Category Theory for computer scientists

Nicolas Tabareau
INRIA, Nantes

The denotational semantics trinity

The denotational semantics trinity

The simply typed λ-calculus

variable
abstraction
application
weakening
contraction
exchange

$$
\begin{gathered}
\overline{x: A \vdash x: A} \\
\frac{\Gamma, x: A \vdash P: B}{\Gamma \vdash \lambda x \cdot P: A \Rightarrow B} \\
\Gamma \vdash P: A \Rightarrow B \quad \Delta \vdash Q: A \\
\hline \Gamma, \Delta \vdash P Q: B \\
\frac{\Gamma \vdash P: B}{\Gamma, x: A \vdash P: B} \\
\frac{\Gamma, x: A, y: A \vdash P: B}{\Gamma, z: A \vdash P[x, y \leftarrow z]: B} \\
\frac{\Gamma, x: A, y: B, \Delta \vdash P: C}{\Gamma, y: B, x: A, \Delta \vdash P: C}
\end{gathered}
$$

Intuitionistic minimal logic

Intuitionistic minimal logic

Other correspondances

Cut elimination $\Leftrightarrow \beta$-reduction

Other correspondances

priority to right-hand side in cut-elimination

$$
\Leftrightarrow
$$

call-by-name

Other correspondances

priority to left-hand side in cut-elimination
\Leftrightarrow
call-by-value

Other correspondances

Pierce law
$((P \Rightarrow Q) \Rightarrow P) \Rightarrow P$
\Leftrightarrow
call-cc (continuation)

Other correspondances

double negation translation
 (Gödel translation)

continuation passing style translation

The denotational semantics trinity

The denotational semantics trinity

What is a category ?

What is a category ?

Coarsely, a labelled graph whose arrows can be composed

What is a category ?

together with basic associativity and identity rules

$$
\begin{aligned}
& A-\frac{f ; g-C-\sqrt{h}-D=}{A-\quad-B-D ; h-D} \\
& A-I d-A-f-B=A-\quad B
\end{aligned}
$$

A first example :

A category with at most one arrow between two objects is

A first example :

A category with at most one arrow between two objects is

A preorder

A second example :

A category with exactly one object is

A second example :

A category with exactly one object is

A monoid

Lo inevitable

Objects

Set sets functions

functions
Bijsetsvector spacesabelian groupsPOpart. order sets
Domgroup morphismsmonotonic functions

Morphisms
one-to-one function
linear applications
group morphisms
monotonic functions
continuous function

There are also morphisms between categories

Functors

There are also morphisms between categories

Functors

Relates two categories in a structurepreserving way

Example I:

U : Mon \rightarrow Set

The forgetful functor from the category of monoids
 to the category of sets.

Example 2:

U' : Ab \rightarrow Set

The forgetful functor from the category of
abelian groups
to the category of sets.

Why are categories useful ?

I. Rephrase many structures with few concepts

Why are categories useful ?

2. Export abstract theorems

to concrete structures

First concept:Adjunction

$$
F: \mathbf{A} \rightarrow \mathbf{B} \text { and } G: \mathbf{B} \rightarrow \mathbf{A}
$$

$\mathrm{Fx} \rightarrow \mathrm{y}$ in \mathbf{B}
$x \rightarrow$ Gy in \mathbf{A}
as many morphisms in a natural way

First concept:Adjunction

$\mathrm{F}: \mathbf{A} \rightarrow \mathbf{B}$ and $G: \mathbf{B} \rightarrow \mathbf{A}$

In that case, we say that F is left adjoint to G

Example I:

$\mathrm{U}:$ Mon \rightarrow Set

as a left adjoint

what is it?

hint : it describes a canonical way to form a monoid from a set

Example I:

$U:$ Mon \rightarrow Set

Answer: the word construction (or free monoid)

Example I:

Proof:

$A^{*} \rightarrow B$ in Mon

$A \rightarrow U(B)$ in Set

Take $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$, construct the function

$$
f^{*}\left(w_{\mid} \ldots w_{n}\right)=f\left(w_{1}\right) \ldots f\left(w_{n}\right)
$$

Example 2:

$U^{\prime}: \mathbf{A b} \rightarrow$ Set

The left adjoint constructs the free abelian group

Back to the point

What is the categorical structure of the λ-calculus?

I. we need to interpret the "," in the typing judgment

I. we need to interpret the "," in the typing judgment

This is given by the notion of product \mathbf{x}

2. we need to interpret the empty environment in the typing judgment

2. we need to interpret the empty environment in the typing judgment

This is given by the notion of terminal object

3. we need to interpret the abstraction rule

$$
\frac{\Gamma, x: A \vdash P: B}{\Gamma \vdash \lambda x \cdot P: A \Rightarrow B}
$$

3. we need to interpret the abstraction rule

3. we need to interpret the abstraction rule

> This says that $(A \Rightarrow-)$ is the right adjoint to $(-\times A)$

3. we need to interpret the abstraction rule

In category terminology,
the right adjoint to the cartesian product is called the
closure

Cartesian closed category

A category with
I. a product x
2. a terminal object
3. a closure \Rightarrow
is a cartesian closed category (CCC)

λ-calculus and CCC

We can interpret the λ-calculus in any CCC.

The interpretation is correct:
if M and N are β-equivalent then $[\mathrm{M}]=[\mathrm{N}]$

λ-calculus and CCC

identity
closure
(adjunction)
composition
projection
diagonal of the product
commutativity

$$
\begin{gathered}
\overline{x: A \vdash x: A} \\
\frac{\Gamma, x: A \vdash P: B}{\Gamma \vdash \lambda x \cdot P: A \Rightarrow B} \\
\Gamma \vdash P: A \Rightarrow B \quad \Delta \vdash Q: A \\
\hline \Gamma, \Delta \vdash P Q: B \\
\frac{\Gamma \vdash P: B}{\Gamma, x: A \vdash P: B} \\
\frac{\Gamma, x: A, y: A \vdash P: B}{\Gamma, z: A \vdash P[x, y \leftarrow z]: B} \\
\frac{\Gamma, x: A, y: B, \Delta \vdash P: C}{\Gamma, y: B, x: A, \Delta \vdash P: C}
\end{gathered}
$$

Why introducing CCC ?

Of course, for sets and functions, we don't really need category theory.

Why introducing CCC ?

But it is sometimes difficult to say that an interpretation gives rise to a model.

Why introducing CCC ?

I. Scott domains and continuous functions
2. Berry domains and stable functions
3. concrete data structures and sequential algorithms
4. opponent starting games and sequential strategies
5. ...

To be continued ...

