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Abstract. Recent theoretical and empirical studies have focused on the topology of large networks of
communication/interactions in biological, social and technological systems. Most of them have been studied
in the scope of the small-world and scale-free networks’ theory. Here we analyze the characteristics of ant
networks of galleries produced in a 2-D experimental setup. These networks are neither small-worlds nor
scale-free networks and belong to a particular class of network, i.e. embedded planar graphs emerging
from a distributed growth mechanism. We compare the networks of galleries with both minimal spanning
trees and greedy triangulations. We show that the networks of galleries have a path system efficiency and
robustness to disconnections closer to the one observed in triangulated networks though their cost is closer
to the one of a tree. These networks may have been prevented to evolve toward the classes of small-world
and scale-free networks because of the strong spatial constraints under which they grow, but they may
share with many real networks a similar trend to result from a balance of constraints leading them to
achieve both path system efficiency and robustness at low cost.

PACS. 89.75.Fb Structures and organization in complex systems – 89.75.Hc Networks and genealogical
trees – 87.23.Ge Dynamics of social systems

1 Introduction

Complex systems are composed by sets of interacting units
defining a network. Most networks involve information
transfer and are not spatially constrained. The analysis of
complex webs from both biology, sociology and technology
reveal the presence of small-worlds properties i.e. small
paths and high local clustering [1–4]. Moreover, these net-
works are highly heterogeneous and in most cases their
degree distributions P (k) are scale-free, i.e. are highly
heterogeneous with tail decaying as a power law. More
precisely, P (k) is the frequency of nodes having k edges
and its distribution is characterized by a general form
P (k) ∼ k−γφ(k/ξ) where φ(k/ξ) introduces a cut-off at
some characteristic scale ξ. Three main classes have been
defined [5,6]: (a) when ξ is very small, the distribution
is single scaled, which would typically correspond to a
distribution P (k) ∼ e−k/ξ. (b) as ξ grows, a power law
with a sharp cut-off is obtained, i.e. P (k) ∼ k−γe−k/ξ.
(c) for large enough ξ, the distribution is scale-free, i.e.
its tails follow a power-law P (k) ∼ k−γ . The presence of
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deviations from the SF behaviour are often related to the
presence of costly connections [5,7].

In these nets, the cost associated with the connection
process is often equivalent for all pair of nodes, and it is
often possible to connect any pair of nodes. However many
real networks result from construction processes where
spatial constraints are at work. In these types of network,
two distant nodes are less likely to be connected due to
the distance-dependent cost of links. Moreover, in the case
of networks where the nodes and edges have a spatial di-
mension, many direct connections between distant nodes
may be not allowed to occur. This is the case in many net-
work structures constructed by human and animals, such
as foraging and/or displacement networks [8–11], where
the growth of the network progressively fills the space.

Networks hold an essential place in animal societies
since they are a by-product of a collective activity and
one of the major organizing factors of social phenomena.
One of their most frequent function is to allow the effi-
cient movement and communication of individuals inside
the structure. Despite the key role of these networks in
sustaining society functions, their large-scale structure is
essentially unknown.
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Fig. 1. Example of a gallery pattern produced by 200 ants over 3 days. At the beginning of an experiment, ants are dispersed
around the sand disk and can only start to dig it from the periphery. After few hours, several galleries are initiated by group of
workers. These galleries stretch inside the sand disk and frequently branch. At the end of the excavation process, after 72 h, a
stationary network is obtained and used to generate a static graph.
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Fig. 2. The graph representation of 2 examples of networks of galleries (a−b) and their cumulative degree distribution (c).

In social insects, nests can be considered as network
structures. In ants, a typical underground nest consists
in the same basic units: a set of chambers (nodes) inter-
connected by galleries (edges) [12–20]. The structure of
the nests built by different species shows a wide range
of variation from non-ramified structures, in the simplest
forms, to tree-like shapes and, in the most complex forms,
highly connected networks [21]. It can be conjectured that
the topological features exhibited by such networks should
reflect intrinsic adaptive properties, such as optimal com-
munication and/or robustness against random blocking of
given nodes. In this paper we analyze the topological orga-
nization of ant galleries as complex networks. Specifically,
we study the networks of galleries produced by the ant
Messor sancta in a two dimensional experimental set-up
as an example of emergent organization of network pat-
terns in social insects.

2 Ant galleries as complex networks

The experimental set-up consisted in a sand disk of 20 cm
diameter and 5 mm height. We used brusselian sand (a yel-
low sand of a very fine and homogeneous granularity) that
was poured in a mould and humidified by spraying wa-
ter (25 ml). The mould was then removed and the sand
disk covered by a glass plate (25 cm × 25 cm). An arena
(∅ = 50 cm) with a wall coated with Fluon GP2 r© was
placed around the sand disk to prevent ants from escaping.
Each experiment (N = 19) began with the random disper-
sal of 200 ants around the disk. The set-up was videotaped

from above with a high-resolution digital camera and the
experiment lasted 3 days. In order to map the network,
we used a static snapshot at the end of each experiment.
In these conditions, ants are strongly stimulated to ini-
tiate galleries that will grow, branch and merge together
until achieving a dense network of galleries (Fig. 1). The
process reaches a stationary state in which ants do not
excavate anymore and the network is completed.

Any of these networks of galleries can be described
as an embedded planar graph [22] G = (V, E) where
V = {(vi, xi, yi) , (i = 1, . . . , n)} is the set of n nodes char-
acterized by their (x, y) position, and E = {(vi, vj)} the
set of m edges/connections between nodes and character-
ized by their length dij . Edges correspond to subsections
of galleries, and nodes to the apices of galleries (dead-ends
or openings) or to the intersections between the galleries.
These nodes often correspond to simple crossings between
galleries but also sometimes to enlarged spaces, namely
the chambers, which may contain aggregated individu-
als, larva, food or refusal material in natural nests [19].
The experimental networks could comprise several con-
nected components. However, the largest connected com-
ponent always represented the majority of vertices and
edges (mean proportion of nodes in the largest connected
component: 0.86±0.11). The other connected components
were most frequently short abandoned galleries (2 vertices
and 1 edge or small trees) which were initiated from the
periphery and never merged with other galleries. Since a
functional nest in ants is a single connected component,
our analysis is restricted to the largest connected compo-
nent. Examples of these networks are shown in Figure 2.
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Table 1. Basic characteristics of the networks: number of nodes n, number of edges m, mean degree 〈k〉; ξ parameter in an
exponential decay P (k) ∼ e−k/ξ of the degree distribution tail. Meshedness coefficient M , geometrical and topological global
efficiency Eglob,G and Eglob,T respectively. Robustness to random removal of nodes fR and selective removal of highest degrees fS,
and relative cost c.

n◦ n m 〈k〉 ξ M Eglob,G Eglob,T fR fS c

1 88 117 2.66 0.89 0.175 0.751 0.212 0.247 0.090 0.216

2 88 114 2.59 1.02 0.158 0.662 0.226 0.286 0.102 0.206

3 84 106 2.52 0.86 0.141 0.703 0.217 0.270 0.157 0.215

4 74 95 2.57 1.07 0.154 0.644 0.239 0.275 0.112 0.260

5 70 84 2.40 0.69 0.111 0.496 0.230 0.224 0.059 0.143

6 65 88 2.71 1.24 0.192 0.810 0.268 0.313 0.149 0.268

7 62 95 3.06 1.55 0.286 0.777 0.283 0.338 0.123 0.410

8 50 60 2.40 1.01 0.116 0.559 0.256 0.246 0.131 0.171

9 49 61 2.49 1.13 0.140 0.589 0.269 0.279 0.131 0.181

10 44 47 2.14 – 0.048 0.570 0.254 0.231 0.096 0.079

11 43 51 2.37 1.59 0.111 0.648 0.286 0.294 0.039 0.225

12 42 44 2.10 1.03 0.038 0.542 0.263 0.220 0.020 0.127

13 41 51 2.49 0.95 0.143 0.573 0.287 0.274 0.078 0.190

14 36 41 2.28 0.93 0.090 0.567 0.304 0.262 0.071 0.106

15 36 39 2.17 1.54 0.060 0.595 0.329 0.295 0.090 0.230

16 32 37 2.31 1.07 0.102 0.510 0.327 0.289 0.089 0.181

17 31 39 2.52 0.93 0.158 0.527 0.328 0.300 0.050 0.178

18 23 24 2.09 – 0.049 0.471 0.366 0.312 0.093 0.067

19 14 14 2.00 1.24 0.043 0.365 0.422 0.296 0.111 0.085

Typical measures computed on complex networks in-
volve the average path length L and the local correlations
defined through the so called clustering coefficient C [1–4].
For small world nets, L scales as the logarithm of the
system size and is close to the random graph distance.
This is not the case here, given the spatial constraints.
The clustering C is a measure of the fraction of trian-
gles present in the network. However, there exists a whole
range of networks which differ in the level of connection
between neighbours though their clustering coefficient is
always equal to 0: for example, this is the case of markedly
different topologies such as a tree, a square and a honey-
comb mesh. Indeed, the clustering coefficient is a mea-
sure of the structure of cycles restricted to the case of
cycles of length 3. It would be thus necessary to find
more general measures of the structure of cycles than
the clustering coefficient [23]. We define here a meshed-
ness coefficient that addresses this question specifically
for planar graphs. From the Euler formula, the number of
faces (excluding the external one) associated with any pla-
nar graph is f = m−n+1. It entails that for such graphs
m ≤ 3n−6 and consequently the maximal number of faces
would be fmax = 2n− 5. We can thus compute a normal-
ized “meshedness coefficient” M = f/fmax, where M can
vary from zero (tree structure) to one (complete planar
graph). This coefficient will be discussed below in relation
with efficiency.

An additional global characterization is given by the
degree distribution. In contrast with other (large) net-

works such as social, communication or metabolic net-
works, the constructed networks studied here have a small
number of nodes and edges. Moreover, they are planar,
which means that, by construction, edges of E intersect
on nodes only. Due to these constraints, it is highly un-
likely to have a high heterogeneity (i.e. SF distributions).
As we can see in Figure 1c, the degree distributions are ac-
tually exponential (i.e. single-scaled). Here the cumulative
distribution

P>(k) =

∞∫

k

P (k′)dk′ (1)

is used (see [5]) and shown for three different networks
(displayed in a–c). Distribution tails can be approximated
by the form P (k) ∼ e−k/ξ with ξ ranging from ξ = 0.69 to
ξ = 1.59 (ξ values were determined from the cumulative
distributions; Tab. 1).

The standard comparisons with theoretical models
(such as the standard, Erdös-Renyi random graph [24])
that were developed in the SW and the SF framework
lose their relevance in the context of planar graphs. Un-
fortunately, there are few general analytic results (such as
path lengths or degree distributions) on random planar
graphs [25,26]. However, two relevant references can be
built from a node set to compare embedded planar net-
works with. At one extreme, we have tree-like structures,
which have been widely used as models of river networks
that are obviously spatially-constrained systems [27]. In
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particular, the Minimal Spanning Tree (MST) defines the
shortest tree which connects every nodes into a single
connected component [28–30]. At the other extreme, the
natural reference should be the Minimum Weight Trian-
gulation (MWT) which contains the highest number of
edges (with no edge crossings) while minimizing its total
length [31]. Yet, no polynomial time algorithm is known
to compute the MWT [32]. We thus fell back on the
easily computed Greedy Triangulation (GT) which con-
nect nodes in the ascending order of edge length pro-
vided that no edge crossing is introduced. This leads to
a maximal connected graph (still obeying the planar con-
straint) while minimizing as far as possible the total length
of edges [33]. These bounds make also sense as regards
the evolution of these networks: the most primitive forms
of nest are trees while the most complex forms involve
mesh-like patterns [21]. Using the previous definitions and
limit models, we will proceed to analyse the efficiency, ro-
bustness/fragility and cost of the present ant networks of
galleries.

3 Network efficiency

One possible adaptive trend in the architecture of gal-
leries generated by social insects is efficient communica-
tion and/or displacements. The characteristics of the path
system can be evaluated by the analysis of the shortest-
paths between all pair of nodes. Networks of galleries are
spatially extended webs, it is thus possible to work with
two types of distance metrics: topological and geometrical.
The topological measures of the path length corresponds
to the number of nodes the path is going through, while
the geometrical measure of the path length corresponds to
the sum of the distance di,j of all edges the path is going
through. Recently, Latora and Marchiori [34] proposed the
so-called “average efficiency”:

E(G) =
1

n(n − 1)

∑
vi �=vj∈V

1
d∗ij

, (2)

where d∗ij corresponds to the shortest path between the
nodes i and j. For the given graph G, we always com-
pute the efficiency as the ratio between E(G) and E(Kn),
where Kn is the complete graph of order n (it possesses
the same vertices as G, but with all the n(n−1)/2 possible
edges). The so-called global efficiency Eglob is determined
by computing the efficiency measure for all paths in the
graph G,

Eglob = E(G)/E(Kn). (3)

In the networks of galleries, the geometrical efficiency
Eglob,G varies from Eglob,G = 0.676 to Eglob,G = 0.812 but
is not correlated with n (Fig. 3a). The values of Eglob,G

in the corresponding GT networks are always higher that
in the networks of galleries, and there is no correlation
with the network size n. By contrast, the MST has a
rather different behaviour: for small n, Eglob,G is simi-
lar to what observed in the networks of galleries, but it
decreases as a power-law when n increases. The absence
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Fig. 3. Relation between geometrical (a), topological (b)
global efficiency Eglob,G and Eglob,T and network size n.
Eglob,G is independent of n in both the networks of galleries
(circles) and the GT networks (upward triangles), while it de-
creases as a power law in the MST networks (downward tri-
angles). Eglob,T decreases with increasing network size n in all
networks. However, this decrease is slower in the networks of
galleries (circles) than both in the MST (downward triangles)
and the GT networks (upward triangles).

of decay in Eglob,G for the networks of galleries may be
related to the presence of a certain degree of meshedness.

In the networks of galleries, the topological efficiency
varies from Eglob,T = 0.212 to Eglob,T = 0.422 and de-
creases with n (Fig. 3b). Eglob,T also decreases with n
in both MSTs and greedy triangulations (Fig. 3b). While
this decrease has a similar rate in the latter, the decrease
of Eglob,T with n in the networks of galleries is clearly
slower. For small network size n, it is close to MSTs, but
it progressively reaches values closer to a triangulation for
higher n. Again, this may be related to an increasing effect
of cycles when n increases.

None of the networks of galleries are trees, but the
meshedness coefficient M exhibits a certain variability
from values close to a tree (minimal M = 0.038) to values
far from those expected from a triangulation (maximal
M = 0.286) (Tab. 2). Indeed, M increases with network
size n (r = 0.589; N = 19; p = 0.008) and is positively
correlated with Eglob,G (r = 0.549; N = 19; p = 0.015).
The behaviour of geometrical and topological Eglob with
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network size n may be related to the progressive increase
of meshedness of the networks of galleries.

4 Network robustness

Beyond the efficiency associated to a given network topol-
ogy, an additional and complementary approach is the
analysis of fragility against random failures. Such failures
might be mutations in gene networks, failures of routers
in the Internet or species loss in an ecosystem. The ro-
bustness of a network can be evaluated by studying how
it becomes fragmented as an increasing fraction of nodes
is removed. The network fragmentation is usually mea-
sured by the fraction of nodes contained by the largest
connected component. This node removal can take place
either randomly or in decreasing order of their degree (se-
lective removal). In homogeneous random graphs, the frag-
mentation of the network is similar under random and
selective removal of nodes [35,36]. Several real networks
have been reported to deviate clearly from this prediction
of random graph theory and to exhibit a high resilience
to random removal and high vulnerability to selective re-
moval of nodes [35–38]. This property was first proposed
as a unique feature of scale-free networks [35]. However
several food-webs that are not scale-free networks also ex-
hibit this property, and it has thus been conjectured that
it could come from a more general feature of the degree
distribution, such as its degree of asymmetry [39] or de-
gree correlations [40]. Here we explore the effects of node
removal (here this removal means blocking nodes in the
gallery system) and compare them with both MST and
GT networks.

For each experiment, we have determined the evolution
of the relative size S of the largest connected component,
i.e. the fraction of nodes contained in it, with the fraction f
of disconnected nodes (1000 runs for each experiment) un-
der a random node removal or a selective removal of nodes
in decreasing order of their degree. We define the random
and selective robustness (fR and fs, respectively) as the
values of f required for S to reach the value S = 0.5 in
each type of removal.

The fragmentation curves are similar in all gallery net-
works analysed (Fig. 4a). The decrease of S is relatively
slow when nodes are randomly disconnected, while it is
very fast-decaying when higher degrees are disconnected
first. This property is very different from what is observed
in a classical random graph, where the decrease of S is
similar under both random and selective removal of nodes.
Indeed, it is also different from the fragmentation curves of
the MST and GT networks, where the initial decrease of S
is similar under random and selective removal of nodes
(Fig. 4b).

The specific behavior of fragmentation observed in the
networks of galleries may come from a certain level of het-
erogeneity in the structure of these networks. Indeed there
is a significant correlation between fR and ξ (r = 0.629;
N = 17; p = 0.005), indicating that robustness increases
with the skewedness of degree distribution, as expected.
It is also interesting to note that the random robustness

Fig. 4. (a) Galleries’ network fragmentation, measured by
the relative size of the largest component S, under random
(black curves) and selective (grey curves) removal of a fraction
of nodes f . (b) Fragmentation of the MST (downward trian-
gles) and GT networks (upward triangles) corresponding to
the experiment #4 under random (open symbols) and selec-
tive (closed symbols) removal of nodes. (c) Relation between
the robustness to random node removal fR and the network
size n. fR is independent of n both in the GT (upward trian-
gles) and the galleries’ networks (circles), while it decreases as
a power law in the MST networks (downward triangles).
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Fig. 5. Relation between relative cost c, relative robustness f∗
R

(open circles) and relative geometrical global efficiency E∗
glob,G

(closed circles). The down-left corner (coordinates 0,0) corre-
sponds to the cost, robustness and efficiency of the MST while
the coordinates (1,1) would correspond to these characteristics
in a GT network.

is independent of network size n both in the networks of
galleries and in greedy triangulations, while it decreases
with n in MST (Fig. 4c).

5 Network cost

In the networks of galleries, the counterpart of an increase
in Eglob and random robustness fR may be an increase in
length, which would also correspond to an increase in the
cost of construction. Given a set of n nodes, the shortest
network that connects all nodes correspond to the minimal
spanning tree, while a maximal cost is met with GT net-
works. We thus defined a normalized cost measure as

c =
LEXP − LMST

LGT − LMST
, (4)

where LEXP , LMST and LGT correspond respectively to
the total length of the network in the experiment, the cor-
responding minimal spanning tree and the greedy triangu-
lation. Accordingly, we calculate a normalized E∗

glob,G and
f∗

R between the MST and the GT defined respectively as:

E∗
glob,G =

EEXP
glob,G − EMST

glob,G

EGT
glob,G − EMST

glob,G

(5)

and

f∗
R =

fEXP
R − fMST

R

fGT
R − fMST

R

. (6)

Network cost varies from values close to the MST cost
(minimal observed c = 0.067) to values that did not exceed
half the triangulation cost (maximal observed c = 0.410).
However, as E∗

glob and f∗
R increase faster than the cost

(Fig. 5), high level of path system efficiency and robust-
ness can be reached with a slight increase in cost.

6 Discussion

Ant networks of galleries provide a well-defined example
of a self-organized graph resulting from a set of parallel
distributed decisions made by a set of simple agents. The
problem considered here is relevant in a number of ways.
The first is its planar character, not shared by other previ-
ously analyzed graphs embedded on two-dimensional do-
mains [41,42]. The second major difference arises from
the dynamics of its evolution. Instead of having a dy-
namics based on multiplicative processes (such as pref-
erential attachment) or top-down (global) optimization, a
spatially localized set of interactions among ants and the
gallery structure leads to a final, stationary graph with
well-defined properties. The key results obtained from our
study can be summarized as follows:

(1) The gallery networks display a single-scale, expo-
nential degree distributed. Such distribution is largely con-
strained by the spatial constraints imposed by the two-
dimensional setting.

(2) In the largest networks, the characteristics of the
path system and their fragmentation under node removal
are closer to the one of a triangulated network though
their cost is closer to the one a tree.

(3) These networks exhibit resilience to random dis-
connections but vulnerability to the preferential removal
of high-degree vertices, while classical random graphs ex-
hibit no difference in their robustness to these different
processes of disconnection. The origin of these properties
were thus first considered as unique features of the scale-
free networks, However, it was also observed in food-webs
with single-scaled degree distributions, and our results
suggest further that it may be linked with a more generic
characteristic of real networks that may be the asymmet-
ric nature of their link patterning [39]. Indeed, we have
observed that robustness increased with the skewedness
of the degree distribution.

(4) Efficiency is reached by increasing the meshedness,
that is, in the networks of galleries, by merging trees. Such
spatial patterning might be related to evolutionary pres-
sures (see below).

(5) The origin of these similarities with triangulated
networks may rely in the structure of cycles. When the
network size increases, tree structures rapidly lose much
efficiency and robustness. However, the introduction of a
small amount of cycles, as our results suggested, may be
sufficient to suppress or slow down size effects. In this
study, we have introduced a meshedness coefficient based
on the Euler relation. It is easy to compute, but it is
not possible to generalize this measure to non-planar net-
works. The importance of the structure of cycles has been
recently suggested as a possible major trait of the topo-
logical organization of complex networks [23,43,44]. A key
issue will consist in developing generic methods address-
ing this question in networks regardless of their nature,
and to determine if there exist common properties in the
structure of cycles in different real world networks.

In underground ant [17,45] and termite nests [46], or in
the burrowing system of rodents such as mole-rats [47,48],
networks of galleries evolved from simple trees to mesh
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networks. This increase in the nest complexity is gener-
ally correlated with the increase of the nest size and the
number of individuals in the colony [17,45,46]. Since these
networks are the topological scenario where the life of the
colony takes place, large nests with thousands or even mil-
lions of individuals are likely to display some invariant
adaptive properties in their topology. Paradoxically, the
absence of methods to characterize complex networks has
long resulted in considering the large networks of galleries
as amorphous structures lacking any apparent regularities
in comparison with above ground nests [17,21,49]. As we
have shown, complex network methods may reveal some
invariant properties of these nests and open an insight
about functional aspects of their topology in terms of ro-
bustness, displacements and communication efficiency. Fu-
ture work should explore the possibility of an optimization
process under a number of constraints and how the inter-
play of efficiency, robustness and cost might have shaped
their structure.
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