

Contents

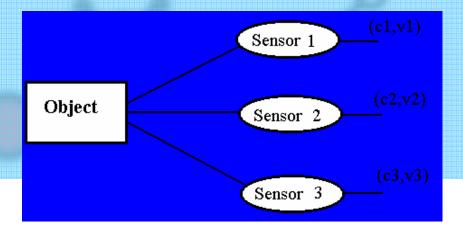
- Motivation
- Fundamentals
- Language Acquisition
- Game of Languages
- Experiments
- Conclusions

Motivation

- Communication and Cooperation in Multi-Agent Systems (MAS) play a key role in performing common tasks.
- Models and mechanisms are needed to support agents interacting in dynamic environments with no prior knowledge on others.
- Approach: a basic model to learn/acquire common language and meaning in a group of interacting agents.

Fundamentals

- Research comes from different areas, including:
 - Cognitive Science in which research on "origins of intelligence" has stated the "language" as evolutionary and cultural basic process to achieve adaptation (Game of Language).
 - Linguistics: Chomsky (LAD), Skinner (conditioning).
- Two main hypothesis:
 - 1. "Language is an adaptive and autonomous system arisen from a self-organizing process".
 - 2. "Language becomes complex spontaneously".


Language Acquisition

- The Problem: a group of agents must learn to agree common meanings for each message on a set of perceptions (signals).
- Goal: to provide concept-meaning associations to other agents, and to generate new concepts in the group and associate them with new meanings.
- Assumption: an agent (sender) wants to transmit some meaning for some concept "w". Other agent (receiver) has to decode that message "w" (according to its sensorial experience).

- Agents have a sensorial hierarchy which is shared by every agent, so all of them learn from the environment according to this organization (i.e. shape, color, ..).
- Each agent can be defined by categorizing the reality perceived by its sensors:

Basic elements:

- \checkmark A ={ $a_1, a_2, ..., a_m$ }: group of agents.
- ✓ $C = \{c_1, ..., c_n\}$: where $C_i = (f, v)$ states the feature ("f") and value ("v") for characteristic " C_i " (sensorial information).
- ✓ Lai : agent "ai" has a lexicon with a set of words "w"
 and associated characteristics.
- ✓ Some counters:
 - √ U(<c,w>,a): usage of association (c,w) by agent "a".
 - √ S(<c,w>,a): number of successes in which association (c,w)
 has successfully been used by agent "a"

- The most basic interaction activity is called a "Conversation".
- A Conversation involves a group of agents, concepts (i.e. words) and meanings.
- In order to establish this conversation, an agent (a sender) randomly chooses other agent (receiver).
- The sender selects an element from the environment to be used as the conversation's topic. 8

- Each interaction in every conversation proceeds as follows:
 - ✓ The sender's lexicon is not suitable: no word associated to perceived meaning, a new word is created, conversation fails and stops (S and U do not change)
 - ✓ The receiver's lexicon is not suitable: word sent by sender is not in lexicon (no association), word is associated to its perceived meaning, interaction stops (U is incremented).

- Each interaction in every conversation proceeds as follows:
 - ✓ The concept (word) has already a meaning for both sender and receiver:
 - The characteristic expected by the receiver is the same as received: both agents increment their U and S counters.
 - A feature associated with a receiver's word does not match the information perceived from its sensors: the receiver adds this word to its lexicon and a likely meaning provided from its sensors is linked to it, interactions stops and U is incremented.

- Cooperation relies on the agents' autonomy.
- These agents are autonomous in two senses:
 - There is no apriori language knowledge.
 - There is no explicit "teaching" of language by an external agent.
- We need a cooperation protocol to establish the basic "interaction".

Protocol

- Agents have only a basic set of skills needed to carry out the interaction.
- The "Learning" strategy is based on reinforcement provided by other agents.
- Counters (U and S) are used as a success metrics.
- There are four basic steps:
 - To make contact.
 - 2. To identify a topic.
 - 3. To sent/receive concepts (i.e. words).
 - 4. To send a feedback signal.

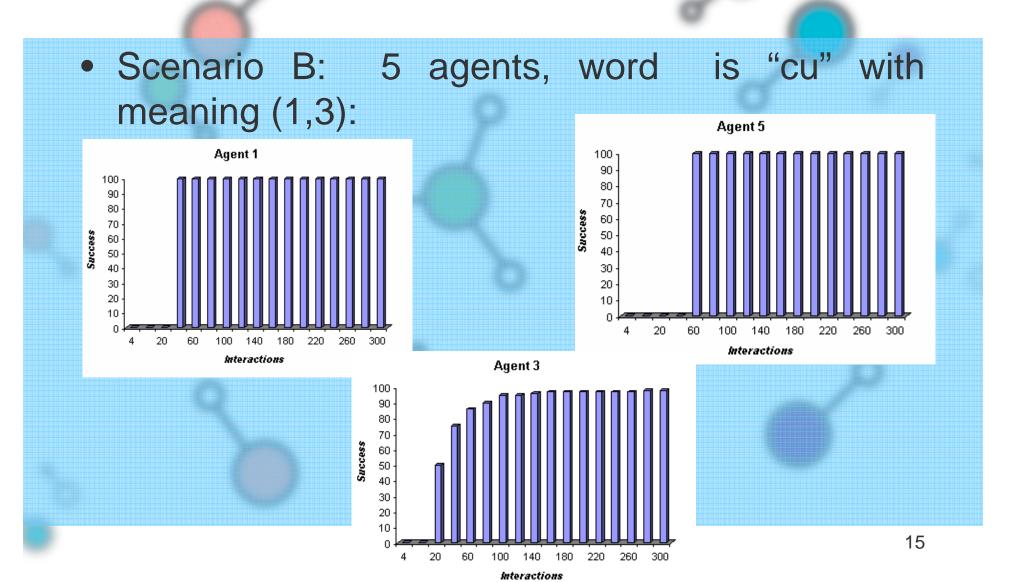
Experiments

- Some experiments were performed with a variable number of agents and characteristics.
- Aim: assess learning and cooperation capabilities to acquire and agree wordmeaning associations.
- Two scenarios for evaluation:
 - 1. The topic is the same for all the agents.
 - 2. A conversation has no constraints, anyone can become the sender, receiver, or topic.

Experiments and Results

 Scenario A: 3 agents, topic is on agent 3, random word "be" with meaning (1,1). Agent 2 Agent 1 8 10 12 14 16 18 20 40 60 80 10 12 14 16 18 20 40 60 80 Interactions Agent 3 Interactions

12 14 16 18 20 40 60 80


Interactions

8 10

Experiments and Results

Experiments and Results

Random lexicon for some selected agent:

Word	Charac.	Value	Success	Usage	Overall Success (%)
do	3	11	18	19	95
de	1	5	23	25	92
ga	3	2	33	37	89
ha	1	4	1	3	33
he	1	2	4	6	67
hi	2	8	9	14	64
ja	1	3	1	3	33
ka	1	4	4	4	100
ji	2	9	4	4	100
ki	1	4	3	3	100
fa	3	12	2	2	100

Synonyms!!

Conclusions

- Approach shows good results for modeling a language acquisition process in a society of agents.
- Some relationships: lexicon's characteristics vs agent's features, number of agents vs number of interactions (or time elapsed until some agreement is achieved).
- Some applications: robotic group tasks, modeling human language acquisition (cognitive science), internet, databases, etc.