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Abstract
A fundamental limitation of classical science was its inability to explain how order could emerge out of uncertainty and

indeterminism. The approach to solving this dilemma has been to develop theories of how properties of aggregated systems arise

from the properties and interactions of their parts. The basic assumption of such ideas is that there is a tension between the

tendency of an aggregated system to change and the constraints that are imposed upon that system by virtue of the behavior of

and interactions among the parts. The balance between constraint and change gives rise to a hierarchy of aggregated structures

that exhibit regular, repeatable attributes to the degree that constraints are able to maintain change across time within boundaries

that define the nature of the structure. This basic view of causality in complex systems suggests an approach to defining a

statistical mechanics for ecological systems that can be used to generate new theoretical descriptions of biological diversity. This

approach is illustrated by introducing the idea of a ‘‘geographic population system’’ of a species and illustrating how change and

constraints interact within this system to determine statistical properties such as geographic range size, and mean-variance

scalings. The concept of a geographic population system is then used to develop alternative descriptions of the kinetics of

biological diversity. Assuming that these alternatives are complimentary, it is possible to develop a general description for

biological diversity that shows how lower level change (geographical population dynamics of species) are constrained by the

environment and genetic systems of species to determine rates of origination and extinction of taxa over long periods of time.

# 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Classical science was based on the assumption that

nature worked according to fixed laws in a machine-like

manner. The mechanical view of nature implied that if

one knew all the laws of nature and the locations of

every object contained in it, one could perfectly predict
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what would happen in the future as well as construct a

perfect description of the past. This thinking was

applied to biology in the form of the natural theology

of Paley. Organisms were viewed as being designed

to fulfill specific roles in nature, and the whole of

biological nature was organized into a series of more

complicated designs with humans at the pinnacle, being

the most perfectly organized of all species.

Thermodynamics forced upon science the realiza-

tion that no machine was perfectly efficient. There-
d.
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fore, it was not possible to perfectly reconstruct the

past or predict the future from a single snapshot. More

information was needed since events could not be

specified with perfect precision. Thermodynamics

required an ‘‘arrow of time’’ that pointed from the

past to the future. Quantum physics introduced the

notion that the universe contained a large degree of

uncertainty that could never be removed, regardless

of how much information one had about the state of

the universe. Recent understanding of nonlinear

systems, particularly those that exhibit chaos, rein-

forced the idea that perfect understanding of the

past and the future was fundamentally impossible.

These notions forced physicists to rethink how events

occur in time and space. Rather than being a perfect

machine, nature was seen to be full of uncertainty,

unpredictability, and contingency. Despite this, order

is found in abundance in nature at all levels, from

physical to biological. This is because physical and

biological laws are probabilistic, and emerge only at

certain scales and under certain conditions.

In ecology, the first theoretical constructs used to

describe ecological systems were based on the same

kind of models used in classical science. Rather than

being probabilistic, these models were completely

deterministic. They proved to be of limited utility

because ecological systems are full of uncertainty,

unpredictability, and contingency. This left some

ecologists claiming that ecology is devoid of laws

(e.g., Peters, 1991). The absence of ecological laws,

however, is due to the fact the ecologists have failed to

apply appropriate techniques to elucidate any laws

that might exist.

The approach needed to discover ecological laws, if

they exist, requires the recognition that ecological

systems are complex, aggregated systems, that is, they

are composed of many interacting parts. Such systems

are not devoid of order, in fact simply being

aggregated implies a kind of hierarchical order exists.

It turns out that all physical systems are also complex,

aggregated systems, and many of these demonstrate

exceedingly law-like behavior. Seventy five years ago,

Lotka (1925) suggested that complex biological

aggregates could be described using a generalized

version of statistical mechanics. In this chapter, I

explore Lotka’s suggestion further by considering how

complex aggregated systems develop order, then

applying these insights to develop a statistical
mechanics useful for analyzing geographical popula-

tions of species and the evolution of biological

diversity.
2. The nature of aggregated systems

The basic premise that I assume to underlie any

description of a system as an aggregate of smaller

systems is that there are two fundamental influences on

aggregate behavior, namely (1) energy flows within and

across the aggregate’s boundaries, and (2) constraints

on the possible configurations that those energy flows

can impose upon the aggregate. From these two

influences, aggregate behaviors arise that converge on a

gradient of possible outcomes, each dependent upon the

relative balance between energy flux and constraint.

At one end the spectrum are simple outcomes that can

be catalogued and described with relative ease. Such

systems are dominated by constraint. At the other end

are outcomes so complex that no human mind can

possibly comprehend them. These systems are domi-

nated by energy flux and change.

In order to understand complexity, one needs to

begin with some assumptions regarding how nature is,

in fact, put together. These assumptions eventually,

with the collection of enough data, give rise to

theories, and eventually for some phenomena, laws.

Assumptions, theories, and laws, however, are all

ultimately constructions of human minds. What

matters is not whether these constructs are ‘‘true’’

or not, but whether they are ‘‘useful’’ (Geise, 1998). I

begin with what I believe is a somewhat general

description of how an aggregated system ought to

work. This description lays out what I take as a set of

fundamental assumptions about nature.

How does the behavior of an aggregated system

arise from the interaction of the energy imparted to it

by the collective motions of the parts that make it up

and the constraints that operate to restrict those

motions? The existence of movements of the parts of

an aggregated system implies that there will be

changes in aggregate behavior. That is, systems are

assumed to be in a constant state of change, albeit on

different time scales, and these changes will continue

until the universe (or a subset of it) attains a state of

maximum entropy. Constraints are imposed on energy

flows in systems by a variety of mechanisms.
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Fig. 1. (A) Approximate numbers of aggregated objects in the

universe as a function of their radius. (B) Approximate numbers

of species of multicellular animals as a function of size, based on

May (1978) data. Open circles represent data for the two smallest

size classes that were not included in the calculation of the power

law. Note that data are plotted on the same scale as in A. Numbers of

species of smaller organisms used to calculate the power law are

very likely to be underestimates (May, 1988), so that the exponent of

the power law is most likely much higher.
Ultimately, constraints are imposed on all physical

systems by the four fundamental forces of gravity,

electromagnetism, and the strong and weak nuclear

forces and by the laws of thermodynamics. More

proximately, there are constraints that arise from the

spatial configuration and interactions among system

components and from interactions of system compo-

nents with physical structures that are not part of the

system.

Matter in the universe is not uniformly distributed,

if so, there would be no aggregates of different sizes

for scientists to study. Rather, matter clumps together

at different spatial and temporal scales. The gross

structure of these scales can be seen in the distribution

of different sized ‘‘particles’’ in the universe

(Fig. 1(A)). At the size scale of the biological world,

there are a diversity of sizes of living systems as well,

but the organization within and diversity among them

is apparently much more complex (Fig. 1(B)). Thus,

the universe as we know it can be defined by two axes:

one axis defines the range of sizes of different

aggregates, the second axis defines the range of

complexity of aggregates of a given size (Barrow,

1998). The complexity axis describes simple physical

systems at one end and most biological systems

(including systems created by humans) at the other.

Biological complexity, at least on the surface, seems to

a very different kind of complexity than exists in non-

biological systems. This is most evident in our own

species, where the processes of biological evolution

have generated perhaps the most complex system

of all: the human brain and its products. Despite

appearances, there is a great deal in common with the

mechanisms that generate order in complex systems,

both biological and non-biological.
3. Emergence of order in complex systems

At the scale of quantum systems, we are faced with

the apparent paradox that there is a large degree of

uncertainty in the behavior of elementary particles, yet

they often form highly stable aggregates such as

atoms, molecules, crystals, etc. This paradox has given

rise to the famous ‘‘measurement problem’’, debated

by Einstein and Schrödinger (Lazyer, 1980; Nadeau

and Kafatos, 1999). The problem arises because the

properties of a particular particle, say a photon, are
probabilistic. A photon can occupy more than one

state, but it is uncertain which of those states the

particle occupies. However, when the particle is

measured, it is found to be in a specific state. This

implies that the measurement determines the actual

state that the particle occupies. Einstein argued

unsuccessfully that the probabilistic nature of particles

was actually due to a lack of information, rather than a

fundamental uncertainty in the way the particle

behaves. According to Einstein, any given particle

really exhibits deterministic behavior, but we do not

discover that behavior until the particle is measured.

The alternative to Einstein’s position is that the
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uncertainty of a particle’s behavior is an irreducible

quality of the particle until a measurement is made. If

measurements of particles determine their actual

states, then it follows that all macroscopic states are

indeterminate until an observer is present to measure

them. This is highly unsatisfactory if science is

supposed to be an objective, observer-independent

activity.

A variety of solutions to the measurement problem

have been suggested. Among these, Layzer (1990)

interpretation provides perhaps the most relevant

approach upon which to build an understanding of

ecological complexity. Layzer (1990) argued for what

he called the Strong Cosmological Principle. The

principle states that a complete description of the

universe can only contain statistical information. The

term ‘‘statistical information’’ as used by Layzer,

means that the properties of everything in the universe

are probabilistic. The probabilities define the nature of

the universe as a whole, and not the properties of any

particular subsystem we happen to measure. We

obtain a particular value for a measurement of a

specific subsystem in proportion to the relative

frequencies of possible values for measurements

taken on an infinite number of subsystems identical

to the one we happened to measure. What does it mean

when we obtain the same value for a measurement

over and over again? It means that the relative

frequency of that value in the universe is close enough

to one that there is a minuscule chance of obtaining

any other value. We can never be absolutely certain

that the same value will always be obtained, because

the properties of the universe that determine the value

we obtain are probabilistic.

Given this underlying probabilistic structure of the

universe, what implications does it have for under-

standing how order emerges in kind of complex

systems envisioned in the previous section? The most

important consequence is that the constraints imposed

on any complex system cannot be absolute, but must

probabilistic. This means that the effects and strength

of those constraints must vary from system to system,

and will also vary across space and time in the same

system. This variation will ensure the individuality of

each complex system. If this is true, then how do

regularities or laws develop? The behavior of classical

physical systems, in particular, appears to be highly

regular and repeatable. If each system is unique, why
should we expect the laws of classical physics to

explain anything? For example, a planet is a complex

aggregate of a large number of particles each with

indeterminate behavior. Why should Newton’s law of

gravity apply to its motion around a star?

The answer has to do with the structure of the

probability distributions underlying constraints on

systems. Constraints vary in their ‘‘strength’’ from

system to system. Strong constraints have high relative

frequencies, that is, systems experiencing such

constraints almost always behave the same way. Weak

constraints have probability distributions that allow for

a relatively large number of possible behaviors. With

respect to constraints, orderly behavior arises in two

ways, corresponding to what Schrödinger (1944)

referred to as ‘‘order from disorder’’ and ‘‘order from

order’’. Order arises from disorder in systems with

weak constraints. Order arises from order in systems

experiencing strong constraints.

Any description of a complex system begins by

defining what the components are that comprise the

system. Aggregates are often referred to as a

macroscopic entities, while the components are called

microscopic entities. The states of both macroscopic

and microscopic entities are determined by the

structure of the statistical distributions that describe

the range and relative frequencies of states that each

entity can occupy. The state that each microscopic

entity occupies is described by a variable, and the

collection of microscopic variables will behave

according to a probability distribution that describes

the likelihood of each variable occupying any

particular state. Likewise, the states occupied by

macroscopic entities can be represented by a smaller

number of macroscopic variables, each of which is

associated with a probability distribution derived from

the probabilistic behavior of the microscopic variables.

Order from disorder can only arise in systems

where the scale of microstates is vastly smaller than

the scale of macrostates. When this is true, the

contribution of each microstate variable to the

behavior of each macrostate variable is extremely

small. Spatial variation in microstate variables will

have little influence on the behavior of macrostate

variables, and temporal kinetics of microscopic

variables will be resolved so rapidly that they do

not impact macrostate kinetics. The tiny impact of any

one microstate variable on aggregate behavior in a
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sense ‘‘decouples’’ microscale fluctuations from

macrostate behavior. Imposing relatively mild con-

straints on the behavior of microstate variables will

lead to a sufficient amount of correlation among them

to ensure macrostate behavior that appears ‘‘determi-

nistic’’. Deterministic behavior in this sense means

spatially and temporally consistent behavior of

macrostate variables. In such systems, ‘‘cause’’ and

‘‘effect’’ relationships can exist among macrostate

variables because changes in behavior in one

macrostate variable will always (that is, with relative

frequency approaching one) produce the same effect

on other macrostate variables. Note that the mechan-

ism of these causes and effects may reside in complex

interactions among a vast number of microstate

variables. The number of microstate interactions

may be so large that it is impossible to establish

causes and effects among microstate variables.

Systems typified by large differences in micro and

macro scales are large number systems that have law-

like macroscopic behavior. The fact that quantum

uncertainties occur on scales vastly smaller than the

macrostate variables that form the basic structure of

classical physics allows for the existence of classical

mechanics where macroscopic aggregations of matter

can be described by precise, deterministic laws.

When the difference between micro and macro

scales are relatively small, deterministic behavior of

an aggregate may still arise if strong constraints

govern the kinetics of microscale variables. In such

systems, order arises because the constraints them-

selves are ordered. Strong constraints induce ‘‘coor-

dinated’’ behavior among microscale variables, that is,

all microstate variables behave in the same way

because there are a limited number of ‘‘choices’’

available by virtue of the constraints. Strong

constraints may be imposed upon the system from

within or without. Internal constraints arise when the

behavior of microstate variables is determined by

strong correlations among the attributes they possess

(i.e., from correlations among micro-microstate

variables). External constraints are imposed upon

microscale variables by the existence of interactions of

microscopic entities with entities not contained within

the macroscopic entities.

When micro and macro scales differ by relatively

few orders of magnitude and constraints on microstate

behavior are relatively relaxed, it is difficult to
establish clear deterministic patterns of cause-effect

relationships at either the macro or micro scales.

Systems like this are often called middle number

systems (Allen and Starr, 1982). Descriptions of

behavior in such systems often include ‘‘stochastic

effects’’ at either the macroscopic or microscopic

scales, or sometimes both. These stochastic effects can

be thought of as relatively simple mathematical

functions that summarize irrelevant complexity. The

decision about what complexity is relevant is often

arbitrary and may be made for a number of reasons.

Often, there may be several alternative descriptions for

the behavior of the system that differ in the amount of

detail and the weighting assigned to different

microstate variables.

The fact that multiple descriptions of a middle

number might exist offers a unique opportunity to

develop a more complete understanding of a complex

system by assuming that each description is ‘‘true’’.

That is, different descriptions of the system can be

viewed as complementary. By seeking commonalities

among complementary descriptions of complex

systems, a more complete understanding of such

systems might arise. In what follows, I apply this

principle of complementarity to the problem of the

evolution of biological diversity.
4. Statistical mechanics of ecological aggregates

The systems studied by ecologists are often

complex aggregates that operate as loosely-con-

strained middle number systems. Ecologists must

contend with fundamental problems of system

identification since arbitrary decisions must often be

made about how to define system boundaries. Because

of this, there is a tendency for ecologists to proliferate

hypotheses specific to individual, locally-defined

‘‘pseudo-systems’’ (i.e., the system being studied

has no recognizable boundaries other than those

imposed upon it by the observer). This has lead a

number of ecologists to seek more objective criteria by

which to recognize system boundaries (Allen and

Starr, 1982; O’Neill et al., 1986; Li, 2000). Aggrega-

tion is one way to establish ‘‘natural’’ boundaries: one

simply adds up sufficient number of organisms or

species until one has a large enough collection to

exhaust the range of possible boundaries (Brown and
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Maurer, 1989; Brown, 1995; Maurer, 1999). Once

such an aggregate is formed (conceptually), then the

problem is to define macroscopic properties of the

aggregates that provide a framework for causal

explanations (e.g., Brown and Maurer, 1987, 1989;

Maurer and Brown, 1988; Li, 2000, 2002).

Here I examine the evolution of biological diversity

from the viewpoint that evolving lineages of species

are aggregates of individual organisms that exist

within geographically restricted regions. Here, the

microsystem describes the behavior of individual

organisms, and the macrosystem describes the

behavior of large collections of genealogically related

species. I describe the statistical mechanics that relate

microsystem behaviors to macrosystem properties. I

begin with assumptions regarding the flows of energy

through organisms and the constraints that act on those

flows. From these assumptions, I show how the

macroscopic description of the aggregated system is

related conceptually to the constraints inherent in the

system and its environment. I begin describing the

geographical population system of an individual

species, then show how this description is related to

the description of the evolving species assemblage to

which it belongs.

4.1. Geographical population systems

For most plants and animals, it is relatively

straightforward to recognize individual species

(though there are many subtleties and complexities

in defining species boundaries). It is often even more

straightforward to identify the individual organisms

that comprise a species (though again there are some

important complexities for certain kinds of species).

The sum total of all individuals belonging to a single

species that are alive at a given time defines an

aggregate system that has relatively discrete, recog-

nizable spatial boundaries. These spatial boundaries

form the geographic range of the species, and the sum

total of all individuals within that range comprise the

geographical population system of the species. Are

the properties of such an aggregate law-like in any

empirically meaningful sense?

To derive a law-like description of the total

population of a species of plant or animal, we must

deal with the spatial context in which that population

exists. For a given species, individual organisms live
in an environment that shows considerable spatial

heterogeneity. Brown (1984) first proposed that the

variability in this environment must be spatially

autocorrelated, so that places close to one another tend

to have similar conditions. Initially, we will assume

that individual organisms within a species are more or

less identical with respect to their ability to tolerate

these environmental conditions. If this is true, then

there must be a small number of sets of conditions that

provide the best environment for individuals. Since the

environment is spatially autocorrelated, there will be a

few regions that provide the best conditions, and as

one travels away from the spatial locations containing

those conditions, the environment deteriorates with

respect to the ecological requirements of the species.

The spatial context in which a species exists, then,

provides a set of constraints on energy use by

individual organisms by constraining the abundance

and availability of appropriate energy sources and

habitat conditions. The rest of the necessary con-

straints needed to derive a statistical mechanics for the

aggregate come from the properties of the individual

organisms. Each organism represents a specific

realization of a set of genes in its cells. The genes

possessed by an organism are often thought of as

originating from a large ‘‘gene pool’’ that represents

the total number of genes that exist within the species.

Although the combination of genetic information in

each individual is unique, the packaging of genes on

chromosomes and the associated biochemical machin-

ery determining how that information is assembled on

new chromosomes during reproduction strongly

constrains the possible combinations of genes that

can be realized in any organism within a species. In

addition, constraints on gene expression operate as the

genetic program on the chromosomes is implemented

to build an organism over its life cycle. Given these

two sources of external (spatial context) and internal

(genetic and developmental) constraints, how do they

shape the flow of energy through the geographical

population to lead to law-like macroscopic properties?

Energy enters into a geographical population

system as individual organisms consume resources

in the environment. The energy thus obtained is

partitioned among two general processes. In multi-

cellular plants and animals, the first process is the use

of energy to build and maintain tissues and organ

systems. The set of energy transformations that
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underlie tissue accumulation and metabolism is vast

and complex. Consequently, a large fraction of the

energy diverted to these transformations is lost.

Eventually, the organism is unable to maintain the

complexly organized networks of energy transforma-

tions. Ultimately, the networks collapse and the

organism dies. The timing of this death is determined

by the external and internal constraints operating on

the individual given its spatial location within the

geographic range of the species. The other process to

which ingested energy is allocated is the production of

new, genetically similar copies of the organism.

Again, the networks of energy flows are complex

(especially in sexual organisms), but the end product

of the second process is the birth of one or more

individuals and their survival to reproductive age. The

birth–death process that is the end product of energy

flows through organisms has a negative feedback

component such that as more organisms are encoun-

tered during the lifetime of an organism, the lower the

net output of its birth–death process (the strength of

this density-dependent feedback varies considerably

from species to species).

Thus, the flow of energy through a geographical

population leads to a spatially varying, density

dependent birth–death process. The spatial boundaries

of the geographical population are determined by the

set of environmental conditions where the average

output of the birth–death process is less than or equal

to zero. Note that by this definition, the aggregate

(geographical population) has properties that are

spatially and temporally averaged. At any given point

in space and time the individual organisms observed

will be found in a discrete set of conditions defined by

their immediate nutritional state and point within their

life cycle. When sets of organisms are aggregated over

space and time, statistical populations are formed that

can be described by rates of birth and death. The

dynamics of the geographical population are deter-

mined by long-term patterns in these rates and the

degree to which they are spatially autocorrelated

across the geographic range.

Does the geographic population of a species act as a

single system or only as a haphazard collection of

individual populations? There are at least two major

processes that connect local populations together to

form aggregated geographic populations. First, the

process of migration among local populations can
potentially correlate the dynamics among individual

populations. The degree to which this occurs depends

on the adaptations for dispersal that individual

organisms posses and on any environmental barriers

to migration. At one extreme, there might be complete

panmixis so that a single description might be used to

characterize the entire geographic population of the

species. At the other extreme, individual local

populations might be completely isolated from all

other populations so that each population would

require a single description. Most geographic popula-

tions will fall somewhere in between these extremes,

so that a migration component is needed to describe

the dynamics of each local population. Migration is

often most important in the description of geographi-

cal population dynamics when the population is

moving spatially, such as when a species is spreading

across a newly colonized landscape (Lele et al., 1999).

A second major process that can integrate

dynamics of local populations into a geographical

population is geographic variation in population vital

rates (Pulliam, 2000; Maurer and Taper, 2002). The

origin of this variation lies in the fact that the

genetically determined attributes of organisms in a

species are limited to a relatively small set of

environmental conditions in which they can produce

energy for survival and reproduction. Since the

environment in which these organisms exist is

spatially autocorrelated, it follows that locations

where the species can maintain viable populations

will be clustered together in geographic space (Brown,

1984; Maurer, 1999). Geographic patterns in popula-

tion vital rates reflect this clustering (Maurer and

Taper, 2002). For example, for some species, stable

geographic range boundaries may arise because

populations at the range boundary have low resilience

and high intraspecific competition (Maurer and Taper,

2002).

Geographic ranges can be considered to be

macroscopic systems because the dynamics of

populations within the range are coordinated by both

internal constraints (adaptations of individuals within

populations) and external constraints (geographic

variation in environmental conditions). A number of

macroscopic attributes of geographic ranges arise

from this coordination. Geographic range size, shape,

orientation and location are statistical attributes of

geographic ranges that vary among closely related
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Fig. 2. A typical power law describing the relationship between variances and means of local population abundance for the red-eyed Vireo

(Aves, Vireo olivaceus). Data were obtained from standardized censuses of the species during the breeding season conducted over 33 years (see

Maurer and Taper, 2002 for details). Only censuses spanning the entire census period were used. This relationship is typical of those found for

most animal populations (Taylor, 1961).
species (Maurer, 1994). Each of these attributes result

from coordinated population dynamics across the

range of a species. Statistical power laws relating

means and variances of populations across the

geographic range of a species (Fig. 2) result from

geographic variation in population processes (Maurer

and Taper, 2002; G.M. Nesslage, personal commu-

nication). These power laws indicate how geographic

variation in population processes leads to the

formation of range boundaries (Maurer and Taper,

2002).

4.2. A statistical mechanics for the evolution of

biological diversity

In the last section, we saw how energy flows

through geographical population systems are con-

strained by environmental and genetic properties of

individual organisms so that the geographical popula-

tion develops statistical attributes that describe its

spatial distribution in terms of constraints on local

population behavior. These constraints apply as long

as there is no significant change in the genetical or

environmental properties of the geographical popula-

tion system. Short term environmental or genetic
fluctuations may not change the system, but over

evolutionary time scales, we know that both environ-

ments and gene pools change substantially. When

examining the fossil record, it is clear that species with

new genetic properties appear from time to time and

that species existing at one time period eventually

become extinct. Ensembles of related species, referred

to as clades, undergo a birth–death process on

evolutionary time scales. This speciation-extinction

process must be the cumulative outcome of changes in

geographical population systems of different species.

Shifting environmental conditions that result from

long term patterns of climate change will change the

constraints that operate on collections of different

geographical populations. Some of this change is

purely ecological (e.g., shifts in range boundaries) and

some must involve changes in genetic information

(e.g., speciation).

In this section I examine the evolution of biological

diversity from a statistical mechanical viewpoint. The

macroscopic description is obtained by modeling the

additions and deletions of species as viewed from the

fossil record. The microscopic description is devel-

oped from the dynamics of geographical populations

as they change over evolutionary time. The parameters
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of the macroscopic model of diversification are shown

to be averages across species of the processes of

evolutionary change within and among geographical

populations.

4.2.1. Macroscopic model of diversification

Envision the number of species in a geographic

region at a given point in time, t, as a list of species

drawn from a species pool of size Smax. Let the ith

species in the pool be represented by a binary variable

Xi(t), where Xi(t) = 1 if the species is present at time t,

and Xi(t) = 0 otherwise, where i = 1,2, . . . Smax.

Species i is present at time t with probability pi.

The number of species present at time t is

SðtÞ ¼
P

i XiðtÞ, and the expected value of S(t) is

E½SðtÞ� ¼ S ¼
P

i pi. Thus, the rate of change in

average number of species over time can be written as:

dS

dt
¼

XSmax

i¼1

dpi

dt
(1)

Four processes determine the presence or absence

of a species, and therefore pi: (1) a species will be

present at time t if it has originated by speciation with

probability zi dt; (2) it may invade the region with

probability ii dt; (3) it may become locally extirpated

within the region with probability ei dt; and (4) it may

become extinct globally with probability ji dt. The

instantaneous rate of species i being added to the biota

is li dt = zi dt + ii dt, and the instantaneous rate of

species being deleted is mt dt = ei dt + ji dt. Thus, we

have dpi = li dt � mt dt. The average instantaneous

rate of additions across species is l dt ¼
P

ðli dtÞ=S,

and the average instantaneous rate of deletions is

m dt ¼
P

ðmi dtÞ=S. Therefore, the rate of change in

average species number becomes

dS

dt
¼ Sðl� mÞ (2)

Typically, the instantaneous rates of additions and

deletions for any given species are assumed to depend

on the number of species present (Sepkoski, 1978,

1979, 1984; Walker, 1985; Maurer, 1989, 1999; Alroy,

1998; Maurer and Nott, 1998). If this species-richness

dependence is slight or nonexistent, then S increases or

decreases exponentially (Stanley, 1979; Raup, 1985).

Eq. (2) is a macroscopic description of the kinetics of

the average number of species. It can be parameterized

with data from the fossil record (Sepkoski, 1978,
1979, 1984; Alroy, 1998). The important result that

emerges from Eq. (2) is that the species richness of a

clade depends on the difference in the per capita rates

of additions and deletions (Maurer, 1989, 1999; Alroy,

1998; Maurer and Nott, 1998).

4.2.2. Microscopic model: ecological processes

In order to model the dynamics of species richness,

one must define what one means by species. Initially,

assume that species are discrete entities comprised of

genetically related individuals who are reproductively

isolated from individuals in other species. Further,

assume that the geographic population of a species is

composed of a large number of ecologically equiva-

lent individuals. These two assumptions allow us to

emphasize the role that ecological processes affecting

population dynamics play in the diversification

process. Later, the model will be expanded to examine

populations composed of a number of different

subpopulations that interact with the environment in

different ways.

Assume that on a continent at a given point of time,

t, there are sufficient resources to support N(t)

individuals. The abundance of species i at time t is

Ni(t), and NðtÞ ¼
P

NiðtÞ. Note that some species will

have zero abundance. As before, let each species be

represented by a binary variable Xi(t), where Xi(t) = 1

if Ni(t) > 0, and Xi(t) = 0 if Ni(t) = 0. The presence or

absence of a species can be considered to depend on its

own abundance and, since we have the constraint

NðtÞ ¼
P

NiðtÞ, on the abundances of other species as

well. The average number of species is, as before,

S ¼
P

piðtÞ but now we assume explicitly that the

probability of a species being present at time t depends

on abundances of other species, so pi = fi(N), where N
is a vector of the total abundances of all species. Thus,

by the chain rule, Eq. (1) becomes

dS

dt
¼

XSmax

i¼1

XSmax

j¼1

@pi

@Nj

dNj

dt
(3)

Eq. (3) represents a microscopic description of the

kinetics of average number of species. The partial

derivatives connect processes occurring over ecologi-

cal time scales (population dynamics of individual

species across their entire range) with processes occur-

ring over evolutionary time scales (additions and

deletions of species).
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To understand how the dynamics of geographical

population abundance might affect additions and

deletions of species, we require some idea of how total

population abundances change over time. We assume

that the population abundance of species j is a function

of abundances of all other species in the clade. At each

point within the geographic range of a species, there is

a changing population density. Let x represent a

location within the geographic range, then population

density of species j at that point is nj(x,n,t), where n is

the vector of species densities at location x. If Aj(N,t)

represents the area of the geographic range of species

j, then the kinetics of abundance of species j is

dNj

dt
¼ d

dt

Z AjðN;tÞ

0

njðx; n; tÞdx (4)

Note that the integral sums local population

densities across the geographic range of the species.

Note also that the size of the range is assumed to be

affected by the abundances of other species in the

clade. From Eq. (4), it follows that there are two sets of

ecological processes that determine the rate of change

in abundance: (1) local population dynamics that

change densities at different locations within the

geographic range (dnj/dt); and (2) dispersal dynamics

that change the size and spatial configuration of the

geographic range of a species (dAj/dt). Obviously,

these two sets of processes interact. There will be

diffusion of individuals among local sites, and if many

individuals are produced in excess, the size of the

range might increase as these individuals disperse into

previously unoccupied geographic regions. Further-

more, when ecological conditions are severe, popula-

tion density will drop to zero in regions previously

occupied by the species, shrinking the size of the

geographic range. The patterns of population density

of interacting species will modify the kinetics of

population abundance by providing resistance (or

facilitation) to dispersal, and by limiting the popula-

tion density within local sites.

The model outlined above is sufficiently complex

that developing specific functional forms for abun-

dance kinetics will present a great challenge. There

have been a few studies that have attempted to

estimate abundance kinetics for species invading new

geographic regions (van den Bosch et al., 1992; Veit

and Lewis, 1996; Lele et al., 1999), but these are not
sufficient to understand the role a species plays in

diversity dynamics.

4.2.3. Microscopic model: genetic processes

Consider now a population that is composed of a

number of distinct ecotypes. Each ecotype is

composed of a set of genetically related individuals

that interact with the environment in the same way and

share the same genetic history. Empirically, these

ecotypes can be recognized by a characteristic aspect

of their genome, such as a haplotype. At time t, we

assume that there are Gj(t) such ecotypes in species j.

The population density of the kth ecotype in all

populations within the geographic range is njk(t).

Thus, the population density in Eq. (4) becomes

njðtÞ ¼
P

k njkðtÞ, k = 1,2, . . . Gj(t). Essentially the

same kind of dynamics envisioned for species above

can be applied to the dynamics in the number of

ecotypes. Thus, we assume that there is a maximum

number of ecotypes that can be generated by a species,

say Gjmax. Then the number of ecotypes at time t can

be represented by the sum of a set of binary variables

Yjk(t), where Yjk(t) = 1 if njk(t) > 0, and Yjk(t) = 0

otherwise. The probability of the kth ecotype

appearing in the population at time t is pjk(t).

The average number of ecotypes is then E½GjðtÞ� ¼
Gj ¼

P
k pjkðtÞ, so the dynamics of the average

number of ecotypes can be written as:

dGj

dt
¼

X
k

dpjk

dt
(5)

Several processes influence the additions and

deletions of ecotypes. Additions occur by genetic

processes of mutation and recombination, and by gene

flow among populations. Deletions occur when an

ecotype goes extinct globally or is locally extirpated.

These processes depend on the spatial distribution of

ecotypes across the geographic range of a species.

There are two extremes along a continuum of

possibilities. At one extreme, each ecotype is spatially

isolated from all other ecotypes, and migration among

ecotypes is rare. Thus, each ecotype forms a distinct

subpopulation that undergoes its own population

dynamics, and genetically represents spatially a

distinct deme. These demes can diverge genetically

by selection and drift if gene flow is low enough.

Demographically, each deme will generally have a

small population size, and thus will persist over a
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shorter period of ecological time than the entire

population. This extreme is a Wrightian population

structure. At the other extreme, ecotypes will be

widely distributed and may exchange genes to a

certain degree. If the panmixis is complete and the

species is sexual and outcrossing, then each individual

represents a unique ecotype. This extreme is a

Fisherian population structure. Any real species will

have a population structure in between these extremes.

The degree to which a species maintains either a

Wrightian or Fisherian population structure will have

a profound influence on the dynamics of ecotypes over

time.

When there is significant genetic structure to the

geographic range, then the dynamics of species

richness will be determined by the complex demo-

graphy of the ecotypes of each species as they interact

with the environment and with each other. The

dynamics of the geographic population of each species

is determined by both the spatial and genetic structure

of their respective geographical populations. The

dynamics of average species number over time then

becomes

dS

dt
¼

XSmax

i¼1

XSmax

j¼1

@pi

@Nj

d

dt

Z AjðN;tÞ

0

Z Gj

0

njuðx; n; tÞdu

� �
dx

" #

(6)

where i,j = 1,2, . . . Smax. Note that population density

at any one site must be summed across all ecotypes

that exist at that location. Gj is the average number of

ecotypes in the population, which is constantly chan-

ging over evolutionary time.

In addition to the two ecological processes

responsible for the dynamics of population size of

each species (i.e., local population dynamics and

dispersal), a third process is added: genetic differ-

entiation of ecotypes (dGj/dt). Dispersal in Eq. (6) not

only has ecological consequences, but it is responsible

for the genetic structure of the geographic population

as well. The rate at which new ecotypes are produced

is profoundly affected by this structure. All else being

equal, the more Wrightian genetic structure a species

exhibits, the lower the number of ecotypes that will be

found within a population. The rate of extinction or

extirpation of ecotypes increases with population

subdivision because the rate of extinction of entire

subpopulations is increased (due to low population
size). Furthermore, as genetic variation erodes in local

subpopulations, the probability of generating new

ecotypes by recombination decreases. Thus, the

difference in the rate of per ecotype additions and

deletions will be smaller, leading to fewer average

numbers of ecotypes in the population. In populations

with more Fisherian structures, loss of genetic

variation by drift and extinction decreases and

production of new ecotypes by recombination

increases with increasing gene flow. The rate of

origin of new species increases with increases in the

rate of production of new ecotypes within species.

The structure of Eq. (6) implicitly includes the

process of natural selection. This can be seen by

considering the population dynamics of different

ecotypes. Ecotypes that combine attributes in their

phenotype that provide a better match for the

resources found within the geographic range will

produce more offspring. To the degree that these

attributes are based on genotypes, offspring of the

more successful ecotypes will inherit them, leading to

proliferation of those genotypes and the reduction of

genotypes that produce less ecologically successful

ecotypes. Over time, natural selection may indirectly

modify population structure by changes in relative

frequencies of dispersal strategies. This would then

change the genetic structure of the geographic range.

4.2.4. Relationship between the microscopic and

macroscopic descriptions

Eqs. (2) and (6) provide complementary descrip-

tions for the evolution of average number of species

within a group of related species. The meaning of the

macroscopic parameters (additions and deletions of

species in the fossil record) is seen by setting those to

descriptions equal to one another, from which follows:

l� m ¼S�1
XSmax

i¼1

XSmax

j¼1

@pi

@Nj

� d

dt

Z AjðN;tÞ

0

Z Gj

0

njuðx; n; tÞdu

� �
dx

" #
(7)

Thus, rates of additions and deletions of species

from a sequence of fossil forms over evolutionary time

are averages across species of the consequences of

genetic and ecological processes occurring within the

geographical populations of the species involved.
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From Eq. (7) we can draw some conclusions about

the process of evolutionary diversification. Since the

genetic structure of populations determines the rates

of increase and decrease of ecotypes, it follows that

genetic structures that increase rates of production of

ecotypes or decrease their loss from the geographic

population will increase the rate of diversification.

Thus, clades that are collections of species with highly

subdivided populations will tend to generate fewer

species over time than those will lower subdivision.

This conclusion follows from the ecological con-

sequences of population subdivision. Smaller, more

isolated subpopulations that represent distinct eco-

types will have shorter persistence times than larger,

and less isolated subpopulations. Although population

subdivision may enhance divergence among ecotypes,

ultimately, it is the ability of ecotypes to persist over

relatively long periods of ecological time that will

influence the rates of speciation and extinction within

the evolving clade.

What I have shown, then, in this section, is that the

energy that enters into geographic populations of

organisms, over long periods of time, maintains

geographic populations within constraints imposed by

the environments and genetic systems of species of

species within evolving clades. The constraining

influence of the genetic systems of each species,

however, changes over time through the production of

new ecotypes, each of which has a different set of

optimal environmental conditions. Since environ-

ments change over evolutionary time, the composition

of ecotypes within species changes. Eventually, no

ecotype is found in a species that can survive under

current environmental conditions, and the species as a

whole goes extinct. Some species, however, produce

an ecotype, or combination of ecotypes that are

distinctive enough over evolutionary time to be

recognized as new species, and thus, a new species

is added to the clade. The spatial distribution of

ecotypes across the range of a species plays a crucial

role in determining the rate of production and loss of

ecotypes in that species. Groups of related species

within a clade will tend to have similar ecological

attributes, and thus have similar types of spatial

population structure and subdivision. Thus, the rate of

change of species within a clade will be distinctive for

that clade in the same way that the dynamics of

population change will be distinctive for each species.
The statistical mechanics outlined in this section

indicates that the general properties of the evolu-

tionary process that has generated such a diversity of

different kinds of plants and animals shares much in

common with other complex systems. The details of

what kinds of species are generated can vary

substantially among different evolutionary lineages,

yet a single macroscopic description suffices to

describe the dynamics of diversification of all

lineages. I emphasize that the statistical mechanics

outlined above does not specify the particular outcome

of the process for a specified group of related species.

Rather, the model describes the general constraints

within which the evolutionary process must occur. It

can generate testable predictions. With a sufficiently

detailed knowledge of the microscopic processes

underlying the diversification of different clades, it is

possible to predict a priori which clades will sustain

the most species. For example, clades that contain

widespread and abundant species tend to generate

more species over evolutionary time than those with

narrowly distributed species (Maurer, 1999).

Two important points should be noted about the

model described in this section. First, the model does

not require specification of the detailed molecular

biology underlying the generation of new ecotypes.

The mechanisms that underlie the generation of

genetic diversity within a species form a complex

system that is probably poorly known for many

species. Certainly chromosomal structure and func-

tion will contribute to the generation of genetic

diversity through processes like recombination, gene

duplication, and movement of genes among chromo-

somes. The degree to which these processes are

regulated is poorly understood (e.g., Lazyer, 1980;

Dover, 1982). These genomic processes interact with

ecological patterns of population subdivision to

determine how the diversification of ecotypes within

species proceeds for a given clade. Second, the model

described above corresponds closely to the patterns of

subdivision of seen within species. The growing

science of phylogeography (Avise, 2000) is amassing

a great deal of evidence regarding the geographic

distribution of distinct lineages within species. These

lineages correspond to the ‘‘ecotypes’’ described by

the model. The more we understand about the

phylogenetic structure of geographical populations,

the greater our ability will become to begin to quantify
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the microscopic processes underlying macroevolu-

tion.
1 A distinction must be made between the ‘‘statistical entropy’’

of the declining population that describes the number of possible

states the population can occupy and the thermodynamic entropy of

the universe that contains it. Maximum statistical entropy of the

population can decline within the system because the matter and

energy that determine the value of that entropy are dissipated as

detritus and heat, increasing the thermodynamic entropy of the

universe.
5. Conclusions

The dynamics of geographical populations and the

process of biological diversification can both be

described in the same general way that one might

describe any complex physical system. By focusing on

energy flows that originate from organismal energy

intake, and how these flows are constrained by

environmental and genetic variation among individuals

within species, it is possible to construct a statistical

mechanics that describes macroscopic properties of

these systems in terms of microscopic processes going

on within them. In this respect, complex ecological

systems can be thought of as exhibiting the same kinds

of law-like behavior shown by other complex physical

systems. Macroscopic order exists in ecological

systems for the same reasons it does in geophysical,

astronomical, and complex chemical systems. Order in

any complex system can be studied by examining

appropriate aggregates. For example, although no two

stars are identical, the outline of their physical evolution

emerges by examining the statistical properties of large

numbers of stars.

Biologists and ecologists have tended to emphasize

the uniqueness of living systems, arguing that they are

qualitatively different from other kinds of complex

systems. But, as Schrödinger (1944) pointed out, the

differences are not as great as they seem. Physical

order, as seen in the precise structure of crystals, for

example, has a statistical basis. Most precise physical

laws are precise at the macroscopic scale because they

apply to large number systems that often are governed

by strong constraints, not because they are not

statistical. This understanding allowed Schrödinger

(1944) to predict prior to the discovery of DNA that

the underlying order of living systems must be

attributable to an ‘‘aperiodic crystal’’, which is an apt

description of nucleic acids. What I have argued here

is that ecological aggregates, observed at appropriate

scales, exhibit statistical properties that describe an

underlying order not evident at smaller scales (Brown

and Maurer, 1989; Brown, 1995; Maurer, 1999). An

understanding of this order produces macroecological

laws that are empirically tractable and can produce
testable predictions. These laws should be considered

models that produce descriptions of complex ecolo-

gical systems, and not universal truths. The degree to

which they are successful in producing a greater

understanding about these systems will determine

their ultimate usefulness.

The approach I have outlined in this chapter should

be applicable to other complex systems, particularly

those that are constrained by internal information,

such as a genetic system. Within the framework

outlined herein, information plays a relatively passive

role by establishing constraints within which the

dynamics of geographical populations occur. A

complementary approach would be to describe

population and genetic processes as information

systems, asking how information accumulates and is

dissipated over ecological and evolutionary time

scales. The general informational dynamic would

recognize that at any given point in time, a particular

population (or clade) would be found in a small subset

of states that it could possibly occupy. The ‘‘statistical

entropy’’of (or variability among) those states would

be smaller than the maximum possible. The difference

between maximum and realized statistical entropy can

be used as a measure of ecological or evolutionary

order (Frautschi, 1988; Layzer, 1988, 1990; Brooks

and Wiley, 1988). In diversifying systems, such as a

geographic population invading a new habitat, or a

clade experiencing an evolutionary radiation, the order

will increase as the realized statistical entropy

(variability) of the system lags behind the maximum

possible entropy. The extinction process would likely

show a general decline in maximum statistical

entropy1 in concert with the realized statistical entropy

of the system until the number of states available to the

evolving system are so small that persistence is

unlikely. If the realized entropy decays faster than the

maximum entropy, then, paradoxically, order could

continue to increase despite the increasing likelihood

of extinction.
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Ecological complexity is not devoid of order. With

suitable definition of appropriate aggregates, such

complexity can be treated as a statistical mechanical

problem. The macroscopic laws thus obtained can be

used to increase our understanding of the processes

contributing to that complexity, and with sufficient

data, might prove to usher in new theoretical treatments

of ecological phenomena that in the past have proved

difficult to study. The macroscopic laws described

herein are in fact, ecological generalities, but not

perhaps in the sense ecologists have looked for in the

past. They have in their formulation specific require-

ments about the scale at which they provide useful

scientific information. Inappropriate application of

these laws to systems or experiments carried out at

small scales will not provide useful tests of their

predictions. Rigorous definitions of appropriate aggre-

gates must precede any empirical treatment meant to

provide strong tests of the predictions that might be

derived from the models discussed herein. I anticipate

that as such rigor is applied the models presented

above, a greater understanding of ecological complex-

ity will emerge regardless of whether these models are

ultimately found to form a coherent theory or not.
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