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How social insects provide solutions to complex problems

Biological systems: a source of inspiration
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DNA dynamics &
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Genetic algorithms
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From natural to artificial swarm intelligence

! Social insect colonies are decentralized

problem-solving systems

! Social insects are flexible and robust

systems

! Many of the daily problems solved by a

colony have counterparts in engineering

and computer science

! Models of social insects behaviors are a

rich source of inspiration to design

adaptive decentralized artificial systems

that self-organize to solve problems

problems.roblems.

Bonabeau & Theraulaz,

Scientific American (2000)
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A categorization
of collective behaviors
in social insects

Coordination

! Coordination is the appropriate organization in space and time of the

tasks required to solve a specific problem

! Coordination leads to specific spatio-temporal distributions of individuals,

of their activities and/or of the results of their activities in order to reach a

given goal

A categorization of collective behaviors

(Garnier, S. et al., Swarm Intell., 2007)
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Cooperation

! Cooperation occurs when individuals achieve together a task that could

not be done by a single one

! The individuals must combine their efforts in order to successfully solve a

problem that goes beyond their individual abilities

A categorization of collective behaviors

(Garnier, S. et al., Swarm Intell., 2007)

Deliberation

! Deliberation occurs when a colony or a group of individuals faces several

opportunities and collectively chooses at least one of these opportunities

A categorization of collective behaviors

(Garnier, S. et al., Swarm Intell., 2007)
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Collaboration

! Collaboration occurs when different activities are simultaneously performed

by groups of specialized individuals

! This specialization can rely on a pure behavioral differentiation or on a

morphological one and can also be influenced by the age of the individuals

A categorization of collective behaviors

(Garnier, S. et al., Swarm Intell., 2007)

ForagingTending brood

A categorization of collective behaviors

(Garnier, S. et al., Swarm Intell., 2007)

! Collaboration occurs when different activities are simultaneously performed

by groups of specialized individuals

! This specialization can rely on a pure behavioral differentiation or on a

morphological one and can also be influenced by the age of the individuals

Collaboration
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Nest construction in the weaver ant (Oecophylla longinoda)

The organization of collective behaviors

! In social insects most of

the collective behaviors

can be understood as a

combination of at least

two of the four functions

of organization

Ant colony
optimization
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Triangular network

Natural optimization:
the case of inter-nest traffic

Linepithema humile

(Argentine ant)

Nests

Aron, S. et al., Biological Motion (1991)

Triangular network Square network

Natural optimization:
the case of inter-nest traffic

Aron, S. et al., Biological Motion (1991)
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! The resulting traffic of ants is such that

all nests are connected by set of paths

that form a minimal spanning tree: ants

do not use redundant bridges

! These results are similar to the

Traveling Salesman Problem (TSP):

given N cities, and a distance function

dij between cities (i and j), find a tour

that:

(1) Goes through every city one and
only once

(2) Minimizes the total distance

1
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8

9

2
4 6

5
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Natural optimization:
the case of inter-nest traffic Artificial ants and the shortest path problem

! Using virtual pheromones to direct a colony of artificial ants in the search

of the shortest path solutions on graphs

! Portions of good solutions that contribute to the quality of these solutions,

are reinforced with virtual pheromone (stigmergic variable)

! Negative feedback is implemented through pheromone evaporation

Colorni, A., Dorigo, M. & Maniezzo, V., ECAL, (1991)
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Ant system solution for the TSP

! In Ant System, ants are launched at cities and build solutions to the TSP

by traversing the graph until they complete a tour

Real ant behavior cannot be used as it is

! The extension of the real ant behavior (forward/backward trail deposit) to

artificial ants moving on a graph doesn’t work: problem of self-reinforcing

loops

self-reinforcing

loop

Source

Destination
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! For each ant the transition from

city i to city j at iteration t depends

on:

(1) Has the city been visited?
Each ant k maintains a tabu list in

memory that defines the set Ji
k

cities still to be visited when at

city i

Dorigo, M. & Maniezzo, V., Colorni, A.,

IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics (1996)
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Parameters involved in the decision of ants

! For each ant the transition from

city i to city j at iteration t depends

on:

(1) Has the city been visited?
Each ant k maintains a tabu list in

memory that defines the set Ji
k

cities still to be visited when at

city i

(2) The visibility !ij = 1/dij that is

inversely proportional to the

distance between the two cities

!ip
!iq!ir

0 0,5 1

Parameters involved in the decision of ants
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i dir

dim

dij

Dorigo, M. & Maniezzo, V., Colorni, A.,

IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics (1996)
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! For each ant the transition from

city i to city j at iteration t depends

on:

(1) Has the city been visited?
Each ant k maintains a tabu list in

memory that defines the set Ji
k

cities still to be visited when at

city i

(2) The visibility !ij = 1/dij that is

inversely proportional to the

distance between the two cities

(3) The amount of virtual
pheromone on trail (i,j) = "ij (t)

Dorigo, M. & Maniezzo, V., Colorni, A.,

IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics (1996)

Parameters involved in the decision of ants Probabilistic decision rule

! # and $ are parameters that control trades-off global (pheromone) vs

local information (distance)

! The probability for ant k to go from city i to city j while in its tth tour is:

Local information

(visibility)

Global information

(pheromone)

if city j has been visited

if city j has not been visited

Dorigo, M. & Maniezzo, V., Colorni, A.,

IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics (1996)
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! The amount of pheromone deposited on the links is inversely proportional

to the overall length of the tour: the amount          is equal to

! After the completion of a tour each ant k lays a quantity          of

pheromone on each edge (i,j) that it has used

Update of pheromone trails

: the total length of the tth tour of ant k

: an adjustable constant

! Pheromone evaporates:

Pheromone

evaporation rate

Dorigo, M. & Maniezzo, V., Colorni, A.,

IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics (1996)

Simulation results

50-city problem 75-city problem
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Problem

Ant Colony System
(Dorigo & Gambardella,1997)

Eil50
(50-city)

425425 18301830

Best tour
length

Number of
iterations

Genetic Algorithms
(Whitley et coll., 1989)

428428 2500025000

Best tour
length

Number of
iterations

Simulated annealing
(Lin et coll., 1993)

443443 6851268512

Best tour
length

Number of
iterations

Eil75
(75-city)

535535 34803480 545545 8000080000 580580 173250173250

KroA100
(100-city)

2128221282 48204820 2176121761 103000103000 N / AN / A N / AN / A

Comparison of Ant Colony System
with other optimization algorithms

Other applications of ant colony algorithms
to combinatorial optimization problems

Dorigo, M. & Stützle, T.
Ant Colony Optimization

(2004)
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! Routing is a mechanism that allows

phone calls to be transmitted from a

source to a destination through a

sequence of intermediate nodes

! Each node keeps a routing table telling

phone calls where to go next depending

on their destination

! In real networks conditions are constantly

changing: routing algorithms have to

maximize the network performance while

minimizing the number of call failures

! Ant-based routing uses antlike agents

that continuously build and adapt routing

tables to local changes to maximize

network performance

Dynamic optimization: routing in
telecommunications networks by ant-like agents

Schoonderwoerd et al., Adaptive Behavior (1996)

Basic ant-based control idea

! An ant move towards its destination

node by following the pheromone table

left by ants for which its destination was

their source … and the calls are routed

to their destination in the same way

! The pheromone evaporates at regular

intervals: busy routes will not be

reinforced

! The process allows calls to be rerouted

towards better parts of the network and

enables congested areas to recover

rapidly from the overload

Schoonderwoerd et al., Adaptive Behavior (1996)
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Swarm robotics ! Traditional approach to build

autonomous robots based on AI

techniques are unable to deliver real-

time peformance in a dynamic world

! With a subsumption architecture a

mobile robot is able to navigate in

complex and unpredictable environment

without any explicit representation of

this environment

Distributed control in swarm-based robotics

Brooks, R.A., IEEE Journal of

Robotics and Automation (1986)
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Distributed control in swarm-based robotics

! A group of simple robots may be

more efficient than a single

sophisticated robot

! A group of simple robots is cheaper

and much more reliable than a

powerfull complex robot

Distributed control in swarm-based robotics

! A group of simple robots may be

more efficient than a single

sophisticated robot

! A group of simple robots is cheaper

and much more reliable than a

powerfull complex robot

! Using a group of simple robots

brings new problems (scalability,

lack of global knowledge, poor

communication abilities)

! Swarm-based robotics relies on

stigmergic communication

(environment is used as

communication channel)

! These coordination mechanisms

enable a group of robot to operate

under a wide range of group sizes
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Infra-red

sensors

An instance of stigmergic communication

Distributed clustering by a group of robots

Beckers, R. et al., Artificial Life IV (1994)

Individual behavior

Behavioral modules

Puck "dropping" behavior

Moving in a straight line

Obstacle avoidance behavior 

sensors actuators

Priority level

Distributed clustering by a group of robots

Beckers, R. et al., Artificial Life IV (1994)
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Behavioral modules

Puck "dropping" behavior

Moving in a straight line

Obstacle avoidance behavior 

sensors actuators

Priority level

Distributed clustering by a group of robots

Beckers, R. et al., Artificial Life IV (1994)

Behavioral modules

Puck "dropping" behavior

Moving in a straight line

Obstacle avoidance behavior 

sensors actuators

Priority level

Distributed clustering by a group of robots

Beckers, R. et al., Artificial Life IV (1994)
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Collective behavior

2.5 x 2.5 m square arena

81 circular pucks

Dynamics of aggregation

Distributed clustering by a group of robots

Beckers, R. et al., Artificial Life IV (1994)

Collective behavior

Dynamics of aggregation

Distributed clustering by a group of robots

Beckers, R. et al., Artificial Life IV (1994)
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Dynamics of aggregation

Distributed clustering by a group of robots

! Pucks can be removed from a pile only if the robot collides it almost

tangentially

Beckers, R. et al., Artificial Life IV (1994)

Dynamics of aggregation

Distributed clustering by a group of robots

Picking zone

Picking zone

Dropping zone

Beckers, R. et al., Artificial Life IV (1994)



21

Dynamics of aggregation

Distributed clustering by a group of robots

Picking zone

Picking zone

Dropping zone

Beckers, R. et al., Artificial Life IV (1994)

Dynamics of aggregation

Distributed clustering by a group of robots

! The probability to remove a puck

from a pile decreases with pile size

local corpse density

p
ro

b
a
b
ili

ty

Remove

a puck

Add

a puck

! The probability to add a puck to a

pile increases with pile size

Beckers, R. et al., Artificial Life IV (1994)
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Distributed clustering by a group of robots

From coordination to cooperation

! Robots are autonomous

! No explicit communication

among robots

! Control architecture is mainly

reactive and based on simple

behaviors

Martinoli., A. et al., Robotics and

Autonomous Systems (1999)

Gripper module

Motorola® 68HC11
Microcontroller

Motorola® 68331
Microcontroller

(master)

Infra-red proximity

sensors

Main features of the Khepera robot

Seed

Distributed clustering by a group of robots
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Robot discriminating behavior

! The robot discriminating behavior is

based on a wobble movement in front

of the found object

! If the number saturated sensors is > 2,

the object is considered as an obstacle

and the robot avoids it

! If the number saturated sensors ! 2

the object is considered as a seed that

can be picked up or in front of which

another seed can be deposited

Distributed clustering by a group of robots

Experimental results with 3 robots

Initial scattering of seeds After 2 hours

Distributed clustering by a group of robots
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Cooperative stick pulling

Sequence of cooperation between robots

Ijspeert, A.J. et al., Autonomous Robots (2001)

Robot A detects the stick

Stigmergic communication based on light trails

Collective decision by a group of robots

Garnier, S. et al., IEEE SIS (2007)
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Main features of the Alice mobile robot

Light sensors

IR sensors

Watch motors

A red LED

PIC16LF877

microcontroller with

8K Flash EPROM

memory and 368

bytes RAM

Collective decision by a group of robots

3CCD Caméra

(for recording the

experiments)

Digital camera

(for tracking the

robots)

Experimental setup

Diamond-shape

maze connecting

two distinct areas
12

125 cm

Collective decision by a group of robots
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Vidéo-projector

(for laying the

light trail)
Computer

(tracking and

videao-

projection)

Experimental setup

Collective decision by a group of robots

Exploration

Avoidance

Trail following

! Displacement: sum of 3 vectors

" Exploration vector: correlated

reandom walk

" Avoidance vector: IR sensors

" Trai following vector: light

sensors

Individual behavior

Collective decision by a group of robots
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! Displacement: sum of 3 vectors

" Exploration vector: correlated

random walk

" Avoidance vector: IR sensors

" Trai following vector: light

sensors

! Trail laying behavior:

" A robot begins to lay a light trail

when it leaves the food source

area

" A robot stops trail laying only

when it enters the nest area or

comes back to the food source

Trail laying

Collective decision by a group of robots

Individual behavior

5
robots

1
robot

Food source Nest

Collective path selection

Collective decision by a group of robots
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Traffic organization under crowd conditions

10
robots

Food source Nest

Collective decision by a group of robots

Traffic organization under crowd conditions

Collective decision by a group of robots

Wide bridge:  10mm

Dussutour, A. et al.,

Nature (2004)

Narrow bridge: 3 mm
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Shortest path selection

Collective decision by a group of robots

Food

source

Nest

10 robots

Individual behavior

Collective decision
based on self-organized aggregation

Behavioral model

Individual behavior

! In cockroaches, aggregation relies on

a self-amplification process of the

individual resting behavior

! In the presence of two or more dark

shelters in an arena, all the

cockroaches aggregate under only

one of these shelters

! Collective choice relies on a

modulation of the individual resting

period under a dark shelter by the

number of nestmates present under

this shelter
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Implementation of cockroaches behavior

! Displacement and local aggregation

rules of cockroaches have been

implemented in micro-robots

! Robots can make an estimation of

the local density of nearby robots and

compute the probability to stop or to

start moving

Collective decision in groups of robots
based on self-organized aggregation

Local detection
area

Garnier, S. et al., Lectures Notes in

Computer Science (2007)

Experimental results with identical shelters

Collective decision in groups of robots
based on self-organized aggregation

Real time : 1 hour

! Robots can only stop under the shelters (IR intensity drops): aggregation

process can only occur under the shelters

! The self-enhanced aggregation process allows the robots to collectively

choose a “rest site” among two aggregation places
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Experimental results with shelters of different sizes

Collective decision in groups of robots
based on self-organized aggregation

Real time : 1 hour

! A difference of size or darkness between the two shelters may bias the

seeding process and unbalance the final choice

! The robots are thus able to collectively sense a difference between the

aggregation places

Eciton burchelli

Swarm-bots

Swarm robotics: the best has yet to come

! Most of the works are robotic

implementations of the mechanisms

found in social insects and

transpositions of the natural

situations in an artificial context

! The decentralized logic of social

insects can be successfully used by

groups of simple robots to

coordinate their activities

! New questions are open regarding

the problem of scalability in natural

and artificial systems
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Swarm robotics: the best has yet to come

! One promising field of application of

swarm algorithms is nano-robotics

! The European I-SWARM project aims to

take a leap forward in robotics by building

a real micro-robot swarm, i.e. a thousand

micro manufactured autonomous robots

(2 x 2 x 1 mm") designed for the collective

execution of different tasks in the small

world

Conclusions and perspectives

! Swarm intelligent systems possess a

number of interesting properties

(flexibility, robustness, decentralized

control and self-organization)

! Swarm intelligent systems are well suited

to cope with complex and dynamic

environments

! Still some issues need to be addressed:

most of the existing algorithms have

been adapted from existing models of

collective behaviors in social insects

! The question is now: how should we

"program" a swarm of agents so that it

performs a given task ?



33

To learn more about Swarm intelligence
and Ant colony optimization

(Bonabeau, Dorigo & Theraulaz, 1999)

Oxford University Press

(Dorigo & Stützle, 2004)

MIT Press

On the web:
http://www.aco-metaheuristic.org/



34

New Journal !

A new journal dedicated to

reporting on developments in the

discipline of swarm intelligence

Published by Springer


