell (hence described by
a tree), or a net of membranes (placed in the nodes of a graph), as in a tissue
or a neural net. The intuition behind the notion of a membrane is a three-
dimensional vesicle from biology, but the concept itself is generalized/idealized
to interpreting a membrane as a separator of two regions (of Euclidean space),
a finite “inside” and an infinite “outside,” providing the possibility of selective
communication between the two regions.

The variety of suggestions from biology and the range of possibilities to
define the architecture and the functioning of a membrane-based multiset
processing device are practically endless, and already the literature of MC
contains a very large number of models. Thus, MC is not merely a theory
related to a specific model, it is a framework for devising compartmentalized
models. Because the domain is rather young (the trigger paper is [64], circu-
lated first on the Web, though related ideas were considered before, in various
contexts), and as a genuine feature, based on both the biological background
and the mathematical formalism used, not only are there already many types
of proposed P systems, but also the flexibility and the versatility of P systems
seem, in principle, to be unlimited.

This last observation, as well as the rapid development and enlargement
of the research in this area, make impossible a short and faithful presentation
of membrane computing.

However, there are series of notions, notations, and models which are al-
ready “standard,” which have stabilized and can be considered as basic ele-
ments of MC. This chapter is devoted to presenting mainly such notions and
models, together with their notations.

The presentation will be both historically and didactically organized, in-
troducing mainly notions first investigated in this area, or simple notions able
to quickly offer an idea of membrane computing to the reader not familiar
with the domain.

The reader has surely noticed that the discussion refers mainly to computer
science (goals), and much less to biology. MC was not initiated as an area
aiming to provide models to biology, models of the cell in particular. At this
moment, after considerable development at the theoretical level, the domain is
not yet fully prepared to offer such models to biology, though this has been an
important direction of the recent research, and considerable advances toward
such achievements have been reported. The present volume is a proof of this
assertion.

2 Membrane Computing as Part of Natural Computing

Before entering into more specific elements of MC, let us spend some time
with the relationship of this area with, let us say, the “local” terminology, the
“outside.” We have said above that MC is part of computer science. However,
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the genus proximus is natural computing, the general attempt to learn ideas,
models, and paradigms useful to computer science from the way nature – life,
especially – “computes” in various circumstances where substance and in-
formation processing can be interpreted as computation. Classic bio-inspired
branches of natural computing are genetic algorithms (more generally, evo-
lutionary computing) and neural computing. Both have long histories, which
can be traced to the unpublished works of Turing, many applications, and a
huge bibliography. Both are proof that “it is worth learning from biology,”
supporting the optimistic observation that during many billions of years na-
ture/life has adjusted certain tools and processes which, correctly abstracted
and implemented in computer science terms, can prove to be surprisingly
useful in many applications.

A more recent branch of natural computing, with an enthusiastic beginning
and as yet unconfirmed computational applicability (we do not discuss here
the by-products, such as the nanotechnology related developments), is DNA
computing, whose birth is related to the Adleman experiment [1] of solving a
(small) instance of the Hamiltonian path problem by handling DNA molecules
in a laboratory. According to Hartmanis [39, 40], this was a demo that we
can compute with biomolecules, a big event for computability. However, after
one decade of research, the domain is still preparing its tools for a possible
future practical application and looking for a new breakthrough idea, similar
to Adleman’s one from 1994.

Both evolutionary computing and DNA computing are inspired from and
related to DNA molecules. Neural computing considers the neurons as simple
finite automata linked in specific types of networks. Thus, these “neurons” are
not interpreted as cells, with an internal structure and life, but as “dots on a
grid”, with a simple input-output function. (The same observation holds true
for cellular automata, where again the “cells” are “dots on a grid,” interacting
only among themselves, in a rigid structure.) None of these domains considers
the cell itself as its main object of research; in particular, none of these domains
pays any attention to membranes and compartmentalization – and this is the
point where membrane computing enters the stage. Thus, MC can be seen
as an extension of DNA (or, more generally, molecular) computing, from the
“one processor” level to a distributed computing model.

3 Laudation to the Cell (and Its Membranes)

Life (as we know it on earth in the traditional meaning of the term, that
investigated by biology) is directly related to cells; everything alive consists
of cells or has to do in a direct way with cells. The cell is the smallest “thing”
unanimously considered alive. It is very small and very intricate in its struc-
ture and functioning, has elaborate internal activity and complex interaction
with the neighboring cells and with the environment. It is fragile and robust
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at the same time, with a way to organize (control) the biochemical (and in-
formational) processes developed during billions of years of evolution.

Cell means membranes. The cell itself is defined – separated from its en-
vironment – by a membrane, the external one. Inside the cell, several mem-
branes enclose “protected reactors,” compartments where specific biochemical
processes take place. In particular, a membrane encloses the nucleus (of eu-
karyotic cells), where the genetic material is placed. Through vesicles enclosed
by membranes one can transport packages of molecules from a part of the cell
(e.g., from the Golgi apparatus) to other parts of the cell in such a way that the
transported molecules are not “available” during their journey to neighboring
chemicals.

The membranes allow a selective passage of substances between the com-
partments delimited by them. This can be a simple selection by size in the
case of small molecules, or a much more intricate selection, through protein
channels which do not only select but can also move molecules from a low
concentration to a higher concentration, perhaps coupling molecules, through
so-called symport and antiport processes.

Moreover, the membranes of a cell do not delimit only compartments where
specific reactions take place in solution, inside the compartments, but many
reactions in a cell develop on the membranes, catalyzed by the many proteins
bound to them. It is said that when a compartment is too large for the local
biochemistry to be efficient, life creates membranes, both in order to create
smaller “reactors” (small enough that, through the Brownian motion, any two
of the enclosed molecules can collide – hence, react – frequently enough) and
in order to create further “reaction surfaces.” Anyway, biology contains many
fascinating facts from a computer science point of view, and the reader is
encouraged to check the validity of this assertion, e.g., through [2, 53, 7].

Life means surfaces inside surfaces, as can be learned from the title of
[41], while S. Marcus puts it in an equational form [56]: Life = DNA software
+ membrane hardware.

There are cells living alone (unicellular organisms, such as ciliates, bacte-
ria, etc.), but in general the cells are organized as tissues, organs, organisms,
and communities of organisms. All these suppose a specific organization, start-
ing with the direct communication/cooperation among neighboring cells and
ending with the interaction with the environment at various levels. Together
with the internal structure and organization of the cell, these suggest a lot
of ideas, exciting from a mathematical point of view, and potentially useful
from a computability point of view. Some of them have already been explored
in MC, but many more still await research efforts (for example, the brain,
the best “computer” ever invented, is still a major challenge for mathematical
modeling).
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4 Some General Features of Membrane Computing
Models

It is worth mentioning from the beginning, besides the essential use of mem-
branes/compartmentalization, some of the basic features of models investi-
gated in this field.

We have mentioned above the notion of a multiset. The compartments of a
cell contain substances (ions, small molecules, macromolecules) swimming in
an aqueous solution. There is no ordering there; everything is close to every-
thing; the concentration matters, i.e., the population, the number of copies of
each molecule (of course, we are abstracting/idealizing here, departing from
the biological reality). Thus, the suggestion is immediate: to work with sets
of objects whose multiplicities matters; hence, with multisets. This is a data
structure with peculiar characteristics, not new but not systematically inves-
tigated in computer science.

A multiset can be represented in many ways, but the most compact one
is in the form of a string. For instance, if the objects a, b, and c are present,
respectively, in 5, 2, and 6 copies each, we can represent this multiset by the
string a5b2c6; of course, all permutations of this string represent the same
multiset.

The string representation of multisets and the biochemical background,
where standard chemical reactions are common, suggest processing the mul-
tisets from the compartments of our computing device by means of rewriting-
like rules; this means rules of the form u → v, where u and v are multisets
of objects (represented by strings). Continuing the previous example, we can
consider a rule aab → abcc. It indicates that two copies of object a and a copy
of object b react, and, as a result of this reaction, we get back a copy of a as
well as the copy of b (hence b behaves here as a catalyst), and we produce two
new copies of c. If this rule is applied to the multiset a5b2c6, then, because
aab are “consumed” and then abcc are “produced,” we obtain the multiset
a4b2c8. Similarly, by using the rule bb → aac, we get the multiset a7c7, which
contains no occurrence of object b.

Two important problems arise here. The first one is related to the nonde-
terminism. Which rules should be applied and to which objects? The copies
of an object are considered identical, so we do not distinguish among them;
whether to use the first rule or the second one is a significant issue, espe-
cially because they cannot be both used at the same time (for the multiset
mentioned), as they compete for the “reactant” b. The standard solution to
this problem in membrane computing is that the rules and the objects are
chosen in a nondeterministic manner (at random, with no preference; more
rigorously, we can say that any possible evolution is allowed).

This is also related to the idea of parallelism. Biochemistry is not only (to
a certain degree) nondeterministic, but it is also (to a certain degree) parallel.
If two chemicals can react, then the reaction does not take place for only two
molecules of the two chemicals, but, in principle, for all molecules. This is
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the suggestion supporting the maximal parallelism used in many classes of P
systems: at each step, all rules which can be applied have to be applied to all
possible objects. We will come back to this important notion later, but now
we illustrate it only with the previous multiset and pair of rules. Using these
rules in the maximally parallel manner means either using the first rule twice
(thus involving four copies of a and both copies of b) or using the second rule
once (it consumes both copies of b, hence the first rule cannot be used at the
same time). In the first case, one copy of a remains unused (and the same for
all copies of c), and the resulting multiset is a3b2c10; in the second case, all
copies of a and c remain unused, and the resulting multiset is a7c7. Note that
in the latter case the maximally parallel application of rules corresponds to
the sequential (one in a time) application of the second rule.

There are also other types of rules used in MC (e.g., symport and antiport
rules), but we will discuss them later. Here we conclude with the observation
that MC deals with models which are intrinsically discrete (basically, working
with multisets of objects, with the multiplicities being natural numbers) and
evolve through rewriting-like (we can also say reaction-like) rules.

5 Computer Science Related Areas

Rewriting rules are standard rules for handling strings in formal language
theory (although other types of rules, such as insertion, deletion, context-
adjoining, are also used both in formal language theory and in P systems).
Similarly, working with strings modulo the ordering of symbols is another
old idea: commutative languages (investigated, e.g., in [28]) are nothing other
than the permutation closure of languages. In turn, the multiplicity of symbol
occurrences in a string corresponds to the Parikh image of the string, which
directly leads to vector addition systems, Petri nets, register machines, and
formal power series.

Parallelism is also considered in many areas of formal languages, and it
is the main feature of Lindenmayer systems. These systems deserve a special
discussion here, since they are a well developed branch of formal language
theory inspired by biology, specifically, by the development of multi-cellular
organisms (which can be described by strings of symbols). However, for L
systems the cells are considered as symbols; their organization in (mainly
linear) patterns, not their structure, is investigated. P systems can be seen
as dual to L systems, as they zoom in the cell, distinguishing the internal
structure and the objects evolving inside it, maybe also distinguishing (when
“zooming enough”) the structure of the objects, which leads to the category
of P systems with string objects.

However, a difference exists between the kind of parallelism in L systems
and that in P systems: in L systems the parallelism is total – all symbols of a
string are processed at the same time; in P systems we work with a maximal
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parallelism – we process as many objects as possible, but not necessarily all
of them.

Still closer to MC are the multiset processing languages, the most known
of them being Gamma [8, 9]. The standard rules of Gamma are of the form
u → v(π), where u and v are multisets and π is a predicate which should be
satisfied by the multiset to which the rule u → v is applied. The generality
of the form of rules ensures great expressivity and, in a direct manner, com-
putational universality. What Gamma does not have (at least in the initial
versions) is distributivity. Then, MC restricts the form of rules, on the one
hand as imposed by the biological roots and on the other hand in search of
mathematically simple and elegant models.

Membranes appear even in Gamma-related models, and this is the case
with CHAM, the Chemical Abstract Machine of Berry and Boudol, [12], the
direct ancestor of membrane systems; however, the membranes of CHAM are
not membranes as in cell biology, but correspond to the contents of mem-
branes, i.e., multisets, and lower level membranes together, while the goals
and the approach are completely different, directed to the algebraic treat-
ment of the processes these membranes can undergo. From this point of view,
of goals and tools, CHAM has a recent counterpart in the so-called brane
calculus (of course, “brane” comes from “membrane”) from [17] (see also [74]
for a related approach), where process algebra is used for investigating the
processes taking place on membranes and with membranes of a cell.

The idea of designing a computing device based on compartmentalization
through membranes was also suggested in [55].

Many related areas and many roots, with many common ideas and many
differences! To some extent, MC is a synthesis of some of these ideas, in-
tegrated in a framework directly inspired by cell biology, paying deserved
attention to membranes (and hence to distribution, hierarchization, commu-
nication, localization, and other related concepts), aiming – in the basic types
of devices – to find computing models, as elegant (minimalistic) as possi-
ble, as powerful as possible (in comparison with Turing machines and their
subclasses), and as efficient as possible (able to solve computationally hard
problems in feasible time).

6 The Cell-Like Membrane Structure

We move now toward presenting in a more precise manner the computing
models investigated in our area, and we start by introducing one the funda-
mental ingredients of a P system, namely, the membrane structure.

The meaning of this notion is illustrated in Figure 1, and this is what
we can see when looking (through mathematical glasses, hence abstracting as
much as necessary in order to obtain a formal model) at a standard cell.

Thus, as suggested by Figure 1, a membrane structure is a hierarchically
arranged set of membranes, contained in a distinguished external membrane
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(corresponding to the plasma membrane and usually called the skin mem-
brane). Several membranes can be placed inside the skin membrane (they
correspond to the membranes present in a cell, around the nucleus, in Golgi
apparatus, vesicles, mitochondria, etc.); a membrane without any other mem-
brane inside it is said to be elementary. Each membrane determines a com-
partment, called region, the space delimited by it from above and from below
by the membranes placed directly inside, if any exist. Clearly, the correspon-
dence membrane-region is one-to-one; that is why we sometimes use the terms
interchangeably.
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Fig. 1. A membrane structure.

Usually, the membranes are identified by labels from a given set of labels.
In Figure 1, we use numbers, starting with number 1 assigned to the skin
membrane (this is the standard labeling, but the labels can be more informa-
tive “names” associated with the membranes). Also, in the figure the labels
are assigned in a one-to-one manner to membranes, but this is possible only in
the case of membrane structures which cannot grow (indefinitely), otherwise
several membranes would have the same label (we will later see such cases).
Due to the membrane-region correspondence, we identify by the same label a
membrane and its associated region.

Clearly, the hierarchical structure of membranes can be represented by a
rooted tree; Figure 2 gives the tree which describes the membrane structure
in Figure 1. The root of the tree is associated with the skin membrane and
the leaves are associated with the elementary membranes. In this way, various
graph-theoretic notions are brought onto the stage, such as the distance in the
tree, the level of a membrane, the height/depth of the membrane structure,
as well as terminology such as parent/child membrane, ancestor, etc.

Directly suggested by the tree representation is the symbolic representation
of a membrane structure, by strings of labeled matching parentheses. For
instance, a string corresponding to the structure from Figure 1 is the following:
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Fig. 2. The tree describing the membrane structure from Figure 1.
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An important aspect should now be noted: the membranes of the same
level can float around, that is, the tree representing the membrane structure
is not oriented; in terms of parentheses expressions, two subexpressions placed
at the same level represent the same membrane structure. For instance, in the
previous case, the expression

[1 [3 ]3 [4 [6 [8 ]8 [9 ]9 ]6 [7 ]7 [5 ]5 ]4 [2 ]2 ]1

is a representation of the same membrane structure, equivalent to (∗).

7 Evolution Rules and the Way of Using Them

In the basic variant of P systems, each region contains a multiset of symbol
objects, which correspond to the chemicals swimming in a solution in a cell
compartment. These chemicals are considered here as unstructured; that is
why we describe them with symbols from a given alphabet.

The objects evolve by means of evolution rules, which are also localized,
associated with the regions of the membrane structure. Actually, there are
three main types of rules: (1) multiset-rewriting rules (one calls them, simply,
evolution rules), (2) communication rules, and (3) rules for handling mem-
branes.

In this section we present the first type of rules. They correspond to the
chemical reactions possible in the compartments of a cell; hence they are
of the form u → v, where u and v are multisets of objects. However, in
order to make the compartments cooperate, we have to move objects across
membranes, and for this we add target indications to the objects produced by
a rule as above (to the objects from multiset v). These indications are here,
in, and out, with the meanings that an object associated with the indication
here remains in the same region, one associated with the indication in goes
immediately into an adjacent lower membrane, nondeterministically chosen,
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and out indicates that the object has to exit the membrane, thus becoming
an element of the region surrounding it. An example of an evolution rule is
aab → (a, here)(b, out)(c, here)(c, in) (this is the first of the rules considered in
Section 4, with target indications associated with the objects produced by rule
application). After using this rule in a given region of a membrane structure,
two copies of a and one of b are consumed (removed from the multiset of
that region), and one copy of a, one of b, and two of c are produced; the
resulting copy of a remains in the same region, and the same happens with
one copy of c (indications here), while the new copy of b exits the membrane,
going to the surrounding region (indication out), and one of the new copies of
c enters one of the child membranes, nondeterministically chosen. If no such
child membrane exists, that is, the membrane with which the rule is associated
is elementary, then the indication in cannot be followed, and the rule cannot
be applied. In turn, if the rule is applied in the skin region, then b will exit
into the environment of the system (and it is “lost” there, since it can never
come back). In general, the indication here is not specified (an object without
an explicit target indication is supposed to remain in the same region where
the rule is applied).

It is important to note that in this initial type of system we do not provide
similar rules for the environment, since we do not care about the objects
present there; later we will consider types of P systems where the environment
also takes part in system evolution.

A rule such as the one above, with at least two objects in its left hand
side, is said to be cooperative; a particular case is that of catalytic rules, of the
form ca → cv, where c is an object (called catalyst) which assists the object
a to evolve into the multiset v; rules of the form a → v, where a is an object,
are called non-cooperative.

The rules can also have the form u → vδ, where δ denotes the action of
membrane dissolving: if the rule is applied, then the corresponding membrane
disappears and its contents, object and membranes alike, are left free in the
surrounding membrane; the rules of the dissolved membrane disappear with
the membrane. The skin membrane is never dissolved.

The communication of objects through membranes evokes the fact that
biological membranes contain various (protein) channels through which the
molecules can pass (in a passive way, due to concentration difference, or in an
active way, with consumption of energy), in a rather selective manner. How-
ever, the fact that the communication of objects from a compartment to a
neighboring compartment is controlled by the “reaction rules” is mathemati-
cally attractive, but is not quite realistic from a biological point of view; that
is why variants were also considered where the two processes are separated:
the evolution is controlled by rules as above, without target indications, and
the communication is controlled by specific rules (e.g., by symport/antiport
rules).

It is also worth noting that evolution rules are stated in terms of names of
objects, while their application/execution is done using copies of objects – re-
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member the example from Section 4, where the multiset a5b2c6 was processed
by a rule of the form aab → a(b, out)c(c, in), which, in the maximally parallel
manner, is used twice, for the two possible sub-multisets aab.

We have arrived in this way at the important feature of P systems, con-
cerning the way of using the rules. The key phrase in this respect is: in the
maximally parallel manner, nondeterministically choosing the rules and the
objects.

Specifically, this means that we assign objects to rules, nondeterministi-
cally choosing the objects and the rules until no further assignment is possible.
Mathematically stated, we look to the set of rules, and try to find a multiset
of rules, by assigning multiplicities to rules, with two properties: (i) the mul-
tiset of rules is applicable to the multiset of objects available in the respective
region; that is, there are enough objects to apply the rules a number of times
as indicated by their multiplicities; and (ii) the multiset is maximal, i.e., no
further rule can be added to it (no multiplicity of a rule can be increased),
because of the lack of available objects.

Thus, an evolution step in a given region consists of finding a maximal
applicable multiset of rules, removing from the region all objects specified
in the left hand sides of the chosen rules (with multiplicities as indicated
by the rules and by the number of times each rule is used), producing the
objects from the right hand sides of the rules, and then distributing these
objects as indicated by the targets associated with them. If at least one of
the rules introduces the dissolving action δ, then the membrane is dissolved,
and its contents become part of the parent membrane, provided that this
membrane was not dissolved at the same time; otherwise we stop at the first
upper membrane which was not dissolved (the skin membrane at least remains
intact).

8 A Formal Definition of a Transition P System

Systems based on multiset-rewriting rules as above are usually called transi-
tion P systems, and we preserve here this terminology (although “transitions”
are present in all types of systems).

Of course, when presenting a P system we have to specify the alphabet
of objects (a usual finite nonempty alphabet of abstract symbols identifying
the objects), the membrane structure (it can be represented in many ways,
but the one most used is by a string of labeled matching parentheses), the
multisets of objects present in each region of the system (represented in the
most compact way by strings of symbol objects), the sets of evolution rules
associated with each region, and the indication about the way the output is
defined (see below).

Formally, a transition P system (of degree m ≥ 1) is a construct of the
form

Π = (O, C, µ,w1, w2, . . . , wm, R1, R2, . . . , Rm, io),



12 Gh. Păun

where:

1. O is the (finite and nonempty) alphabet of objects,
2. C ⊂ O is the set of catalysts,
3. µ is a membrane structure, consisting of m membranes, labeled 1, 2, . . . ,m;

we say that the membrane structure, and hence the system, is of degree
m,

4. w1, w2, . . . , wm are strings over O representing the multisets of objects
present in regions 1, 2, . . . , m of the membrane structure,

5. R1, R2, . . . , Rm are finite sets of evolution rules associated with regions
1, 2, . . . ,m of the membrane structure,

6. io is either one of the labels 1, 2, . . . ,m, and the respective region is the
output region of the system, or it is 0, and the result of a computation is
collected in the environment of the system.

The rules are of the form u → v or u → vδ, with u ∈ O+ and v ∈
(O×Tar)∗, where1 Tar = {here, in, out}. The rules can be cooperative (with
u arbitrary), non-cooperative (with u ∈ O − C), or catalytic (of the form
ca → cv or ca → cvδ, with a ∈ O−C, c ∈ C, and v ∈ ((O−C)×Tar)∗); note
that the catalysts never evolve and never change the region, they only help
the other objects to evolve.

A possible restriction about the region io in the case when it is an internal
one is to consider only regions enclosed by elementary membranes for output
(that is, io should be the label of an elementary membrane of µ).
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In general, the membrane structure and the multisets of objects from its
compartments identify a configuration of a P system. The initial configuration
1 By V ∗ we denote the set of all strings over an alphabet V , the empty string λ

included, and by V + we denote the set V ∗ −{λ} of all nonempty strings over V .
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is given by specifying the membrane structure and the multisets of objects
available in its compartments at the beginning of a computation, that is,
by (µ,w1, . . . , wm). During the evolution of the system, by applying the rules,
both the multisets of objects and the membrane structure can change. We will
see how this is done in the next section; here we conclude with an example of
a P system, represented in Figure 3. It is important to note that adding the
set of rules to the initial configuration, placed in the corresponding regions,
we have a complete and concise presentation of the system (the indication of
the output region can also be added in a suitable manner, for instance, writing
“output” inside it).

9 Defining Computations and Results of Computations

In their basic variant, membrane systems are synchronous devices, in the sense
that a global clock is assumed, which marks the time for all regions of the
system. In each time unit a transformation of a configuration of the system
– we call it transition – takes place by applying the rules in each region in a
nondeterministic and maximally parallel manner. As explained in the previous
sections, this means that the objects to evolve and the rules governing this
evolution are chosen in a nondeterministic way, and this choice is “exhaustive”
in the sense that, after the choice is made, no rule can be applied in the same
evolution step to the remaining objects.

A sequence of transitions constitutes a computation. A computation is
successful if it halts, reaches a configuration where no rule can be applied
to the existing objects, and the output region io still exists in the halting
configuration (in the case where io is the label of a membrane, it can be
dissolved during the computation, but the computation is then no longer
successful). With a successful computation we can associate a result in various
ways. If we have an output region specified, and this is an internal region, then
we have an internal output: we count the objects present in the output region
in the halting configuration and this number is the result of the computation.
When we have io = 0, we count the objects which leave the system during
the computation, and this is called external output. In both cases the result
is a number. If we distinguish among different objects, then we can have as
the result a vector of natural numbers. The objects which leave the system
can also be arranged in a sequence according to the time when they exit the
skin membrane, and in this case the result is a string (if several objects exit
at the same time, then all their permutations are accepted as a substring of
the result). Note that non-halting computations provide no output (we cannot
know when a number is “completely computed” before halting); if the output
membrane is dissolved during the computation, then the computation aborts,
and no result is obtained (of course, this makes sense only in the case of
internal output).
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A possible extension of the definition is to consider a terminal set of ob-
jects, T ⊆ O, and to count only the copies of objects from T , discarding the
objects from O− T present in the output region. This allows some additional
leeway in constructing and “programming” a P system, because we can ignore
some auxiliary objects (e.g., the catalysts).

Because of the nondeterminism of the application of rules, starting from
an initial configuration we can get several successful computations, and hence
several results. Thus, a P system computes (one also says generates) a set of
numbers (or a set of vectors of numbers, or a language, depending on the way
the output is defined). The case when we get a language is important in view
of the qualitative difference between the “loose” data structure we use inside
the system (vectors of numbers) and the data structure of the result, strings,
where we also have a “syntax,” a positional information.

For a given system Π we denote by N(Π) the set of numbers computed by
Π in the above way. When we consider the vector of multiplicities of objects
from the output region, we write Ps(Π). In turn, in the case where we take
as (external) output the strings of objects leaving the system, we denote the
language of these strings by L(Π).

Let us illustrate the previous definitions by examining the computations
of the system from Figure 3, with the output region being the environment.

We have objects only in the central membrane, that with label 3; hence
only here can we apply rules. Specifically, we can repeatedly apply the rule
a → ab in parallel with f → ff , and in this way the number of copies of b
grows each step by one, while the number of copies of f is doubled in each
step. If we do not apply the rule a → bδ (again in parallel with f → ff), which
dissolves the membrane, then we can continue in this way forever. Thus, in
order to ever halt, we have to dissolve membrane 3. Assume that this happens
after n ≥ 0 steps of using the rules a → ab and f → ff . When membrane 3 is
dissolved, its contents (n+1 copies of b, 2n+1 copies of f , and one copy of the
catalyst c) are left free in membrane 2, which can now start using its rules.
In the next step, all objects b become d. Let us examine the rules ff → f
and cf → cdδ. The second rule dissolves membrane 2, and hence passes its
contents to membrane 1. If among the objects which arrive in membrane 1
there is at least one copy of f , then the rule f → f from region 1 can be
used forever and the computation never stops; moreover, if the rule ff → f
is used at least once, in parallel with the rule cf → cdδ, then at least one
copy of f is present. Therefore, the rule cf → cdδ should be used only if
region 2 contains only one copy of f (note that, because of the catalyst, the
rule cf → cdδ can be used only for one copy of f). This means that the rule
ff → f was used always for all available pairs of f , that is, at each step the
number of copies of f is divided by 2. This is already done once in the step
where all copies of b become d, and will be done from now on as long as at least
two copies of f are present. Simultaneously, at each step, each d produces one
copy of e. This process can continue until we get a configuration with only one
copy of f present; at that step we have to use the rule cf → cdδ, hence also
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membrane 2 is dissolved. Because we have applied the rule d → de, in parallel
for all copies of d (there are n + 1 such copies) during n + 1 steps, we have
(n+1)(n+1) copies of e, n+2 copies of d (one of them produced by the rule
cf → cdδ), and one copy of c in the skin membrane of the system (the unique
membrane still present). The objects e are sent out, and the computation
halts. Therefore, we compute in this way the number (n + 1)2 for n ≥ 0, that
is, N(Π) = {n2 | n ≥ 1}.

10 Using Symport and Antiport Rules

The multiset rewriting rules correspond to reactions taking place in the cell,
inside the compartments. However, an important part of the cell activity
is related to the passage of substances through membranes, and one of the
most interesting ways to handle this trans-membrane communication is by
coupling molecules. The process by which two molecules pass together across
a membrane (through a specific protein channel) is called symport; when the
two molecules pass simultaneously through a protein channel, but in opposite
directions, the process is called antiport.

We can formalize these operations in an obvious way: (ab, in) or (ab, out)
are symport rules, stating that a and b pass together through a membrane, en-
tering in the former case and exiting in the latter case; similarly, (a, out; b, in)
is an antiport rule, stating that a exits and, at the same time, b enters the
membrane. Separately, neither a nor b can cross a membrane unless we have
a rule of the form (a, in) or (a, out), called, for uniformity, uniport rule.

Of course, we can generalize these types of rules, by considering sym-
port rules of the form (x, in) and (x, out), and antiport rules of the form
(z, out; w, in), where x, z, and w are multisets of arbitrary size; one says that
|x| is the weight of the symport rule, and max(|z|, |w|) is the weight of the
antiport rule2.

Now, such rules can be used in a P system instead of the target indications
here, in, and out: we consider multiset rewriting rules of the form u → v
(or u → vδ) without target indications associated with the objects from v,
as well as symport/antiport rules for communication of the objects between
compartments. Such systems, called evolution-communication P systems, were
considered in [18] (for various restricted types of rules of the two forms).

Here, we do not go into that direction, but stay closer both to the chrono-
logical evolution of the domain and to the mathematical minimalism, and we
check whether we can compute using only communication, that is, only sym-
port and antiport rules. This leads to considering one of the most interesting
classes of P systems, which we formally introduce here.

A P system with symport/antiport rules is a construct of the form

2 By |u| we denote the length of the string u ∈ V ∗ for any alphabet V .
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Π = (O, µ,w1, . . . , wm, E, R1, . . . , Rm, io),

where:

1. O is the alphabet of objects,
2. µ is the membrane structure (of degree m ≥ 1, with the membranes

labeled 1, 2, . . . ,m in a one-to-one manner),
3. w1, . . . , wm are strings over O representing the multisets of objects present

in the m compartments of µ in the initial configuration of the system,
4. E ⊆ O is the set of objects supposed to appear in the environment in

arbitrarily many copies,
5. R1, . . . , Rm are the (finite) sets of rules associated with the m membranes

of µ,
6. io ∈ H is the label of a membrane of µ, which indicates the output region

of the system.

The rules from R can be of two types, symport rules and antiport rules,
of the forms specified above.

The rules are used in the nondeterministic maximally parallel manner. We
define transitions, computations, and halting computations in the usual way.
The number (or the vector of multiplicities) of objects present in region io in
the halting configuration is said to be computed by the system by means of
that computation; the set of all numbers (or vectors of numbers) computed
in this way by Π is denoted by N(Π) (by Ps(Π), respectively).

We note here a new component of the system, the set E of objects which
are present in the environment in arbitrarily many copies; because we move
objects only across membranes and because we start with finite multisets
of objects present in the system, we cannot increase the number of objects
necessary for the computation if we do not provide a supply of objects, and this
can be done by considering the set E. Because the environment is supposedly
inexhaustible, the objects from E are inexhaustible; regardless of how many
of them are brought into the system, arbitrarily many remain outside.

Another new feature is that this time the rules are associated with mem-
branes, and not with regions, and this is related to the fact that each rule
governs communication through a specific membrane.

The P systems with symport/antiport rules have a series of attractive
characteristics: they are fully based on biological types of multiset processing
rules; the environment plays a direct role in the evolution of the system; the
computation is done only by communication, no object is changed, and the
objects move only across membranes; no object is created or destroyed, and
hence the conservation law is observed (as given in the previous sections, this
is not valid for multiset rewriting rules because, for instance, rules of the form
a → aa or ff → f are allowed).
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11 An Example (Like a Proof. . . )

Because P systems with symport/antiport rules constitute an important class
of P systems, it is worth considering an example; however, instead of a simple
example, we directly give a general construction for simulating a register ma-
chine. In this way, we also introduce one of the widely used proof techniques
for the universality results in this area. (Of course, the biologist can safely
skip this section.)

Informally speaking, a register machine consists of a specified number of
counters (also called registers) which can hold any natural number, and which
are handled according to a program consisting of labeled instructions; the
counters can be increased or decreased by 1 – the decreasing possible only if a
counter holds a number greater than or equal to 1 (we say that it is nonempty)
– and checked whether they are nonempty.

Formally, a (nondeterministic) register machine is a device M = (m,B, l0,
lh, R), where m ≥ 1 is the number of counters, B is the (finite) set of instruc-
tion labels, l0 is the initial label, lh is the halting label, and R is the finite set
of instructions labeled (hence uniquely identified) by elements from B. The
labeled instructions are of the following forms:

– l1 : (add(r), l2, l3), 1 ≤ r ≤ m (add 1 to counter r and go nondeterminis-
tically to one of the instructions with labels l2, l3),

– l1 : (sub(r), l2, l3), 1 ≤ r ≤ m (if counter r is not empty, then subtract
1 from it and go to the instruction with label l2, otherwise go to the
instruction with label l3).

A counter machine generates a k-dimensional vector of natural numbers in
the following manner: we distinguish k counters as output counters (without
loss of generality, they can be the first k counters), and we start computing
with all m counters empty, with the instruction labeled l0; if the label lh
is reached, then the computation halts and the values of counters 1, 2, . . . , k
are the vector generated by the computation. The set of all vectors from Nk

generated in this way by M is denoted by Ps(M). If we want to generate only
numbers (1-dimensional vectors), then we have the result of a computation in
counter 1, and the set of numbers computed by M is denoted by N(M). It is
known (see [60]) that nondeterministic counter machines with k + 2 counters
can compute any set of Turing computable k-dimensional vectors of natural
numbers (hence machines with three counters generate exactly the family of
Turing computable sets of numbers).

Now, a register machine can be easily simulated by a P system with sym-
port/antiport rules. The idea is illustrated in Figure 4, where we have repre-
sented the initial configuration of the system, the rules associated with the
unique membrane, and the set E of objects present in the environment.

The value of each register r is represented by the multiplicity of object
ar, 1 ≤ r ≤ m, in the unique membrane of the system. The labels from B,
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l0

E = {ar | 1 ≤ r ≤ m} ∪ {l, l′, l′′, l′′′, liv | l ∈ B}

(l1, out; arl2, in)
(l1, out; arl3, in)

}
for l1 : (add(r), l2, l3)

(l1, out; l′1l
′′
1 , in)

(l′1ar, out; l′′′1 , in)
(l′′1 , out; liv1 , in)
(livl′′′1 , out; l2, in)
(livl′1, out; l3, in)





for l1 : (sub(r), l2, l3)

(lh, out)

Fig. 4. An example of symport/antiport P system.

as well as their primed versions, are also objects of our system. We start
with the unique object l0 present in the system. In the presence of a label
object l1 we can simulate the corresponding instruction l1 : (add(r), l2, l3) or
l1 : (sub(r), l2, l3).

The simulation of an add instruction is clear, so we discuss only a sub
instruction. The object l1 exits the system in exchange of the two objects
l′1l
′′
1 (rule (l1, out; l′1l

′′
1 , in)). In the next step, if any copy of ar is present in

the system, then l′1 has to exit (rule (l′1ar, out; l′′′1 , in)), thus diminishing the
number of copies of ar by one, and bringing inside the object l′′′1 ; if no copy
of ar is present, which corresponds to the case when the register r is empty,
then the object l′1 remains inside. Simultaneously, rule (l′′1 , out; liv1 , in) is used,
bringing inside the “checker” liv1 . Depending on what this object finds in the
system, either l′′′1 or l′1, it introduces the label l2 or l3, respectively, which
corresponds to the correct continuation of the computation of the register
machine.

When the object lh is introduced, it is expelled into the environment and
the computation stops.

Clearly, the (halting) computations in Π directly correspond to (halting)
computations in M ; hence Ps(M) = Ps(Π).

12 A Large Panoply of Possible Extensions

We have mentioned the flexibility and the versatility of the formalism of MC,
and we have already mentioned several types of systems, making use of several
types of rules, with the output of a computation defined in various ways.
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We continue here in this direction, by presenting a series of possibilities of
changing the form of rules and/or the way of using them. The motivation for
such extensions comes both from biology, i.e., from the desire to capture more
and more biological facts, and from mathematics and computer science, i.e.,
from the desire to have more powerful or more elegant models.

First, let us return to the basic target indications, here, in, and out, as-
sociated with the objects produced by rules of the form u → v; here and out
indicate precisely the region where the object is to be placed, but in introduces
a degree of nondeterminism in the case where there are several inner mem-
branes. This nondeterminism can be avoided by indicating also the label of the
target membrane, that is, using target indications of the form inj , where j is
a label. An intermediate possibility, more specific than in but not completely
unambiguous like inj , is to assign the electrical polarizations, +,−, and 0, to
both objects and membranes. The polarizations of membranes are given from
the beginning (or can be changed during the computation), the polarization
of objects is introduced by rules, using rules of the form ab → c+c−(d0, tar).
The charged objects have to go to any lower level membrane of opposite po-
larization, while objects with neutral polarization either remain in the same
region or get out, depending on the target indication tar ∈ {here, out} (this
is the case with d in the previous rule).

A spectacular generalization, considered recently in [26], is to use indi-
cations inj , for any membrane j from the system; hence the object is “tele-
ported” immediately at any distance in the membrane structure. Also, com-
mands of the form in∗ and out∗ were used, with the meaning that the object
should be sent to (one of) the elementary membranes from the current mem-
brane or to the skin region, respectively, no matter how far the target is.

We have considered the membrane dissolution action, represented by the
symbol δ; we may imagine that such an action decreases the thickness of the
membrane from the normal thickness, 1, to 0. A dual action can be also used,
of increasing the thickness of a membrane, from 1 to 2. We indicate this action
by τ . Assume that δ also decreases the thickness from 2 to 1, that the thickness
cannot have other values than 0 (membrane dissolved), 1 (normal thickness),
and 2 (membrane impermeable), and that when both δ and τ are introduced
simultaneously in the same region, by different rules, their actions cancel, and
the thickness of the membrane does not change. In this way, we can nicely
control the work of the system: if a rule introduces a target indication in or
out and the membrane which has to be crossed by the respective object has
thickness 2, and hence is non-permeable, then the rule cannot be applied.

Let us look now to the catalysts. In the basic definition they never change
their state or their place like ordinary objects do. A “democratic” decision is
to also let the catalysts evolve within certain limits. Thus, mobile catalysts
were proposed, moving across membranes like any object (but not themselves
changing). The catalysts were then allowed to change their state, for instance,
oscillating between c and c̄. Such a catalyst is called bistable, and the natural
generalization is to consider k-stable catalysts, allowed to change along k
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given forms. Note that the number of catalysts is not changed; we do not
produce or remove catalysts (provided they do not leave the system), and
this is important in view of the fact that the catalysts are in general used for
inhibiting the parallelism (a rule ca → cv can be used simultaneously at most
as many times as copies of c are present).

There are several possibilities for controlling the use of rules, leading in
general to a decrease in the degree of nondeterminism of a system. For in-
stance, a mathematically and biologically motivated possibility is to consider
a priority relation on the set of rules from a given region, in the form of a
partial order relation on the set of rules from that region. This corresponds
to the fact that certain reactions/reactants are more active than others, and
can be interpreted in two ways: as a competition for reactants/objects, or in a
strong sense. In the latter sense, if a rule r1 has priority over a rule r2 and r1

can be applied, then r2 cannot be applied, regardless of whether rule r1 leaves
objects which it cannot use. For instance, if r1 : ff → f and r2 : cf → cdδ,
as in the example from Section 8, and the current multiset is fffc, because
rule r1 can be used, consuming two copies of f , we do not also use the second
rule for the remaining fc. In the weak interpretation of the priority, the use of
the second rule is allowed: the rule with the maximal priority takes as many
objects as possible, and, if there are objects still remaining, the next rule in
the decreasing order of priority is used for as many objects as possible, and
we continue in this way until no further rule can be added to the multiset of
applicable rules.

Also coming directly from bio-chemistry are the rules with promoters and
inhibitors, written in the form u → v|z and u → v|¬z, respectively, where u, v,
and z are multisets of objects; in the case of promoters, the rule u → v can be
used in a given region only if all objects from z are present in the same region,
and they are different from the (copies of) objects from u; in the inhibitors
case, no object from z should be present in the region and be different from
the objects from u. The promoting objects can evolve at the same time by
other rules, or by the same rule u → v but by another instance of it (e.g.,
a → b|a can be used twice in a region containing two copies of a, with each
instance of a → b|a acting on one copy of a and promoted by the other copy,
but it cannot be used in a region where a appears only once).

An interesting combination of rewriting-communication rules are those
considered in [77], where rules of the following three forms are proposed:
a → (a, tar), ab → (a, tar1)(b, tar2), and ab → (a, tar1)(b, tar2)(c, come),
where a, b, and c are objects, and tar, tar1, and tar2 are target indications
of the forms here, in, and out, or inj , where j is the label of a membrane.
Such a rule just moves objects from one region to another, with rules of the
third type usable only in the skin region; (c, come) means that a copy of
c is brought into the system from the environment. Clearly, these rules are
different from the symport/antiport rules; for instance, the two objects ab
from a rule ab → (a, tar1)(b, tar2) start from the same region, and can go in
different directions, one up and the other down, in the membrane structure.
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We are left with one of the most general type of rules, introduced in [11]
under the name boundary rules, directly capturing the idea that many reac-
tions take place on the inner membranes of a cell, depending maybe on the
contents of both the inner and the outer regions adjacent to that membrane.
These rules are of the form xu[

i
vy → xu′[

i
v′y, where x, u, u′, v, v′, and y are

multisets of objects and i is the label of a membrane. Their meaning is that in
the presence of the objects from x outside and from y inside the membrane i,
the multiset u from outside changes to u′, and, simultaneously, the multiset v
from inside changes to v′. The generality of this kind of rules is apparent, and
it can be decreased by imposing various restrictions on the multisets involved.

There also are other variants considered in the literature, especially in the
way of controlling the use of the rules, but we do not continue here in that
direction.

13 P Systems with Active Membranes

We pass now to presenting a class of P systems, which, together with the ba-
sic transition systems and the symport/antiport systems, is one of the three
central types of cell-like P systems considered in membrane computing. As in
the above case of boundary rules, they start from the observation that mem-
branes play an important role in the reactions which take place in a cell, and,
moreover, they can evolve themselves, either by changing their characteristics
or by dividing.

This last idea especially has motivated the class of P systems with active
membranes, which are constructs of the form

Π = (O,H, µ,w1, . . . , wm, R),

where:

1. m ≥ 1 (the initial degree of the system);
2. O is the alphabet of objects;
3. H is a finite set of labels for membranes;
4. µ is a membrane structure, consisting of m membranes initially having

neutral polarizations labeled (not necessarily in a one-to-one manner) with
elements of H;

5. w1, . . . , wm are strings over O, describing the multisets of objects placed
in the m regions of µ;

6. R is a finite set of developmental rules, of the following forms:
(a) [

h
a → v]e

h
, for h ∈ H, e ∈ {+,−, 0}, a ∈ O, v ∈ O∗

(object evolution rules, associated with membranes and depending on
the label and the charge of the membranes but not directly involving
the membranes, in the sense that the membranes are neither taking
part in the application of these rules nor are they modified by them);
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(b) a[
h

]e1
h
→ [

h
b]e2

h
, for h ∈ H, e1, e2 ∈ {+,−, 0}, a, b ∈ O

(in communication rules; an object is introduced in the membrane,
and possibly modified during this process; also the polarization of the
membrane can be modified, but not its label);

(c) [
h
a ]e1

h
→ [

h
]e2
h

b, for h ∈ H, e1, e2 ∈ {+,−, 0}, a, b ∈ O
(out communication rules; an object is sent out of the membrane,
and possibly modified during this process; also the polarization of the
membrane can be modified, but not its label);

(d) [ha ]e
h → b, for h ∈ H, e ∈ {+,−, 0}, a, b ∈ O

(dissolving rules; in reaction with an object, a membrane can be dis-
solved, while the object specified in the rule can be modified);

(e) [
h
a ]e1

h
→ [

h
b ]e2

h
[
h
c ]e3

h
, for h ∈ H, e1, e2, e3 ∈ {+,−, 0}, a, b, c ∈ O

(division rules for elementary membranes; in reaction with an object,
the membrane is divided into two membranes with the same label,
and possibly of different polarizations; the object specified in the rule
is replaced in the two new membranes possibly by new objects; the
remaining objects are duplicated and may evolve in the same step by
rules of type (a)).

The objects evolve in the maximally parallel manner, used by rules of
type (a) or by rules of the other types, and the same is true at the level of
membranes, which evolve by rules of types (b)–(e). Inside each membrane, the
rules of type (a) are applied in parallel, with each copy of an object used by
only one rule of any type from (a) to (e). Each membrane can be involved
in only one rule of types (b)–(e) (the rules of type (a) are not considered to
involve the membrane where they are applied). Thus, in total, the rules are
used in the usual nondeterministic maximally parallel manner, in a bottom-up
way (we use first the rules of type (a), and then the rules of other types; in
this way, in the case of dividing membranes, the result of using first the rules
of type (a) is duplicated in the newly obtained membranes). Also, as usual,
only halting computations give a result, in the form of the number (or the
vector) of objects expelled into the environment during the computation.

The set H of labels has been specified because it is possible to allow the
change of membrane labels. For instance, a division rule can be of the more
general form

(e′) [h1
a ]e1

h1
→ [h2

b ]e2
h2

[h3
c ]e3

h3
,

for h1, h2, h3 ∈ H, e1, e2, e3 ∈ {+,−, 0}, a, b, c ∈ O.

The change of labels can also be considered for rules of types (b) and
(c). Also, we can consider the possibility of dividing membranes in more than
two copies, or even of dividing non-elementary membranes (in such a case, all
inner membranes are duplicated in the new copies of the membrane).

It is important to note that in the case of P systems with active mem-
branes, the membrane structure evolves during the computation, not only by
decreasing the number of membranes, due to dissolution operations (rules of
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type (d)), but also by increasing the number of membranes by division. This
increase can be exponential in a linear number of steps: using a division rule
successively n steps, due to the maximal parallelism, we get 2n copies of the
same membrane. This is one of the most investigated ways of obtaining an
exponential working space in order to trade time for space and solve compu-
tationally hard problems (typically NP-complete problems) in feasible time
(typically polynomial or even linear time).

Some details can be found in Section 20, but we illustrate here the way
of using membrane division in such a framework with an example dealing
with the generation of all 2n truth assignments possible for n propositional
variables.

Assume that we have the variables x1, x2, . . . , xn; we construct the follow-
ing system (of degree 2):

Π = (O, H, µ, w1, w2, R),
O = {ai, ci, ti, fi | 1 ≤ i ≤ n} ∪ {check},
H = {1, 2},
µ = [1[2 ]2]1,

w1 = λ,

w2 = a1a2 . . . anc1,

R = {[2ai]
0
2 → [2ti]

0
2[2fi]

0
2 | 1 ≤ i ≤ n}

∪ {[2ci → ci+1]
0
2 | 1 ≤ i ≤ n− 1}

∪ {[2cn → check]02, [2check]
0
2 → check[2 ]+2 }.

We start with the objects a1, . . . , an in the inner membrane and we divide
this membrane repeatedly by means of the rules [

2
ai]

0
2
→ [

2
ti]

0
2
[
2
fi]

0
2
; note

that the object ai used in each step is nondeterministically chosen, but each
division replaces that object by ti (for true) in one membrane and with fi (for
false) in the other membrane; hence after n steps the configuration obtained
is the same regardless of the order of expanding the objects. Specifically, we
get 2n membranes with label 2, each one containing a truth assignment for
the n variables. Simultaneously with the division, we have to use the rules
of type (a) which update the “counter” c; hence at each step we increase by
one the subscript of c. Therefore, when all variables have been expanded, we
get the object check in all membranes (the rule of type (a) is used first, and
after that the result is duplicated in the newly obtained membranes). In step
n + 1, this object exits each copy of membrane 2, changing its polarization
to positive; this is meant to signal the fact that the generation of all truth
assignments is completed, and we can start checking the truth values of (the
clauses of) the propositional formula.

The previous example was chosen also for showing that the polarizations
of membranes are not used while generating the truth assignments, though
they might be useful after that; till now, this is the case in all polynomial time
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solutions to NP-complete problems obtained in this framework, in particu-
lar for solving SAT (satisfiability of propositional formulas in the conjunctive
normal form). An important open problem in this area is whether or not the
polarizations can be avoided. This can be done if other ingredients are con-
sidered, such as label changing or division of non-elementary membranes, but
without adding such features the best result obtained so far is that from [3]
where it is proved that the number of polarizations can be reduced to two.

14 A Panoply of Possibilities for Having a Dynamical
Membrane Structure

Membrane dissolving and dividing are only two of the many possibilities of
handling the membrane structures. One additional possibility investigated
early is membrane creation, based on rules of the form a → [

h
v]

h
, where a

is an object, v is a multiset of objects, and h is a label from a given set of
labels. Using such a rule in a membrane j, we create a new membrane, with
label h, having inside the objects specified by v. Because we know the label
of the new membrane, we know the rules which can be used in its region
(a “dictionary” of possible membranes is given, specifying the rules to be
used in any membrane with labels in a given set). Because rules for handling
membranes are of a more general interest (e.g., for applications), we illustrate
them in Figure 5, where the reversibility of certain pairs of operations is also
made visible.

For instance, converse to membrane division, the operation of merging the
contents of two membranes can be considered; formally, we can write such a
rule in the form [

h1
a]

h1
[
h2

b]
h2
→ [

h3
c]

h3
, where a, b, and c are objects and

h1, h2, and h3 are labels (we have considered the general case, where the labels
can be changed).

Actually, the merging operation can also be considered as the reverse of
the separation operation, formalized as follows: let K ⊆ O be a set of objects;
a separation with respect to K is done by a rule of the form [

h1
]
h1

→
[
h2

K]
h2

[
h3
¬K]

h3
, with the meaning that the contents of membrane h1 is

split into two membranes, with labels h2 and h3, the first one containing all
objects in K and the second one containing all objects not in K.

The operations of endocytosis and exocytosis (we use these general names,
although in biology there are distinctions depending on the size of the ob-
jects and the number of objects moved; phagocytosis, pinocytosis, etc.) are
also simple to formalize. For instance, [h1

a]h1
[h2

]h2
→ [h2

[h1
b]h1

]h2
, for

h1, h2 ∈ H, a, b ∈ V , is an endocytosis rule, stating that an elementary
membrane labeled h1 enters the adjacent membrane labeled h2 under the
control of object a; the labels h1 and h2 remain unchanged during this
process; however, the object a may be modified to b. Similarly, the rule
[h2

[h1
a]h1

]h2
→ [h1

b]h1
[h2

]h2
, for h1, h2 ∈ H, a, b ∈ V , indicates an exocyto-

sis operation: an elementary membrane labeled h1 is sent out of a membrane
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labeled h2 under the control of object a; the labels of the two membranes re-
main unchanged, but the object a from membrane h1 may be modified during
this operation.

Finally, let us mention the operation of gemmation, by which a membrane
is created inside a membrane h1 and sent to a membrane h2; the moving mem-
brane is dissolved inside the target membrane h2, thus releasing its contents
there. In this way, multisets of objects can be transported from a membrane
to another one in a protected way: the enclosed objects cannot be processed
by the rules of the regions through which the travelling membrane passes. The
travelling membrane is created with a label of the form @h2 , which indicates
that it is a temporary membrane, having to get dissolved inside the membrane
with label h2. Corresponding to the situation from biology, in [13], [14] one
considers only the case where the membranes h1, h2 are adjacent and placed
directly in the skin membrane, but the operation can be generalized.
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Fig. 5. Membrane handling operations.

A gemmation rule is of the form a → [
@h2

u]
@h2

, where a is an object
and u a multiset of objects (but it can be generalized by creating several
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travelling membranes at the same time, with different destinations); the result
of applying such a rule is as illustrated in the bottom of Figure 5. Note that
the crossing of one membrane takes one time unit (it is supposed that the
travelling membrane finds the shortest path from the region where it is created
to the target region).

Several other operations with membranes were considered, e.g., in the
context of applications to linguistics, as well as in [47] and in other papers,
but we do not enter into further details here.

15 Structuring the Objects

In the previous classes of P systems, the objects were considered atomic, iden-
tified only by their name, but in a cell many chemicals are complex molecules
(e.g., proteins, DNA molecules, other large macromolecules), whose structure
can be described by strings or more complex data, such as trees, arrays, etc.
Also, from a mathematical point of view it is natural to consider P systems
with string objects.

Such a system has the form

Π = (V, T, µ, M1, . . . , Mm, R1, . . . , Rm),

where V is the alphabet of the system, T ⊆ V is the terminal alphabet, µ
is the membrane structure (of degree m ≥ 1), M1, . . . , Mm are finite sets of
strings present in the m regions of the membrane structure, and R1, . . . , Rm

are finite sets of string-processing rules associated with the m regions of µ.
We have given here the system in general form, with a specified terminal

alphabet (we say that the system is extended; if V = T , then the system is
said to be non-extended), and without specifying the type of rules. These rules
can be of various forms, but we consider here only two cases: rewriting and
splicing.

In a rewriting P system, the string objects are processed by rules of the
form a → u(tar), where a → u is a context-free rule over the alphabet V
and tar is one of the target indications here, in, and out. When such a rule is
applied to a string x1ax2 in a region i, we obtain the string x1ux2, which is
placed in region i, in any inner region, or in the surrounding region, depending
on whether tar is here, in, or out, respectively. The strings which leave the
system do not come back; if they are composed only of symbols from T , then
they are considered as generated by the system. The language of all strings
generated in this way is denoted by L(Π).

There are several differences from the previous classes of P systems: we
work with sets of string objects, not with multisets; in order to introduce a
string in the language L(Π) we do not need to have a halting computation,
because the strings do not change after leaving the system; each string is
processed by only one rule (the rewriting is sequential at the level of strings),



Introduction to Membrane Computing 27

but in each step all strings from all regions which can be rewritten by local
rules are rewritten by one rule.

In a splicing P system, we use splicing rules as those in DNA computing
[38, 70], that is, of the form u1#u2$u3#u4, where u1, u2, u3, and u4 are strings
over V . For four strings x, y, z, w ∈ V ∗ and a rule r : u1#u2$u3#u4, we write

(x, y) `r (z, w) if and only if x = x1u1u2x2, y = y1u3u4y2,

z = x1u1u4y2, w = y1u3u2x2,

for some x1, x2, y1, y2 ∈ V ∗.

We say that we splice x and y at the sites u1u2 and u3u4, respectively, and
the result of the splicing (obtained by recombining the fragments obtained by
cutting the strings as indicated by the sites) are the strings z and w.

In our case we add target indications to the two resulting strings, that
is, we consider rules of the form r : u1#u2$u3#u4(tar1, tar2), with tar1 and
tar2 one of here, in, and out. The meaning is as standard: after splicing the
strings x, y from a given region, the resulting strings z, w are moved to the
regions indicated by tar1, tar2, respectively. The language generated by such
a system consists again of all strings over T sent into the environment during
the computation, without considering only halting computations.

We do not give here an example of a rewriting or a splicing P system, but
we move on to introducing an important extension of rewriting rules, namely,
rewriting with replication, [49]. In such systems, the rules are of the form
a → (u1, tar1)||(u2, tar2)|| . . . ||(un, tarn), with the meaning that by rewrit-
ing a string x1ax2 we get n strings, x1u1x2, x1u2x2, . . . , x1unx2, which have
to be moved in the regions indicated by targets tar1, tar2, . . . , tarn, respec-
tively. In this case we work again with halting computations, and the mo-
tivation is that if we do not impose the halting condition, then the strings
x1uix2 evolve completely independently; hence we can replace the rule a →
(u1, tar1)||(u2, tar2)|| . . . ||(un, tarn) with n rules a → (ui, tari), 1 ≤ i ≤ n,
without changing the language; that is, replication makes a difference only in
the halting case.

The replicated rewriting is important because it provides the possibility
to replicate strings, thus enlarging the workspace, and indeed this is one of
the frequently used ways to generate an exponential workspace in linear time,
used then for solving computationally hard problems in polynomial time.

Besides these types of rules for string processing, other kinds of rules were
also used, such as insertion and deletion, context adjoining in the sense of
Marcus contextual grammars [63], splitting, conditional concatenation, and so
on, sometimes with motivations from biology, where several similar operations
can be found, e.g., at the genome level.
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16 Tissue-Like P Systems

We pass now to consider a very important generalization of the membrane
structure, passing from the cell-like structure, described by a tree, to a
tissue-like structure, with the membranes placed in the nodes of an arbi-
trary graph (which corresponds to the complex communication networks es-
tablished among adjacent cells by making their protein channels cooperate,
moving molecules directly from one cell to another, [53]). Actually, in the basic
variant of tissue-like P systems, this graph is virtually a total one; what mat-
ters is the communication graph, dynamically defined during computations.
In short, several (elementary) membranes – also called cells – are freely placed
in a common environment; they can communicate either with each other or
with the environment by symport/antiport rules. Specifically, we consider an-
tiport rules of the form (i, x/y, j), where i, j are labels of cells or at most one
is zero, identifying the environment, and x, y are multisets of objects. This
means that the multiset x is moved from i to j at the same time as the mul-
tiset y is moved from j to i. If one of the multisets x, y is empty, then we
have, in fact, a symport rule. Therefore, the communication among cells is
done either directly, in one step, or indirectly, through the environment: one
cell throws some objects out and other cells can take these objects in the next
step or later. As in symport/antiport P systems, the environment contains
a specified set of objects in arbitrarily many copies. A computation devel-
ops as standard, starting from the initial configuration and using the rules in
the nondeterministic maximally parallel manner. When halting, we count the
objects from a specified cell, and this is the result of the computation.

The graph plays a more important role in so-called tissue-like P systems
with channel-states, [33], which are constructs of the form

Π = (O, T,K, w1, . . . , wm, E, syn, (s(i,j))(i,j)∈syn, (R(i,j))(i,j)∈syn, io),

where O is the alphabet of objects, T ⊆ O is the alphabet of terminal objects,
K is the alphabet of states (not necessarily disjoint of O), w1, . . . , wm are
strings over O representing the initial multisets of objects present in the cells of
the system (it is assumed that we have m cells, labeled with 1, 2, . . . ,m), E ⊆
O is the set of objects present in arbitrarily many copies in the environment,
syn ⊆ {(i, j) | i, j ∈ {0, 1, 2, . . . , m}, i 6= j} is the set of links among cells
(we call them synapses; 0 indicates the environment) such that for i, j ∈
{0, 1, . . . ,m} at most one of (i, j), (j, i) is present in syn, s(i,j) is the initial
state of the synapse (i, j) ∈ syn, R(i,j) is a finite set of rules of the form
(s, x/y, s′), for some s, s′ ∈ K and x, y ∈ O∗, associated with the synapse
(i, j) ∈ syn, and, finally, io ∈ {1, 2, . . . , m} is the output cell.

We note the restriction that there is at most one synapse among two given
cells, and the synapse is given as an ordered pair (i, j) with which a state
from K is associated. The fact that the pair is ordered does not restrict the
communication between the two cells (or between a cell and the environment),
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because we work here in the general case of antiport rules, specifying simul-
taneous movements of objects in the two directions of a synapse.

A rule of the form (s, x/y, s′) ∈ R(i,j) is interpreted as an antiport rule
(i, x/y, j) as above, acting only if the synapse (i, j) has the state s; the ap-
plication of the rule means (1) moving the objects specified by x from cell i
(from the environment, if i = 0) to cell j, at the same time with the move
of the objects specified by y in the opposite direction, and (2) changing the
state of the synapse from s to s′.

The computation starts with the multisets specified by w1, . . . , wm in the
m cells; in each time unit, a rule is used on each synapse for which a rule
can be used (if no rule is applicable for a synapse, then no object passes over
it and its state remains unchanged). Therefore, the use of rules is sequential
at the level of each synapse, but it is parallel at the level of the system: all
synapses which can use a rule must do so (the system evolves synchronously).
The computation is successful if and only if it halts and the result of a halting
computation is the number of objects from T present in cell io in the halting
configuration (the objects from O−T are ignored when considering the result).
The set of all numbers computed in this way by the system Π is denoted by
N(Π). Of course, we can compute vectors, by considering the multiplicity of
objects from T present in cell io in the halting configuration.

A still more elaborated class of systems, called population P systems, were
investigated in a series of papers by F. Bernardini and M. Gheorghe (see, e.g.,
[10]) with motivations related to the dynamics of cells in skin-like tissues,
populations of bacteria, and colonies of ants. These systems are highly dy-
namical; not only the links between cells, corresponding to the channels from
the previous model with states assigned to the channels, can change during
the evolution of the system, but also the cells can change their names, can
disappear (get dissolved), and can divide, thus producing new cells; these new
cells inherit, in a well specified sense, links with the neighboring cells of the
parent cell. The generality of this model makes it rather attractive for appli-
cations in areas such as those mentioned above, related to tissues, populations
of bacteria, etc.

17 Neural-Like P Systems

The next step in enlarging the model of tissue-like P systems is to consider
more complex cells, for instance, moving the states from the channels between
cells to the cells themselves – while still preserving the network of synapses.
This suggests the neural motivation of these attempts, aiming to capture
something from the intricate structure of neural networks, of the way the
neurons are linked and cooperate in the human brain.

We do not recall the formal definition of a neural-like P system, but we
refer to [67] for details, and here we present only the general idea behind these
systems.
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We again use a population of cells (each one identified by its label) linked
by a specified set of synapses. This time, each cell has at every moment a
state from a given finite set of states, contents in the form of a multiset of
objects from a given alphabet of objects, and a set of rules for processing these
objects.

The rules are of the form sw → s′(x, here)(y, go)(z, out), where s, s′ are
states and w, x, y, z are multisets of objects; in state s, the cell consumes the
multiset w and produces the multisets x, y, z; the objects from multiset x
remain in the cell, those of multiset y have to be communicated to the cells
toward which there are synapses starting in the current cell; a multiset z, with
the indication out, is allowed to appear only in a special cell, designated as
the output cell, and for this cell the use of the previous rule entails sending
the objects of z to the environment.

The computation starts with all cells in specified initial states, with ini-
tially given contents, and proceeds by processing the multisets from all cells,
simultaneously, according to the local rules, redistributing the obtained ob-
jects along synapses and sending a result into the environment through the
output cell; a result is accepted only when the computation halts.

Because of the use of states, there are several possibilities for processing
the multisets of objects from each cell. In the minimal mode, a rule is chosen
and applied once to the current pair (state, multiset). In the parallel mode, a
rule is chosen, e.g., sw → s′w′, and used in the maximally parallel manner: the
multiset w is identified in the cell contents in the maximal manner, and the rule
is used for processing all these instances of w. Finally, in the maximal mode,
we apply in the maximally parallel manner all rules of the form sw → s′w′,
that is, with the same states s and s′ (note the difference with the parallel
mode, where in each step we choose a rule and we use only that rule as many
times as possible).

There are also three ways to move the objects between cells (of course,
we only move objects produced by rules in multisets with the indication go).
Assume that we have applied a rule sw → s′(x, here)(y, go) in a given cell i.
In the spread mode, the objects from y are nondeteterministically distributed
to all cells j such that (i, j) is a synapse of the system. In the one mode,
all the objects from y are sent to one cell j, provided that the synapse (i, j)
exists. Finally, we can also replicate the objects of y, and each object from y
is sent to all cells j such that (i, j) is an available synapse.

Note that the states ensure a powerful way to control the work of the
system, that the parallel and maximal modes are efficient ways to process the
multisets, and that the replicative mode of distributing the objects provides
the possibility of increasing exponentially the number of objects in linear time.
All together, these features make the neural-like P system both very powerful
and very efficient computing devices. However, this class of P systems still
waits for a systematic investigation – maybe starting with questioning their
very definition, and changing this definition in such a way as to capture more
realistic brain-like features.
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18 Other Ways of Using a P System; P Automata

In all previous sections we have considered the various types of P systems as
generative devices: starting from an initial configuration, because of the non-
determinism of using the rules, we can proceed along various computations, at
the end of which we get a result; in total, all successful computations provide
a set of numbers, of vectors or numbers, or a language (set of strings), depend-
ing on the way the result of a computation is defined. This grammar oriented
approach is only one possibility, mathematically attractive and theoretically
important, but not useful from a practical point of view when dealing with
specific problems to be solved and specific functions to be computed. However,
a P system can also be used for computing functions and for solving problems
(in a standard algorithmic manner).

Actually, besides the generative approach, there are two other general
(related) ways of using a P system: in the accepting mode and in the transducer
mode. In both cases, an input is provided to the system in a way depending
on the type of systems at hand. For instance, in a symbol object P system,
besides the initial multisets present in the regions of the membrane structure,
we can introduce a multiset w0 in a specified region, adding the objects of
w0 to the objects present in that region. The computation proceeds, and if it
halts, then we say that the input is accepted (or recognized). In the transducer
mode, we have not only to halt, but also to collect an output from a specified
output region, internal to the system or the environment.

Now, an important distinction appears between systems which behave de-
terministically (at each moment at most one transition is possible, that is,
either the computation stops, or it continues in a unique mode) and those
which work in a nondeterministic way. Such a distinction does not make much
sense in the generative mode, especially if only halting computations provide
a result at the end: such a system can generate only a single result. In the
case of computing functions or solving problems (e.g., decidability problems),
the determinism is obligatory.

Again a distinction is in order: actually, we are not interested in the way the
system behaves, deterministically or nondeterministically, but in the unique-
ness and the reliability of the result. If, for instance, we ask whether or not
a propositional formula in conjunctive normal form is satisfiable or not, we
do not care how the result is obtained, but we want to make sure that it is
the right one. Whether or not the truth assignments were created as in the
example from Section 13, expanding the variables in a random order, is not
relevant; what is important is that after n steps we get the same configura-
tion. This brings to the stage the important notion of confluence. A system
is strongly confluent if, starting from the initial configuration and behaving
in a way which we do not care, it after a while reaches a configuration from
where the computation continues in a deterministic way. Because we are only
interested in the result of computations (e.g., in the answer, yes or no, to a
decidability problem), we can relax the previous condition, to a weak con-
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fluence property: regardless of how the system works, it always halts and all
halting computations provide the same result. These notions will be invoked
when discussing the efficiency of P systems, as in Section 20.

Let us consider here in some detail the accepting mode of using a P system.
Given, for instance, a transition P system Π, let us denote by Na(Π) the set
of all numbers accepted by Π in the following sense: we introduce an, for a
specified object a, into a specified region of Π, and we say that n is accepted if
and only if there is a computation of Π, starting from this augmented initial
configuration, which halts. In the case of systems taking objects from the
environment, such as the symport/antiport or the communicative ones [77],
we can consider that the system accepts/recognizes the sequence of objects
taken from the environment during a halting computation (if several objects
are brought into the system at the same time, then all their permutations
are accepted as substrings of the accepted string). Similar strategies can be
followed for all types of systems, tissue-like and neural-like included (but P
automata were first introduced in the symport/antiport case in [30]; see also
[32]).

The above set Na(Π) was defined in general, for nondeterministic systems,
but, clearly, in the accepting mode the determinism can be imposed (the
nondeterminism is moved to the environment, to the “user,” which provides an
input, unique, but nondeterministically chosen, from which the computation
starts). Note that the example of a P system with symport/antiport rules
from Section 11 works in the same manner for an accepting register machine
(a number is introduced in the first register and is accepted if and only if the
computation halts); in such a case, the add instructions can be deterministic,
that is, with labels l2, l3 identical (one simply writes l1 : (add(r), l2), with the
continuation unique), and for this case the P system itself is deterministic.

19 Universality

The initial goal of membrane computing was to define computability models
inspired from the cell biology, and indeed a large part of the investigations in
this area was devoted to producing computing devices and examining their
computing power, in comparison with the standard models in computability
theory, Turing machines and their restricted variants. As it turns out, most of
the classes of P systems considered are equal in power to Turing machines. In
a rigorous manner, we have to say that they are Turing complete (or compu-
tationally complete), but because the proofs are always constructive, starting
the constructions used in these proofs from universal Turing machines or from
equivalent devices, we obtain universal P systems (able to simulate any other
P system of the given type after introducing a “code” of the particular system
as an input in the universal one). That is why we speak about universality
results and not about computational completeness.
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All classes of systems considered above, whether cell-like, tissue-like, or
neural-like, with symbol objects or string objects, working in the generative
or the accepting modes, with certain combinations of features, are known to
be universal. The cell turns out to be a very powerful “computer,” both when
standing alone and in tissues.

In general, for P systems working with symbol objects, these universality
results are proved by simulating computing devices known to be universal, and
which either work with numbers or do not essentially use the positional in-
formation from strings. This is true/possible for register machines, matrix
grammars (in the binary normal form), programmed grammars, regularly
controlled grammars, and graph-controlled grammars (but not for arbitrary
Chomsky grammars and for Turing machines, which can be used only in the
case of string objects). The example from Section 11 illustrates a universality
proof for the case of P systems with symport/antiport rules (with rules of
sufficiently large weight; see below stronger results from this point of view).

We do not enter here into details other than specifying some notations
which are already standard in membrane computing and, after that, mention-
ing some universality results of particular interest.

As for notations, the family of sets N(Π) of numbers (we hence use the
symbol N) generated by P systems of a specified type (P ), working with sym-
bol objects (O), having at most m membranes, and using features/ingredients
from a given list is denoted by NOPm(list-of-features). If we compute sets of
vectors, we write PsOPm(. . .), with Ps coming from “Parikh set.” When
the systems work in the accepting mode, one writes NaOPm(. . .), and when
string objects are used, one replaces N with L (from “languages”) and O with
S (from “strings”), thus obtaining families LSPm(. . .). The case of tissue-
like systems is indicated by adding the letter t before P , thus obtaining
NOtPm(. . .), while for neural-like systems one uses instead the letter n. When
the number of membranes is not bounded, the subscript m is replaced by ∗,
and this is a general convention, used also for other parameters.

Now, the list of features can be taken from an endless pool: cooperative
rules are indicated by coo; catalytic rules are indicated by cat, noting that the
number of catalysts matters, and hence we use catr in order to indicate that
we use systems with at most r catalysts; bistable catalysts are indicated by
2cat (2catr, if at most r catalysts are used); mobile catalysts are indicated by
Mcat. When using a priority relation, we write pri. For the actions δ, τ we
write simply δ, τ . Membrane creation is represented by mcre; endocytosis and
exocytosis operations are indicated by endo, exo, respectively. In the case of
P systems with active membranes, one directly lists the types of rules used,
from (a) to (e), as defined and denoted in Section 13.

For systems with string objects, one write rew, repld, and spl for indicating
that one uses rewriting rules, replicated rewriting rules (with at most d copies
of each string produced by replication), and splicing rules, respectively.

In the case of (cell-like or tissue-like) systems using symport/antiport rules,
we have to specify the maximal weight of the used rules, and this is done by
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writing symp, antiq, meaning that symport rules of weight at most p and
antiport rules of weight at most q are allowed.

There are many other features, with notations of the same type (as
mnemonic as possible), which we do not recall here. Sometimes, when it is
important to show in the name of the discussed family that a specific feature
fe is not allowed, one writes nFe – for instance, one writes nPri for not using
priorities (note the capitalization of the initial name of the feature), nδ, etc.

Specific examples of families of numbers (we do not consider here sets of
vectors or languages, although, as we have said above, a lot of universality
results are known for all cases) appear in the few universality results which we
recall below. In these results, NRE denotes the family of Turing computable
sets of numbers (the notation comes from the fact that these numbers are the
length sets of recursively enumerable languages, those generated by Chom-
sky type-0 grammars or by many types of regulated rewriting grammars and
recognized by Turing machines). The family NRE is also the family of sets
of numbers generated/recognized by register machines. When dealing with
vectors of numbers, hence with the Parikh images of languages (or with the
sets of vectors generated/recognized by register machines), we write PsRE.

Here are some universality results (for the proofs, see the papers men-
tioned):

1. NRE = NOP1(cat2), [31].
2. NRE = NOP3(sym1, anti1) = NOP3(sym2, anti0), [4].
3. NRE = NOP3((a), (b), (c)), [54].
4. NRE = NSP3(repl2), [50].

In all these results, the number of membranes sufficient for obtaining the
universality is pretty small. Actually, in all cases when the universality holds
(and the code of a particular system is introduced in a universal system in
such a way that the membrane structure is not modified), the hierarchy on
the number of membranes collapses, because a number of membranes as large
as the degree of the universal system suffices.

Still, “the number of membranes matters,” as we read already in the title
of [43]: there are (sub-universal) classes of P systems for which the number
of membranes induces an infinite hierarchy of families of sets of numbers (see
also [44]).

20 Solving Computationally Hard Problems in
Polynomial Time

The computational power (the “competence”) is only one of the important
questions to be dealt with when defining a new computing model. The other
fundamental question concerns the computing efficiency, the resources used
for solving problems. In general, the research in natural computing is espe-
cially concerned with this issue. Because P systems are parallel computing
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devices, it is expected that they can solve hard problems in an efficient man-
ner, and this expectation is confirmed for systems provided with ways for
producing an exponential workspace in linear time.

We have discussed above three basic ways to construct such an exponen-
tial space in cell-like P systems, namely, membrane division (the separation
operation has the same effect, as do other operations which replicate partially
or totally the contents of a membrane), membrane creation (combined with
the creation of exponentially many objects), and string replication. Similar
possibilities are offered by cell division in tissue-like systems and by object
replication in neural-like systems. Also the possibility to use a pre-computed
exponential workspace, unstructured and non-active (e.g., with the regions
containing no object) was considered.

In all these cases polynomial or pseudo-polynomial solutions to NP-
complete problems were obtained. The first problem addressed in this context
was SAT [66] (the solution was improved in several respects in other sub-
sequent papers), but similar solutions are reported in the literature for the
Hamiltonian Path and the Node Covering problems, the problem of invert-
ing one-way functions, the Subset-sum problem and the Knapsack problem
(note that the last two are numerical problems, where the answer is not of
the yes/no type as in decidability problems), and for several other problems.
Details can be found in [67, 72], as well as in the Web page of the domain,
[82].

Roughly speaking, the framework for dealing with complexity matters is
that of accepting P systems with input: a family of P systems of a given
type is constructed starting from a given problem, and an instance of the
problem is introduced as an input in such systems; working in a deterministic
mode (or a confluent mode: some nondeterminism is allowed, provided that
the branching converges after a while to a unique configuration, or, in the
case of weak confluence, all computations stop in a determined time and give
the same result) in a given time one of the answers yes/no is obtained in
the form of specific objects sent to the environment. The family of systems
should be constructed in a uniform mode (starting from the size of problem
instances) by a Turing machine working in polynomial time. A more relaxed
framework is that where a semi-uniform construction is allowed, carried out
in polynomial time by a Turing machine, but starting from the instance to
be solved (the condition to have a polynomial time construction ensures the
“honesty” of the construction: the solution to the problem cannot be found
during the construction phase).

This direction of research is very active at the present moment. More
and more problems are being considered, the membrane computing complex-
ity classes are being refined, characterizations of the P 6=NP conjecture have
been obtained in this framework, and improvements are being looked for. An
important recent result concerns the fact that PSPACE was shown to be in-
cluded in PMCD, the family of problems which can be solved in polynomial
time by P systems with the possibility of dividing both elementary and non-
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elementary membranes. The PSPACE-complete problem used in this proof
was QSAT (see [77, 5] for details).

There also are many open problems in this area. We have mentioned already
the intriguing question about whether polynomial solutions to NP-complete
problems can be obtained through P systems with active membranes without
polarizations (and without label changing possibilities of other additional fea-
tures). In general, the borderline between efficiency (the possibility to solve
NP-complete problems in polynomial time) and non-efficiency is a challeng-
ing topic. Anyway, we know that membrane division cannot be avoided (“Mi-
lano theorem”: a P system without membrane division can be simulated by a
Turing machine with a polynomial slowdown; see [80, 81]).

21 Focusing on the Evolution

Computational power is of interest to theoretical computer science, and com-
putational efficiency is of interest to practical computer science, but neither
is of a direct interest to biology. Actually, this last statement is not correct:
if a biologist is interested in simulating a cell – and this seems to be a major
concern of biology today (see [48, 42] and other sources) – then the generality
of the model (its comparison with the Turing machine and its restrictions) is
directly linked to the possibility of algorithmically solving questions about the
model. An example: is a given configuration reachable from the initial config-
uration? Imagine that the initial configuration represents a healthy cell and
we are interested in knowing whether a sickness state is ever reached. Then,
if both healthy and non-healthy configurations can be reached, the question
arises whether we can find the “bifurcation configurations,” and this is again
a reachability issue. The relevance of such a “purely theoretical” problem is
clear, and its answer depends directly on the generality (hence the power) of
the model. Then, of course, the time needed for answering the question is a
matter of computational complexity. So, both the power and the efficiency
are, indirectly, of interest also to biologists, so we (the biologists, too) should
be more careful when asserting that a given type of “theoretical” investigation
is not of interest to biology.

Still, the immediate concern of biological research is the evolution of bi-
ological systems, their life, whatever this means, and not the result of a
specific evolution. Alternatively stated, halting computations are of inter-
est to computer science, whereas of direct interest to biology is the com-
putation/evolution itself. Although membrane computing was not intended
initially to deal with such issues, a series of recent investigations indicate a
strong tendency toward considering P systems as dynamical systems. This
does not concern only the fact that, besides the rules for object evolution, a
more complete panoply of possibilities was imagined for making the membrane
structure also evolve, with specific developments in the case of tissue-like and
population P systems, where also the links between cells are evolving; but this
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concerns especially the formulation of questions which are typical for dynam-
ical systems study. Trajectories, periodicity and pseudo-periodicity, stability,
attractors, basins, oscillations, and many other concepts were brought in the
framework of membrane computing – and the enterprise is not trivial, as these
concepts were initially introduced in areas handled by means of continuous
mathematics tools (mainly differential equations). A real program of defining
discrete dynamical systems, with direct application to the dynamics of P sys-
tems, was started by V. Manca and his collaborators; we refer to Chapter 3
for details.

22 Recent Developments

Of course, the specification “recent” is risky, as it can soon become obsolete,
but still we want to mention here some directions of research and some results
which were not presented before – after repeating the fact that topics such
as complexity classes and polynomial solutions to hard problems, dynamical
systems approaches, and population P systems (in general, systems dealing
with populations of cells, as in tissue-like or neural-like systems) are of a
strong current interest which will probably lead to significant theoretical and
practical results. To these trends we can add another general and yet not
very structured topic: using non-crisp mathematics, handling uncertainty by
means of probabilistic, fuzzy set, and rough set theories.

However, we want here to also point out a few more precise topics.
One of them concerns the role of time in P systems. The synchronization

and the existence of a global clock are too strong assumptions (from a bio-
logical point of view). What about P systems where there exist no internal
clocks and all rules have different times to be applied? This can mean both
that the duration needed by a rule to be applied can differ from the duration
of another rule and the extreme possibility that the duration is not known.
In the first case, we can have a timing function assigning durations to rules;
in the second case even such information is missing. How does the power of
a system depend on the timing function? Are there time-free systems, which
generate the same set of numbers regardless of what time function associates
durations with its rules? Such questions are addressed in a series of papers by
M. Cavaliere and D. Sburlan; see e.g., [22, 23].

Another powerful idea explored by M. Cavaliere and his collaborators is
that of coupling a simple bio-inspired system, Sys, such as a P system without
large computing power, with an observer Obs, a finite state machine which
analyzes the configurations of the system Sys through the evolutions; from
each configuration either a symbol or nothing (that is, the “result” of that
configuration is the empty string λ) is produced; in a stronger variant, the
observer can also reject the configuration and hence the system evolution,
trashing it. The couple (Sys,Obs), for various simple systems and multiset
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processing finite automata, proved to be a very powerful computing device,
universal even for very weak systems Sys. Details can be found in [19, 20].

An idea recently explored is that of trying to bound the number of objects
used in a P system, and still computing all Turing computable numbers. The
question can be seen as “orthogonal” to the usual questions concerning the
number of membranes and the size of rules, since, intuitively, one of these
parameters should be left free in order to codify and handle an arbitrary
amount of information by using a limited number of objects. The first results
of this type were given in [69] and they are surprising: in formal terms, we
have NRE = NOP4(obj3, sym∗, anti∗) (P systems with four membranes and
symport and antiport rules of arbitrary weight are universal even when using
only three objects). In turn, two objects (but without a bound on the number
of membranes) are sufficient in order to generate all sets of vectors computed
by so-called (see [36]) partially blind counter machines (for sets of numbers the
result is not so interesting, because partially blind counter machines accept
only semilinear sets of numbers, while the sets of vectors they accept can be
non-semilinear).

Other interesting topics recently investigated which we only list here con-
cern the reversibility of computations in P systems [52], energy accounting
(associating quanta of energy to objects or to rules handled during the com-
putation) [35, 34, 51], relations with grammar systems and with colonies [68],
descriptional complexity, and non-discrete multisets [61, 27].

We close this section by mentioning the notion of Sevilla carpet introduced
in [25], which proposes a way to describe the time-and-space complexity of
a computation in a P system by considering the two-dimensional table of all
rules used in each time unit of a computation. This corresponds to the Szilard
language from language theory, with the complication now that we use several
rules at the same step, and each rule is used several times. Considering all
the information concerning the rules, we can get a global evaluation of the
complexity of a computation, as illustrated, for instance, in [75] and [37].

23 Closing Remarks

The present chapter should be seen as a general overview of membrane com-
puting, with the choice of topics intended to be as pertinent as possible, but,
of course, not completely free of a subjective bias. The reader interested in
further technical details, formal definitions, proofs, research topics and open
problems, or details concerning the applications (and the software behind
them) is advised to consult the relevant chapters of the book, as well as the
comprehensive web page from http://psystems.disco.unimib.it. A com-
plete bibliography of membrane computing can be found there, with many
papers available for downloading (in particular, one can find there the pro-
ceedings volumes of the yearly Workshops on Membrane Computing, as well
as of the yearly Brainstorming Weeks on Membrane Computing).
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