
New Approaches to
Computing: Learning
from Biology

Ron Goldman
Sun Labs

New Approaches to Computing: Learning from Biology

2

Who am I?

• Researcher at Sun Labs
• Software developer
• Open source expert
• Author: (with Richard P. Gabriel) Innovation

Happens Elsewhere: Open Source as
Business Strategy

New Approaches to Computing: Learning from Biology

3

Acknowledgments

Ideas in this talk come from many people
• Conscientious Software co-author

Richard P. Gabriel
• Santa Fe Institute
• Humberto Maturana and Francisco Varela
Thanks to Sun Microsystems for allowing
me to research Biologically-Inspired
Computing

New Approaches to Computing: Learning from Biology

4

Talk outline

• Trends in computing
• We are in big trouble

• Maybe ideas from biology can help us
• Some already have

• A possible direction
• Conscientious software

New Approaches to Computing: Learning from Biology

5

Trends in computing

• Increasing program size
• Increasing program duration
• Increasing complexity

New Approaches to Computing: Learning from Biology

6

Fifty years ago

• Early software applications were small
• Were self-contained
• Ran for a limited time
• Ran on a single computer
• Linear execution

New Approaches to Computing: Learning from Biology

7

Computer Science

• Strong Mathematical influence
• Analysis of algorithms
• Idea that program could be proven

correct
• Possibility of bug-free code

New Approaches to Computing: Learning from Biology

8

Current software

• Applications now large and getting larger
• Applications interact with other apps
• Run continuously
• Run distributed over many computers
• Parallel execution

New Approaches to Computing: Learning from Biology

9

Modern software engineering

• Waterfall => iterative design
• Describe application via specification
• More pragmatic focus on shipping

systems
• Try to minimize bugs through testing

New Approaches to Computing: Learning from Biology

10

Future software systems

• Ultra-Large-Scale (ULS) systems
• How can we build systems of the future

that are likely to have billions of lines of
code?
• Run on thousands of computers
• Developed by different groups
• Continuous operation, continuous

development/evolution
• Needs to monitor and repair itself

New Approaches to Computing: Learning from Biology

11

Effects of increasing complexity

• More bugs
• More brittleness
• More susceptible to attack

New Approaches to Computing: Learning from Biology

12

Famous software engineering disasters

• North America blackout (2003)
• USS Yorktown (1998)
• a mistakenly entered zero data value

caused a cascade of errors that eventually
shut down the ship's propulsion system

• Denver airport baggage system (1994)
• AT&T Network Outage (1990)
And many other failed systems that have
been cancelled or were never delivered

New Approaches to Computing: Learning from Biology

13

We can't get there from here…

New Approaches to Computing: Learning from Biology

14

Why look to biology?

• Biological systems exhibit many
properties we wish our computer
systems had
• Robustness
• Decentralized
• Adaptive
• Efficient
• Beautiful

• In 4 billion years Nature has evolved
many solutions to tough problems

New Approaches to Computing: Learning from Biology

15

What have we already learned from biology?

• Neural nets
• Genetic algorithms
• Swarm intelligence
• Immune system

Note: Not the first time computing has turned
to biology
• Biological Computer Laboratory, 1958–1976

Heinz von Foerster

New Approaches to Computing: Learning from Biology

16

Neural Nets

• Looking to the
brain as a model of computation
• Idealized neurons connected together
• Inspiration for von Neumann & onwards

• Applications include
• Recognition of handwriting, speech, OCR
• Financial classification: credit card fraud,

loan approval

New Approaches to Computing: Learning from Biology

17

Genetic Algorithms

• Evolution via modifications to DNA
• Inheritance
• Mutation
• Recombination
• Natural selection

• Can rapidly locate good solutions,
even for difficult search spaces
• John Holland pioneered field

New Approaches to Computing: Learning from Biology

18

Genetic Algorithms: Job Scheduling

John Deere seed planter assembly line

• Over 1.6 million different product
configurations
• Originally scheduled manually
• Factory throughput was not good

• Introduced GA to breed a good schedule
• 40,000 generations bred each night
• Best one used next day
• Has been highly successful

New Approaches to Computing: Learning from Biology

19

Genetic Programming

• Applying genetic algorithms to
programming
• John R. Koza pioneer in field
• 36 instances where genetic programming has

produced a human- competitive result
• Experiments using a 1,000-node (Pentium II)

Beowulf-style parallel cluster computer

New Approaches to Computing: Learning from Biology

20

Swarm Intelligence
● Social insects (ants, bees, termites) are

highly successful
● Flexibly adapt to a changing environment
● Robust even when one or more individuals fail
● Self-organize without needing centralized

control
● Emergent behavior

● Local rules yield global behavior
● Simple rules can produce complex

collective behavior

New Approaches to Computing: Learning from Biology

21

Swarm Intelligence: Applications

Truck painting at GM

• Based on how honeybees shift work roles
• Changing paint color is time consuming &

costly
• Auction system: booths bid based on

current color & queue
• Saved over $1 million/year just in paint
• Handled breakdowns and surges in orders

flexibly and robustly

New Approaches to Computing: Learning from Biology

22

Swarm Intelligence: Applications

Phone & Internet routing
• Based on ant foraging
• “Digital pheromone” used

to reinforce paths through
uncongested areas
• Being explored by France Télécom,

British Telecom & MCI WorldCom
• Simulations suggest better than current

Internet protocol (Open Shortest Path
First)

New Approaches to Computing: Learning from Biology

23

• Decentralized, hence scalable
• Difficult to specify the local rules
• Difficult to prove correctness
• No “guarantee” of result
• Many people not comfortable with it

• Need new tools to link the local to the global
• New ways to build and think about such systems
• Need better understanding of resilience and

stability properties

Emergent Behavior: Issues

New Approaches to Computing: Learning from Biology

24

Immune System

● Human immune system provides multiple
layers of protection
● Innate: macrophages, complement system, …
● Adaptive: antibodies, T cells, …

● Can respond quickly to previously
encountered organisms

● Can adapt to new infectious organisms it
has never seen before

● Immune system needs to distinguish
between self and other

New Approaches to Computing: Learning from Biology

25

Immune System: Applications
● Stephanie Forrest, University of New Mexico

● Use an application's sequence of system calls or
network messages to describe application

● Train system for normal behavior (identify self)
● Create detectors that do not match self to identify

possible infections
● Steve Hofmeyr, Sana Security

● Primary Response product aimed at protecting
network servers

● Learns normal behavior of server programs
● Recognizes attacks and blocks them or alerts

sysadmin

New Approaches to Computing: Learning from Biology

26

Digging deeper

• How can we apply ideas from biology to
building robust, distributed computer
systems?
• How will they change our current

practices?
• How will they change how we think

about building systems?

New Approaches to Computing: Learning from Biology

27

Robustness

• How does biology handle critical tasks
• Cell reproduction

New Approaches to Computing: Learning from Biology

28

DNA replication

• Accurate copying is essential to
reproduction
• E. coli has

about 30
genes
involved in
copying DNA

New Approaches to Computing: Learning from Biology

29

DNA damage: kinks, breaks, gaps,
mismatches, …
• Very common:
• 10,000 times per day in every cell a stretch

of DNA will lose one of its constituent base
• If unrepaired, the damage can lead

to disease, notably cancer.

New Approaches to Computing: Learning from Biology

30

DNA repair
• E. coli has 63 genes to do DNA repair

New Approaches to Computing: Learning from Biology

31

DNA copying vs. repair

• E. coli: copy (30) vs. repair (63)
• M. genitalium: copy (25) vs. repair (13)
• Replication happens only during cell

division
• Repair happens continuously via many

processes
• Also happens during replication &

transcription

New Approaches to Computing: Learning from Biology

32

Other repair mechanisms

• Heat shock chaperone protein
• Heat causes proteins to lose their proper

shape
• Need to refold them

New Approaches to Computing: Learning from Biology

33

Errors are normal

• Biology assumes that errors will always
occur
• Externally: unexpected environmental

conditions, attacks
• Internally: process failures, data corruption

• Need to constantly monitor internal
processes & external conditions
• Monitoring involves multiple feedback loops

New Approaches to Computing: Learning from Biology

34

Repair is essential

• Need to recover from errors once detected
• Switch to alternative process
• Repair (or kill) defective units

• Efficiency is important, but survival is the
top priority

New Approaches to Computing: Learning from Biology

35

Error detection and repair in computer
systems

• Currently little or no error handling code
• 5-10% typical
• 5ESS software had ~33% error handling code

• No surprise that software is not robust
• Lesson from biology:
• More resources devoted to repair than basic

functionality
• Need to fundamentally change how we

build software systems

New Approaches to Computing: Learning from Biology

36

Visibility

Our immune system:
1. Proteins broken

down in cell
2. Fragments get

displayed on cell
surface

3. Immune system
inspects

New Approaches to Computing: Learning from Biology

37

Other Ideas from Biology

● Apoptosis (programmed cell death)
● Spatial compartmentalization
● Stigmergy (communication via changes

to the environment)
● Symbiogenesis (symbiotic merging of

independent organisms)
● Multiple nested feedback loops
● Developmental biology

New Approaches to Computing: Learning from Biology

38

Complex Systems

• More than just a collection of interacting
components & subcomponents
• Biological organism is a

collection of mutually
reinforcing feedback loops
• Gene regulatory networks

• Interconnected feedback loops make for
a more stable system, that is better able
to adapt to internal or external changes
• Dynamic stability

New Approaches to Computing: Learning from Biology

39

Autopoiesis vs. Allopoiesis

• Autopoiesis: a system that (re)constructs
itself
• Example: living cells

• Allopoiesis: a system that makes an
external product
• Example: a factory

Our computer systems need both
• Current software is almost exclusively allopoietic
• How can we include autopoietic modules?

New Approaches to Computing: Learning from Biology

40

Autopoietic principles Allopoietic principles

visibility / transparency information hiding
dynamic / flexible static / rigid

interfaces interfaces
self-generating / command & control /

decentralized hierarchical
diversity uniformity
reactive manufactured

New Approaches to Computing: Learning from Biology

41

Autopoietic principles Allopoietic principles

abundance / parsimony / efficiency
redundancy

loosely-coupled tightly-coupled
interaction interaction

pattern-based signal-based

local rules global reasoning

lithe languages Java™, C++, C#,
usual suspects

New Approaches to Computing: Learning from Biology

42

Robustness and control

• Allopoiesis performs basic functionality
• Current software does this

• Autopoiesis provides system robustness
• Use of feedback mechanisms
• Continuous testing & repair
• Need new languages/constructs

New Approaches to Computing: Learning from Biology

43

Conscientious software

• Software taking responsibility for itself
• Software as collaborator
• Adaptive installation
• Continual testing
• Continual noticing

New Approaches to Computing: Learning from Biology

44

Software taking responsibility

• Software can act
• Sense some part of its environment
• React to changes
• Affect its environment

New Approaches to Computing: Learning from Biology

45

Example: Word processing

• Automatically save all edits
• Without making the person wait

• After a crash can restore previous state
• No work should ever be allowed to be

lost

New Approaches to Computing: Learning from Biology

46

Software as collaborator

• Examine its environment prior to installation
• Monitor changes to its operating

conditions and adapt
• Pay attention to how it’s being used and

become easier to use
• Provide for its own improvement at the

hands of local developers
• Accept and provide for its own death and

replacement

New Approaches to Computing: Learning from Biology

47

Adaptive installation

• More than bits properly stored
• Customizations
• Fitting in with environment / users
• Discovery versus preference setting
• Prevailing color scheme
• How is spellchecking done ’round here?
• Emacs keybindings? How about Emacs

itself for text editing

New Approaches to Computing: Learning from Biology

48

Never-ending installation

• As other software is added
• As experiences of the users change
• Always revocable

New Approaches to Computing: Learning from Biology

49

Complete Packaging

• Binaries
• Source code
• Build environment
• Tests

New Approaches to Computing: Learning from Biology

50

Complete packaging

• Local adaptation
• No “lost source”
• Population of individuals
• Possibility of cross-breeding

New Approaches to Computing: Learning from Biology

51

Continual testing

• Test environment before installation
• Test after installation
• Always (possible to be) testing
• User-written tests
• Send results to “original developers”

New Approaches to Computing: Learning from Biology

52

Continual noticing

• Software / components running notice
environmental conditions
• Adapt, adjust, feedback

New Approaches to Computing: Learning from Biology

53

Visibility: software that mutters

• Internal vocabularies
• Continual updating / history
• Multidimensional (unlike telemetry)
• For adapting

New Approaches to Computing: Learning from Biology

54

Exercise

• Not just using
• Not just testing
• Improving / structural change through use
• Practice

New Approaches to Computing: Learning from Biology

55

Design for continuous redesign

• Some properties are shared across all
living creatures on the Earth
• RNA three base code for amino acids

• These properties are highly conserved
• Other properties change rapidly
• Immune system antibodies
• Venom / anti-venom

New Approaches to Computing: Learning from Biology

56

Stewart Brand's six layers

• Site: is eternal
• Structure: foundation

and load-bearing
elements
• Skin: exterior surfaces
• Services: wiring, plumbing, HVAC
• Space plan: walls, ceilings, floors, doors
• Stuff

New Approaches to Computing: Learning from Biology

57

Signaling

• Direct/immediate communication
• Nerve signals
• Language

• Indirect/slow communication
• Diffusion
• Gradients

New Approaches to Computing: Learning from Biology

58

Conscientious software principles

• Assume failure is common
• Seek out and repair errors
• Write tests and continually run them
• Use feedback
• Make things visible
• Flow
• Gradients
• Layers
• Diversity

