
Generating (Useful) Diversity in
Computing Systems

Gabriela Barrantes
Universidad de Costa Rica

San Jose, Costa Rica

Santa Fe Institute
Santa Fe, NM USA

Diversity in Computer Systems

• Computer systems are becoming less diverse over time
– Architectures (Intel, Motorola)
– Operating systems (Unix/Linux varieties and Windows)
– Network protocols (TCP/IP at the top)
– Database managers (Oracle, PostgreSQL)

• Loss of diversity is even faster on higher layers
– Web applications
– Java

Consequences

• Ease of attack propagation
• Full connectivity
• Once an attack is successful, it will

be successful on a large proportion
of the network

• Example: Slammer (2003)
– 90% of Internet was scanned in less

than 10 minutes
– A conservative estimate puts the total

number of infected hosts in around
100 thousand

Savage et al. “Internet
Outbreaks: Epidemiology
and Defenses”. Invited talk
at NDSS 2005

Data from: Moore et al,
IEEE Security &
Privacy, 1 (4), 2003

Response solutions

• Engineered
– Patches
– Anti-{virus, spam, spyware}
– Intrusion Detection Systems
– Firewalls
– Content filters

• Very important, but reactive
• Arms race between attackers and defenders

Proactive defenses (?)

• The biological analogy – Diversity provides population
resilience to unknown environmental threats

• Introducing some automated diversity may provide
resilience against attacks exploiting undiscovered
vulnerabilities.

• It is possible to artificially add diversity

Dealing with the lack of diversity

• Introducing diversity is not easy
• Uniformity provides many benefits:

– Ease of development and maintenance
– Interoperability
– Compatibility

• Total diversity is infeasible.
• We can introduce it at critical subsystems, but we need to be very

cautious:
– Diversity is never cheap (But neither is any security measure!)

• Implementation (one-time costs)
• Complex or sub-optimal procedures (sustained costs)

“Critical subsystems”

• We can start by looking for invariants. Some examples:
– Return address “below” the variables (and there is a convenient

reading/writing direction)
– A function call lists parameters two words after the function entry address
– Heap allocations are done linearly
– …

• Most of them should not even be there!
• Many of these invariants do not have any effect on attacks (yes, I was showing

good examples). In general it is NOT easy to find places for the
diversifications

• Being more organized... diversity can be located:
– On the interface
– On the implementation
– On the defending systems

Interface diversification

• What is considered an “interface”?
– Any arbitrary convention on object

identification
– Assignment of names or numbers to

routines, “standard” locations in memory or
disk, etc.

• Interface diversification is also called in
literature randomization and obfuscation

• Can use encryption tools to increase the
level of diversity

• Some interfaces that have been
randomized:

– Addresses
– Machine instructions
– System calls
– File names

• Why does it work?
– Attackers use standard names and (at the

beginning) do not know new mapping and
fail

Original location of procedure

Randomized location of
procedure

Attacker fails

Legitimate
program
executes

Interface randomization with addresses

• First, a brief example of how a low-level attack might operate

stack
Return
 address

Some badly
checked variable

Return address has
been overwritten

When function returns,
 it jumps to whatever address
the attacker has chosen

Some well-known
memory location

Interface randomization with addresses (cont’d)

• So, the randomization takes the “well-known” location elsewhere…

stack
Return
 address

Some badly
checked variable

Return address has
been overwritten

When function returns,
 it jumps to whatever address
the attacker has chosen

Some well-known
memory location

Ja! Not there anymore
Attack fails

…

New (randomized)
location of code

Interface randomization with addresses (cont’d)

• Coarse grain address diversity:
– Programs use sets of code (libraries) that are situated in fixed locations
– The location of the libraries and other code blocks can be randomized
– Strategy is used in Linux (starting with PaX) and in Windows Vista

• Fine grain address diversity
– The addresses of objects inside the blocks can be further randomized

• Space between stack activation records
• Location of heap objects
• Location of procedures inside the block

– Bhatkar, S. et al, 2003, 2005, 2006.

Interface randomization with Machine Instructions
(ISR)

– Machine language is just another interface
– The general idea is to randomize at load and de-

randomize at fetch
• On software (using virtual machines)

– Barrantes et al, 2003, 2005, 2006, Kc et al, 2003,
Hu et al, 2006

• On hardware (decryption at cache line level)
– Duc et al, 2006, Wang et al, 2006.

Instruction Set Randomization example

• Diversify the interface between the machine code interpreter and the
binary process.

• Use an open source emulator (Valgrind), for the IA32 architecture on
the Linux OS.

• Diversification strategy:
– Modification of the emulator to translate from standard IA32

machine language to the diversified language and to recognize the
modified language at the time of execution.

– Randomization as mechanism for creating the customized
language.

• Prototype name: Randomized Instruction Set Emulation (RISE).

Threat model

• Code injection attacks: a vulnerability is used to write (“inject”)
hostile code (the attack) in the target process space, with
immediate or delayed execution.

• Restricted to attacks that:
– Require execution of some machine code (binary)
– Execute remotely and/or have limited disclosure of current

process layout in memory
• Approach: Make the machine code unique to each process, so

the binary attack will be expressed in the “wrong” language and
fail.

 RISE operation

• Two phases:
(a) Randomizing the executable at load:

Creating a unique language
(b) De-randomizing instructions at fetch:

Interpreting the new language correctly

RISE operation (cont'd)

RISE operation (cont'd)

RISE operation (cont'd)

RISE operation (cont'd)

Effectiveness of RISE against attacks

Implementation issues

Lessons learned

Does it work?

• Parts of it are already being used in current OSs
• All randomizations mentioned work against low-level

attacks that rely on knowledge about the memory layout,
but there are more interesting problems!

• Makes life a little bit more difficult (not impossible) for
the attacker (Shacham et al, 2004, Sovarel et al, 2005,
Barrantes et al, 2006)

• The problem is that most diversifications are interface-
based, and therefore rely on an obfuscation key, that can
be:
– Stolen
– Guessed (brute force must never be underestimated)

Characterizing diversity

• More serious effort needed to characterize the effect –of
diversity - some work already being done in this area:
– Characterization of propagation
– Effect on non-naïve attacks
– Performance vs. defense capabilities
– …

• And of course, how to measure “diversity”?
– It is impossible to completely obscure code and NO general

obfuscator is possible (Barak, 2001)
– Statistical Independence? (Littlewood et al., 2004)
– Enforcing differences? (O'Donnell et al., 2004)
– Epidemiological models? (O'Donnell et al., 2005)

What about higher layers?

• Serious problem… it is more difficult to randomize the
interface – compatibility issues are harder
– Perl and SQL interpreters with random tags (Kc et al, 2003, Boyd

et al, 2004)
• Need diversity at another level: implementation

– Similar to n-version diversity: creating diverse implementations of
a program in order for some individuals to survive

• Examples
– N-variant systems (Cox et al, 2006)
– Policy diversification in multi-agent systems (Paruchuri et al,

2006)
– Node ID randomization in sensor networks (Alarifi et al, 2006)
– TCP parameter randomization (Barrantes et al, 2006)
– Adaptive filter generation against DoS (Barrantes et al,

unpublished)

What about the atttackers?

• There is evidence that attacks are being diversified (Ma et
al, 2006)

• Unexpectedly…
– Diversification is manual and not directed at avoiding signature

scanners
– Seems that there is not enough evolutionary pressure

• As cost of attack goes up, we predict that attackers will
start increasing the diversification level

• For now, it is just too easy out there…

Summary

• Computer systems are too homogeneous
• Artificial diversification is necessary, and it is being used
• It helps but it is not a magical bullet
• Not very well understood
• Most potential is on implementation diversification

Acknowledgements

• ISCV
• Santa Fe Institute
• Universidad de Costa Rica
• University of New Mexico

