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Introducing Myself

 Full-time researcher at INRIA, programming 
languages and distributed systems

 2001 : PhD on JoCaml, a DSL for concurrency, 
distribution and mobility

 2002 : MLdonkey, first multi-protocol peer-to-
peer client (edonkey, gnutella, bittorrent, etc.)

 2007 : MNPlight, first iPhone application able 
to install mp3s on a jailbroken iPhone 1

→ all in the OCaml programming language
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distribution and mobility

 2002 : MLdonkey, first multi-protocol peer-to-
peer client (edonkey, gnutella, bittorrent, etc.)

 2007 : MNPlight, first iPhone application able 
to install mp3s on a jailbroken iPhone 1

 2011 : OCamlPro, a company to support the 
use of OCaml in industrial projects



  

A Poll !

How many of you have some experience of:
 Lisp or Scheme ?
 F#  or Scala ? 
 Haskell ?
 OCaml  ?



  

What is OCaml ?

 A General-purpose Programming Language

developed for about 30 years at INRIA
 Used from the beginning to develop 

many applications at INRIA :
 Coq proof assistant, Zenon, Alt-ergo
 Hevea (LaTeX → Html) 
 spamoracle (bayesian spam filter)
 synDEX (scheduler for embedded systems)
 Coccinelle (Linux Kernel bug checker)

            → OCaml is definitively not a lab toy !

     



  

OCaml, as a FP language (1)

 What is Functional Programming ?
 A way of programming, closer to mathematics

→ make it easier to implement complex algorithms

→ make it possible to reason about the correctness 
          of implementations

 Usual features of FP languages:

→ immutable variables, immutable values

→ functions as values

→ use of (tail) recursion instead of loops

→ strong type-checking

     



  

OCaml, as a FP language (2)

 Where is OCaml among FP languages:
 Hybrid FP languages: Scala, F#, Clojure,etc.

→ FP extensions, ”a taste of FP”... but tainted
 Untyped FP languages: Lisp, Scheme, Erlang,etc.

→ FP, lack the power of strong type systems
 Pragmatic FP languages: OCaml, SML

→ add other styles over FP, best of both worlds ?
 Pure FP languages: Haskell

→ closer to maths, but hard to program with
 Proof languages: Coq, Isabelle, etc.

→ write a math proof, generate code from it

     



  

OCaml in the Industry

OCaml was designed at the beginning for 
formal methods applications: compilers, 
verifiers, provers...

 Microsoft : SLAM driver verifier 
 Esterel Technologies : Scade KCG Compiler 

(scade-to-C, qualified level A DO-187B)
 AbsInt : Astree no-RTE checker
 EADS : Penjili, C code checker
 Dassault Systemes : Lucid/Esterel Compiler
 Airbus/Atos Origin: Toaster C style-checker



  

Success Stories: Citrix

 2002: Cambridge University releases Xen

→ need a program to control Xen in VM0

 2004: 30 developers, C, Python et Ruby...
 2006: many m$ spent, yet, no product...
 2006: new team of 4 OCaml devs, hired to write 

the doc, start a prototype in OCaml

 2007: product available in OCaml, 
XenSource sold 500m$ to Citrix

 2011: Citrix holds 15% of the virtualisation 
market (Amazon EC2 for example)



  

Success Stories: Jane Street

 2000: Jane Street starts high-frequency trading 
in Excel + Visual Basic, too unreliable

 2003: begin conversion from VB to C# 
 2003: one intern starts writting OCaml code
 2005: management decides to try OCaml 

for key trading systems
 2006: half of the system already in OCaml
 2012: 10 billion$ per day of automatic trading,

everything in OCaml with 100+ OCaml devs



  

OCaml is a
multi-paradigm language

 Functional (functions are values, tail recursion)
 Modular (interfaces, functors

and first-class modules)
 Imperative (mutable values, loops, exceptions)
 Object-oriented (objects and classes)
 Statically and Strongly Typed
 Execution is strict by default, lazy on demand

 Strict = computation done where it is written
 Lazy = computation delayed until useful

     



  

OCaml
Implementation

 Native-code compiler for x86/amd64, arm,...
 Bytecode compiler, interpreter (REPL) and 

debugger for fast development loop
 Efficient incremental garbage collector

 with compaction
 Compact uniform data representation
 Small but efficient standard library
 FFI bindings with many C libraries (databases, 

crypto, GUIs, etc.)

     



  

Performances ?

 Strong Typing → No runtime checks !
 Highly optimised GC for short lifetime values
 Native-code compiler 

with few but efficient optimisations 
(constant folding, inlining, register coalescing)

 Strict execution

→ expectable performance

→ close to non-optimized C speed
  (about 15% slower)

→ easy to optimise manually



  

A Taste of OCaml

 Warning:

OCaml has a weird syntax
 Difficult to learn at the beginning... :-(
 Makes programs easier to read on the long term :-)



  

Basic Values

let str = ”Hello world”
let four = 2 * 2     
let pi2 = 3.14 *. 2.  (* No operator overloading ! *)
let list = [ 1 ; 2 ; 3 ; 4 ; 5 ]
let list = 1 :: 2 :: 3 :: 4 :: 5 :: []
let tuple = (x, y, z)
let array = [| ('a', 97); ('b', 98); ('c', 99) |]
let record = { x = 1; y = 12 }

Simple values

There are no NULL pointer in OCaml, all values
must be initialized !



  

Calling Functions

let add (x,y) = x + y     (* one argument ! *)
let add x y = x + y       (* two arguments ! *)
let three = add (add 1 1) 1

Functions arguments are currified:

let add_one = add 1    (* val add_one : int  int *)→

let list = [ 1;2;3;4;5 ]
let list_plus_two = List.map ( add 2 ) list
                   (*  [ 3; 4; 5; 6; 7 ] *)→

Functions can be partially applied:



  

Recursive Functions

let rec fold_left f acc list = 
  match list with     (* fold_left f x [a;b;c]   *)↔  
    []  acc          → (*       f (f (f x a) b) c  *)
  | head :: tail →

fold_left f (f acc head) tail

Recursivity is intuitive to work on lists and trees

let sum_list = List.fold_left add 0
                 (* val sum_list : int list  int *)→
let mul x y = x *. y
let mul_list = List.fold_left mul 1.
             (* val mul_list : float list  float *)→



  

Imperative Style

let read_lines filename =
   let ic = open_in filename in
   let lines = ref [ ] in
   try                 (* ref: mutable value *)
     while true do
        lines := input_line ic :: !lines
            (* := modifies, ! for extraction *)
     done; assert false
   with End_of_file  → (* exceptions are cost-free ! *)
     close_in ic; List.rev !lines

Side-effects, loops (while, for) and exceptions



  

FP Style

let (|>) x f = f x                (* x |> f  f x *)↔
let normal_users = ”/etc/passwd” 
    |> read_lines 
    |> List.map (Str.split_delim (Str.regexp ”:”)) 
    |> List.map (fun list  → match list with
       |  login :: _passwd :: uid :: _ -> 
                         (login, int_of_string uid)
        |  _ -> assert false )
    |> List.filter (fun (_, uid) -> uid >= 1000)
    |> List.map fst 
      



  

Closures

let new_counter () =
  let x = ref 0 in fun ()  x := !x + 1; !x→
      (* new_counter : unit  (unit  int) *)→ →
let new_foo = new_counter ()
let foo_id1 = new_foo ()            (*  1 *)→
let new_bar = new_counter ()
let bar_id1 = new_bar()             (*  1 *)→
let bar_id2 = new_bar()             (*  2 *)→
let bar_id3 = new_bar()             (*  3 *)→
let foo_id2 = new_foo()             (*  2 *)→

Variable bindings last for ever in functions...



  

Where are type annotations ?

 OCaml is a statically typed language

with one of the most expressive type-systems 
(variants, records, optional args, GADTs, 
polymorphic variants, objects, classes, etc.)

 Compiler is supposed to verify types !

→ but I didn't see any type annotations ?
 In OCaml, types are automatically infered:

 You don't need to write them
 The compiler will guess them, and complain if they 

don't match what is expected

     



  

Type-inference

(* val read_lines: string  string list *)→
let read_lines filename =         
   let ic = open_in filename in

         (* filename : string & ic : in_channel *)
   let lines = ref [ ] in
                               (* lines: '_a list ref *)
   try
     while true do
        lines := input_line ic :: !lines

                              (* lines: string list ref *)
     done; assert false
   with End_of_file -> close_in ic;
     List.rev !lines



  

Polymorphic Functions

let rec fold_left f acc list = match list with
    []  acc→
  | head :: tail →

fold_left f (f acc head) tail
(* ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a *)

Our function on list works on any list !

let sum_list = List.fold_left add 0
                 (* val sum_list : int list  int *)→
let mul x y = x *. y
let mul_list = List.fold_left mul 1.
             (* val mul_list : float list  float *)→



  

Defining New Types

type expression =
  { exp = expression_desc;
    loc : Location.t; }
and expression_desc =
  | Num of int
  | Var of string
  | Let of string * expression * expression
  | Binop of operator * expression * expression
and operator = Plus | Minus | Times | Div

Algebraic Data Types avoid accessing the
wrong arguments of an enum selector.



  

Pattern-Matching

 

let rec eval env v = match v.desc with
  | Num i -> i
  | Var x -> List.assoc x env
  | Let (x, e1, body) -> let val_x = eval env e1 in
     eval ((x, val_x) :: env) body
  | Binop (Plus, e1, e2) ->  
     (eval env e1) + (eval env e2)
  | Binop (Minus, e1, e2) ->  

       (eval env e1) - (eval env e2)

It is possible to match deep and complex
patterns, that are always compiled in the
optimal number of runtime tests.



  

More Checks

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched: 
Binop (Times | Div, _, _)

let rec eval env v = match v.desc with
  | Num i -> i
  | Var x -> List.assoc x env
  | Let (x, e1, body) -> let val_x = eval env e1 in
     eval ((x, val_x) :: env) body
  | Binop (Plus, e1, e2) ->  
     (eval env e1) + (eval env e2)
  | Binop (Minus, e1, e2) ->  

       (eval env e1) - (eval env e2)



  

Simple Networking

(* start_server : int  (int  unit)  unit *)→ → →
let start_server port handle_connection =
  let server = Unix.socket PF_INET SOCK_STREAM 0 in

      Unix.setsockopt server SO_REUSEADDR true;
      Unix.bind server ADDR_INET (inet_addr_any, port);
      Unix.listen server 3;
      while true do
        let (client, addr) = Unix.accept server in
        ignore (Thread.create handle_connection client)
      done



  

Modules and Interfaces

val start_server : int  (int  unit)  unit→ → →  
val read_lines : string  string list→
  ...

open Unix
let read_lines filename = ...
let start_server port handle_connection = ...

Interface file: server.mli

Implementation file: server.ml

The compiler checks the consistency of all 
compiled files in the whole project: the compiler 
is often used as a refactoring assistant !



  

OCaml Ecosystem

 OPAM, a source package manager to install 
OCaml and its open-source contributions

 http://opam.ocamlpro.com/

 Js_of_ocaml, a powerful OCaml-to-JavaScript 
optimizing compiler, to run OCaml typed-
checked applications in the browser

 http://oscigen.org/js_of_ocaml/ 

 Mirage: bare-metal applications for Xen in 
OCaml, speed and security in a Cloud OS !

 http://openmirage.org/

http://opam.ocamlpro.com/
http://oscigen.org/js_of_ocaml/
http://openmirage.org/


  

Formal Methods

 Use of Mathematics in the design of 
Hardware/Software applications

 Strong type-checking with OCaml
 Abstract Interpretation: 

 Astree, no runtime error in Airbus C code

http://www.absint.com/astree/

 Verification of formal specifications:
 Frama-C: used by Airbus on critical boot code

http://frama-c.com/

http://www.absint.com/astree/
http://frama-c.com/


  

Formal Methods

 Mecanized Proof of an Algorithm and 
automatic code generation:

 CompCert, a full C compiler, proved within 
the Coq proof assistant

 http://compcert.inria.fr/
 http://coq.inria.fr/ 

http://compcert.inria.fr/
http://coq.inria.fr/


  

Discussion

 Questions ?

 OCaml:
 Web: http://www.ocaml.org/
 Try it online: http://try.ocamlpro.com/
 Install: http://opam.ocamlpro.com/

http://www.ocaml.org/
http://try.ocamlpro.com/
http://opam.ocamlpro.com/
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