
  

Human-Centered Evaluation of Software Artefacts in 
Computer Science:

Introduction, State-of-the-Art, and Perspectives

Stefan Hanenberg
University of Duisburg-Essen, Germany

Santiago de Chile, Chile, 14.09.2012



  

What is this talk about?

● Tries to argue that human-centered / empirical studies are 
necessary

● Introduces into some basic terms

● Gives an overview of techniques required to perform 
experiments

● Shows pitfalls of experiments

● Gives an example of an experiment



  

Motivation

● Two different targets for research in CS
● Machines

– Execution speed, memory consumption, etc.
● Human

– Development speed, development errors, etc.

● Nowadays research methods mainly address 
machines

● Human plays rather minor role
● Usability (human interaction) rarely tested



  

Why should we care about humans?

● Humans are one of the main audience for CS 
constructs

● Usability of
● Programming languages
● APIs
● User interfaces
● ...

● Extensibility
● Maintainability



  

Current situation

● Example: Programming Language
● Typical statement from the community:

– „If a language is good, people will use it“
● Questions: 

– „How many people must use a language so that it becomes good?“

– „What about the moment when a language was initially developed?“

– „What about marketing effects?“

– „What should be the motivation of the first developer using a new PL?“

● Strange
● Later on hardly tested whether PL was being used

● „There is a community...so the language must be good“

● Example: well.....many, many

Typical situation: anecdotes instead of applied research method



  

Claim

● Artifact design is (often) about developers
● Current dominating approach

(1) Find example

(2) Build construct

(3) Claim that construct helps developers 

           This leads to nowhere
● Research methods needed that consider 

developers / users … involved humans



  

Why not the traditional way?

● Machine / algorithm / etc.
● Formal models, formal proofs, etc.

● Human
● No formal model

=> no formal reasoning
=> traditional approaches cannot be  
     applied



8

Overview of CS Research Methods

[Hanenberg, Onward 
2010]

Taken from [Hanenberg, Onward'10]



  

Structure

● Need for experimentation 
(here: controlled experiments with humans)
● What means experimentation?
● What is required to run experiments?

● State-of-the-art
● Challenges in experimentation 
● Example: Experiment on type systems
● Conclusion



  

Why experiments?

● Problem (again)
● No formal model available how humans work

● Experiments
● Observations as tests what really happens
● Approximation (examples) of actual behavior

● What is a test?
● There must be a statement which says when a test fails 

(hypothesis)
● There must be a objective way to check, whether test 

has failed (falsification) 



  

Logic of experimentation

● An experiment...
● does not provide a proof for a theory
● can NEVER consider all existing variables
● can hardly reflect on real world situations
● can only provide some evidence that a new construct helps 

(apart from developer's subjective impression)

● Why should it be useful?
● Test: „Does the artifact really help in situations the inventor 

had in mind“?
● Result: „Uselessness of artifact can be shown!“



  

Structure of Experiment

● Measurement of impact of 
● Independent variable (e.g. PL) on
● Dependent variable (e.g. development time)

● A variable has a number of different treatments
● Example: 

Comparison between Java, C++, and C
=> Indep. Variable PL with three treatments

● Experiment typically suffers from confounding 
factors (variable which are not controlled)



13

Background of Experiments (Karl Popper)

• Scientific argumentation

– Falsification of hypothesis
(use of statically typed language 
decreases development time)

– More often
• Exploratory analysis (let‘s see what happens if…)

– NO PROOFS / NO GENERALIZABILITY

• But always the hope that repeated observations reveal some 
truth



14

Background of Experiments (Karl Popper)

• Validity of hypotheses

– Evidence for hypotheses increases
the more often they could not be 
rejected

• Assumption

–Massive execution of experiments

• Hope...(as practical researcher)

● the more data available, the more probable it is, 
that we finally „see some rules“



  

Single vs. Multiple Runs

● General idea of experimentation
● It shows, that hypothesis does not hold

● Single run experiments (in physics)
● Example: Galilei's Pisa experiment

=> Single run falsified existing theory
=> Boolean statement from single run => Boolean logic

● With humans: Multiple runs
● Humans differ too much

=> Multiple runs required
=> How often do runs need to falsify theory?
=> Argumentation based on analysis of sample => Statistics



  

Remaining questions

● How to design / perform experiments?

● How to analyse experiments?

...let's discuss it the other way around



  

Statistics in 5 minutes....

● Descriptive Statistics
● Arithmetic mean, medians, variance, etc.
● Relatively easy to understand, but inappropriate

● Inductive Statistics
● Consideration of probabilities 
● Not that intuitive to understand, but state-of-the-art



  

Example: Descriptive Statistics

● Software development times with techniques 
A and B (in hours), 10 subjects
● A: 1, 2, 3, 4, 1000 (mean: > 200, median: 3)
● B: 10, 20, 30, 40, 50 (mean: 30, median 30)

● Problem
● Argumentation based on mean or median?
● Is 1000 an outlier that should not be considered?
● Problems of descriptive statistics well known...



  

Inductive Statistics(1)

Effect size

A

● General idea: compare distribution / density 
functions of samples A and B

B

test A < B



  

Inductive Statistics(1)

● General idea: compare density functions

Effect size

Overlap

test A < B

Deviation 
(breadth of 
curve)



  

Inductive Statistics (1)

● General idea: compare density functions

Effect size

Overlap
A B

● Computation of overlap between density function

test A < B



  

Inductive Statistics (2)

● P-value: (Error-) Probability that a sample does 
NOT show A<B

● Arbitrarily(!) chosen alpha-level as „significance 
level“ (typically: 0.05, 0.01, …)

● Example:
● „The difference turned out to be significant under 

an alpha-level of 0.05“
=> p<0.05



  

Inductive Statistics (3)

● Sample typically does not show perfect curve 
=> approximation of density function required
=> sometimes, not even the kind of density function is known 

● Standard mechanisms (significance tests) to compute p-values for 
different scales and sample sizes

– T-Test, Wilcoxon-Test, Mann-Whitney-U-Test, 

● Standard mechanisms to determine, whether a certain distribution can 
be assumed

– Shapiro-Wilk-Test, K-S-Test, etc.

● All these tests are implemented in standard statistic software (R, SPSS, 
S, MiniStat, SAS, …)



  

Inductive Statistics (4)

● Comparison of multiple curves (ANOVA): 
Impact of 1, 2, 3 on measurement

A1 A2 A3

● Again: p-value (error probability that difference does not depend on 1-3)

● Partial-Eta-Square: How much of the variation can be explained by the variable (with 
the treatments 1-3)



  

Inductive Statistics (5)

● Quasi-endless different kinds of tests for different number of 
treatmeants and variables

● Take away: 
● Determination of error-probability p

– Different standard significance tests

● Value of p depends on

– Effect size

– Sample size

– Scale

– Applied significance test

– Deviation (breadth of curve)



  

Remaining question

● How to design / perform experiments?
● What kinds of experimental design are possible / desirable?
● What is the impact of a certain design on the results?
● What kinds of measurements can be applied?
● ...



  

Experiment Design (1)

● Two-group between-subject design
● One independent variable with two treatments

● One subject tested under one treatment

● Two different groups, each contains subjects with same treatment

● Example (Language A, B):
● A: 1, 2, 3, 4, 1000

● B: 10, 20, 30, 40, 50

● Problem
● Both groups require subjects with „the same characteristics“

● Problem: requires „very large“ effect size in order to measure difference 
(for small sample sizes)

Lang. A Lang. B

Group A Group B



  

Experiment Design (2)

● Four-group between-subject design
● Two independent variables with two treatments

● One subject tested under one treatment

● Four different groups, each subject assigned to treatment pair

● Example (Language A, B; Programming Task 1, 2)
● G1 (Language A, Task 1): 1, 2, 3, 4, 1000

● G2 (Language A, Task 2): ...

● G3 (Language A, Task 3): ...

● G4 (Language A, Task 3): ...

● Problem
● Groups still require subjects with „the same characteristics“

● Still: requires „very large“ effect size in order to measure difference (for small sample 
sizes)

Lang. A Lang. B

Task 1

Task 2

Group 1 Group 2

Group 3 Group 4



  

Experiment Design (3)

● Large variety of further designs
● Repeated measures designs, factorial designs, block designs, ...
● Between vs. within-subject designs, …

● General problems / considerations
● Does design match hypotheses?

– Difference hypotheses, correlation hypotheses, ...

● Does design permit to determine effect?
– Effect size, deviation, sample size, statistical power of required 

significance tests, ... 



  

Experiment Design (4)

● General problem: No measured effect
● Possible interpretations:

– Sample size too small
– Deviation too high
– Inappropriate design
– Non-exact measurement
– ....

● Alternative interpretation
– Well, maybe the effect does not exist

}
- Pure technical problems
- Easy to run into these 
  problems!!!
- NO (!) indicator that 
  main effect does not exist



  

Experiment Design Example 

● Example
● 2 group experiment, 10 subjects, comparison of Java and Assembler

● Subjects: First year students

● Task: 

– Write an algorithm that computes a strongly connected component with O(n^3)

– ...without using a book on algorithms 

● Assumed result:

– Average solution requires more than a year development time

– No measured difference between Java and Assembler
=> very large deviation, small sample size, unbalanced groups,...

=> actual task has a huge impact on measurements

=> be careful when having an experiment without measured effect 
     (p > alpha-level)



  

Experiment Design: p> 0.05 

● But
● if the significant effect of variable is „obvious“ 

(common community believe)
● if the number of subjects is „high“ (whatever that means)

● chosen tasks are the „killer-examples“ for the 
measured technique

● …then...

=> Non-significant results are still interesting
     (but only! then)



  

Experiment Design (6)

● Take away: Experiment design
● ...must match research question
● ...influences the final result (p-value)
● ...requires appropriate analysis (t-Test, ANOVA, …)
● ...results highly depend on actual task
● ...be careful when no effect has been measured



34

Ok, let's do experiments

… but where and how to start?



  

Challenges of Empirical Studies

(remember: typically neither hypotheses nor concrete scenario available)



  

Challenges of Empirical Studies (1)

● Find / invent a hypothesis
● Find situations where hypotheses should be 

tested
● Find a good design

● Typical problem
● „Fighting the deviation / effect-size beastFighting the deviation / effect-size beast“



37

Challenges of Empirical Studies (1)

• Scientific approach
– Observation of singular events (sample)

(e.g. developers using a dynamically/statically typed programming language)

• Formulation of hypothesis
• Identification of dependent / independent 

variables
(e.g. development time depending on type system)

• Construction of environment 
(IDEs, tasks, languages, machines, …)

– Collection of subjects
– Measurements (e.g. development time to solve a certain task)

– Analysis (mainly inductive statistics)



  

Challenges of Empirical Studies (2)

● Find / invent a hypothesis
● Find situations where hypotheses should be 

tested
● Find a good design

● Typical problem
● „Fighting the deviation / effect-size beastFighting the deviation / effect-size beast“



39

Problems: Experiment Design

• Comparison between two samples 

Example 1: Same effect size, different deviation



40

Problems: Experiment Design

Example 1: Same effect size, different deviation

Large overlap
=> no (significant) difference

•Comparison between two samples 



41

Example 1: Same effect size, different deviation

Large overlap
=> no (significant) difference Small overlap

=> (significant) difference

Problems: Experiment Design

• Comparison between two samples 



42

Example 2: Different effect size, same deviation

Problems: Experiment Design

• Comparison between two samples 



43

Example 2: Different effect size, same deviation

Large overlap
=> no (significant) difference Small overlap

=> (significant) difference

Problems: Experiment Design

• Comparison between two samples 



44

Problem(s) in Experimentation

  Conclusion

      Experimenter should try to

− reduce deviation, and/or

− increase effect size

Possible ways
Adaptation of experimental design 

(e.g. within-subject design) => Reduction of deviation

Adaptation of tasks 
(no development „from scratch“) => Incease effect size



45

Example: Static Type System
[Kleinschmager, Hanenberg, Robbes, Tanter, Stefik; ICPC'12]

● Background: 4 experiments, „mixed results“

● Idea: Static type systems help when using an undocumented API

● Experiment
● Java / Groovy as PLs

● 9 programming tasks (designing tasks took about 2 month)

– 2 tasks: fix semantic error / 2 tasks: fix type error / 5 tasks: use API classes

● 33 subjects (mainly students)

● Within-subject design (2 groups)

● Result
● Positive effect for 6/9 tasks

– No effect on fixing semantic error 

– Positive effect on fixing type error

– Mostly (4/5) positive effect on using API classes



46

Example: Static Type System
● Task 4,5: 

Semantic 
errors

● 1,2,3,6,8: New 
class usage

● 7, 10: 
Type errors



47

Example: Static Type System
● Potential problems

● Artificially constructed API

– parameter names do not reflect on type names (but on names 
chosen from the domain)

– Is it repesentative?
● Artificially constructed environment

● Artificial programming tasks

● Java type system

● Maybe we measured something else

● „Existence of type annotations in the code help....no matter whether they 
are statically type checked or not“

● Maybe „in the wild“ positive effect of static type system „vanishs“

● There is no generalizability



48

Example: Static Type System
● How to go on?

● Traditional way

– „We have done an experiment on type systems and 
found differences, let's go to the next topic“

● Alternative way

– Go on with experimentation on type systems
● Variations on type systems, IDE support, 

replication of experiments, etc.
– Try to find correlation hypothesis that survives 

falsification trials



49

Where to Start?
• Relatively few textbooks available specific to software engineering



50

Where to Start?
• Huge bunch of textbooks outside the domain of software 

engineering

• Psychology

• Social Sciences

• Medicine

• …

• Why not just use these books?

• Problem: Different domains have different problems...



  

Problem of different domains

● What is the difference between measuring 
blood pressure and software development 
time?



  

Problem of different domains

● Blood pressure
● You will hardly find two (living) human subjects on this planet whose 

blood pressure differs by factor 10 (even factor 5 is unlikely)

● Software development time
● It is hard to find a sample of human subjects where development 

time between best and worst developer is less than factor 5

=> Large set of experimental designs / statistical methods from 
for example medicine cannot be (directly) used in software 
construction



  

State of the Art: Empirical SE



  

State of the Art: Empirical SE  (1)

● Empirical approach typically not taught to students
● ...how can students check whether a statement „static type 

systems are good for developer hold“?
● ...how can students understand an empirical study they are 

reading about?
● ...how can a student perform such a study? 

● There are empirical studies / controlled experiments 
(ok, not that many)



  

State of the Art: Empirical SE  (2)

● Typically, a large number of experiments suffer from 
general problems (experiment design as well as 
analysis)

● A lot of techniques come up without a hypothesis / 
proposed measurement

● Example: „Eclipse is quite a mature IDE and helps 
developer a lot“

=> Experimenter becomes „inventor of hypothesis 
to be tested“



  

State of the Art: Empirical SE

● Theories mainly describe existence of a difference
● ...“static type systems better than dynamic type systems“
● ...empirical knowledge rather low

● Theories typically do not try to quantify differences (for some good 
reasons)

● ...empirical knowledge rather low

● Experimenter currently have to „invent situations for language 
constructs on their own“
● Example: Java vs. Assembler....



  

Empirical SE: Open issues

● Endless list of open issues

● How can we distinguish good from bad 
developers upfront?
– Fundamental question for certain experiment designs (factorial design, block design, 

etc.)

● What kind of programming tasks are worth being studied?
– What tasks do have small deviations, which represent „daily programming 

tasks“?

● What tool support should be delivered in an experiment?

– Most often, no data for tools is available...

● ...



  

Long term goal of SE

● Theories
● Descriptions of situations where certain constructs dominate others 

(size of difference part of theory)
● Large number of experiments that try to falsify theories
● Example (very first initial step):

– „When using an undocumented API, .....
....static typing reduces development time“

● General kind of theory:

● „When the code is of kind X, ....
...the use of construct A leads to C
...which differs to construct B by factor...“



59

Discussion & Conclusion

● Controlled experiments as a research method
● Statistics, experiment designs

● Many, many problems
● Missing experimentation in the past, basics, 

organizational issues
● ...



60

Conclusion

● We must teach experimentation
● Help people/students to understand what's going on

● Students need to know methods which permit to identify techniques which are 
„bad, time consuming, error prone“

● We need to integrate experimentation in our courses
● The SE course should not say „Pair programming is good“, it should also introduce 

the experiments which revealed that effect

● We must do experimentation
● We want to improve the life of developers & users

● This does NOT mean that we should ignore the machines



  

Human-Centered Evaluation of Software Artefacts in 
Computer Science:

Introduction, State-of-the-Art, and Perspectives

Stefan Hanenberg
University of Duisburg-Essen, Germany

Santiago de Chile, Chile, 14.09.2012


