

Typed Functional
Programming

In
OCaml

Fabrice Le Fessant
fabrice.le_fessant@{inria.fr,ocamlpro.com}

November 6, 2013

Introducing Myself

 Full-time researcher at INRIA, programming
languages and distributed systems

 2001 : PhD on JoCaml, a DSL for concurrency,
distribution and mobility

 2002 : MLdonkey, first multi-protocol peer-to-
peer client (edonkey, gnutella, bittorrent, etc.)

 2007 : MNPlight, first iPhone application able
to install mp3s on a jailbroken iPhone 1

→ all in the OCaml programming language

Introducing Myself

 Full-time researcher at INRIA, programming
languages and distributed systems

 2001 : PhD on JoCaml, a DSL for concurrency,
distribution and mobility

 2002 : MLdonkey, first multi-protocol peer-to-
peer client (edonkey, gnutella, bittorrent, etc.)

 2007 : MNPlight, first iPhone application able
to install mp3s on a jailbroken iPhone 1

 2011 : OCamlPro, a company to support the
use of OCaml in industrial projects

A Poll !

How many of you have some experience of:
 Lisp or Scheme ?
 F# or Scala ?
 Haskell ?
 OCaml ?

What is OCaml ?

 A General-purpose Programming Language

developed for about 30 years at INRIA
 Used from the beginning to develop

many applications at INRIA :
 Coq proof assistant, Zenon, Alt-ergo
 Hevea (LaTeX → Html)
 spamoracle (bayesian spam filter)
 synDEX (scheduler for embedded systems)
 Coccinelle (Linux Kernel bug checker)

 → OCaml is definitively not a lab toy !

OCaml, as a FP language (1)

 What is Functional Programming ?
 A way of programming, closer to mathematics

→ make it easier to implement complex algorithms

→ make it possible to reason about the correctness
 of implementations

 Usual features of FP languages:

→ immutable variables, immutable values

→ functions as values

→ use of (tail) recursion instead of loops

→ strong type-checking

OCaml, as a FP language (2)

 Where is OCaml among FP languages:
 Hybrid FP languages: Scala, F#, Clojure,etc.

→ FP extensions, ”a taste of FP”... but tainted
 Untyped FP languages: Lisp, Scheme, Erlang,etc.

→ FP, lack the power of strong type systems
 Pragmatic FP languages: OCaml, SML

→ add other styles over FP, best of both worlds ?
 Pure FP languages: Haskell

→ closer to maths, but hard to program with
 Proof languages: Coq, Isabelle, etc.

→ write a math proof, generate code from it

OCaml in the Industry

OCaml was designed at the beginning for
formal methods applications: compilers,
verifiers, provers...

 Microsoft : SLAM driver verifier
 Esterel Technologies : Scade KCG Compiler

(scade-to-C, qualified level A DO-187B)
 AbsInt : Astree no-RTE checker
 EADS : Penjili, C code checker
 Dassault Systemes : Lucid/Esterel Compiler
 Airbus/Atos Origin: Toaster C style-checker

Success Stories: Citrix

 2002: Cambridge University releases Xen

→ need a program to control Xen in VM0

 2004: 30 developers, C, Python et Ruby...
 2006: many m$ spent, yet, no product...
 2006: new team of 4 OCaml devs, hired to write

the doc, start a prototype in OCaml

 2007: product available in OCaml,
XenSource sold 500m$ to Citrix

 2011: Citrix holds 15% of the virtualisation
market (Amazon EC2 for example)

Success Stories: Jane Street

 2000: Jane Street starts high-frequency trading
in Excel + Visual Basic, too unreliable

 2003: begin conversion from VB to C#
 2003: one intern starts writting OCaml code
 2005: management decides to try OCaml

for key trading systems
 2006: half of the system already in OCaml
 2012: 10 billion$ per day of automatic trading,

everything in OCaml with 100+ OCaml devs

OCaml is a
multi-paradigm language

 Functional (functions are values, tail recursion)
 Modular (interfaces, functors

and first-class modules)
 Imperative (mutable values, loops, exceptions)
 Object-oriented (objects and classes)
 Statically and Strongly Typed
 Execution is strict by default, lazy on demand

 Strict = computation done where it is written
 Lazy = computation delayed until useful

OCaml
Implementation

 Native-code compiler for x86/amd64, arm,...
 Bytecode compiler, interpreter (REPL) and

debugger for fast development loop
 Efficient incremental garbage collector

 with compaction
 Compact uniform data representation
 Small but efficient standard library
 FFI bindings with many C libraries (databases,

crypto, GUIs, etc.)

Performances ?

 Strong Typing → No runtime checks !
 Highly optimised GC for short lifetime values
 Native-code compiler

with few but efficient optimisations
(constant folding, inlining, register coalescing)

 Strict execution

→ expectable performance

→ close to non-optimized C speed
 (about 15% slower)

→ easy to optimise manually

A Taste of OCaml

 Warning:

OCaml has a weird syntax
 Difficult to learn at the beginning... :-(
 Makes programs easier to read on the long term :-)

Basic Values

let str = ”Hello world”
let four = 2 * 2
let pi2 = 3.14 *. 2. (* No operator overloading ! *)
let list = [1 ; 2 ; 3 ; 4 ; 5]
let list = 1 :: 2 :: 3 :: 4 :: 5 :: []
let tuple = (x, y, z)
let array = [| ('a', 97); ('b', 98); ('c', 99) |]
let record = { x = 1; y = 12 }

Simple values

There are no NULL pointer in OCaml, all values
must be initialized !

Calling Functions

let add (x,y) = x + y (* one argument ! *)
let add x y = x + y (* two arguments ! *)
let three = add (add 1 1) 1

Functions arguments are currified:

let add_one = add 1 (* val add_one : int int *)→

let list = [1;2;3;4;5]
let list_plus_two = List.map (add 2) list
 (* [3; 4; 5; 6; 7] *)→

Functions can be partially applied:

Recursive Functions

let rec fold_left f acc list =
 match list with (* fold_left f x [a;b;c] *)↔
 [] acc → (* f (f (f x a) b) c *)
 | head :: tail →

fold_left f (f acc head) tail

Recursivity is intuitive to work on lists and trees

let sum_list = List.fold_left add 0
 (* val sum_list : int list int *)→
let mul x y = x *. y
let mul_list = List.fold_left mul 1.
 (* val mul_list : float list float *)→

Imperative Style

let read_lines filename =
 let ic = open_in filename in
 let lines = ref [] in
 try (* ref: mutable value *)
 while true do
 lines := input_line ic :: !lines
 (* := modifies, ! for extraction *)
 done; assert false
 with End_of_file → (* exceptions are cost-free ! *)
 close_in ic; List.rev !lines

Side-effects, loops (while, for) and exceptions

FP Style

let (|>) x f = f x (* x |> f f x *)↔
let normal_users = ”/etc/passwd”
 |> read_lines
 |> List.map (Str.split_delim (Str.regexp ”:”))
 |> List.map (fun list → match list with
 | login :: _passwd :: uid :: _ ->
 (login, int_of_string uid)
 | _ -> assert false)
 |> List.filter (fun (_, uid) -> uid >= 1000)
 |> List.map fst

Closures

let new_counter () =
 let x = ref 0 in fun () x := !x + 1; !x→
 (* new_counter : unit (unit int) *)→ →
let new_foo = new_counter ()
let foo_id1 = new_foo () (* 1 *)→
let new_bar = new_counter ()
let bar_id1 = new_bar() (* 1 *)→
let bar_id2 = new_bar() (* 2 *)→
let bar_id3 = new_bar() (* 3 *)→
let foo_id2 = new_foo() (* 2 *)→

Variable bindings last for ever in functions...

Where are type annotations ?

 OCaml is a statically typed language

with one of the most expressive type-systems
(variants, records, optional args, GADTs,
polymorphic variants, objects, classes, etc.)

 Compiler is supposed to verify types !

→ but I didn't see any type annotations ?
 In OCaml, types are automatically infered:

 You don't need to write them
 The compiler will guess them, and complain if they

don't match what is expected

Type-inference

(* val read_lines: string string list *)→
let read_lines filename =
 let ic = open_in filename in

 (* filename : string & ic : in_channel *)
 let lines = ref [] in
 (* lines: '_a list ref *)
 try
 while true do
 lines := input_line ic :: !lines

 (* lines: string list ref *)
 done; assert false
 with End_of_file -> close_in ic;
 List.rev !lines

Polymorphic Functions

let rec fold_left f acc list = match list with
 [] acc→
 | head :: tail →

fold_left f (f acc head) tail
(* ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a *)

Our function on list works on any list !

let sum_list = List.fold_left add 0
 (* val sum_list : int list int *)→
let mul x y = x *. y
let mul_list = List.fold_left mul 1.
 (* val mul_list : float list float *)→

Defining New Types

type expression =
 { exp = expression_desc;
 loc : Location.t; }
and expression_desc =
 | Num of int
 | Var of string
 | Let of string * expression * expression
 | Binop of operator * expression * expression
and operator = Plus | Minus | Times | Div

Algebraic Data Types avoid accessing the
wrong arguments of an enum selector.

Pattern-Matching

let rec eval env v = match v.desc with
 | Num i -> i
 | Var x -> List.assoc x env
 | Let (x, e1, body) -> let val_x = eval env e1 in
 eval ((x, val_x) :: env) body
 | Binop (Plus, e1, e2) ->
 (eval env e1) + (eval env e2)
 | Binop (Minus, e1, e2) ->

 (eval env e1) - (eval env e2)

It is possible to match deep and complex
patterns, that are always compiled in the
optimal number of runtime tests.

More Checks

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
Binop (Times | Div, _, _)

let rec eval env v = match v.desc with
 | Num i -> i
 | Var x -> List.assoc x env
 | Let (x, e1, body) -> let val_x = eval env e1 in
 eval ((x, val_x) :: env) body
 | Binop (Plus, e1, e2) ->
 (eval env e1) + (eval env e2)
 | Binop (Minus, e1, e2) ->

 (eval env e1) - (eval env e2)

Simple Networking

(* start_server : int (int unit) unit *)→ → →
let start_server port handle_connection =
 let server = Unix.socket PF_INET SOCK_STREAM 0 in

 Unix.setsockopt server SO_REUSEADDR true;
 Unix.bind server ADDR_INET (inet_addr_any, port);
 Unix.listen server 3;
 while true do
 let (client, addr) = Unix.accept server in
 ignore (Thread.create handle_connection client)
 done

Modules and Interfaces

val start_server : int (int unit) unit→ → →
val read_lines : string string list→
 ...

open Unix
let read_lines filename = ...
let start_server port handle_connection = ...

Interface file: server.mli

Implementation file: server.ml

The compiler checks the consistency of all
compiled files in the whole project: the compiler
is often used as a refactoring assistant !

OCaml Ecosystem

 OPAM, a source package manager to install
OCaml and its open-source contributions

 http://opam.ocamlpro.com/

 Js_of_ocaml, a powerful OCaml-to-JavaScript
optimizing compiler, to run OCaml typed-
checked applications in the browser

 http://oscigen.org/js_of_ocaml/

 Mirage: bare-metal applications for Xen in
OCaml, speed and security in a Cloud OS !

 http://openmirage.org/

http://opam.ocamlpro.com/
http://oscigen.org/js_of_ocaml/
http://openmirage.org/

Formal Methods

 Use of Mathematics in the design of
Hardware/Software applications

 Strong type-checking with OCaml
 Abstract Interpretation:

 Astree, no runtime error in Airbus C code

http://www.absint.com/astree/

 Verification of formal specifications:
 Frama-C: used by Airbus on critical boot code

http://frama-c.com/

http://www.absint.com/astree/
http://frama-c.com/

Formal Methods

 Mecanized Proof of an Algorithm and
automatic code generation:

 CompCert, a full C compiler, proved within
the Coq proof assistant

 http://compcert.inria.fr/
 http://coq.inria.fr/

http://compcert.inria.fr/
http://coq.inria.fr/

Discussion

 Questions ?

 OCaml:
 Web: http://www.ocaml.org/
 Try it online: http://try.ocamlpro.com/
 Install: http://opam.ocamlpro.com/

http://www.ocaml.org/
http://try.ocamlpro.com/
http://opam.ocamlpro.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

