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Abstract

In this paper, we propose to replace Scheme first class
continuations by a sequential thread system. Owur
threads are very close to continuations but they are
easier to understand and to use for programmers, and
its implementation is simpler and more efficient.

We show that with our threads we can recover
almost completely the Scheme operator call-with-
-current-continuation (call/cc for short). The
only functionality we dismiss is what makes this op-
erator difficult to understand and to implement: the
multiple invocations of the same continuation. We
think this difference will affect the behavior of only
a few programs written in Scheme, but it will allow
a faster execution of all programs. Moreover, our
threads can be naturally extended to a concurrent
version of Scheme, without the known problems of
continuations.

1 Introduction

Based on a minimal operation set principle, Scheme
[Clinger and Rees 91] offers only one abstraction to
implement advanced control structures: first class
continuations [Clinger 87]. Dynamic escapes, corou-
tines and many other control structures can be im-
plemented from continuations, without adding more
special forms to the language. However, continua-
tions are difficult to understand and to use, and its
semantics is too complex to be well comprehended
by programmers, specially when multiple invocations
are used. There is no programming paradigm associ-
ated with continuations, and thus the programs using
them are difficult to read. Continuations do have a

well-defined semantics [Strachey and Wadsworth 74],
but this does not make them a useful tool for com-
puter programming.

On the other hand, coroutines and dynamic es-
capes implemented with continuations are very inef-
ficient compared to a native implementation. The
main problem is that the multiple invocation seman-
tics of continuations makes them heavier to imple-
ment, even though coroutines and dynamic escapes
do not need multiple invocations. Surprisingly, it is
difficult to find examples where this multiple invoca-
tion semantics is really useful.

In this paper, we propose to replace the Scheme
continuations by another abstraction based on the
thread concept. Like continuations, a thread is repre-
sented by a first class procedural object. When this
object is invoked, a context switch is performed to
transfer control to that thread.

Our proposed threads are almost compatible with
Scheme continuations. Programs using continua-
tions, but invoking them only once, will remain cor-
rect. The only incompatibility is that our threads
behave differently when invoked many times, but it
enables a behavior easier to understand and a more
efficient implementation. We believe that this change
will only affect a reduced set of the existing Scheme
programs, because the multiple invocations of contin-
uations are rarely used.

The paper is organized as follows: in section 2 we
describe the thread concept, in section 3 we describe
our proposal for Scheme. An example of a program
using our threads is shown in section 4 and a com-
parison with Scheme continuations is done in section
5. Finally we conclude in section 6.



2 Threads

Most of today’s programs are single-threaded. This
means that their execution follows a sequence of calls
to and returns from procedures in a strict LIFO order.

When a program is multi-threaded, its execution
follows many threads. Each one of these threads exe-
cutes a LIFO sequence of calls and returns, but proce-
dures in two different threads generally do not follow
a specific order. At execution time, all threads share
the same memory space.

To execute a multi-threaded program, the pro-
gramming language (or the operating system) must
provide a thread system. In this paper we propose a
sequential thread system for Scheme, meaning that,
at any time, only one thread is executing, calling
it the active thread. All the other threads are sus-
pended. The active thread has full control of the CPU
until it explicitly gives control to another thread®.

On the other hand, in a concurrent thread system
there can be many active threads at the same time,
which can exploit paralellism in a multi-processor ar-
chitecture. A thread system sharing a unique CPU
via time-slicing is concurrent, because the program-
mer’s view is the same as in a system executing
threads on a multi-processor.

Our thread system can be extended to a con-
current one naturally and without the known
problems of mixing concurrency and continuations
[Katz and Weise 90].

Thread Diagrams

A thread diagram shows graphically the procedure
calls and returns during a time interval. We will use
such diagrams to show the meaning of the operations
of our thread system. For example, Figure 1 shows a
single-thread execution diagram.

The vertical axis represents the execution time,
progressing downwards. The horizontal axis repre-
sents the procedure call nesting, i.e. the stack size.
A procedure call is represented as a curve shift to
the right, and it can be labeled with the procedure’s
name. A return is represented as a shift to the left.

In the Figure 1 we can see that, at instant ¢’ the
procedure R is executing, ant it was called from @,

In this sense, a sequential thread is equivalent to a
coroutine.

Figure 1: A single-threaded execution

which was called from P. At time ¢ R has returned
from procedure Q.

Figure 2 shows an example of a sequential multi-
threaded system.
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Figure 2: A multi-threaded execution

When a thread is suspended, a dotted line shows
that the thread does not execute any instructions. A
thread only resumes when the active thread gives the
control back to it.

3 A sequential thread system
for Scheme
The main primitive introduced is start-thread.

This primitive allows the creation of new threads, us-
ing the following syntax?:

2The start-threadsyntax is identical to call/cc for partial
compatibility. We will discuss compatibility issues later.



(start-thread proc)

The argument proc must be a one-argument pro-
cedure. The call to start-thread creates a new
thread which receives the control immediately, ex-
ecuting proc. The new thread (named the child)
calls proc, passing it as argument the thread iden-
tifier of the caller of start-thread (named its par-
ent). In Figure 3 we can see the effect of a call to

start-thread.

child
thread

o~ L

(start-thread proc)

parent
thread

Figure 3: Execution of start-thread

The left size shows the moment just before calling
start-thread. The call to start-thread generated
the change shown at the right size.

The thread identifier

Each thread has a unique thread identifier. Following
the Scheme tradition, this identifier is a procedural
object, which can be called as a one-argument pro-
cedure. Invoking a thread identifier means to pass
the control to that thread, suspending the currently
active thread.

Besides start-thread, the only other primitive
manipulating thread identifiers is current-thread
which returns the current thread identifier.

ample:

For ex-

;; this is the thread A

(1) (define *t-b*x ’())
(2) (start-thread
(3) (lambda (t-a)
; this is a new thread B.
; t-a is the thread-id of A.
; First save the thread-id of B
(4 (set! *t-b* (current-thread))
; pass control to thread A.
(5) (t-a ’any-1)
; B is suspended until A
; passes control back to B
(6) (display "B resumes'")

7 (t-a ’any-2) ))
(8) (display "A resumes")
(9) (*t-b* ’any-3)

(10) (display "A resumes")

Figure 4 shows the execution of this code.

A B
) L 777777 (lambda (t-a) ...)
: (4)
®( ®)
@ “— — - — _ _ _ _

Figure 4: Thread Execution Example

The detailed execution is as follows:

e At (2) thread A calls start-thread to create
thread B. Control continues at B.

e Thread B calls the lambda expression (3).

e At (4) thread B calls current-thread and it
stores its thread identifier in variable *t-b*.

e At (5) thread B invokes A’s identifier to transfer
control to it3.

e Thread A resumes execution returning from
start-thread (2), displaying its first message

(8).

e At (9) thread A invokes B’s identifier to pass
control to B.

e Thread B resumes execution (5) and displays a
message (6).

e At (7) thread B pass control back to A again.

e Thread A resumes execution (9) and displays a
new message (10).

3When invoking a thread identifier, an argument must be
supplied. In this case it is not useful, but it can be used to
supply values to the resumed thread.



Pass Value

When a thread transfers the execution control to
another thread, we will call the former the emitter
thread and the latter the receiver thread. The emitter
can only transfer the control in two ways: (i) invoking
the thread identifier of another thread or (ii) creating
a new thread with start-thread. Every thread that
is not active must be suspended in a call of type (i)
or (ii).

When a control transfer of type (i) ocurrs, the
emitter must supply a value of any type to the re-
ceiver. We will call this value the pass value. At the
emitter, this value is the only argument to the thread
identifier. At the receiver, it is the return value of the
type (i) or (ii) expression in which it was suspended.

Active Thread Identifier

Any thread can obtain its own identifier through a
call to current-thread. This procedure does not
need to be primitive, because a thread could obtain
its own identifier with the following expression:

(set! my-thread
(start-thread
(lambda (thread)
(thread thread) )))

D)
(2)

In this code, a thread is created receiving its par-
ent identifier at (1) and returning control to its parent
immediately, with the identifier as the pass value in
(2). Of course, current-thread could also be imple-
mented as a procedure calling start-thread in the
same way.

However, it would be very inefficient to create a
new thread just to compute our own identifier, an
operation than could be a frequent one. This is
why it is better to provide a primitive version or
current-thread, with an efficient implementation.

Finishing a Thread

When the initial procedure of a thread (the proce-
dure passed as argument to start-thread) returns,
the thread is finished. In this case the execution con-
trol passes automatically to its parent and the return
value of the procedure becomes the pass value. If the
main thread (where the program execution began)
finishes, then the whole program ends.

For example, in the last code example, the lambda
expression could be simplified to just
(lambda (thread) thread). Itis an execution error
to transfer control to a finished thread.

4 A same-fringe implementa-
tion with threads

A classic problem, difficult to solve efficiently in a
single-threaded system, is to compare the fringes from
two different trees. A tree fringe is the sequence of
leaves obtained traversing the tree from left to right.
The idea is to visit only the matching leaves and to
stop the execution at the first difference.

This solution uses three threads, one for visiting
each tree and a third to compare the results. Using
our threads the solution is simple and efficient.

The procedure to perform the comparison is
same-fringe. This procedure calls make-walker to
start the tree traversals.

; The end of tree token

(1) (define *eot* ’(eot))
(2) ; Compares the fringes of two trees
(8) (define (same-fringe tree-a tree-b)
; Create one thread for each tree
(4) (let ((t-a (make-walker tree-a))
(5) (t-b (make-walker tree-b)))
; Now get a leaf for each tree
(6) (let loop ((leaf-a (t-a ’any))
¢p) (leaf-b (t-b ’any)))
(8) (cond
(9 ((eq? leaf-a *eot*)
; no more leaves on tree-a
(10) (eq? leaf-b *eot*))
(11) ((eq? leaf-a leaf-b)
; get a new leaf for each
; tree and loop
(12) (loop (t-a ’any) (t-b ’any)))
(13) (else
; found two different leaves
(14) #) ))))
(15) (define (make-walker tree)
(16) (start-thread
n (lambda (t-comp)
; t—comp is the thread-id of the
; comparator thread
(18) (define (walk-tree tree)

; A local procedure to traverse



; a tree
(19) (if (atom? tree)
(20) (t-comp tree)
; else
(21) (begin
(22) (walk-tree (car tree))
(23) (walk-tree (cdr tree)) )))
; pass my thread-id
(24) (t-comp (current-thread))
; now traverse the tree
(25) (walk-tree tree)
; Finally, pass the end-token
(26) *eot* )))

The execution is as follows: when same-fringe
requires in (6) or (7) the first leaf of a tree, it invokes
the corresponding thread identifier. This thread ini-
tiates a recursive traversal of the tree in (25) until a
leaf is found in (20). At this point the thread passes
control back to same-fringe. When same-fringe
needs a new pair of leaves at (12) it resumes once
again the walker threads.

This solution is efficient because it only visits the
leaves that are equal, stopping its execution at the
first difference in (13). The walker threads remain
suspended afterwards, until the garbage collector re-
claims them.

5 Comparison with call/cc

Our thread system uses a syntax for start-thread
that is identical to call/cc. However they create
different objects: threads and continuations. Even
though threads and continuations are not the same,
in this section we show that just replacing call/cc
by start-thread will produce the same results for
most programs.

Table 1 compares call/cc with start-thread.
Table 2 compares Scheme continuations with our
threads, being both procedural first-class objects.

The main differences between continuations and
threads are then:

e The invocation of a continuation never returns.
The invocation of a thread identifier returns
when another thread invokes the suspended
thread identifier.

e All the invocations of a continuation return at
the same call/cc which yielded that contin-
uation. This means that multiple invocations

of the same continuation generate multiple re-
turns of the same call/cc. On the other hand,
multiple invocations of the same thread identi-
fier return at the different points where control
was suspended.

The following example shows the difference be-
tween a continuation and a thread.

(define *P-k* ’still-undefined)
(define *Q-k* ’still-undefined)

(define *v* ’still-undefined)

(define (P a)

1) (call/cc Q)
2) (set! a (+ a 1))
(3) a)
(define (Q k)
(4) (set! *P-k* k)
(5) (call/cc R)
(6) (*P-k* ’dummy) )
(define (R k)

7) (set! *Q-k* k)
(8) (*P-k* ’dummy) )
; main program

(9) (set! xvx (P 0))

(10) (display *v*)
(11) (*Q-k* ’dummy)
(12) (display "end")

In Figure 5, at the left size we can see the execu-
tion of the code above. At the right size, we see the
execution replacing call/cc by start-thread. With
call/cc, the program loops displaying the sequence
1, 2, 3, 4, etc. With start-thread, it displays 1 and
then it exits displaying the message "end".

In the example with call/cc, the unique call to P
at (9) has multiple returns. This happens because the
continuation stored in *P-k* is invoked many times

from (6) and (8).

Replacing call/cc by start-thread

Let us introduce the following redefinition in Scheme:

(set! call/cc start-thread)

As shown in the previous example, programs in-
voking many times the same continuation will be af-
fected.

Let us examine what happens to a program in-
voking continuations only once. With such a redefin-
ition, call/cc now returns a thread instead of a con-
tinuation, but both abstractions behave identically if



primitive

call/cc

start-thread

syntax

(call/cc proc)

(start-thread proc)

form of proc

(lambda (k)

J) (lambda (thread) ...)

argument type

first-class continuation

first-class thread identifier

Table 1: Comparing call/cc and start-thread.

object first-class continuation | first-class thread identifier
syntax (kx wval) (thread val)
returns? no yes

effect

first invocation

return from
call/cc

return from
start-thread

pass value

val

val

effect

next invocations

return from
same call/cc

thread resumes
at the point where it was
active last time

CALL/CC

®) R
)
) (&1*
3)
(10)
(11
)
(©)
(10)
(1)
&)
3)

(10)
1D
etc.

Table 2: Comparing continuations and threads.

START-THREAD

Figure 5: call/cc vs start-thread

invoked only once. So, for such a program, the redef-
inition should not change its execution. However, the
following expression will evaluate to a different result,
even though it invokes continuations only once:

(eq? (call/cc (lambda (k-1) k-1))
(call/cc (lambda (k-2) k-2)) )

In Scheme this expression evaluates to false, be-
cause the continuation passed to lambda is different
for each call. Replacing call/cc by start-thread
the expression compares the parent identifier of each
thread, which is the same, returning true.

Therefore, the only programs affected by this re-
definition would be those invoking multiple times
the same continuation and those comparing contin-
uations with eq?. Based on that, we conclude that
the number of programs affected by this change is
minimal.

The start-thread semantics

In this section we describe the start-thread seman-
tics in terms of call/cc. This is only useful as a
reference for real implementations of start-thread,
because we really propose to eliminate the call/cc
operator from Scheme.



(define current-thread ’still-undefined)
(define start-thread ’still-undefined)

(let ( (*curr-thread* ’dummy)
(*curr-switcher* ’dummy) )

(define (make-thread next-k)
(define (switcher k-receiver val)

(call/cc
(lambda (new-k)

(set! next-k new-k)
(k-receiver val) )))
(define (thread val)

(let ((old-switcher *curr—switcher*))
(set! *curr-thread* thread)
(set! *curr-switcher* switcher)
(old-switcher next-k val) ))

(thread *curr-thread*) )

; initialization for main thread
(set! *curr-switcherx*

(lambda (proc val) ’dummy-switcher) )
(make-thread ’never-invoked)

(set! current-thread
(lambda () *curr-threadx*) )

(set! start-thread
(lambda (proc)
(make-thread
(lambda (parent-thread)
(parent-thread (proc parent-thread))
(error "can’t resume a dead thread")

DADEDEDED

It is worth noting that this implementation always
invokes a continuation once. Thus, call/cc can be
replaced by a call to a pre-existant start-thread.
The new operator start-thread thus defined, is se-
mantically correct.

5.1 Implementation Efficiency

Our threads can be implemented just using one stack
per thread®. The start-thread operator could be
efficiently implemented in C with some lines in as-
sembler, with all the usual optimizations, as it is done
for threads in languages like C, C4++, Java, etc.
However, this scheme is not valid to implement
call/cc. Due to the multiple invocations semantics,

4 Although implementations using multiple stacks are time-
efficient, they are space-inefficient. In [Mateu 92] we propose
a heap-based implementation being space and time efficient.

it is not always possible to free the activation frame
of a returning procedure. Since a continuation could
have been captured during the procedure execution,
the activation frame could be used again.

Many Scheme implementations [Clinger et al 88,
Hieb et al 90] use the stack to store activation frames
while call/cc is not used. Upon a call to call/cc or
to a continuation, the stack must be copied totally or
partially. Making copies of the stack has the following
problems:

e Programs using continuations are not efficient.
Copying stack segments is slow, and implement-
ing a thread system based on continuations is
much slower than a native thread system like
our proposal.

e Even programs not using continuations are in-
efficient: to respect the call/cc semantics, any
variable subject to a side-effect through a set!
must be created on the heap. These variables
will only be deallocated by the garbage collec-
tor, meaning an overhead in execution time. It
is worth noting that this implies that call/cc
can not be implemented just as an special form,
the compiler must generate ad-hoc code.

The other existing variations of Scheme imple-
mentations are also inefficient when using call/cc
and they introduce an important execution overhead
even when not using call/cc.

The most surprising thing is that all these prob-
lems are related to the multiple invocations semantics
of call/cc, a feature rarely used. Just prohibiting
the multiple invocation, would make call/cc easier
to understand and more efficient to implement.

6 Conclusions

In this paper we have shown how a thread system
could replace the Scheme continuations, simplifying
the language and its implementation.

Scheme justifies the presence of continuations in
the language [Haynes et al 84] as a flexible base to
solve many control problems, like coroutines and dy-
namic escapes. We claim that our system is flexible
and general enough to fulfill the same mission.

The change we are proposing could affect ex-
isting programs, when invoking multiple times the
same continuation or when comparing them with eq?.



However, we think that the affected programs will be
less than those broken by the change of the evaluation
of ? () from false to true [IEEE 90].

Currently, the multiple invocation of a con-
tinuation is not useful in practice. They are
there because they appear naturally from the
conversion to CPS (Continuation Passing Style)
[Strachey and Wadsworth 74, Steele 78], but when
such multiple invocations are used, the resulting
program is unreadable. Moreover, when extend-
ing the language to a concurrent execution, multi-
ple invocations are difficult to integrate into the new
system[Katz and Weise 90].

Our main point is to redefine the semantics of
multiple invocations based on threads. This seman-
tics is useful as a programming tool, flexible to im-
plement advanced control structures, easy to extend
to any concurrent Scheme and efficient to implement.
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