

Diversity in Computer Systems

* Computer systems are becoming less diverse over time
— Architectures (Intel, Motorola)
— Operating systems (Unix/Linux varieties and Windows)
— Network protocols (TCP/IP at the top)
— Database managers (Oracle, PostgreSQL)

* Loss of diversity is even faster on higher layers
— Web applications

— Java

Consequences

o
(=}

* Ease of attack propagation

=
(=

* Full connectivity

1] m
= (=]

* Once an attack 1s successful, 1t will
be successful on a large proportion
of the network

Millions of Packets Per Second
5 8 8

=
=

=]

T T T T T T
1 i 3 &

* Example: Slammer (2003) s Mt e ot

=

— 90% of Internet was scanned in less
than 10 minutes

— A conservative estimate puts the total Savage et al. “Internet
Outbreaks: Epidemiology

number of infected hosts in around and Defenses”. Invited talk
100 thousand at NDSS 2005

Data from: Moore et al,
IEEE Security &
Privacy, 1 (4), 2003

Response solutions

* Engineered
— Patches
— Anti-{virus, spam, spyware}
— Intrusion Detection Systems
— Firewalls

— Content filters
* Very important, but reactive
* Arms race between attackers and defenders

Proactive defenses (?)

The biological analogy — Diversity provides population
resilience to unknown environmental threats

Introducing some automated diversity may provide
resilience against attacks exploiting undiscovered
vulnerabilities.

It 1s possible to artificially add diversity

Dealing with the lack of diversity

* Introducing diversity is not easy

* Uniformity provides many benefits:
— Ease of development and maintenance
— Interoperability
— Compatibility

* Total diversity is infeasible.

* We can introduce it at critical subsystems, but we need to be very
cautious:

— Diversity 1s never cheap (But neither is any security measure!)
* Implementation (one-time costs)

* Complex or sub-optimal procedures (sustained costs)

“Critical subsystems™

We can start by looking for invariants. Some examples:

— Return address “below” the variables (and there is a convenient
reading/writing direction)

— A function call lists parameters two words after the function entry address
— Heap allocations are done linearly
Most of them should not even be there!

Many of these invariants do not have any effect on attacks (yes, I was showing
good examples). In general it is NOT easy to find places for the
diversifications

Being more organized... diversity can be located:
— On the interface
— On the implementation

— On the defending systems

Interface diversification

« What is considered an “interface”?

Original location of procedure

— Any arbitrary convention on object

identification \
— Assignment of names or numbers to

routines, “standard” locations in memory or

dlSk’ etc. Randomized location of

« Interface diversification is also called in procedure

literature randomization and obfuscation

« Can use encryption tools to increase the
level of diversity

« Some interfaces that have been
randomized:
— Addresses
— Machine instructions
— System calls

— File names
. Legitimate
e Why does it work? - Oggram
— Attackers use standard names and (at the .\ . executes

beginning) do not know new mapping and
fail

Interface randomization with addresses

* First, a brief example of how a low-level attack might operate

Some well-known
memory location
‘—

—>
Some badly Return address has

checked variable been overwritten

stack

Return
address

When function returns,
it jumps to whatever address
the attacker has chosen

Interface randomization with addresses (cont’d)

* So, the randomization takes the “well-known’ location elsewhere...

stack

Return
address

Some badly
checked variable

Return address has :

been overwritten AN

T

Some well-known
memory location
‘—

Ja! Not there anymore
™~ Attack fails

When function returns,

it jumps to whatever address

the attacker has chosen

New (randomized)
location of code

‘—

Interface randomization with addresses (cont’d)

* Coarse grain address diversity:
— Programs use sets of code (libraries) that are situated in fixed locations
— The location of the libraries and other code blocks can be randomized
— Strategy is used in Linux (starting with PaX) and in Windows Vista

* Fine grain address diversity

— The addresses of objects inside the blocks can be further randomized
* Space between stack activation records
* Location of heap objects
* Location of procedures inside the block

— Bhatkar, S. et al, 2003, 2005, 2006.

Interface randomization with Machine Instructions
(ISR)

— Machine language 1s just another interface

— The general idea is to randomize at load and de-
randomize at fetch

* On software (using virtual machines)

— Barrantes et al, 2003, 2005, 2006, Kc et al, 2003,
Hu et al, 2006

* On hardware (decryption at cache line level)
— Duc et al, 2006, Wang et al, 2006.

Instruction Set Randomization example

Diversify the interface between the machine code interpreter and the
binary process.

Use an open source emulator (Valgrind), for the IA32 architecture on
the Linux OS.

Diversification strategy:

— Modification of the emulator to translate from standard 1A32
machine language to the diversified language and to recognize the
modified language at the time of execution.

— Randomization as mechanism for creating the customized
language.

Prototype name: Randomized Instruction Set Emulation (RISE).

Threat model

Code injection attacks: a vulnerability is used to write (“inject”)
hostile code (the attack) in the target process space, with
immediate or delayed execution.

Restricted to attacks that:
— Require execution of some machine code (binary)

— Execute remotely and/or have limited disclosure of current
process layout in memory

Approach: Make the machine code unique to each process, so

the binary attack will be expressed in the “wrong” language and
fail.

RISE operation

* Two phases:
(a) Randomizing the executable at load:
Creating a unique language
(b) De-randomizing instructions at fetch:

Interpreting the new language correctly

RISE operation (cont'd)

(a) Creating a unique language

Original code

Code as stored in process memory
ASSEMBLY CODE | ADDR. MACHINE CODE ADDR. RANDOMIZED MACHINE CODE

movl 0x0,(%esi) | 59: C7 06 00 00 00 00
movl 0, (%csi) | 59 7600 40009D59: @u A2 3C 98 F3
testl %edi Y%edi G2 85 FF 40009D5F: p 3F 37
jz—0 loc—i B4: 7479 40009D62: Of D9
= 40009D64: of 32

Code addresses: Machine code:

{40008D)58-5F: AF 06 00 00 00 00 83 STORE

| (10009D)E0-67: c4 1 85 FF 7479 C7 15

LOAD

Mask generatlon Code addresses:

(40009D)58-5F: CB E-E A2 IC 98 F3IO0E
(400090)60-67: FB 27 5326 E3 4B ES 31

——

RISE operation (cont'd)

(b) Interpreting the new language

Process memory (code address ranges):

Address Randomized machine code
40009D59: 74 30 A2 3C 98 F3
AQOQSDEF: 8D 3F A7

40009D62: Ds D9

40005D64: 97 32

"‘-.._____ f_' 1 . - — 1T
Fetch byte at address A “‘““HJ"_‘!D A=—A11 TES ey
e INnstruction complete? ‘
e

stop

Fetch mask for address A

:
B
D
M
4

Mask for addresses:

(40009D)58—5F:
(40009D)60-67:

CF BB 36 AZ 3C 98 F3 0OE
FB 27 53 26 E3 4B E9 31

Process memory (mask address ranges)

RISE operation (cont'd)

Randomized
binary code

:'»\N_i_nterpretation__/}

~Translation to
N UCode

—— . —'__,_,-o-__ T —
:@do@

Randomization
mask

RISE

B

—(Optimization —(Instrumentation >

Operation of RISE in Valgrind

Emulator cache

||||||||||||||| I
|||||||||||||||
||||||||||| =
A R L &
L I
R I

. .
| Dispatcher.J

;-"”":I'ranslatid'ﬁ“*-:
. tolA32
— é B - I.-..

Hardware ",
\ processor

RISE operation (cont'd)

Operation of RISE under attack

FProcess memory Code that the attacker intended
(injected code address ranges) to execute:
imp—8 0x1F(%eeip)
Address Injected machine code popl Y%esi
mowvl Yeesi, 0x08{Yesi)
BFFFF59&84: EB 1F worl Yoeax, Yeax
BFFFF59826: 5E movikr 2eal 0x07{25easi)

BFFFF5987T: 89 76 08
BFFFF598A:; 31 C0O

BFFFF598C: 88 46 07 _)
Resulting byrte stream sent for execution:

Fetch bDyre at address & B a7 C1 ©xchal %eax, Yecx
EF out Foedx, Yoeax
P AB AF ...
Fetch mask for address A |

Address range:

40952984—-40952088: 6C DEB1 22 D9 64 79 76
4095298C—40952993: .

Process memory (mask address ranges)

Effectiveness of RISE against attacks

Select attacks in threat model from CORE Impact penetration tool. Vulnerable
applications running under RISE.

AttaCk Linux Vulnerability Location of Stopped by
Distribution injected code RISE
Apache OpenS5L 55Lv2 RedHat 70 & 72 Buffer Overflow Heap Vv
& malloc/free
Apache mod php RedHat 7.2 Buffer Overflow Heap N
Bind NXT RedHat 6.2 Buffer Overflow Stack v
Bind TSIG RedHat 6.2 Buffer Overflow Stack W
CVS flag insertion RedHat 7.2 & 7.3 malloc/fres Heap N
heap exploit
CVS pserver double free RedHat 7.3 malloc/free Heap v
PoPToF Negative Read RedHat 9 Integer error Heap N
ProFTPD _xlate_ascii RedHat 9 Buffer overflow Heap v
_write off-by-two
rpc.statd format string RedHat 6.2 Format string GOT Vv
SAMBEA nttrans RedHat 7.2 Buffer overflow Heap v
SAMBA trans2 RedHat 7.2 Buffer overflow Stack v
SEH integer overflow Mandrake 7.2 Integer error Stack Vv
sendmail crackaddr RedHat 7.3 Buffer overflow Heap v
wuftpd format string RedHat6.2-7.3 Format string Stack N
wuftpd glob *{* RedHat 6.2-7.3 Buffer overflow Heap Vv

Implementation issues

Randomization mechanism The use of an XOR-based data-hiding
was chosen because it is not block-based and is very cheap
to implement. There is one different byte of mask for each
address used for code. Randomness is obtained via /dev/urandom
after guaranteeing a true random seed of at least 256 bytes in
/dev/random.

Shared libraries Every process protected by RISE has to carry its own
copies of any shared libraries it uses.

[essons learned

Change in interface must have consequences.

Language must have a clear boundary between trusted and
untrusted applications.

Randomization secret must be difficult to discover and/or frequently
changed.

Conceptually simple, implementation issues make it complex.

Does it work?

Parts of 1t are already being used in current OSs

All randomizations mentioned work against low-level
attacks that rely on knowledge about the memory layout,
but there are more interesting problems!

Makes life a little bit more difficult (not impossible) for
the attacker (Shacham et al, 2004, Sovarel et al, 2005,
Barrantes et al, 2006)

The problem 1s that most diversifications are interface-
based, and therefore rely on an obfuscation key, that can
be:

— Stolen

— Guessed (brute force must never be underestimated)

Characterizing diversity

* More serious effort needed to characterize the effect —of
diversity - some work already being done 1n this area:
— Characterization of propagation
— Effect on non-naive attacks
— Performance vs. defense capabilities

* And of course, how to measure “diversity”?

— It 1s impossible to completely obscure code and NO general
obfuscator 1s possible (Barak, 2001)

— Statistical Independence? (Littlewood et al., 2004)
— Enforcing differences? (O'Donnell et al., 2004)
— Epidemiological models? (O'Donnell et al., 2005)

What about higher layers?

* Serious problem... 1t i1s more difficult to randomize the
interface — compatibility issues are harder

— Perl and SQL interpreters with random tags (Kc et al, 2003, Boyd

et al, 2004)

* Need diversity at another level: implementation

Similar to n-version diversity: creating diverse implementations of
a program in order for some individuals to survive

* Examples

N-variant systems (Cox et al, 2006)

Policy diversification in multi-agent systems (Paruchuri et al,
2006)

Node ID randomization in sensor networks (Alarifi et al, 2006)
TCP parameter randomization (Barrantes et al, 2006)

Adaptive filter generation against DoS (Barrantes et al,
unpublished)

What about the atttackers?

There 1s evidence that attacks are being diversified (Ma et
al, 2006)

Unexpectedly...

— Diuversification 1s manual and not directed at avoiding signature
scanners

— Seems that there 1s not enough evolutionary pressure

As cost of attack goes up, we predict that attackers will
start increasing the diversification level

For now, it 1s just too easy out there...

Summary

* Computer systems are too homogeneous

* Artificial diversification is necessary, and it is being used
* It helps but it is not a magical bullet

* Not very well understood

* Most potential 1s on implementation diversification

Acknowledgements

« ISCV
 Santa Fe Institute
* Universidad de Costa Rica

* Umversity of New Mexico

