
Higher-Order Aspects

AspectScheme

DCC Chile 2008

An Example

2

parse make-backup pretty-print

read-contents write-contents

open-file close-file

DCC Chile 2008

Possible Aspects

• trace calls to close-file originating from
make-backup

• check for legal arguments to write-contents
• ensure the callee has permission to execute
open-file

• can we write these in a higher-order way?

3

DCC Chile 2008

Why AOP in a H-O language

• many languages have higher-order, first-
class functions

– Scheme
– ML
– Haskell

4

DCC Chile 2008

Why AOP in a H-O language

• many languages have higher-order, first-
class functions

– Scheme
– ML
– Haskell

– Perl
– Python
– Ruby

5

DCC Chile 2008

Why AOP in a H-O language

• many languages have higher-order, first-
class functions

• what is the interaction between functional
programming and aspect-oriented
programming
– simplify the specification of aspects?
– define more general aspects?

6

DCC Chile 2008

Aside: Higher Order Functions

• an accumulator is a procedure that takes a
number and adds it to its currently
accumulated amount yielding the total

;;accumulator :: int → int

(define a (make-accumulator 0))
(define b (make-accumulator 100))

(a 10) ↦ 10
(a 5) ↦ 15
(b 99) ↦ 199
(a 1) ↦ 16
(b 1) ↦ 200

7

DCC Chile 2008

make-accumulator is higher-order

(define make-accumulator
 (lambda (acc)
 (lambda (n) ;new function
 (set! acc (+ acc n))
 acc)))

• a higher-order function constructs new functions

• (define ((make-accumulator acc) n)
 (set! acc (+ acc n))
 acc)

8

DCC Chile 2008

First-class Functions

• a common shape for operating on list data
structures is
1. cdr-ing down a list
2. transforming each element
3. returning another list of the new elements

• that shape is called map

(define (incr x) (+ x 1))

(map incr ’(1 2 3 4 5)) ↦ (2 3 4 5 6)

(map string-length ’(“Hi” “Hola” “Bonjour”)) ↦ (2 4 7)

9

DCC Chile 2008

map requires first-class functions

(define (map f l)
 (if (null? l)
 ’()
 (cons (f (car l))
 (map f (cdr l))))

• first-class functions can be arguments
– just like any other value

10

DCC Chile 2008

Another common shape

• a common shape for operating on list data
structures is
1. cdr-ing down a list
2. transforming each element
3. and combining the resulting element with the

rest of the tranformed list

• that shape is called fold
(fold + 0 ’(1 2 3 4 5)) ↦ 15

(map string-append “” ’(“hi” “hola” “bonjour”))

 ↦ “HiHolaBonjour”

11

DCC Chile 2008

H-O + F-C is powerful
(define (map f l)
 (fold (lambda (e l)
 (cons (f e) l))
 ’()
 l))

12

DCC Chile 2008

Challenges

• How to specify aspects?
– a F-C function may have 0, 1, or many names
– second-class or first-class aspects?

13

DCC Chile 2008

Challenges

• How to specify aspects?
– a F-C function may have 0, 1, or many names
– second-class or first-class aspects?

• Scoping issues
– can define aspects outside the top level

• when is an aspect in effect?

14

DCC Chile 2008

How to Specify Aspects?

• two parts:
• pointcut
• advice

15

DCC Chile 2008

Aside: Aspects

• an aspect comprises two parts

– a pointcut
• identifies some collection of principled points

– join points
• in the execution of a program

– an advice
• alters the semantics of the join point

– continue with different arguments
– log information
– decide not to continue at all

16

DCC Chile 2008

How to Specify Aspects?

• two parts:
• pointcut
• advice

– will be first class
– consistent with design of functional languages

• a pointcut
– a predicate over a list of join points

• an advice
– a join point transformer

17

DCC Chile 2008

Aside: Join Points
(define (incr x) (+ 1 x))

(incr 3)

• function call:
(incr 3)

– a pair of target: incr and arguments: ’(3)

• function execution:
(+ 1 3)

– a pair of target: incr and arguments: ’(3)

18

DCC Chile 2008

Join Point Stack

• offers access to calling context

19

jp jp jp jp jp jp

 jp jp jp jp jp

jp

jp

jp jp jp jpjp

jp jp jp jp jpjp

jp jp jp jp jpjp

jp jp jp jp jpjp

jp jp jp jp jp jp

jp- jp+

DCC Chile 2008

How to specify Pointcuts

20

• calls to close-file

• AspectJ
call(void File.close())

DCC Chile 2008

How to specify Pointcuts

21

• calls to close-file

• AspectJ
call(void File.close())

• AspectScheme
(lambda (jp- jp jp+)
 (if (and (call-jp? jp)
 (eqv? (jp-target jp) close-file))
 ’()
 #f))

DCC Chile 2008

Binding Pointcuts

22

• calls to close-file accessing the file

• AspectJ
call(void File.close(File)) && args(f)

• AspectScheme
(lambda (jp- jp jp+)
 (if (and (call-jp? jp)
 (eqv? (jp-target jp) close-file))
 (jp-args jp)
 #f))

DCC Chile 2008

How to specify Pointcuts

23

• calls to close-file originating from make-backup

• AspectJ
call(void File.close())

 && cflow(exec(void Backup.make()))

DCC Chile 2008

How to specify Pointcuts

24

• calls to close-file originating from make-backup

• AspectJ
call(void File.close())

 && cflow(exec(void Backup.make()))

• AspectScheme
(lambda (jp- jp jp+)
 (and (call-jp? jp)
 (eqv? (jp-target jp) close-file))

 (any (lambda (jp)
 (and (exec-jp? jp)

 (eqv? (jp-target jp) make-backup)))
 jp+)))

DCC Chile 2008

Higher-Order Pointcuts

25

(define ((check type?) f) jp- jp jp+)
 (if (and (type? jp)
 (eqv? (jp-target jp) f))
 ’()
 #f)))

(define (call f) ((check call?) f))

(define (exec f) ((check exec?) f))

(define (args) jp- jp jp+)
 (jp-args jp))

DCC Chile 2008

Pointcut Combinators
(define ((&& pc1 pc2) jp- jp jp+)
 (let ([v1* (pc1 jp- jp jp+)])
 (if v1*
 (let ([v2* (pc2 jp- jp jp+)]
 (if v2* (append v1* v2*) #f))
 #f)))

(define ((|| pc1 pc2) jp- jp jp+)

 (let ([v* (pc1 jp- jp jp+)])

 (if v* v* (pc2 jp- jp jp+))))

(define ((! pc) jp- jp jp+)

 (if (pc jp- jp jp+) #f ’()))

26

DCC Chile 2008

Pointcut Combinators
(define ((cflow pc) jp- jp jp+)
 (let loop ([jp- jp-]
 [jp jp]
 [jp+ jp+])
 (if (null? jp+)
 #f
 (let ([v* (pc jp- jp jp+)])
 (if v*
 v*
 (loop (cons jp jp-)
 (car jp)
 (cdr jp+)))))))

27

DCC Chile 2008

How to specify Pointcuts

28

• calls to close-file originating from make-backup
yielding the closing file and the backup file

• AspectJ
 (call(void File.close(File)) && args(f)
 && cflow(exec(void Backup.make()) && args(b)))

• AspectScheme
 (&& (call close-file)
 args
 (cflow (&& (exec make-backup)
 args)))

DCC Chile 2008

How to specify Advice

29

• calls to close-file originating from make-backup
yielding the closing file and the backup file

• AspectJ
 { System.out.println(“Backup “ + b + “ closing “ + f);
 proceed(f, b); }

• AspectScheme
 (lambda (proceed)
 (lambda (f b)
 (display `(“Backup “ ,b “ closing “ ,f))
 (proceed f b)))

• all advice is around advice

DCC Chile 2008

The around expression

• to install a pcd and advice, introduce
 (around pcd adv
 body ...)

• for example

(let ([pcd (&& (call open-file) args)]
 [((adv p) f) (display `(“Opening “ ,f))
 (p f))])
 (around pcd adv
 (open-file “Santiago”)))

30

DCC Chile 2008

Aside: Lexical Scoping

(let ([x 1])
 (let ([(f y) (+ x y)])
 (let ([x 3])
 (f x))))

• lexical scoping yields ?

• dynamic scoping yields ?

31

DCC Chile 2008

Aside: Lexical Scoping

(let ([x 1])
 (let ([(f y) (+ x y)])
 (let ([x 3])
 (f x))))

• lexical scoping yields 4

• dynamic scoping yields 6

32

DCC Chile 2008

Scoping of around

33

• calls to close-file originating from make-backup
yielding the closing file and the backup file

• AspectJ
• all aspects are static and top-level

• all aspects apply to that top-level scope

DCC Chile 2008

Scoping of around

34

• calls to close-file originating from make-backup
yielding the closing file and the backup file

• AspectJ
• all aspects are static and top-level

• all aspects apply to that top-level scope

• AspectScheme
• around aspects are statically scoped

• apply to all join points textually within that scope

DCC Chile 2008

Statically Scoped

(let ([pcd (&& (call open-file) args)]
 [((adv p) f) (display `(“Opening “ ,f))
 (p f))])
 (around pcd adv
 (open-file “Santiago”)))

?

35

DCC Chile 2008

Statically Scoped

(let ([pcd (&& (call open-file) args)]
 [((adv p) f) (display `(“Opening “ ,f))
 (p f))])
 (around pcd adv
 (open-file “Santiago”)))

Opening Santiago

36

DCC Chile 2008

Statically Scoped

(let ([pcd (&& (call open-file) args)]
 [((adv p) f) (display `(“Opening “ ,f))
 (p f))])
 ((around pcd adv
 (lambda (f)
 (open-file f)))
 “Santiago”)

?

37

DCC Chile 2008

Statically Scoped

(let ([pcd (&& (call open-file) args)]
 [((adv p) f) (display `(“Opening “ ,f))
 (p f))])
 ((around pcd adv
 (lambda (f)
 (open-file f)))
 “Santiago”)

Opening Santiago

38

DCC Chile 2008

Statically Scoped

(let ([(to-santiago f) (f “Santiago”))]
 [pcd (&& (call open-file) args)]
 [((adv p) f) (display `(“Opening “ ,f))
 (p f))])
 (around pcd adv
 (to-santiago open-file)))

?

39

DCC Chile 2008

Statically Scoped

(let ([(to-santiago f) (f “Santiago”))]
 [pcd (&& (call open-file) args)]
 [((adv p) f) (display `(“Opening “ ,f))
 (p f))])
 (around pcd adv
 (to-santiago open-file)))

No message!

• around aspects apply statically
– only to operations lexicially in their scope
– join points that occur textually in the aspect body

40

DCC Chile 2008

Dynamically scoped

(let ([(to-santiago f) (f “Santiago”))]
 [pcd (&& (call open-file) args)]
 [((adv p) f) (display `(“Opening “ ,f))
 (p f))])
 (fluid-around pcd adv
 (to-santiago open-file)))

?

41

DCC Chile 2008

Dynamically scoped

(let ([(to-santiago f) (f “Santiago”))]
 [pcd (&& (call open-file) args)]
 [((adv p) f) (display `(“Opening “ ,f))
 (p f))])
 (fluid-around pcd adv
 (to-santiago open-file)))

Opening Santiago

• fluid-around aspects apply dynamically
– only to operations dynamically in their scope
– join points that occur during the evaluation of the body

42

DCC Chile 2008

Dynamically Scoped

(let ([pcd (&& (call open-file) args)]
 [((adv p) f) (display `(“Opening “ ,f))
 (p f))])
 ((fluid-around pcd adv
 (lambda (f)
 (open-file f)))
 “Santiago”)

No message!

• the body of the fluid-around has completed before the
anonymous function is applied

43

DCC Chile 2008

Using Static Aspects
• Ensure callee has permission to open-file
• Use stack inspection:

– only trusted calls until permission granted

 (define protected-open-file
 (let ([pcd (&& (call open-file)
 (! (until trusted? priviledged?)))]
 [adv report-priviledge-error])
 (lambda (f)
 (open-file f))))

• export protected-open-file instead of open-file

44

DCC Chile 2008

Higher-Order Advice
 (before pcd adv
 body ...)

• Want to ensure proceed called
• exactly once
• with original arguments

– this is extensional advice only

(let ([(make-before-adv adv) proceed) args)
 (let ([(new-proceed ignored-args)
 (error ‘as “proceeding in before”)])
 (begin (adv new-proceed args)
 (proceed args)))])
 (around pcd (make-before-adv adv)
 body ...))

45

DCC Chile 2008

Summary

• extensible pointcuts and advice language
– higher-order and first-class functions

• allow us to easily write our own pointcuts
• allow us to customize advice behaviours

• two new kinds of scoping for aspects
– lexical (static)

• properties paralleling the program lexical structure
• propagate into higher-order procedures

– and are carried with them
– dynamic (fluid)

• properties paralleling the program dynamic structure
• propagate along the call structure

46

Implementation

Techniques ... not real code

DCC Chile 2008

Requirements

• join points: access the call-stack
– fluid-let
– continuation marks

• around: new syntax
– hygenic macros

• weaving: intercept lambda and application
– lambda is easy: hygienic macro
– application: reader macros

• PLT supplied it automatically, so just hygienic macros

48

DCC Chile 2008

Continuation Marks

(with-continuation-mark tag value
 body ...)

(get-continuation-marks)

(define (jp-context) (get-continuation-marks ’JP))

(define-syntax with-jp
 (syntax-rules ()
 [(_ jp body ...) (with-continuation-mark ’JP jp
 body ...)]))

49

DCC Chile 2008

Hygienic Macros

(define-syntax succeed
 (syntax-rules ()
 [(_ exp) (if exp ’() #f)]))

(define ((check type?) f) jp- jp jp+)
 (succeed (and (type? jp)
 (eqv? (jp-target jp) f))))

(define ((! pc) jp- jp jp+)
 (succeed (not (pc jp- jp jp+))))

50

DCC Chile 2008

Aspect Scoping

(define static-aspects ’())
(define dynamic-aspects ’())

(define (current-aspects)
 (append static-aspects dynamic-aspects))

(define-syntax lambda/static
 (syntax-rules ()
 [(_ (arg ...) body ...)
 (let ([aspects (static-aspects)])
 (lambda (arg ...)
 (fluid-let ([static-aspects aspects])
 body ...))))]))

51

DCC Chile 2008

Weaving

(define-syntax app/weave
 (syntax-rules ()
 [(_ f a ...) (app/weave/rt f a ...)]))

(define (weave fun-val jp- jp jp+ aspects)
 (fold (lambda (aspect fun)
 (cond
 [((aspect-pc aspect) jp- jp jp+)
 => ((aspect-adv aspect) fun)]
 [else fun]))
 fun-val
 aspects))

52

DCC Chile 2008

Weaving

(define (app/weave/rt fun arg ...)
 (if (primitive? fun)
 (apply fun args)
 (let ([jp (make-call-jp fun (list arg ...))]
 [jp+ (jp-context)])
 (with-jp jp
 ((weave
 (lambda (arg ...)
 (with-jp (make-exec-jp fun (list arg ...))
 (fun arg ...)))
 '()
 jp
 jp+
 (current-aspects))
 arg-vals)))))

53

DCC Chile 2008

fluid-around and around

(define-syntax fluid-around)
 (syntax-rules ()
 [(_ pc adv body)
 (fluid-let ([dynamic-aspects
 (cons (make-aspect pc adv))])
 body ...)]))

(define-syntax around)
 (syntax-rules ()
 [(_ pc adv body)
 (fluid-let ([static-aspects
 (cons (make-aspect pc adv))])
 body ...)]))

54

DCC Chile 2008

Language-Defining Macros

(provide (rename [lambda/static lambda]
 [app/weave #%app]))

55

DCC Chile 2008

Questions?

56

