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What is this talk about?

« Tries to argue that human-centered / empirical studies are
necessary

e Introduces into some basic terms

« Gives an overview of techniques required to perform
experiments

« Shows pitfalls of experiments

« Gives an example of an experiment



Motivation

Two different targets for research in CS

 Machines

- Execution speed, memory consumption, etc.
« Human

- Development speed, development errors, etc.

Nowadays research methods mainly address
machines

Human plays rather minor role
Usability (human interaction) rarely tested



Why should we care about humans?

e Humans are one of the main audience for CS
constructs

» Usability of
 Programming languages
 APls
» User interfaces

* Extensibility
* Maintainability



Current situation

« Example: Programming Language
« Typical statement from the community:

_ ,If a language is good, people will use it*
« Questions:

- ,How many people must use a language so that it becomes good?*

- ,What about the moment when a language was initially developed?*

— ,What about marketing effects?“

_ ,What should be the motivation of the first developer using a new PL?*

« Strange

« Later on hardly tested whether PL was being used
. ,There is a community...so the language must be good"
« Example: well.....many, many

Typical situation: anecdotes instead of applied research method



Claim

 Artifact design is (often) about developers
e Current dominating approach

(1) Find example

(2) Build construct

(3) Claim that construct helps developers

[ This leads to nowhere

e Research methods needed that consider
developers / users ... involved humans



Why not the traditional way?

* Machine / algorithm / etc.
 Formal models, formal proofs, etc.

e Human

* No formal model
=> no formal reasoning
=> fraditional approaches cannot be
applied



Overview of CS Research Methods

Taken from [Hanenberg, Onward'10]

—‘---
dl"-
,

‘ Stochastic ‘ '
1
I}

Benchmark-

I Classical
based

-
-
E ‘
’

I

Stochastic- f Stochastic- E
. [ .
Mathematical ) Experimental
]

Technical V Empirical
Approaches Approaches

r
&+

Socio-
Technical

[ ]




Structure

* Need for experimentation
(here: controlled experiments with humans)

 WWhat means experimentation?
 What is required to run experiments?

o State-of-the-art

* Challenges in experimentation
 Example: Experiment on type systems
» Conclusion



Why experiments?

* Problem (again)
« No formal model available how humans work
« Experiments

* Observations as tests what really happens
« Approximation (examples) of actual behavior
 What is a test?

 There must be a statement which says when a test fails
(hypothesis)

 There must be a objective way to check, whether test
has failed (falsification)




Logic of experimentation

* An experiment...

e does not provide a proof for a theory
« can NEVER consider all existing variables
« can hardly reflect on real world situations

e can only provide some evidence that a new construct helps
(apart from developer's subjective impression)

 Why should it be useful?

e Test: ,Does the artifact really help in situations the inventor
had in mind“?

e Result: ,Uselessness of artifact can be shown!”



Structure of Experiment

 Measurement of impact of

* Independent variable (e.g. PL) on

 Dependent variable (e.g. development time)
* A variable has a number of different treatments

 Example:
Comparison between Java, C++, and C
=> |ndep. Variable PL with three treatments

* Experiment typically suffers from confounding
factors (variable which are not controlled)




Background of Experiments ar popper)

» Scientific argumentation

— Falsification of hypothesis
(use of statically typed language
decreases development time)

— More often

* Exploratory analysis (let's see what happens if...)

— NO PROOFS / NO GENERALIZABILITY

* But always the hope that repeated observations reveal some
truth
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Background of Experiments ar popper)

« Validity of hypotheses

— Evidence for hypotheses increases
the more often they could not be
rejected

« Assumption

—Massive execution of experiments

. HOpe...(as practical researcher)

* the more data available, the more probable it is,
that we finally ,see some rules”
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Single vs. Multiple Runs

« General idea of experimentation
« It shows, that hypothesis does not hold

« Single run experiments (in physics)
« Example: Galilei's Pisa experiment

=> Single run falsified existing theory
=> Boolean statement from single run => Boolean logic

« With humans: Multiple runs

« Humans differ too much

=> Multiple runs required
=> How often do runs need to falsify theory?
=> Argumentation based on analysis of sample => Statistics




Remaining questions

 How to design / perform experiments?

 How to analyse experiments?

...let's discuss it the other way around



Statistics in 5 minutes....

* Descriptive Statistics

* Arithmetic mean, medians, variance, etc.
* Relatively easy to understand, but inappropriate

* Inductive Statistics

e Consideration of probabilities
 Not that intuitive to understand, but state-of-the-art




Example: Descriptive Statistics

« Software development times with techniques
A and B (in hours), 10 subjects

¢« A:1,2,3,4,1000 (mean: > 200, median: 3)
 B: 10, 20, 30, 40, 50 (mean: 30, median 30)

 Problem

* Argumentation based on mean or median?
* |s 1000 an outlier that should not be considered?
* Problems of descriptive statistics well known...



Inductive Statistics(1)

» General idea: compare distribution / density
functions of samples A and B
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Inductive Statistics(1)

* General idea: compare density functions
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Inductive Statistics (1)

* General idea: compare density functions
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 Computation of overlap between density function



Inductive Statistics (2)

« P-value: (Error-) Probability that a sample does
NOT show A<B

« Arbitrarily(!) chosen alpha-level as ,significance
level” (typically: 0.05, 0.01, ...)

« Example:

 ,The difference turned out to be significant under
an alpha-level of 0.05"
=> p<0.05



Inductive Statistics (3)

« Sample typically does not show perfect curve
=> approximation of density function required
=> sometimes, not even the kind of density function is known

« Standard mechanisms (significance tests) to compute p-values for
different scales and sample sizes

- T-Test, Wilcoxon-Test, Mann-Whitney-U-Test,

« Standard mechanisms to determine, whether a certain distribution can
be assumed

— Shapiro-Wilk-Test, K-S-Test, etc.

 All these tests are implemented in standard statistic software (R, SPSS,
S, MiniStat, SAS, ...)



Inductive Statistics 4)

 Comparison of multiple curves (ANOVA):

Impact of 1, 2, 3 on measurement
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. Again: p-value (error probability that difference does not depend on 1-3)

. Partial-Eta-Square: How much of the variation can be explained by the variable (with
the treatments 1-3)



Inductive Statistics (5)

« Quasi-endless different kinds of tests for different number of
treatmeants and variables

» Take away:

« Determination of error-probability p
- Different standard significance tests
« Value of p depends on
- Effect size
- Sample size
- Scale
— Applied significance test
— Deviation (breadth of curve)



Remaining question

 How to design / perform experiments?
« What kinds of experimental design are possible / desirable?

 What is the impact of a certain design on the results?
« What kinds of measurements can be applied?



Experiment Design (1)

« Two-group between-subject design
« One independent variable with two treatments
« One subject tested under one treatment
« Two different groups, each contains subjects with same treatment
« Example (Language A, B):
« A:1,2,3,4,1000
« B: 10, 20, 30, 40, 50 GroupA | Group B
« Problem

Lang. A Lang. B

« Both groups require subjects with ,the same characteristics”

« Problem: requires ,very large” effect size in order to measure difference
(for small sample sizes)



Experiment Design (2)

. Four-group between-subject design

. Two independent variables with two treatments

. One subject tested under one treatment

. Four different groups, each subject assigned to treatment pair
. Example (Language A, B; Programming Task 1, 2)

« G1 (Language A, Task 1): 1, 2, 3, 4, 1000

« G2 (Language A, Task 2): ...

. G3 (Language A, Task 3): ...

. G4 (Language A, Task 3): ... Task2 | Group3 | Group4
. Problem

Lang. A Lang. B

Task 1 Group 1 Group 2

« Groups still require subjects with ,the same characteristics”

. Still: requires ,very large” effect size in order to measure difference (for small sample
sizes)



Experiment Design (3)

« Large variety of further designs

« Repeated measures designs, factorial designs, block designs, ...
« Between vs. within-subject designs, ...

e General problems / considerations

« Does design match hypotheses?
- Difference hypotheses, correlation hypotheses, ...
e Does design permit to determine effect?

— Effect size, deviation, sample size, statistical power of required
significance tests, ...



Experiment Design (4)

* General problem: No measured effect

* Possible interpretations:

- Sample size too small - Pure technical problems
- Deviation too high - Easy to run into these
_ , problems!!!
- Inappropriate design - NO (!) indicator that
— Non-exact measurement main effect does not exist

* Alternative interpretation

- Well, maybe the effect does not exist



Experiment Design Example

« Example

« 2 group experiment, 10 subjects, comparison of Java and Assembler
« Subjects: First year students
« Task:

— Write an algorithm that computes a strongly connected component with O(n”3)
— ...without using a book on algorithms
« Assumed result:

— Average solution requires more than a year development time

- No measured difference between Java and Assembler
=> very large deviation, small sample size, unbalanced groups,...

=> actual task has a huge impact on measurements

=> be careful when having an experiment without measured effect
(p > alpha-level)



Experiment Design: p> 0.05

e But

* if the significant effect of variable is ,,obvious”
(common community believe)

* if the number of subjects IS ,,high“ (whatever that means)

* chosen tasks are the ,killer-examples” for the
measured technique

e _..then...

=> Non-significant results are still interesting
(but only! then)



Experiment Design (6)

* Take away: Experiment design

» ...must match research question

 ...Influences the final result (p-value)

» ...requires appropriate analysis (t-Test, ANOVA, ...)
e ...results highly depend on actual task

 ...be careful when no effect has been measured




OKk, let's do experiments

... but where and how to start?
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Challenges of Empirical Studies

(remember: typically neither hypotheses nor concrete scenario available)



Challenges of Empirical Studies (1)

* Find / invent a hypothesis

* Find situations where hypotheses should be
tested

* Find a good design

* Typical problem
* ,Fighting the deviation / effect-size beast



Challenges of Empirical Studies (1)

* Scientific approach
— Observation of singular events (sample)

(e.g. developers using a dynamically/statically typed programming language)

* Formulation of hypothesis

* |dentification of dependent / independent
variables

(e.g. development time depending on type system)

 Construction of environment

(IDEs, tasks, languages, machines, ...)

— Collection of subjects
— MeaSU rementS (e.g. development time to solve a certain task)
— AnalyS|S (mainly inductive statistics)
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Challenges of Empirical Studies (2)

* Find / invent a hypothesis

* Find situations where hypotheses should be
tested

* Find a good design

* Typical problem
* ,Fighting the deviation / effect-size beast



Problems: Experiment Design

* Comparison between two samples

/Example 1. Same effect size, different deviation \
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Problems: Experiment Design

‘Comparison between two samples

/ Example 1: Same effect size, different deviation \
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Problems: Experiment Design

* Comparison between two samples

/ Example 1: Same effect size, different deviation \
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* Comparison between two samples

Problems: Experiment Design

/ Example 2: Different effect size, same deviation
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Problems: Experiment Design

* Comparison between two samples

/ Example 2: Different effect size, same deviation
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Problem(s) in Experimentation

Conclusion
Experimenter should try to
- reduce deviation, and/or
K - increase effect size /

® Possible ways

® Adaptation of experimental design
(e.g. within-subject design) => Reduction of deviation

® Adaptation of tasks
(no development ,from scratch®) => Incease effect size
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Example: Static Type System

[Kleinschmager, Hanenberg, Robbes, Tanter, Stefik; ICPC'12]

Background: 4 experiments, ,mixed results”
ldea: Static type systems help when using an undocumented API
Experiment

Java / Groovy as PLs

9 programming tasks (designing tasks took about 2 month)
— 2 tasks: fix semantic error / 2 tasks: fix type error / 5 tasks: use API classes
33 subjects (mainly students)

Within-subject design (2 groups)
Result
« Positive effect for 6/9 tasks

— No effect on fixing semantic error
- Positive effect on fixing type error
- Mostly (4/5) positive effect on using API classes
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Example: Static*: Type System

] Language
¢ TaSk 4,5 000 Groovy
Semantic Soava

errors . *
30007 -
¢ 1,2,3,6,8: New o o o
class usage . 7 x o
b O O
E 20007 ~ o
¢ 7, 10: = 8 o o T
o Pt o
Type errors g
10007 *
% O “ 3:
0 é %

Task Task Task Task Task Task Task Task Task
1 2 3 4 5 6 7 8 9

Task



Example: Static Type System

« Potential problems

o Atrtificially constructed API

— parameter names do not reflect on type names (but on names
chosen from the domain)

- Is it repesentative?
« Artificially constructed environment

o Artificial programming tasks
e Java type system
« Maybe we measured something else

« ,Existence of type annotations in the code help....no matter whether they
are statically type checked or not*

« Maybe .in the wild” positive effect of static type system ,vanishs”

« There is no generalizability
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Example: Static Type System

 How to go on?

» Traditional way

- ,We have done an experiment on type systems and
found differences, let's go to the next topic”

« Alternative way

- Go on with experimentation on type systems

 Variations on type systems, IDE support,
replication of experiments, etc.

- Try to find correlation hypothesis that survives
falsification trials
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Where to Start?

* Relatively few textbooks available specific to software engineering

e e
: EXPERIMENTATION IV
Luie Frovhek SOFTWARE
EWCGINEERING

AEE | An Inlrucluclism
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SOFTWARE PSYCHOLOGY -

........
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fol et ' oo 17 gy

Foundations of
Empirical Software AHanFlé%p -
Engineering _.xf.ffimmm

Little, Brown Computer Systems Series

flbert Endres
Dieter Rombach
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Where to Start?

* Huge bunch of textbooks outside the domain of software
engineering

Psychology

Social Sciences

Medicine

* Why not just use these books?

* Problem: Different domains have different problems...
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Problem of different domains

* What is the difference between measuring
blood pressure and software development
time?




Problem of different domains

« Blood pressure

« You will hardly find two (living) human subjects on this planet whose
blood pressure differs by factor 10 (even factor 5 is unlikely)

« Software development time

« Itis hard to find a sample of human subjects where development
time between best and worst developer is less than factor 5

=> Large set of experimental designs / statistical methods from
for example medicine cannot be (directly) used in software
construction



State of the Art: Empirical SE



State of the Art: Empirical SE (1)

 Empirical approach typically not taught to students

e ...how can students check whether a statement ,static type
systems are good for developer hold“?

e ...how can students understand an empirical study they are
reading about?

e ...how can a student perform such a study?

* There are empirical studies / controlled experiments
(ok, not that many)



State of the Art: Empirical SE (2

* Typically, a large number of experiments suffer from
general problems (experiment design as well as
analysis)

* Alot of techniques come up without a hypothesis /
proposed measurement

« Example: ,Eclipse is quite a mature IDE and helps
developer a lot"

=> Experimenter becomes ,inventor of hypothesis
to be tested”



State of the Art: Empirical SE

« Theories mainly describe existence of a difference

o ..."static type systems better than dynamic type systems”
 ...empirical knowledge rather low

« Theories typically do not try to quantify differences (for some good
reasons)

 ...empirical knowledge rather low

« Experimenter currently have to ,invent situations for language
constructs on their own”

« Example: Java vs. Assembler....



Empirical SE: Open issues

« Endless list of open issues

« How can we distinguish good from bad
developers upfront?

- Fundamental question for certain experiment designs (factorial design, block design,
etc.)

« What kind of programming tasks are worth being studied?

- What tasks do have small deviations, which represent ,daily programming
tasks“?

« What tool support should be delivered in an experiment?
- Most often, no data for tools is available...



Long term goal of SE

e Theories

« Descriptions of situations where certain constructs dominate others
(size of difference part of theory)

e Large number of experiments that try to falsify theories
« Example (very first initial step):

- ,When using an undocumented API, .....
....static typing reduces development time”

« General kind of theory:

o When the code is of kind X, ....
...the use of construct A leads to C
...which differs to construct B by factor..."



Discussion & Conclusion

e Controlled experiments as a research method
o Statistics, experiment designs
 Many, many problems

* Missing experimentation in the past, basics,
organizational issues
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Conclusion

« We must teach experimentation

« Help people/students to understand what's going on

« Students need to know methods which permit to identify techniques which are
,bad, time consuming, error prone”

« We need to integrate experimentation in our courses

« The SE course should not say ,Pair programming is good®, it should also introduce
the experiments which revealed that effect

« We must do experimentation

« We want to improve the life of developers & users
« This does NOT mean that we should ignore the machines
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