Category Theory for computer scientists

Nicolas Tabareau INRIA, Nantes

The denotational semantics trinity

The denotational semantics trinity

The simply typed λ -calculus

variable $x:A \vdash x:A$ abstraction application weakening contraction exchange

 $\Gamma, x : A \vdash P : B$ $\Gamma \vdash \lambda x.P : A \Rightarrow B$ $\Gamma \vdash P : A \Rightarrow B \qquad \Delta \vdash Q : A$ $\Gamma, \Delta \vdash PQ$:B $\Gamma \vdash P : B$ $\Gamma, x : A \vdash P : B$ $\Gamma, x : A, y : A \vdash P : B$ $[\Gamma, z : A \vdash P[x, y \leftarrow z] : B$ $\Gamma, x : A, y : B, \Delta \vdash P : C$ $\Gamma, y : B, x : A, \Delta \vdash P : C$

Intuitionistic minimal logic

Intuitionistic minimal logic

$$\overline{A \vdash A}$$

$$\frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B}$$

$$\overline{\Gamma \vdash A \Rightarrow B} \quad \Delta \vdash A$$

$$\Gamma, \Delta \vdash B$$

$$\frac{\Gamma \vdash B}{\Gamma, A \vdash B}$$

$$\frac{\Gamma, A, A \vdash B}{\Gamma, A \vdash B}$$

$$\frac{\Gamma, A, B, \Delta \vdash C}{\Gamma, B, A, \Delta \vdash C}$$

Cut elimination $\Leftrightarrow \beta$ -reduction

priority to <u>right-hand side</u> in cut-elimination ⇔ call-by-name

priority to <u>left-hand side</u> in cut-elimination ⇔ call-by-value

Pierce law $((P \Rightarrow Q) \Rightarrow P) \Rightarrow P$

 \Leftrightarrow

call-cc (continuation)

double negation translation (Gödel translation)

 \Leftrightarrow

continuation passing style translation

The denotational semantics trinity

The denotational semantics trinity

What is a category ?

What is a category ?

Coarsely, a labelled graph whose arrows can be composed

What is a category ?

together with basic associativity and identity rules

A first example :

A category with at most one arrow between two objects is

A first example :

A category with at most one arrow between two objects is

A preorder

A second example :

A category with exactly one object is

A second example :

A category with exactly one object is

A monoid

Lo inevitable

	Objects	Morphisms
Set	sets	functions
Bij	sets	one-to-one function
Vec	vector spaces	linear applications
Ab	abelian groups	group morphisms
ΡΟ	part. order sets	monotonic functions
Dom	Scott domains	continuous function

There are also morphisms between categories

Functors

There are also morphisms between categories

Functors

Relates two categories in a structurepreserving way

$U : Mon \rightarrow Set$

The forgetful functor from the category of monoids to the category of sets.

Example 2:

U': $Ab \rightarrow Set$

The forgetful functor from the category of abelian groups to the category of sets.

Why are categories useful ?

I. Rephrase many structures with few concepts

Why are categories useful ?

2. Export abstract theorems to concrete structures

First concept: Adjunction

F: $A \rightarrow B$ and G: $B \rightarrow A$

$$Fx \rightarrow y \text{ in } \mathbf{B}$$

 $x \rightarrow Gy \text{ in } \mathbf{A}$

as many morphisms in a natural way

First concept: Adjunction

F: $A \rightarrow B$ and G: $B \rightarrow A$

In that case, we say that F is left adjoint to G

$U : Mon \rightarrow Set$

as a left adjoint

what is it?

hint : it describes a canonical way to form a monoid from a set

$U : Mon \rightarrow Set$

Answer: the word construction (or free monoid)

Proof:

 $A^* \rightarrow B$ in **Mon**

 $A \rightarrow U(B)$ in **Set**

Take f: $A \rightarrow B$, construct the function

$$f^{*}(w_{1}...w_{n}) = f(w_{1})...f(w_{n})$$

Example 2:

U': $Ab \rightarrow Set$

The left adjoint constructs the free abelian group

Back to the point

What is the categorical structure of the λ -calculus ?

I. we need to interpret the "," in the typing judgment I. we need to interpret the "," in the typing judgment

This is given by the notion of product ×

2. we need to interpret the empty environment in the typing judgment

2. we need to interpret the empty environment in the typing judgment

This is given by the notion of terminal object

$$\left(\begin{array}{c} \Gamma, \boldsymbol{x} : A \vdash P : B \\ \overline{\Gamma} \vdash \lambda \boldsymbol{x} . P : A \Rightarrow B \end{array}\right)$$

 $\frac{\Gamma \times A \to B}{\Gamma \to (A \Rightarrow B)}$

$$\frac{\Gamma \times A \rightarrow B}{\Gamma \rightarrow (A \Rightarrow B)}$$

This says that $(A \Rightarrow -)$ is the right adjoint to $(- \times A)$

In category terminology, the right adjoint to the cartesian product is called the closure

Cartesian closed category

A category with

I. a product x
2. a terminal object
3. a closure ⇒

is a cartesian closed category (CCC)

λ -calculus and CCC

We can interpret the λ -calculus in any CCC.

The interpretation is correct:

if M and N are β -equivalent then [M] = [N]

λ -calculus and CCC

identity closure (adjunction) composition projection

diagonal of the product

commutativity

 $x:A \vdash x:A$ $\Gamma, x : A \vdash P : B$ $\Gamma \vdash \lambda x.P : A \Rightarrow B$ $\Gamma \vdash P : A \Rightarrow B \qquad \Delta \vdash Q : A$ $\Gamma, \Delta \vdash PQ$:B $\Gamma \vdash P : B$ $\Gamma, x : A \vdash P : B$ $\Gamma, x : A, y : A \vdash P : B$ $[\Gamma, z : A \vdash P[x, y \leftarrow z] : B$ $\Gamma, x : A, y : B, \Delta \vdash P : C$ $\Gamma, y : B, x : A, \Delta \vdash P : C$

Why introducing CCC ?

Of course, for sets and functions, we don't really need category theory.

Why introducing CCC ?

But it is sometimes difficult to say that an interpretation gives rise to a model.

Why introducing CCC ?

- I. Scott domains and continuous functions
- 2. Berry domains and stable functions
- 3. concrete data structures and sequential algorithms
- 4. opponent starting games and sequential strategies

5. ...

To be continued ...