
Continuations: Multiple Invocations Considered HarmfulLuis Mateu and Jos�e M. Piquere-mail: fjpiquer,lmateug@dcc.uchile.clDpto. Cs. de la Computaci�onU. de ChileJuly 17, 1997AbstractIn this paper, we propose to replace Scheme �rst classcontinuations by a sequential thread system. Ourthreads are very close to continuations but they areeasier to understand and to use for programmers, andits implementation is simpler and more e�cient.We show that with our threads we can recoveralmost completely the Scheme operator call-with--current-continuation (call/cc for short). Theonly functionality we dismiss is what makes this op-erator di�cult to understand and to implement: themultiple invocations of the same continuation. Wethink this di�erence will a�ect the behavior of onlya few programs written in Scheme, but it will allowa faster execution of all programs. Moreover, ourthreads can be naturally extended to a concurrentversion of Scheme, without the known problems ofcontinuations.1 IntroductionBased on a minimal operation set principle, Scheme[Clinger and Rees 91] o�ers only one abstraction toimplement advanced control structures: �rst classcontinuations [Clinger 87]. Dynamic escapes, corou-tines and many other control structures can be im-plemented from continuations, without adding morespecial forms to the language. However, continua-tions are di�cult to understand and to use, and itssemantics is too complex to be well comprehendedby programmers, specially when multiple invocationsare used. There is no programming paradigm associ-ated with continuations, and thus the programs usingthem are di�cult to read. Continuations do have a

well-de�ned semantics [Strachey and Wadsworth 74],but this does not make them a useful tool for com-puter programming.On the other hand, coroutines and dynamic es-capes implemented with continuations are very inef-�cient compared to a native implementation. Themain problem is that the multiple invocation seman-tics of continuations makes them heavier to imple-ment, even though coroutines and dynamic escapesdo not need multiple invocations. Surprisingly, it isdi�cult to �nd examples where this multiple invoca-tion semantics is really useful.In this paper, we propose to replace the Schemecontinuations by another abstraction based on thethread concept. Like continuations, a thread is repre-sented by a �rst class procedural object. When thisobject is invoked, a context switch is performed totransfer control to that thread.Our proposed threads are almost compatible withScheme continuations. Programs using continua-tions, but invoking them only once, will remain cor-rect. The only incompatibility is that our threadsbehave di�erently when invoked many times, but itenables a behavior easier to understand and a moree�cient implementation. We believe that this changewill only a�ect a reduced set of the existing Schemeprograms, because the multiple invocations of contin-uations are rarely used.The paper is organized as follows: in section 2 wedescribe the thread concept, in section 3 we describeour proposal for Scheme. An example of a programusing our threads is shown in section 4 and a com-parison with Scheme continuations is done in section5. Finally we conclude in section 6.1



2 ThreadsMost of today's programs are single-threaded. Thismeans that their execution follows a sequence of callsto and returns from procedures in a strict LIFO order.When a program is multi-threaded, its executionfollows many threads. Each one of these threads exe-cutes a LIFO sequence of calls and returns, but proce-dures in two di�erent threads generally do not followa speci�c order. At execution time, all threads sharethe same memory space.To execute a multi-threaded program, the pro-gramming language (or the operating system) mustprovide a thread system. In this paper we propose asequential thread system for Scheme, meaning that,at any time, only one thread is executing, callingit the active thread. All the other threads are sus-pended. The active thread has full control of the CPUuntil it explicitly gives control to another thread1.On the other hand, in a concurrent thread systemthere can be many active threads at the same time,which can exploit paralellism in a multi-processor ar-chitecture. A thread system sharing a unique CPUvia time-slicing is concurrent, because the program-mer's view is the same as in a system executingthreads on a multi-processor.Our thread system can be extended to a con-current one naturally and without the knownproblems of mixing concurrency and continuations[Katz and Weise 90].Thread DiagramsA thread diagram shows graphically the procedurecalls and returns during a time interval. We will usesuch diagrams to show the meaning of the operationsof our thread system. For example, Figure 1 shows asingle-thread execution diagram.The vertical axis represents the execution time,progressing downwards. The horizontal axis repre-sents the procedure call nesting, i.e. the stack size.A procedure call is represented as a curve shift tothe right, and it can be labeled with the procedure'sname. A return is represented as a shift to the left.In the Figure 1 we can see that, at instant t0 theprocedure R is executing, ant it was called from Q,1In this sense, a sequential thread is equivalent to acoroutine.
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t’’Figure 1: A single-threaded executionwhich was called from P . At time t00 R has returnedfrom procedure Q.Figure 2 shows an example of a sequential multi-threaded system.
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creation of
thread B

creation of
thread CFigure 2: A multi-threaded executionWhen a thread is suspended, a dotted line showsthat the thread does not execute any instructions. Athread only resumes when the active thread gives thecontrol back to it.3 A sequential thread systemfor SchemeThe main primitive introduced is start-thread.This primitive allows the creation of new threads, us-ing the following syntax2 :2The start-threadsyntax is identical to call/cc for partialcompatibility. We will discuss compatibility issues later.2



(start-thread proc)The argument proc must be a one-argument pro-cedure. The call to start-thread creates a newthread which receives the control immediately, ex-ecuting proc. The new thread (named the child)calls proc, passing it as argument the thread iden-ti�er of the caller of start-thread (named its par-ent). In Figure 3 we can see the e�ect of a call tostart-thread.
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threadFigure 3: Execution of start-threadThe left size shows the moment just before callingstart-thread. The call to start-thread generatedthe change shown at the right size.The thread identi�erEach thread has a unique thread identi�er. Followingthe Scheme tradition, this identi�er is a proceduralobject, which can be called as a one-argument pro-cedure. Invoking a thread identi�er means to passthe control to that thread, suspending the currentlyactive thread.Besides start-thread, the only other primitivemanipulating thread identi�ers is current-threadwhich returns the current thread identi�er. For ex-ample:;; this is the thread A(1) (define *t-b* '())(2) (start-thread(3) (lambda (t-a); this is a new thread B.; t-a is the thread-id of A.; First save the thread-id of B(4) (set! *t-b* (current-thread)); pass control to thread A.(5) (t-a 'any-1); B is suspended until A; passes control back to B(6) (display "B resumes")

(7) (t-a 'any-2) ))(8) (display "A resumes")(9) (*t-b* 'any-3)(10) (display "A resumes")Figure 4 shows the execution of this code.
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(lambda (t−a) ... )Figure 4: Thread Execution ExampleThe detailed execution is as follows:� At (2) thread A calls start-thread to createthread B. Control continues at B.� Thread B calls the lambda expression (3).� At (4) thread B calls current-thread and itstores its thread identi�er in variable *t-b*.� At (5) thread B invokes A's identi�er to transfercontrol to it3.� Thread A resumes execution returning fromstart-thread (2), displaying its �rst message(8).� At (9) thread A invokes B's identi�er to passcontrol to B.� Thread B resumes execution (5) and displays amessage (6).� At (7) thread B pass control back to A again.� Thread A resumes execution (9) and displays anew message (10).3When invoking a thread identi�er, an argument must besupplied. In this case it is not useful, but it can be used tosupply values to the resumed thread.3



Pass ValueWhen a thread transfers the execution control toanother thread, we will call the former the emitterthread and the latter the receiver thread. The emittercan only transfer the control in two ways: (i) invokingthe thread identi�er of another thread or (ii) creatinga new thread with start-thread. Every thread thatis not active must be suspended in a call of type (i)or (ii).When a control transfer of type (i) ocurrs, theemitter must supply a value of any type to the re-ceiver. We will call this value the pass value. At theemitter, this value is the only argument to the threadidenti�er. At the receiver, it is the return value of thetype (i) or (ii) expression in which it was suspended.Active Thread Identi�erAny thread can obtain its own identi�er through acall to current-thread. This procedure does notneed to be primitive, because a thread could obtainits own identi�er with the following expression:(set! my-thread(start-thread(1) (lambda (thread)(2) (thread thread) )))In this code, a thread is created receiving its par-ent identi�er at (1) and returning control to its parentimmediately, with the identi�er as the pass value in(2). Of course, current-thread could also be imple-mented as a procedure calling start-thread in thesame way.However, it would be very ine�cient to create anew thread just to compute our own identi�er, anoperation than could be a frequent one. This iswhy it is better to provide a primitive version orcurrent-thread, with an e�cient implementation.Finishing a ThreadWhen the initial procedure of a thread (the proce-dure passed as argument to start-thread) returns,the thread is �nished. In this case the execution con-trol passes automatically to its parent and the returnvalue of the procedure becomes the pass value. If themain thread (where the program execution began)�nishes, then the whole program ends.

For example, in the last code example, the lambdaexpression could be simpli�ed to just(lambda (thread) thread). It is an execution errorto transfer control to a �nished thread.4 A same-fringe implementa-tion with threadsA classic problem, di�cult to solve e�ciently in asingle-threaded system, is to compare the fringes fromtwo di�erent trees. A tree fringe is the sequence ofleaves obtained traversing the tree from left to right.The idea is to visit only the matching leaves and tostop the execution at the �rst di�erence.This solution uses three threads, one for visitingeach tree and a third to compare the results. Usingour threads the solution is simple and e�cient.The procedure to perform the comparison issame-fringe. This procedure calls make-walker tostart the tree traversals.; The end of tree token(1) (define *eot* '(eot))(2) ; Compares the fringes of two trees(3) (define (same-fringe tree-a tree-b); Create one thread for each tree(4) (let ((t-a (make-walker tree-a))(5) (t-b (make-walker tree-b))); Now get a leaf for each tree(6) (let loop ((leaf-a (t-a 'any))(7) (leaf-b (t-b 'any)))(8) (cond(9) ((eq? leaf-a *eot*); no more leaves on tree-a(10) (eq? leaf-b *eot*))(11) ((eq? leaf-a leaf-b); get a new leaf for each; tree and loop(12) (loop (t-a 'any) (t-b 'any)))(13) (else; found two different leaves(14) #f) ))))(15) (define (make-walker tree)(16) (start-thread(17) (lambda (t-comp); t-comp is the thread-id of the; comparator thread(18) (define (walk-tree tree); A local procedure to traverse4



; a tree(19) (if (atom? tree)(20) (t-comp tree); else(21) (begin(22) (walk-tree (car tree))(23) (walk-tree (cdr tree)) ))); pass my thread-id(24) (t-comp (current-thread)); now traverse the tree(25) (walk-tree tree); Finally, pass the end-token(26) *eot* )))The execution is as follows: when same-fringerequires in (6) or (7) the �rst leaf of a tree, it invokesthe corresponding thread identi�er. This thread ini-tiates a recursive traversal of the tree in (25) until aleaf is found in (20). At this point the thread passescontrol back to same-fringe. When same-fringeneeds a new pair of leaves at (12) it resumes onceagain the walker threads.This solution is e�cient because it only visits theleaves that are equal, stopping its execution at the�rst di�erence in (13). The walker threads remainsuspended afterwards, until the garbage collector re-claims them.5 Comparison with call/ccOur thread system uses a syntax for start-threadthat is identical to call/cc. However they createdi�erent objects: threads and continuations. Eventhough threads and continuations are not the same,in this section we show that just replacing call/ccby start-thread will produce the same results formost programs.Table 1 compares call/cc with start-thread.Table 2 compares Scheme continuations with ourthreads, being both procedural �rst-class objects.The main di�erences between continuations andthreads are then:� The invocation of a continuation never returns.The invocation of a thread identi�er returnswhen another thread invokes the suspendedthread identi�er.� All the invocations of a continuation return atthe same call/cc which yielded that contin-uation. This means that multiple invocations

of the same continuation generate multiple re-turns of the same call/cc. On the other hand,multiple invocations of the same thread identi-�er return at the di�erent points where controlwas suspended.The following example shows the di�erence be-tween a continuation and a thread.(define *P-k* 'still-undefined)(define *Q-k* 'still-undefined)(define *v* 'still-undefined);(define (P a)(1) (call/cc Q)(2) (set! a (+ a 1))(3) a )(define (Q k)(4) (set! *P-k* k)(5) (call/cc R)(6) (*P-k* 'dummy) )(define (R k)(7) (set! *Q-k* k)(8) (*P-k* 'dummy) ); main program(9) (set! *v* (P 0))(10) (display *v*)(11) (*Q-k* 'dummy)(12) (display "end")In Figure 5, at the left size we can see the execu-tion of the code above. At the right size, we see theexecution replacing call/cc by start-thread. Withcall/cc, the program loops displaying the sequence1, 2, 3, 4, etc. With start-thread, it displays 1 andthen it exits displaying the message "end".In the example with call/cc, the unique call to Pat (9) has multiple returns. This happens because thecontinuation stored in *P-k* is invoked many timesfrom (6) and (8).Replacing call/cc by start-threadLet us introduce the following rede�nition in Scheme:(set! call/cc start-thread)As shown in the previous example, programs in-voking many times the same continuation will be af-fected.Let us examine what happens to a program in-voking continuations only once. With such a rede�n-ition, call/cc now returns a thread instead of a con-tinuation, but both abstractions behave identically if5



primitive call/cc start-threadsyntax (call/cc proc) (start-thread proc)form of proc (lambda (k) ...) (lambda (thread) ...)argument type �rst-class continuation �rst-class thread identi�erTable 1: Comparing call/cc and start-thread.object �rst-class continuation �rst-class thread identi�ersyntax (k val) (thread val)returns? no yes�rst invocation return from return frome�ect call/cc start-threadpass value val valnext invocations return from thread resumese�ect same call/cc at the point where it wasactive last timeTable 2: Comparing continuations and threads.
(9)

(1)
(4)

P
Q

(5) R
(7)
(8)(2)

(3)

(10)
(11)

(6)
(2)
(3)

(10)
(11)

(6)
(2)
(3)

(10)
(11)

CALL/CC

(9)
(1)

(4)

P
Q

(5) R
(7)
(8)(2)

(3)

(10)
(11)

(6)(12)

START−THREAD

etc.

.

.

.

.
.
.
.
.
.
.

.

.

.

.

.

.

.

.
.
.

 .Figure 5: call/cc vs start-thread
invoked only once. So, for such a program, the redef-inition should not change its execution. However, thefollowing expression will evaluate to a di�erent result,even though it invokes continuations only once:(eq? (call/cc (lambda (k-1) k-1))(call/cc (lambda (k-2) k-2)) )In Scheme this expression evaluates to false, be-cause the continuation passed to lambda is di�erentfor each call. Replacing call/cc by start-threadthe expression compares the parent identi�er of eachthread, which is the same, returning true.Therefore, the only programs a�ected by this re-de�nition would be those invoking multiple timesthe same continuation and those comparing contin-uations with eq?. Based on that, we conclude thatthe number of programs a�ected by this change isminimal.The start-thread semanticsIn this section we describe the start-thread seman-tics in terms of call/cc. This is only useful as areference for real implementations of start-thread,because we really propose to eliminate the call/ccoperator from Scheme.6



(define current-thread 'still-undefined)(define start-thread 'still-undefined)(let ( (*curr-thread* 'dummy)(*curr-switcher* 'dummy) )(define (make-thread next-k)(define (switcher k-receiver val)(call/cc(lambda (new-k)(set! next-k new-k)(k-receiver val) )))(define (thread val)(let ((old-switcher *curr-switcher*))(set! *curr-thread* thread)(set! *curr-switcher* switcher)(old-switcher next-k val) ))(thread *curr-thread*) ); initialization for main thread(set! *curr-switcher*(lambda (proc val) 'dummy-switcher) )(make-thread 'never-invoked)(set! current-thread(lambda () *curr-thread*) )(set! start-thread(lambda (proc)(make-thread(lambda (parent-thread)(parent-thread (proc parent-thread))(error "can't resume a dead thread")) ) ) ) )It is worth noting that this implementation alwaysinvokes a continuation once. Thus, call/cc can bereplaced by a call to a pre-existant start-thread.The new operator start-thread thus de�ned, is se-mantically correct.5.1 Implementation E�ciencyOur threads can be implemented just using one stackper thread4. The start-thread operator could bee�ciently implemented in C with some lines in as-sembler, with all the usual optimizations, as it is donefor threads in languages like C, C++, Java, etc.However, this scheme is not valid to implementcall/cc. Due to the multiple invocations semantics,4Although implementations using multiple stacks are time-e�cient, they are space-ine�cient. In [Mateu 92] we proposea heap-based implementation being space and time e�cient.

it is not always possible to free the activation frameof a returning procedure. Since a continuation couldhave been captured during the procedure execution,the activation frame could be used again.Many Scheme implementations [Clinger et al 88,Hieb et al 90] use the stack to store activation frameswhile call/cc is not used. Upon a call to call/cc orto a continuation, the stack must be copied totally orpartially. Making copies of the stack has the followingproblems:� Programs using continuations are not e�cient.Copying stack segments is slow, and implement-ing a thread system based on continuations ismuch slower than a native thread system likeour proposal.� Even programs not using continuations are in-e�cient: to respect the call/cc semantics, anyvariable subject to a side-e�ect through a set!must be created on the heap. These variableswill only be deallocated by the garbage collec-tor, meaning an overhead in execution time. Itis worth noting that this implies that call/cccan not be implemented just as an special form,the compiler must generate ad-hoc code.The other existing variations of Scheme imple-mentations are also ine�cient when using call/ccand they introduce an important execution overheadeven when not using call/cc.The most surprising thing is that all these prob-lems are related to the multiple invocations semanticsof call/cc, a feature rarely used. Just prohibitingthe multiple invocation, would make call/cc easierto understand and more e�cient to implement.6 ConclusionsIn this paper we have shown how a thread systemcould replace the Scheme continuations, simplifyingthe language and its implementation.Scheme justi�es the presence of continuations inthe language [Haynes et al 84] as a 
exible base tosolve many control problems, like coroutines and dy-namic escapes. We claim that our system is 
exibleand general enough to ful�ll the same mission.The change we are proposing could a�ect ex-isting programs, when invoking multiple times thesame continuation or when comparing them with eq?.7



However, we think that the a�ected programs will beless than those broken by the change of the evaluationof '() from false to true [IEEE 90].Currently, the multiple invocation of a con-tinuation is not useful in practice. They arethere because they appear naturally from theconversion to CPS (Continuation Passing Style)[Strachey and Wadsworth 74, Steele 78], but whensuch multiple invocations are used, the resultingprogram is unreadable. Moreover, when extend-ing the language to a concurrent execution, multi-ple invocations are di�cult to integrate into the newsystem[Katz and Weise 90].Our main point is to rede�ne the semantics ofmultiple invocations based on threads. This seman-tics is useful as a programming tool, 
exible to im-plement advanced control structures, easy to extendto any concurrent Scheme and e�cient to implement.References[Clinger 87] William Clinger : \The Scheme Environ-ment : Continuations", Lisp Pointers, Vol. 1 (2),22{28, June-July, 1987.[Clinger et al 88] William D. Clinger, Anne H.Hartheimer and Eric M. Ost : \ImplementationStrategies for Continuations", Conference Recordof the 1988 ACM Conference on Lisp and Func-tional Programming, 124{131, 1988.[Clinger and Rees 91] William Clinger and JonathanA. Rees : \Revised4 Report on the Algorith-mic Language Scheme", ACM Sigplan Notices,Vol. 21 (12), December 1991.[Haynes et al 84] Christopher T. Haynes, Daniel P.Friedman and Mitchell Wand : \Continuations andCoroutines", Conference Record of the 1984 ACMSymposium on Lisp and Functional Programming,293{298, 1984.[Hieb et al 90] Robert Hieb, R. Kent Dybvig andCarl Bruggeman : \Representing Control in thePresence of First-Class Continuations", Proceed-ings of the SIGPLAN '90 Conference on Program-ming Language Design and Implementation, 66{77,White Plains, New York, June 1990.
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