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An Example

2

parse make-backup pretty-print

read-contents write-contents

open-file close-file
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Possible Aspects

• trace calls to close-file originating from 
make-backup

• check for legal arguments to write-contents
• ensure the callee has permission to execute 
open-file

• can we write these in a higher-order way?

3



DCC Chile 2008

Why AOP in a H-O language

• many languages have higher-order, first-
class functions

– Scheme
– ML
– Haskell
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Why AOP in a H-O language

• many languages have higher-order, first-
class functions

– Scheme
– ML
– Haskell

– Perl
– Python
– Ruby
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Why AOP in a H-O language

• many languages have higher-order, first-
class functions

• what is the interaction between functional 
programming and aspect-oriented 
programming
– simplify the specification of aspects?
– define more general aspects?
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Aside: Higher Order Functions

• an accumulator is a procedure that takes a 
number and adds it to its currently 
accumulated amount yielding the total

;;accumulator :: int → int

(define a (make-accumulator 0))
(define b (make-accumulator 100))

(a 10) ↦  10
(a 5)  ↦  15
(b 99) ↦ 199
(a 1)  ↦  16
(b 1)  ↦ 200
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make-accumulator is higher-order

(define make-accumulator
  (lambda (acc)
    (lambda (n)            ;new function
      (set! acc (+ acc n))
      acc)))

• a higher-order function constructs new functions

• (define ((make-accumulator acc) n)
  (set! acc (+ acc n))
  acc)
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First-class Functions

• a common shape for operating on list data 
structures is
1.  cdr-ing down a list
2.  transforming each element
3.  returning another list of the new elements

• that shape is called map

(define (incr x) (+ x 1))

(map incr ’(1 2 3 4 5)) ↦ (2 3 4 5 6)

(map string-length ’(“Hi” “Hola” “Bonjour”)) ↦ (2 4 7)
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map requires first-class functions

(define (map f l)
  (if (null? l)
      ’()
      (cons (f (car l))
            (map f (cdr l))))

• first-class functions can be arguments
– just like any other value
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Another common shape

• a common shape for operating on list data 
structures is
1.  cdr-ing down a list
2.  transforming each element
3.  and combining the resulting element with the 

rest of the tranformed list

• that shape is called fold
(fold + 0 ’(1 2 3 4 5)) ↦ 15

(map string-append “” ’(“hi” “hola” “bonjour”))

        ↦ “HiHolaBonjour”
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H-O + F-C is powerful
(define (map f l)
  (fold (lambda (e l)
          (cons (f e) l))
        ’()
        l))
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Challenges

• How to specify aspects?
– a F-C function may have 0, 1, or many names
– second-class or first-class aspects?
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Challenges

• How to specify aspects?
– a F-C function may have 0, 1, or many names
– second-class or first-class aspects?

• Scoping issues
– can define aspects outside the top level

• when is an aspect in effect?
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How to Specify Aspects?

• two parts:
• pointcut
• advice
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Aside: Aspects

• an aspect comprises two parts

– a pointcut
• identifies some collection of principled points

– join points
• in the execution of a program

– an advice
• alters the semantics of the join point

– continue with different arguments
– log information
– decide not to continue at all
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How to Specify Aspects?

• two parts:
• pointcut
• advice

– will be first class
– consistent with design of functional languages

• a pointcut
– a predicate over a list of join points

• an advice
– a join point transformer
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Aside: Join Points
(define (incr x) (+ 1 x))

(incr 3)

• function call:
(incr 3)

– a pair of target: incr and arguments: ’(3)

• function execution:
(+ 1 3)

– a pair of target: incr and arguments: ’(3)
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Join Point Stack

• offers access to calling context
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How to specify Pointcuts

20

• calls to close-file

• AspectJ
call(void File.close())
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How to specify Pointcuts
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• calls to close-file

• AspectJ
call(void File.close())

• AspectScheme
(lambda (jp- jp jp+)
   (if (and (call-jp? jp)
            (eqv? (jp-target jp) close-file))
       ’()
       #f))
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Binding Pointcuts
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• calls to close-file accessing the file

• AspectJ
call(void File.close(File)) && args(f)

• AspectScheme
(lambda (jp- jp jp+)
   (if (and (call-jp? jp)
            (eqv? (jp-target jp) close-file))
       (jp-args jp)
       #f))
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How to specify Pointcuts
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• calls to close-file originating from make-backup

• AspectJ
call(void File.close())

  && cflow(exec(void Backup.make()))
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How to specify Pointcuts
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• calls to close-file originating from make-backup

• AspectJ
call(void File.close())

  && cflow(exec(void Backup.make()))

• AspectScheme
(lambda (jp- jp jp+)
   (and (call-jp? jp)
        (eqv? (jp-target jp) close-file))

  (any (lambda (jp)
     (and (exec-jp? jp)

            (eqv? (jp-target jp) make-backup)))
       jp+)))
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Higher-Order Pointcuts
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(define ((check type?) f) jp- jp jp+)
   (if (and (type? jp)
            (eqv? (jp-target jp) f))
       ’()
       #f)))

(define (call f) ((check call?) f))

(define (exec f) ((check exec?) f))

(define (args) jp- jp jp+)
   (jp-args jp))
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Pointcut Combinators
(define ((&& pc1 pc2) jp- jp jp+)
  (let ([v1* (pc1 jp- jp jp+)])
    (if v1*
        (let ([v2* (pc2 jp- jp jp+)]
          (if v2* (append v1* v2*) #f))
        #f)))

(define ((|| pc1 pc2) jp- jp jp+)

  (let ([v* (pc1 jp- jp jp+)])

     (if v* v* (pc2 jp- jp jp+))))

(define ((! pc) jp- jp jp+)

  (if (pc jp- jp jp+) #f ’()))

26



DCC Chile 2008

Pointcut Combinators
(define ((cflow pc) jp- jp jp+)
  (let loop ([jp- jp-]
             [jp  jp ]
             [jp+ jp+])
    (if (null? jp+)
        #f
        (let ([v* (pc jp- jp jp+)])
          (if v*
              v*
              (loop (cons jp jp-)
                    (car jp)
                    (cdr jp+)))))))
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How to specify Pointcuts
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• calls to close-file originating from make-backup 
yielding the closing file and the backup file

• AspectJ
   (call(void File.close(File)) && args(f)
      && cflow(exec(void Backup.make()) && args(b)))

• AspectScheme
   (&& (call close-file)
       args
       (cflow (&& (exec make-backup)
                  args)))
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How to specify Advice
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• calls to close-file originating from make-backup 
yielding the closing file and the backup file

• AspectJ
   { System.out.println(“Backup “ + b + “ closing “ + f);
     proceed(f, b); }

• AspectScheme
   (lambda (proceed)
     (lambda (f b)
       (display `(“Backup “ ,b “ closing “ ,f))
       (proceed f b)))

• all advice is around advice
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The around expression

• to install a pcd and advice, introduce
       (around pcd adv
          body ...)

• for example

(let ([pcd (&& (call open-file) args)]
      [((adv p) f) (display `(“Opening “ ,f))
                   (p f))])
  (around pcd adv
     (open-file “Santiago”)))
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Aside: Lexical Scoping

(let ([x 1])
  (let ([(f y) (+ x y)])
    (let ([x 3])
      (f x))))

• lexical scoping yields ?

• dynamic scoping yields ?
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Aside: Lexical Scoping

(let ([x 1])
  (let ([(f y) (+ x y)])
    (let ([x 3])
      (f x))))

• lexical scoping yields 4

• dynamic scoping yields 6
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Scoping of around

33

• calls to close-file originating from make-backup 
yielding the closing file and the backup file

• AspectJ
• all aspects are static and top-level

• all aspects apply to that top-level scope
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Scoping of around
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• calls to close-file originating from make-backup 
yielding the closing file and the backup file

• AspectJ
• all aspects are static and top-level

• all aspects apply to that top-level scope

• AspectScheme
• around aspects are statically scoped

• apply to all join points textually within that scope
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Statically Scoped

(let ([pcd (&& (call open-file) args)]
      [((adv p) f) (display `(“Opening “ ,f))
                   (p f))])
  (around pcd adv
     (open-file “Santiago”)))

?
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Statically Scoped

(let ([pcd (&& (call open-file) args)]
      [((adv p) f) (display `(“Opening “ ,f))
                   (p f))])
  (around pcd adv
     (open-file “Santiago”)))

Opening Santiago
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Statically Scoped

(let ([pcd (&& (call open-file) args)]
      [((adv p) f) (display `(“Opening “ ,f))
                   (p f))])
  ((around pcd adv
     (lambda (f)
       (open-file f)))
   “Santiago”)

?
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Statically Scoped

(let ([pcd (&& (call open-file) args)]
      [((adv p) f) (display `(“Opening “ ,f))
                   (p f))])
  ((around pcd adv
     (lambda (f)
       (open-file f)))
   “Santiago”)

Opening Santiago
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Statically Scoped

(let ([(to-santiago f) (f “Santiago”))]
      [pcd (&& (call open-file) args)]
      [((adv p) f) (display `(“Opening “ ,f))
                   (p f))])
  (around pcd adv
    (to-santiago open-file)))

?
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Statically Scoped

(let ([(to-santiago f) (f “Santiago”))]
      [pcd (&& (call open-file) args)]
      [((adv p) f) (display `(“Opening “ ,f))
                   (p f))])
  (around pcd adv
    (to-santiago open-file)))

No message!

• around aspects apply statically
– only to operations lexicially in their scope
– join points that occur textually in the aspect body
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Dynamically scoped

(let ([(to-santiago f) (f “Santiago”))]
      [pcd (&& (call open-file) args)]
      [((adv p) f) (display `(“Opening “ ,f))
                   (p f))])
  (fluid-around pcd adv
    (to-santiago open-file)))

?
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Dynamically scoped

(let ([(to-santiago f) (f “Santiago”))]
      [pcd (&& (call open-file) args)]
      [((adv p) f) (display `(“Opening “ ,f))
                   (p f))])
  (fluid-around pcd adv
    (to-santiago open-file)))

Opening Santiago

• fluid-around aspects apply dynamically
– only to operations dynamically in their scope
– join points that occur during the evaluation of the body
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Dynamically Scoped

(let ([pcd (&& (call open-file) args)]
      [((adv p) f) (display `(“Opening “ ,f))
                   (p f))])
  ((fluid-around pcd adv
     (lambda (f)
       (open-file f)))
   “Santiago”)

No message!

• the body of the fluid-around has completed before the 
anonymous function is applied
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Using Static Aspects
• Ensure callee has permission to open-file
• Use stack inspection:

– only trusted calls until permission granted

 (define protected-open-file
    (let ([pcd (&& (call open-file)
                   (! (until trusted? priviledged?)))]
          [adv report-priviledge-error])
      (lambda (f)
        (open-file f))))

• export protected-open-file instead of open-file
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Higher-Order Advice
 (before pcd adv
   body ...)

• Want to ensure proceed called
• exactly once
• with original arguments

– this is extensional advice only

(let ([(make-before-adv adv) proceed) args)
         (let ([(new-proceed ignored-args)
                  (error ‘as “proceeding in before”)])
           (begin (adv new-proceed args)
                  (proceed args)))])
  (around pcd (make-before-adv adv)
    body ...))
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Summary

• extensible pointcuts and advice language
– higher-order and first-class functions

• allow us to easily write our own pointcuts
• allow us to customize advice behaviours

• two new kinds of scoping for aspects
– lexical (static)

• properties paralleling the program lexical structure
• propagate into higher-order procedures

– and are carried with them
– dynamic (fluid)

• properties paralleling the program dynamic structure
• propagate along the call structure

46
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Techniques ... not real code
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Requirements

• join points: access the call-stack
– fluid-let
– continuation marks

• around: new syntax
– hygenic macros

• weaving: intercept lambda and application
– lambda is easy: hygienic macro
– application: reader macros

• PLT supplied it automatically, so just hygienic macros
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Continuation Marks

(with-continuation-mark tag value
  body ...)

(get-continuation-marks)

(define (jp-context) (get-continuation-marks ’JP))

(define-syntax with-jp
  (syntax-rules ()
    [(_ jp body ...) (with-continuation-mark ’JP jp
                       body ...)]))
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Hygienic Macros

(define-syntax succeed
  (syntax-rules ()
    [(_ exp) (if exp ’() #f)]))

(define ((check type?) f) jp- jp jp+)
   (succeed (and (type? jp)
                 (eqv? (jp-target jp) f))))

(define ((! pc) jp- jp jp+)
   (succeed (not (pc jp- jp jp+))))
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Aspect Scoping

(define static-aspects  ’())
(define dynamic-aspects ’())

(define (current-aspects)
   (append static-aspects dynamic-aspects))

(define-syntax lambda/static
  (syntax-rules ()
      [(_ (arg ...) body ...)
       (let ([aspects (static-aspects)])
         (lambda (arg ...)
           (fluid-let ([static-aspects aspects])
             body ...))))]))
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Weaving

(define-syntax app/weave
  (syntax-rules ()
      [(_ f a ...) (app/weave/rt f a ...)]))

(define (weave fun-val jp- jp jp+ aspects)
  (fold (lambda (aspect fun)
          (cond
             [((aspect-pc aspect) jp- jp jp+)
              => ((aspect-adv aspect) fun)]
             [else fun]))
         fun-val
         aspects))
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Weaving

(define (app/weave/rt fun arg ...)
  (if (primitive? fun)
      (apply fun args)
      (let ([jp (make-call-jp fun (list arg ...))]
            [jp+ (jp-context)])
        (with-jp jp
          ((weave
             (lambda (arg ...)
               (with-jp (make-exec-jp fun (list arg ...))
                  (fun arg ...)))
             '()
             jp
             jp+
             (current-aspects))
           arg-vals)))))
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fluid-around and around

(define-syntax fluid-around)
  (syntax-rules ()
    [(_ pc adv body)
     (fluid-let ([dynamic-aspects
                  (cons (make-aspect pc adv))])
        body ...)]))

(define-syntax around)
  (syntax-rules ()
    [(_ pc adv body)
     (fluid-let ([static-aspects
                  (cons (make-aspect pc adv))])
        body ...)]))
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Language-Defining Macros

(provide (rename [lambda/static lambda]
                 [app/weave     #%app]))
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Questions?
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