
© Éric Tanter

 aming spects

Éric	 Tanter
University	 of	 Chile

1

© Éric Tanter

This work is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 3.0
Unported License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/3.0/ or
send a letter to Creative Commons, 444 Castro
Street, Suite 900, Mountain View, California, 94041,
USA.

2

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

© Éric Tanter

Aspects?

3

© Éric Tanter

What are Aspects?

Modular implementation of crosscutting concerns

4

© Éric Tanter

What are Aspects?

Modular implementation of crosscutting concerns

requirements
concerns

4

© Éric Tanter

What are Aspects?

Modular implementation of crosscutting concerns

requirements
concerns

4

Monitoring
Security
Coordination
...

© Éric Tanter

What are Aspects?

Modular implementation of crosscutting concerns

requirements
concerns

4

Monitoring
Security
Coordination
...

© Éric Tanter

What are Aspects?

Modular implementation of crosscutting concerns

requirements
concerns

4

Monitoring
Security
Coordination
...

© Éric Tanter

What are Aspects?

Modular implementation of crosscutting concerns

requirements
concerns

components
aspects

weaver

system

4

Monitoring
Security
Coordination
...

© Éric Tanter

What are Aspects?

Modular implementation of crosscutting concerns

one goal, different mechanisms

requirements
concerns

components
aspects

weaver

system

4

Monitoring
Security
Coordination
...

© Éric Tanter

Pointcut / Advice

A novel programming language mechanism

• interesting in its own right!

5

© Éric Tanter

Pointcut / Advice

A novel programming language mechanism

• interesting in its own right!

pointcut

5

© Éric Tanter

Pointcut / Advice

A novel programming language mechanism

• interesting in its own right!

pointcut

advice

5

© Éric Tanter

Pointcut / Advice

A novel programming language mechanism

• interesting in its own right!

pointcut

join points

advice

5

© Éric Tanter

Pointcut / Advice

A novel programming language mechanism

• interesting in its own right!

pointcut

join points

advice

5

© Éric Tanter

Pointcut / Advice

A novel programming language mechanism

• interesting in its own right!

pointcut

join points

advice

5

© Éric Tanter

Pointcut / Advice

A novel programming language mechanism

• interesting in its own right!

pointcut

join points

advice

5

© Éric Tanter

Pointcut / Advice

A novel programming language mechanism

• interesting in its own right!

pointcut

join points

advice

5

© Éric Tanter

Pointcut / Advice

A novel programming language mechanism

• interesting in its own right!

pointcut

join points

advice

5

© Éric Tanter

Pointcut / Advice

A novel programming language mechanism

• interesting in its own right!

pointcut

join points

advice

“glorification” of the observer pattern 5

© Éric Tanter 6

pointcut

join points

advice

Quantification

© Éric Tanter 6

pointcut

join points

advice

Quantification

© Éric Tanter 6

pointcut

join points

advice

Quantification

 execution(* Shape+.set*(..))

© Éric Tanter 6

pointcut

join points

advice

Quantification

 execution(* Shape+.set*(..))
 && this(s)

© Éric Tanter 6

pointcut

join points

advice

pointcut change(Shape s):

Quantification

 execution(* Shape+.set*(..))
 && this(s)

© Éric Tanter 6

pointcut

join points

advice

pointcut change(Shape s):

after(Shape s): change(s){
// update observers

}

Quantification

 execution(* Shape+.set*(..))
 && this(s)

© Éric Tanter

a join point

7

© Éric Tanter

a join point

7

© Éric Tanter

computation

inside!

a join point

7

© Éric Tanter

computation

inside!

a join point

7

© Éric Tanter

computation

inside!

“around” advice can ignore it

a join point

7

© Éric Tanter

computation

inside!

“around” advice can ignore it
or proceed

a join point

7

© Éric Tanter

computation

inside!

“around” advice can ignore it
or proceed
and proceed...

a join point

7

© Éric Tanter

computation

inside!

“around” advice can ignore it
or proceed
and proceed...

this is more than 1-way notifications

a join point

7

© Éric Tanter

Why is this exciting?

8

© Éric Tanter

Why is this exciting?

crosscutting is a real problem

8

© Éric Tanter

Why is this exciting?

crosscutting is a real problem

pointcut/advice is effective for handling crosscutting

8

© Éric Tanter

Why is this exciting?

crosscutting is a real problem

pointcut/advice is effective for handling crosscutting

• behavioral reflection for mere mortals

8

© Éric Tanter

Why is this exciting?

crosscutting is a real problem

pointcut/advice is effective for handling crosscutting

• behavioral reflection for mere mortals

• more declarative, esp. wrt quantification (pointcuts)

8

© Éric Tanter

Why is this exciting?

crosscutting is a real problem

pointcut/advice is effective for handling crosscutting

• behavioral reflection for mere mortals

• more declarative, esp. wrt quantification (pointcuts)

• more amenable to analysis (or so it seems)

8

© Éric Tanter

Why is this exciting?

crosscutting is a real problem

pointcut/advice is effective for handling crosscutting

• behavioral reflection for mere mortals

• more declarative, esp. wrt quantification (pointcuts)

• more amenable to analysis (or so it seems)

still not there yet

• lots of open challenges

8

© Éric Tanter

State of the Practice

9

© Éric Tanter

State of the Practice

• every execution step is a join point

9

© Éric Tanter

State of the Practice

• every execution step is a join point

• pointcuts “see” them all

9

© Éric Tanter

State of the Practice

• every execution step is a join point

• pointcuts “see” them all

• advice can do anything

9

© Éric Tanter

State of the Practice

• every execution step is a join point

• pointcuts “see” them all

• advice can do anything

• proceed 0..n times

9

© Éric Tanter

State of the Practice

• every execution step is a join point

• pointcuts “see” them all

• advice can do anything

• proceed 0..n times

• change arguments, return value

9

© Éric Tanter

State of the Practice

• every execution step is a join point

• pointcuts “see” them all

• advice can do anything

• proceed 0..n times

• change arguments, return value

• arbitrary side effects

9

© Éric Tanter 10

© Éric Tanter

FEATURE APPLICATION

all execution steps are join points,
pointcuts see them all

unanticipated evolution,
“obliviousness”

advice that does not proceed memoization, proxies, ...

advice that proceeds n times retry, redundancy, ...

changing arguments/return encryption, comfort zone, ...

arbitrary side effects almost all aspects!

10

© Éric Tanter

FEATURE APPLICATION

all execution steps are join points,
pointcuts see them all

unanticipated evolution,
“obliviousness”

advice that does not proceed memoization, proxies, ...

advice that proceeds n times retry, redundancy, ...

changing arguments/return encryption, comfort zone, ...

arbitrary side effects almost all aspects!

10

© Éric Tanter

FEATURE APPLICATION

all execution steps are join points,
pointcuts see them all

unanticipated evolution,
“obliviousness”

advice that does not proceed memoization, proxies, ...

advice that proceeds n times retry, redundancy, ...

changing arguments/return encryption, comfort zone, ...

arbitrary side effects almost all aspects!

10

© Éric Tanter

FEATURE APPLICATION

all execution steps are join points,
pointcuts see them all

unanticipated evolution,
“obliviousness”

advice that does not proceed memoization, proxies, ...

advice that proceeds n times retry, redundancy, ...

changing arguments/return encryption, comfort zone, ...

arbitrary side effects almost all aspects!

10

© Éric Tanter

FEATURE APPLICATION

all execution steps are join points,
pointcuts see them all

unanticipated evolution,
“obliviousness”

advice that does not proceed memoization, proxies, ...

advice that proceeds n times retry, redundancy, ...

changing arguments/return encryption, comfort zone, ...

arbitrary side effects almost all aspects!

10

© Éric Tanter

FEATURE APPLICATION

all execution steps are join points,
pointcuts see them all

unanticipated evolution,
“obliviousness”

advice that does not proceed memoization, proxies, ...

advice that proceeds n times retry, redundancy, ...

changing arguments/return encryption, comfort zone, ...

arbitrary side effects almost all aspects!

10

© Éric Tanter

FEATURE APPLICATION

all execution steps are join points,
pointcuts see them all

unanticipated evolution,
“obliviousness”

advice that does not proceed memoization, proxies, ...

advice that proceeds n times retry, redundancy, ...

changing arguments/return encryption, comfort zone, ...

arbitrary side effects almost all aspects!

10

© Éric Tanter

FEATURE APPLICATION

all execution steps are join points,
pointcuts see them all

unanticipated evolution,
“obliviousness”

advice that does not proceed memoization, proxies, ...

advice that proceeds n times retry, redundancy, ...

changing arguments/return encryption, comfort zone, ...

arbitrary side effects almost all aspects!

10

© Éric Tanter

FEATURE APPLICATION

all execution steps are join points,
pointcuts see them all

unanticipated evolution,
“obliviousness”

advice that does not proceed memoization, proxies, ...

advice that proceeds n times retry, redundancy, ...

changing arguments/return encryption, comfort zone, ...

arbitrary side effects almost all aspects!

10

© Éric Tanter

FEATURE APPLICATION

all execution steps are join points,
pointcuts see them all

unanticipated evolution,
“obliviousness”

advice that does not proceed memoization, proxies, ...

advice that proceeds n times retry, redundancy, ...

changing arguments/return encryption, comfort zone, ...

arbitrary side effects almost all aspects!

10

© Éric Tanter

FEATURE APPLICATION

all execution steps are join points,
pointcuts see them all

unanticipated evolution,
“obliviousness”

advice that does not proceed memoization, proxies, ...

advice that proceeds n times retry, redundancy, ...

changing arguments/return encryption, comfort zone, ...

arbitrary side effects almost all aspects!

10

© Éric Tanter 11

BUT...

© Éric Tanter 11

Break semantics!

void around(): call(int Fib.calc(int)){
System.out = myPrivateStream;
return -1;

}

BUT...

© Éric Tanter 11

void around(): call(void SecurityManager.check*(..)){}

No more security!

Break semantics!

void around(): call(int Fib.calc(int)){
System.out = myPrivateStream;
return -1;

}

BUT...

© Éric Tanter 11

void around(): call(void SecurityManager.check*(..)){}

void around(Person p): execution(void *()) && this(p){
 proceed(new Person());
}

ClassCastException!

No more security!

Break semantics!

void around(): call(int Fib.calc(int)){
System.out = myPrivateStream;
return -1;

}

BUT...

© Éric Tanter

before(Person p): execution(* *(..)) && this(p) {
System.out.println(“person active: “ + p.getName());

}

11

void around(): call(void SecurityManager.check*(..)){}

void around(Person p): execution(void *()) && this(p){
 proceed(new Person());
}

ClassCastException!

StackOverflow!

No more security!

Break semantics!

void around(): call(int Fib.calc(int)){
System.out = myPrivateStream;
return -1;

}

BUT...

© Éric Tanter

before(Person p): execution(* *(..)) && this(p) {
System.out.println(“person active: “ + p.getName());

}

11

void around(): call(void SecurityManager.check*(..)){}

void around(Person p): execution(void *()) && this(p){
 proceed(new Person());
}

before(Person p): execution(* *(..)) && this(p) {
System.out.println(“person active: “ + p.getName());

}

ClassCastException!

StackOverflow!

No more security!

Break semantics!

void around(): call(int Fib.calc(int)){
System.out = myPrivateStream;
return -1;

}

BUT...

© Éric Tanter

SPECTA

RIENTATIONO
12

© Éric Tanter

SPECT

RIENTATION

12

© Éric Tanter

SPECTA

RIENTATIONO

??

12

© Éric Tanter 13

© Éric Tanter

SPECT

RIENTATIONO

A

13

© Éric Tanter

SPECT

RIENTATION

13

© Éric Tanter

SPECT

RIENTATION

AMING

13

© Éric Tanter

SPECT

RIENTATION

AMING

13

Power

Control

© Éric Tanter 14

© Éric Tanter

Scoping

Interfaces

Types

Effects

14

© Éric Tanter

Scoping

Interfaces

Types

Effects

14

Dynamic

Static

© Éric Tanter

Scoping

Interfaces

Types

Effects

15

© Éric Tanter

Scoping

Interfaces

Types

Effects

Can we restrict quantification to
 well-defined boundaries?

 What abstractions are meaningful?

15

© Éric Tanter

Global Quantification

16

© Éric Tanter

Global Quantification

Global visibility of join points exacerbates many issues

16

© Éric Tanter

Global Quantification

Global visibility of join points exacerbates many issues

• accidental matches

16

© Éric Tanter

Global Quantification

Global visibility of join points exacerbates many issues

• accidental matches

• spurious interferences

16

© Éric Tanter

Global Quantification

Global visibility of join points exacerbates many issues

• accidental matches

• spurious interferences

• advice loops

16

© Éric Tanter

Global Quantification

Global visibility of join points exacerbates many issues

• accidental matches

• spurious interferences

• advice loops

• etc.

16

© Éric Tanter

Mitigating the Issue

17

© Éric Tanter

Mitigating the Issue

Explicit announcement of join points

• explicit join points [Hoffman, 2012]

• quantified typed events [Rajan, 2008]

• closure join points [Bodden, 2011]

• open applications

• etc.

17

© Éric Tanter

Mitigating the Issue

Explicit announcement of join points

• explicit join points [Hoffman, 2012]

• quantified typed events [Rajan, 2008]

• closure join points [Bodden, 2011]

• open applications

• etc.

Expressive pointcuts

• rich pointcuts for robust patterns [Gybels, 2003], [Ostermann, 2005]

• application-specific pointcuts [Brichau, 2008]

• annotations [Kiczales, 2005]

• etc.

17

© Éric Tanter

Scoped Quantification

18

© Éric Tanter

Scoped Quantification

Global quantification

• just as bad as global mutable variables!

18

© Éric Tanter

Scoped Quantification

Global quantification

• just as bad as global mutable variables!

Different scoping disciplines for identifiers

• lexical scope

• dynamic scope

• thread-local

• per object, class, module

18

© Éric Tanter

Scoped Quantification

Global quantification

• just as bad as global mutable variables!

Different scoping disciplines for identifiers

• lexical scope

• dynamic scope

• thread-local

• per object, class, module

All have been explored for aspects as well

• CaesarJ, AspectScheme, Eos, AspectJ...

18

© Éric Tanter

Scoped Quantification: Advanced Models

19

© Éric Tanter

Scoped Quantification: Advanced Models

Scoping strategies [Tanter, 2008/2009/2010a]

• killer app: access control [Toledo, 2011/ 2012]

Execution levels [Tanter, 2010b]

Membranes [Tanter, 2012]

19

© Éric Tanter

Scoped Quantification: Advanced Models

Scoping strategies [Tanter, 2008/2009/2010a]

• killer app: access control [Toledo, 2011/ 2012]

Execution levels [Tanter, 2010b]

Membranes [Tanter, 2012]

19

© Éric Tanter

Execution Levels

20

© Éric Tanter

Composing Dynamic Analyses
[Tanter, 2010c]

21

joint work with

Walter Binder & co

© Éric Tanter

Composing Dynamic Analyses

Racer
Prof

program

[Tanter, 2010c]

21

joint work with

Walter Binder & co

© Éric Tanter

Composing Dynamic Analyses

Racer
Prof

program

Racer
Prof

program

[Tanter, 2010c]

21

joint work with

Walter Binder & co

© Éric Tanter

Composing Dynamic Analyses

Racer
Prof

program

Racer
Prof

program

Racer

Racer

program

[Tanter, 2010c]

21

joint work with

Walter Binder & co

© Éric Tanter

Composing Dynamic Analyses

Racer
Prof

program

Racer
Prof

program

Racer

Racer

program

NONE CAN BE IMPLEMENTED! (until now...)

[Tanter, 2010c]

21

joint work with

Walter Binder & co

© Éric Tanter

Why?

Racer
Prof

program

22

© Éric Tanter

Why?

Each aspect alters the observation of others

• Racer creates objects

• Prof accesses fields
Racer

Prof

program

22

© Éric Tanter

Why?

Each aspect alters the observation of others

• Racer creates objects

• Prof accesses fields

Each aspect potentially sees itself

• infinite regression

Racer
Prof

program

22

© Éric Tanter

Execution levels

Structure computation in levels

• aspects stand at specific levels

• observe computation below

[Tanter, 2010b]

23

© Éric Tanter

Execution levels

Structure computation in levels

• aspects stand at specific levels

• observe computation below

programlevel 0

[Tanter, 2010b]

23

© Éric Tanter

Execution levels

Structure computation in levels

• aspects stand at specific levels

• observe computation below

programlevel 0

level 1

[Tanter, 2010b]

23

© Éric Tanter

Execution levels

Structure computation in levels

• aspects stand at specific levels

• observe computation below

Racer

programlevel 0

level 1

[Tanter, 2010b]

23

© Éric Tanter

Execution levels

Structure computation in levels

• aspects stand at specific levels

• observe computation below

Racer Prof

programlevel 0

level 1

[Tanter, 2010b]

23

© Éric Tanter

Execution levels

Structure computation in levels

• aspects stand at specific levels

• observe computation below

Racer Prof

programlevel 0

level 1

level 2

[Tanter, 2010b]

23

© Éric Tanter

Execution levels

Structure computation in levels

• aspects stand at specific levels

• observe computation below

Racer

Prof

programlevel 0

level 1

level 2

[Tanter, 2010b]

23

© Éric Tanter

Execution levels

Structure computation in levels

• aspects stand at specific levels

• observe computation below

Racer

programlevel 0

level 1

level 2 Racer

[Tanter, 2010b]

23

© Éric Tanter

Levels: Theory and Practice

24

© Éric Tanter

Levels: Theory and Practice

Strong guarantee: aspect loops are avoided

joint work with

Nicolas Tabareau
Ismael Figueroa

24

© Éric Tanter

Levels: Theory and Practice

Strong guarantee: aspect loops are avoided

Can be implemented efficiently [Tanter, 2010c; Moret, 2011]

joint work with

Walter Binder
Philippe Moret, Danilo Ansaloni

24

© Éric Tanter

Levels: Theory and Practice

Strong guarantee: aspect loops are avoided

Can be implemented efficiently [Tanter, 2010c; Moret, 2011]

Ad-hoc checks in practice

• 1/3 of all aspects in the “AspectJ in Action” book

• 18% of all pointcuts in corpus of ≈500 aspects

• all aspects work out-of-the-box with default level semantics

24

© Éric Tanter

Topological Scoping

25

© Éric Tanter

Execution levels

• give structure to computation

• use this structure to define scoping

• come with some properties (eg. no loop)

Topological Scoping

25

© Éric Tanter

Execution levels

• give structure to computation

• use this structure to define scoping

• come with some properties (eg. no loop)

This is an example of topological scoping

• topology: tower

• what about others?

Topological Scoping

25

© Éric Tanter

Execution levels

• give structure to computation

• use this structure to define scoping

• come with some properties (eg. no loop)

This is an example of topological scoping

• topology: tower

• what about others?

Topological Scoping

25

© Éric Tanter

Membranes for AOP

joint work with

Nicolas Tabareau
Rémi Douence
Ismael Figueroa

26

© Éric Tanter

Giving Structure to Computation

Programmable membranes [Boudol, 2004; Schmitt, 2004]

• inspired by membranes in biology

27

© Éric Tanter

Membranes for AOP
Why not use membranes for AOP?

• gives rise to flexible topological scoping

• supports control over certain effects

[Tanter, 2012]

28

© Éric Tanter

Membranes for AOP

X

Y

Why not use membranes for AOP?

• gives rise to flexible topological scoping

• supports control over certain effects

[Tanter, 2012]

28

© Éric Tanter

Membranes for AOP

X

Y Z

Why not use membranes for AOP?

• gives rise to flexible topological scoping

• supports control over certain effects

[Tanter, 2012]

28

© Éric Tanter

Membranes for AOP

X

Y Z

m1

Why not use membranes for AOP?

• gives rise to flexible topological scoping

• supports control over certain effects

[Tanter, 2012]

28

© Éric Tanter

Membranes for AOP

X

Y Z

m1

m2

Why not use membranes for AOP?

• gives rise to flexible topological scoping

• supports control over certain effects

[Tanter, 2012]

28

© Éric Tanter

Membranes for AOP

X

Y Z

m1

m2

A

m3

Why not use membranes for AOP?

• gives rise to flexible topological scoping

• supports control over certain effects

[Tanter, 2012]

28

© Éric Tanter

Topological Scoping with Membranes

29

© Éric Tanter

Topological Scoping with Membranes

program

Prof

Racer

execution levels
29

© Éric Tanter

Topological Scoping with Membranes

program

Prof

Racer

execution levels
29

program

Racer

Prof

Prof

tree

© Éric Tanter

Topological Scoping with Membranes

program

Prof

Racer

execution levels
29

program

Racer

Prof

Prof

tree

program

Racer

Prof

DAG

© Éric Tanter

Membranes: Theory and Practice

30

© Éric Tanter

Membranes: Theory and Practice

Wide design space

• how to create, deploy and configure membranes?

• can membranes crosscut? organized hierarchically?

• what guarantees are expected? tradeoff?

• MAScheme

30

© Éric Tanter

Membranes: Theory and Practice

Wide design space

• how to create, deploy and configure membranes?

• can membranes crosscut? organized hierarchically?

• what guarantees are expected? tradeoff?

• MAScheme

Exploit programmability

• ensure safety properties

• what language is useful to program membranes?

• Kell calculus

30

© Éric Tanter

Scoping

Interfaces

Types

Effects

31

© Éric Tanter

Scoping

Interfaces

Types

Effects

Can we reconcile quantification
 with modular reasoning?

 What kind of static interfaces
 allow independent development?

31

© Éric Tanter

Issues with Pointcut/Advice

class A

class B

class C

aspect X
pointcut foo()

after foo()

32

© Éric Tanter

Issues with Pointcut/Advice

class A

class B

class C

aspect X
pointcut foo()

after foo()

fragile dependencies

32

© Éric Tanter

Issues with Pointcut/Advice

class A

class B

class C

aspect X
pointcut foo()

after foo()

fragile dependencies

oblivious
⇒ no idea what is relied upon

32

© Éric Tanter

Issues with Pointcut/Advice

class A

class B

class C

aspect X
pointcut foo()

after foo()

fragile dependencies

oblivious
⇒ no idea what is relied upon

modular reasoning?
independent development?

32

© Éric Tanter

Modular Reasoning?

33

© Éric Tanter

Modular Reasoning?
Kiczales & Mezini [2005]

• fundamental issue is the crosscutting nature

• AOP makes the crosscutting concern explicit

33

© Éric Tanter

Modular Reasoning?
Kiczales & Mezini [2005]

• fundamental issue is the crosscutting nature

• AOP makes the crosscutting concern explicit

aspect-aware interfaces

33

© Éric Tanter

Modular Reasoning?
Kiczales & Mezini [2005]

• fundamental issue is the crosscutting nature

• AOP makes the crosscutting concern explicit

aspect-aware interfaces

class A

class B

class C

aspect X
pointcut foo()

after foo()

33

© Éric Tanter

Modular Reasoning?
Kiczales & Mezini [2005]

• fundamental issue is the crosscutting nature

• AOP makes the crosscutting concern explicit

aspect-aware interfaces

class A

class B

class C

aspect X
pointcut foo()

after foo()
advises A,B,C

33

© Éric Tanter

Modular Reasoning?
Kiczales & Mezini [2005]

• fundamental issue is the crosscutting nature

• AOP makes the crosscutting concern explicit

aspect-aware interfaces

class A

class B

class C

aspect X
pointcut foo()

after foo()
advises A,B,C

advised by X

advised by X

advised by X

33

© Éric Tanter

Modular Reasoning?
Kiczales & Mezini [2005]

• fundamental issue is the crosscutting nature

• AOP makes the crosscutting concern explicit

aspect-aware interfaces

class A

class B

class C

aspect X
pointcut foo()

after foo()
advises A,B,C

advised by X

advised by X

advised by X

explicit dependencies
33

© Éric Tanter

Modular Reasoning?
Kiczales & Mezini [2005]

• fundamental issue is the crosscutting nature

• AOP makes the crosscutting concern explicit

aspect-aware interfaces

class A

class B

class C

aspect X
pointcut foo()

after foo()
advises A,B,C

advised by X

advised by X

advised by X

explicit dependencies
33

global reasoning

© Éric Tanter

Recovering Modular Reasoning
Putting pointcuts in interfaces [Gudmundson, 2001]

• Open Modules [Aldrich, 2005], etc.

34

© Éric Tanter

Recovering Modular Reasoning
Putting pointcuts in interfaces [Gudmundson, 2001]

• Open Modules [Aldrich, 2005], etc.

class B

class A

class C

34

© Éric Tanter

Recovering Modular Reasoning
Putting pointcuts in interfaces [Gudmundson, 2001]

• Open Modules [Aldrich, 2005], etc.

class B

class A

class C

module M

34

© Éric Tanter

Recovering Modular Reasoning
Putting pointcuts in interfaces [Gudmundson, 2001]

• Open Modules [Aldrich, 2005], etc.

class B

class A

class C

module M

pointcut foo()

34

© Éric Tanter

Recovering Modular Reasoning
Putting pointcuts in interfaces [Gudmundson, 2001]

• Open Modules [Aldrich, 2005], etc.

aspect X
after M.foo()class B

class A

class C

module M

pointcut foo()

34

© Éric Tanter

Join Point Types

aspect X
class B

class A

class C

[Steimann, 2010]

35

© Éric Tanter

Join Point Types

aspect X
class B

class A

class C

JP

[Steimann, 2010]

35

© Éric Tanter

Join Point Types

aspect X
after JP()

class B

class A

class C

JP

[Steimann, 2010]

35

© Éric Tanter

Join Point Types

aspect X
after JP()

class B

class A

class C

JP

exhibits JP

exhibits JP

exhibits JP

[Steimann, 2010]

35

© Éric Tanter

Join Point Types

aspect X
after JP()

class B

class A

class C

JP

exhibits JP

exhibits JP

exhibits JP

[Steimann, 2010]

class C exhibits JP {
 pointcut JP: execution(void setX(..)) || ...
 //...
}

local quantification only!

35

© Éric Tanter

Modularity Issues

36

joinpointtype CheckingOut {
 float price;
 Customer cus;
}

© Éric Tanter

Modularity Issues

36

joinpointtype CheckingOut {
 float price;
 Customer cus;
}

pointcut CheckingOut(float price, Customer cus);

© Éric Tanter

Modularity Issues

36

joinpointtype CheckingOut {
 float price;
 Customer cus;
}

pointcut CheckingOut(float price, Customer cus);

same information

© Éric Tanter

Modularity Issues

36

joinpointtype CheckingOut {
 float price;
 Customer cus;
}

pointcut CheckingOut(float price, Customer cus);

interface IFoo {
 m(float p, String s);
}

same information

© Éric Tanter

Modularity Issues

36

joinpointtype CheckingOut {
 float price;
 Customer cus;
}

pointcut CheckingOut(float price, Customer cus);

interface IFoo {
 m(float p, String s);
}

return type?
checked exceptions?

interface IFoo {
 ??? m(float p, String s) throws ???;
}

same information

© Éric Tanter

Modularity Issues

36

joinpointtype CheckingOut {
 float price;
 Customer cus;
}

pointcut CheckingOut(float price, Customer cus);

interface IFoo {
 m(float p, String s);
}

return type?
checked exceptions?

not type safe

interface IFoo {
 ??? m(float p, String s) throws ???;
}

same information

© Éric Tanter

Join Point Interfaces

37

joint work with

Milton Inostroza
Eric Bodden[Inostroza, 2011]

© Éric Tanter

Join Point Interfaces

“Join Point Types Revisited”

37

joint work with

Milton Inostroza
Eric Bodden[Inostroza, 2011]

© Éric Tanter

Join Point Interfaces

“Join Point Types Revisited”

• no fragile name dependencies

37

joint work with

Milton Inostroza
Eric Bodden[Inostroza, 2011]

© Éric Tanter

Join Point Interfaces

“Join Point Types Revisited”

• no fragile name dependencies

• expressive enough for safe modular type checking

37

joint work with

Milton Inostroza
Eric Bodden[Inostroza, 2011]

© Éric Tanter

Join Point Interfaces

“Join Point Types Revisited”

• no fragile name dependencies

• expressive enough for safe modular type checking

37

jpi void CheckingOut(float price, Customer cus) throws IOException

joint work with

Milton Inostroza
Eric Bodden[Inostroza, 2011]

© Éric Tanter

Join Point Interfaces

“Join Point Types Revisited”

• no fragile name dependencies

• expressive enough for safe modular type checking

Fix other shortcomings

• join point polymorphism semantics (multiple dispatch)

• unsound use of variant typing (later)

• etc.

37

jpi void CheckingOut(float price, Customer cus) throws IOException

joint work with

Milton Inostroza
Eric Bodden[Inostroza, 2011]

© Éric Tanter

Quantification Issues

38

© Éric Tanter

Quantification Issues

Some aspects are inherently “wide”

• dynamic analyses, system-wide properties, etc.

• require a lot of exhibit clauses

38

© Éric Tanter

Quantification Issues

Some aspects are inherently “wide”

• dynamic analyses, system-wide properties, etc.

• require a lot of exhibit clauses

Case study

• port existing “Law Of Demeter” checking aspect

38

© Éric Tanter

Quantification Issues

Some aspects are inherently “wide”

• dynamic analyses, system-wide properties, etc.

• require a lot of exhibit clauses

Case study

• port existing “Law Of Demeter” checking aspect

exhibits

LawOfDemeter 130

38

© Éric Tanter

Quantification Issues

Some aspects are inherently “wide”

• dynamic analyses, system-wide properties, etc.

• require a lot of exhibit clauses

Case study

• port existing “Law Of Demeter” checking aspect

exhibits

LawOfDemeter 130

Cannot really ignore this kind of aspects!
38

© Éric Tanter

Controlled Global Quantification
jpi JP(): execution(* *.*(..))

39

© Éric Tanter

Controlled Global Quantification
jpi JP(): execution(* *.*(..))

39

© Éric Tanter

Controlled Global Quantification
jpi JP(): execution(* *.*(..))

class A {
 //...
}

white box

39

© Éric Tanter

Controlled Global Quantification
jpi JP(): execution(* *.*(..))

class A {
 //...
}

white box

sealed class C {
 //...
}

black box

39

© Éric Tanter

Controlled Global Quantification
jpi JP(): execution(* *.*(..))

class A {
 //...
}

white box

sealed class C {
 //...
}

black box (can still expose other JPIs)

39

© Éric Tanter

Controlled Global Quantification
jpi JP(): execution(* *.*(..))

class A {
 //...
}

white box

class B {
 exhibits JP(): global() && !execution(* secret(..));
 //...
}

grey box

sealed class C {
 //...
}

black box (can still expose other JPIs)

39

© Éric Tanter

Controlled Global Quantification
jpi JP(): execution(* *.*(..))

class A {
 //...
}

white box

class B {
 exhibits JP(): global() && !execution(* secret(..));
 //...
}

grey box

sealed class C {
 //...
}

black box (can still expose other JPIs)

39

© Éric Tanter

Perspectives

40

© Éric Tanter

Perspectives

vs

40

© Éric Tanter

Perspectives

Modular
reasoning

vs

40

© Éric Tanter

Perspectives

Modular
reasoning

Unanticipated
extension points

vs

40

© Éric Tanter

Perspectives

Resolving this tension is crucial

Modular
reasoning

Unanticipated
extension points

vs

40

© Éric Tanter

Perspectives

Resolving this tension is crucial

• look back at work on Open Implementations [Kiczales, 1997]

Modular
reasoning

Unanticipated
extension points

vs

40

© Éric Tanter

Perspectives

Resolving this tension is crucial

• look back at work on Open Implementations [Kiczales, 1997]

• exploit a taxonomy of aspects

Modular
reasoning

Unanticipated
extension points

vs

40

© Éric Tanter

Perspectives

Resolving this tension is crucial

• look back at work on Open Implementations [Kiczales, 1997]

• exploit a taxonomy of aspects

• quantification: narrow vs. wide

Modular
reasoning

Unanticipated
extension points

vs

40

© Éric Tanter

Perspectives

Resolving this tension is crucial

• look back at work on Open Implementations [Kiczales, 1997]

• exploit a taxonomy of aspects

• quantification: narrow vs. wide

• life cycle: development vs. production

Modular
reasoning

Unanticipated
extension points

vs

40

© Éric Tanter

Scoping

Interfaces

Types

Effects

41

© Éric Tanter

Scoping

Interfaces

Types

Effects

Can we ensure that aspects do not
 break type soundness?

 Interaction with other features?
 (eg. polymorphism)

41

© Éric Tanter

Typing Aspects

Safe pointcut/advice binding

• advice can replace computation

• should not introduce runtime type errors

42

© Éric Tanter

Typing Aspects

Safe pointcut/advice binding

• advice can replace computation

• should not introduce runtime type errors

well-typed
base program

well-typed aspect (?)

42

© Éric Tanter

Typing Aspects

Safe pointcut/advice binding

• advice can replace computation

• should not introduce runtime type errors

well-typed
base program

well-typed aspect (?)

well-typed
composed program

???

42

© Éric Tanter

Subtype Polymorphism

43

© Éric Tanter

Aspects and Subtyping

Principles

• body of advice must adhere to advice signature

• pointcut signature <: join point signatures

• advice signature <: pointcut signature

signature = function type

44

© Éric Tanter

Aspects and Subtyping

Principles

• body of advice must adhere to advice signature

• pointcut signature <: join point signatures

• advice signature <: pointcut signature

signature = function type

void around(Person p): execution(void *()) && this(p){
 proceed(new Person());
}

44

© Éric Tanter

Aspects and Subtyping

Principles

• body of advice must adhere to advice signature

• pointcut signature <: join point signatures

• advice signature <: pointcut signature

signature = function type

void around(Person p): execution(void *()) && this(p){
 proceed(new Person());
}

Integer around(): call(Number *()){
 Integer i = proceed();
 return i;
}

44

© Éric Tanter

Aspects and Subtyping

Principles

• body of advice must adhere to advice signature

• pointcut signature <: join point signatures

• advice signature <: pointcut signature

signature = function type

void around(Person p): execution(void *()) && this(p){
 proceed(new Person());
}

Integer around(): call(Number *()){
 Integer i = proceed();
 return i;
}

44

© Éric Tanter

Aspects and Subtyping

Principles

• body of advice must adhere to advice signature

• pointcut signature <: join point signatures

• advice signature <: pointcut signature

signature = function type

void around(Person p): execution(void *()) && this(p){
 proceed(new Person());
}

Integer around(): call(Number *()){
 Integer i = proceed();
 return i;
}

unsafe!

44

© Éric Tanter

Aspects and Subtyping

Principles

• body of advice must adhere to advice signature

• pointcut signature <: join point signatures

• advice signature <: pointcut signature

signature = function type

void around(Person p): execution(void *()) && this(p){
 proceed(new Person());
}

Integer around(): call(Number *()){
 Integer i = proceed();
 return i;
}

unsafe!
(AspectJ, Join Point Types)

44

© Éric Tanter

Invariance in Practice

45

joint work with

Milton Inostroza
Eric Bodden

© Éric Tanter

Invariance in Practice

A simple solution is to prohibit type variance

• first version of JPIs

• is it practical?

45

joint work with

Milton Inostroza
Eric Bodden

© Éric Tanter

Invariance in Practice

A simple solution is to prohibit type variance

• first version of JPIs

• is it practical?

Case study

• port AJHotDraw and LawOfDemeter to JPI

45

joint work with

Milton Inostroza
Eric Bodden

© Éric Tanter

Invariance in Practice

A simple solution is to prohibit type variance

• first version of JPIs

• is it practical?

Case study

• port AJHotDraw and LawOfDemeter to JPI

AspectJ JPI

AJHotDraw

LawOfDemeter

49 77

6 68

advices

45

joint work with

Milton Inostroza
Eric Bodden

© Éric Tanter

Recovering Flexibility

46

[Jagadeesan, 2006]

© Éric Tanter

Recovering Flexibility
Generic JPIs

• type parameters

46

[Jagadeesan, 2006]

© Éric Tanter

Recovering Flexibility
Generic JPIs

• type parameters

46

<R,A,B> jpi R MethodCall(A thiz, B targt);

[Jagadeesan, 2006]

© Éric Tanter

Recovering Flexibility
Generic JPIs

• type parameters

46

AspectJ JPI v1 JPI v2

AJHotDraw

LawOfDemeter

49 77 49

6 68 6

advices

<R,A,B> jpi R MethodCall(A thiz, B targt);

[Jagadeesan, 2006]

© Éric Tanter

Recovering Flexibility
Generic JPIs

• type parameters

• lose the ability to do replacement advice (parametricity)

46

AspectJ JPI v1 JPI v2

AJHotDraw

LawOfDemeter

49 77 49

6 68 6

advices

<R,A,B> jpi R MethodCall(A thiz, B targt);

[Jagadeesan, 2006]

© Éric Tanter

Recovering Flexibility
Generic JPIs

• type parameters

• lose the ability to do replacement advice (parametricity)

Beyond genericity: type ranges [De Fraine, 2008/2010]

• flexible type-safe replacement advice

• ... added complexity (no free lunch :/)
46

AspectJ JPI v1 JPI v2

AJHotDraw

LawOfDemeter

49 77 49

6 68 6

advices

<R,A,B> jpi R MethodCall(A thiz, B targt);

[Jagadeesan, 2006]

© Éric Tanter

Parametric Polymorphism

joint work with

Ismael Figueroa
Nicolas Tabareau

47

© Éric Tanter

A Typed Functional Embedding of First-Class Aspects

48

© Éric Tanter

join points represent function applications

A Typed Functional Embedding of First-Class Aspects

48

fib 10

© Éric Tanter

data JP a b = JP (a → b) a

join points represent function applications

A Typed Functional Embedding of First-Class Aspects

48

fib 10

© Éric Tanter

data JP a b = JP (a → b) a

join points represent function applications

a pointcut is a predicate on any join point

A Typed Functional Embedding of First-Class Aspects

48

fib 10

pcCall fib

© Éric Tanter

data JP a b = JP (a → b) a

join points represent function applications

data PC = PC (forall a b. JP a b → Bool)

a pointcut is a predicate on any join point

A Typed Functional Embedding of First-Class Aspects

48

fib 10

pcCall fib

© Éric Tanter

data JP a b = JP (a → b) a

join points represent function applications

data PC = PC (forall a b. JP a b → Bool)

a pointcut is a predicate on any join point

A Typed Functional Embedding of First-Class Aspects

an advice is a function transformer

48

fib 10

pcCall fib

memoize proceed n = ...

© Éric Tanter

data JP a b = JP (a → b) a

join points represent function applications

data PC = PC (forall a b. JP a b → Bool)

a pointcut is a predicate on any join point

A Typed Functional Embedding of First-Class Aspects

type Advice a b = (a → b) → a → b
an advice is a function transformer

48

fib 10

pcCall fib

memoize proceed n = ...

© Éric Tanter

an aspect is a pc/adv binding

data JP a b = JP (a → b) a

join points represent function applications

data PC = PC (forall a b. JP a b → Bool)

a pointcut is a predicate on any join point

A Typed Functional Embedding of First-Class Aspects

type Advice a b = (a → b) → a → b
an advice is a function transformer

48

fib 10

pcCall fib

memoize proceed n = ...

aspect (pcCall fib) memoize

© Éric Tanter

data Aspect ... = Aspect PC (Advice a b)
an aspect is a pc/adv binding

data JP a b = JP (a → b) a

join points represent function applications

data PC = PC (forall a b. JP a b → Bool)

a pointcut is a predicate on any join point

A Typed Functional Embedding of First-Class Aspects

type Advice a b = (a → b) → a → b
an advice is a function transformer

48

fib 10

pcCall fib

memoize proceed n = ...

aspect (pcCall fib) memoize

© Éric Tanter

data Aspect ... = Aspect PC (Advice a b)
an aspect is a pc/adv binding

how to ensure the aspect is well-typed?

data JP a b = JP (a → b) a

join points represent function applications

data PC = PC (forall a b. JP a b → Bool)

a pointcut is a predicate on any join point

A Typed Functional Embedding of First-Class Aspects

type Advice a b = (a → b) → a → b
an advice is a function transformer

48

fib 10

pcCall fib

memoize proceed n = ...

aspect (pcCall fib) memoize

© Éric Tanter

data Aspect ... = Aspect PC (Advice a b)
an aspect is a pc/adv binding

(broken)how to ensure the aspect is well-typed?

data JP a b = JP (a → b) a

join points represent function applications

data PC = PC (forall a b. JP a b → Bool)

a pointcut is a predicate on any join point

A Typed Functional Embedding of First-Class Aspects

type Advice a b = (a → b) → a → b
an advice is a function transformer

48

fib 10

pcCall fib

memoize proceed n = ...

aspect (pcCall fib) memoize

© Éric Tanter

data PC a b = PC (forall a’ b’. JP a’ b’ → Bool)

annotate PC with their matched type

Matched Types

49

© Éric Tanter

data PC a b = PC (forall a’ b’. JP a’ b’ → Bool)

annotate PC with their matched type

Matched Types

49

possibly matches applications of functions a→b

© Éric Tanter

data PC a b = PC (forall a’ b’. JP a’ b’ → Bool)

annotate PC with their matched type

Matched Types

pc = pcCall id

49

possibly matches applications of functions a→b

© Éric Tanter

data PC a b = PC (forall a’ b’. JP a’ b’ → Bool)

annotate PC with their matched type

Matched Types

pc = pcCall id
pc :: PC a a

49

possibly matches applications of functions a→b

© Éric Tanter

data PC a b = PC (forall a’ b’. JP a’ b’ → Bool)

annotate PC with their matched type

data Aspect a b = Aspect (PC a b) (Advice a b)

enforce that both types are compatible

Matched Types

pc = pcCall id
pc :: PC a a

49

possibly matches applications of functions a→b

© Éric Tanter

data PC a b = PC (forall a’ b’. JP a’ b’ → Bool)

annotate PC with their matched type

data Aspect a b = Aspect (PC a b) (Advice a b)

enforce that both types are compatible

Matched Types

pc = pcCall id
pc :: PC a a

49

possibly matches applications of functions a→b

© Éric Tanter

data PC a b = PC (forall a’ b’. JP a’ b’ → Bool)

annotate PC with their matched type

data Aspect a b = Aspect (PC a b) (Advice a b)

enforce that both types are compatible

(broken)

Matched Types

pc = pcCall id
pc :: PC a a

49

possibly matches applications of functions a→b

© Éric Tanter

data Aspect a b = Aspect (PC a b) (Advice a b)

50

© Éric Tanter

data Aspect a b = Aspect (PC a b) (Advice a b)

pc :: PC a a
pc = pcCall id

50

© Éric Tanter

data Aspect a b = Aspect (PC a b) (Advice a b)

pc :: PC a a
pc = pcCall id

adv :: Advice Char Char
adv proceed c = proceed (toUpper c)

50

© Éric Tanter

data Aspect a b = Aspect (PC a b) (Advice a b)

pc :: PC a a
pc = pcCall id

adv :: Advice Char Char
adv proceed c = proceed (toUpper c)

50

© Éric Tanter

data Aspect a b = Aspect (PC a b) (Advice a b)

pc :: PC a a
pc = pcCall id

adv :: Advice Char Char
adv proceed c = proceed (toUpper c)

unifiable

50

© Éric Tanter

data Aspect a b = Aspect (PC a b) (Advice a b)

pc :: PC a a
pc = pcCall id

id ‘a’

adv :: Advice Char Char
adv proceed c = proceed (toUpper c)

unifiable

50

© Éric Tanter

data Aspect a b = Aspect (PC a b) (Advice a b)

pc :: PC a a
pc = pcCall id

id ‘a’

adv :: Advice Char Char
adv proceed c = proceed (toUpper c)

id [True,False]

unifiable

50

© Éric Tanter

Problem: unification is symmetric

data Aspect a b = Aspect (PC a b) (Advice a b)

pc :: PC a a
pc = pcCall id

id ‘a’

adv :: Advice Char Char
adv proceed c = proceed (toUpper c)

id [True,False]

unifiable

50

© Éric Tanter

Well-typed Aspects

data Aspect a b c d = Aspect (PC a b) (Advice c d)

51

© Éric Tanter

need to ensure that the matched type a→b
is less general than the type of the advice c→d

Well-typed Aspects

data Aspect a b c d = Aspect (PC a b) (Advice c d)

51

© Éric Tanter

A multi-parameter type class defines a relation between types

need to ensure that the matched type a→b
is less general than the type of the advice c→d

Well-typed Aspects

data Aspect a b c d = Aspect (PC a b) (Advice c d)

51

© Éric Tanter

data Aspect a b c d = (LessGen (a→b) (c→d)) ⟹
 Aspect (PC a b) (Advice c d)

A multi-parameter type class defines a relation between types

need to ensure that the matched type a→b
is less general than the type of the advice c→d

Well-typed Aspects

data Aspect a b c d = Aspect (PC a b) (Advice c d)

51

© Éric Tanter

data Aspect a b c d = (LessGen (a→b) (c→d)) ⟹
 Aspect (PC a b) (Advice c d)

A multi-parameter type class defines a relation between types

need to ensure that the matched type a→b
is less general than the type of the advice c→d

Well-typed Aspects

data Aspect a b c d = Aspect (PC a b) (Advice c d)

51

© Éric Tanter

data PC a b = PC (forall a b. JP a b → Bool)

Composing Pointcuts

52

© Éric Tanter

data PC a b = PC (forall a b. JP a b → Bool) how do we get
the matched type?

Composing Pointcuts

52

© Éric Tanter

data PC a b = PC (forall a b. JP a b → Bool) how do we get
the matched type?

pcCall, pcType :: (a → b) → PC a b

primitive pointcut designators

Composing Pointcuts

52

© Éric Tanter

data PC a b = PC (forall a b. JP a b → Bool) how do we get
the matched type?

pcCall, pcType :: (a → b) → PC a b

primitive pointcut designators

logical combinators

Composing Pointcuts

52

© Éric Tanter

data PC a b = PC (forall a b. JP a b → Bool) how do we get
the matched type?

pcCall, pcType :: (a → b) → PC a b

primitive pointcut designators

logical combinators
pcAnd :: PC a b → PC c d → PC e f

Composing Pointcuts

52

© Éric Tanter

data PC a b = PC (forall a b. JP a b → Bool) how do we get
the matched type?

pcCall, pcType :: (a → b) → PC a b

primitive pointcut designators

logical combinators
pcAnd :: PC a b → PC c d → PC e f

Composing Pointcuts

52

pc1 :: PC Int Int

© Éric Tanter

data PC a b = PC (forall a b. JP a b → Bool) how do we get
the matched type?

pcCall, pcType :: (a → b) → PC a b

primitive pointcut designators

logical combinators
pcAnd :: PC a b → PC c d → PC e f

Composing Pointcuts

52

pc1 :: PC Int Int

pc2 :: PC a a

© Éric Tanter

data PC a b = PC (forall a b. JP a b → Bool) how do we get
the matched type?

pcCall, pcType :: (a → b) → PC a b

primitive pointcut designators

logical combinators
pcAnd :: PC a b → PC c d → PC e f

Composing Pointcuts

52

pc1 :: PC Int Int

pc2 :: PC a a

:: PC Int Int

© Éric Tanter

data PC a b = PC (forall a b. JP a b → Bool) how do we get
the matched type?

pcCall, pcType :: (a → b) → PC a b

primitive pointcut designators

logical combinators
pcAnd :: PC a b → PC c d → PC e fpcAnd :: PC a b → PC a b → PC a b

Composing Pointcuts

52

pc1 :: PC Int Int

pc2 :: PC a a

:: PC Int Int

© Éric Tanter

data PC a b = PC (forall a b. JP a b → Bool) how do we get
the matched type?

pcCall, pcType :: (a → b) → PC a b

primitive pointcut designators

logical combinators
pcAnd :: PC a b → PC c d → PC e f

pcNot :: PC a b → PC c d

pcAnd :: PC a b → PC a b → PC a b

Composing Pointcuts

52

pc1 :: PC Int Int

© Éric Tanter

data PC a b = PC (forall a b. JP a b → Bool) how do we get
the matched type?

pcCall, pcType :: (a → b) → PC a b

primitive pointcut designators

logical combinators
pcAnd :: PC a b → PC c d → PC e f

pcNot :: PC a b → PC c d

pcAnd :: PC a b → PC a b → PC a b

Composing Pointcuts

52

pc1 :: PC Int Int

pcOr :: PC a b → PC c d → PC e f

© Éric Tanter

data PC a b = PC (forall a b. JP a b → Bool) how do we get
the matched type?

pcCall, pcType :: (a → b) → PC a b

primitive pointcut designators

logical combinators
pcAnd :: PC a b → PC c d → PC e f

pcNot :: PC a b → PC c d

pcAnd :: PC a b → PC a b → PC a b

Composing Pointcuts

52

pc1 :: PC Int Int

pc2 :: PC Int Bool

pcOr :: PC a b → PC c d → PC e f

© Éric Tanter

data PC a b = PC (forall a b. JP a b → Bool) how do we get
the matched type?

pcCall, pcType :: (a → b) → PC a b

primitive pointcut designators

logical combinators
pcAnd :: PC a b → PC c d → PC e f

pcNot :: PC a b → PC c d

pcAnd :: PC a b → PC a b → PC a b

Composing Pointcuts

52

pc1 :: PC Int Int

pc2 :: PC Int Bool

pcOr :: PC a b → PC c d → PC e f :: PC Int a

© Éric Tanter

data PC a b = PC (forall a b. JP a b → Bool) how do we get
the matched type?

pcCall, pcType :: (a → b) → PC a b

primitive pointcut designators

logical combinators
pcAnd :: PC a b → PC c d → PC e f

pcNot :: PC a b → PC c d

pcAnd :: PC a b → PC a b → PC a b

Composing Pointcuts

52

pc1 :: PC Int Int

pc2 :: PC Int Bool

pcOr :: PC a b → PC c d → PC e fpcOr :: (LeastGen (a→b) (c→d) (e→f)) ⟹
 PC a b → PC c d → PC e f

:: PC Int a

© Éric Tanter

data PC a b = PC (forall a b. JP a b → Bool) how do we get
the matched type?

pcCall, pcType :: (a → b) → PC a b

primitive pointcut designators

logical combinators
pcAnd :: PC a b → PC c d → PC e f

pcNot :: PC a b → PC c d

pcAnd :: PC a b → PC a b → PC a b

rely on anti-unification

Composing Pointcuts

52

pcOr :: PC a b → PC c d → PC e fpcOr :: (LeastGen (a→b) (c→d) (e→f)) ⟹
 PC a b → PC c d → PC e f

© Éric Tanter

Advantages of the Approach

53

© Éric Tanter

Advantages of the Approach
Type soundness

• proof follows from correctness of LeastGen

• much simpler than AspectML (ad hoc calculus & type system)

53

© Éric Tanter

Advantages of the Approach
Type soundness

• proof follows from correctness of LeastGen

• much simpler than AspectML (ad hoc calculus & type system)

More expressive

• first-class advice, extensible set of pointcut designators,
bounded polymorphism (type classes)

53

© Éric Tanter

Advantages of the Approach
Type soundness

• proof follows from correctness of LeastGen

• much simpler than AspectML (ad hoc calculus & type system)

More expressive

• first-class advice, extensible set of pointcut designators,
bounded polymorphism (type classes)

Compact implementation

• 1K vs. 15-25K for AspectML and AspectualCaml

53

© Éric Tanter

Advantages of the Approach
Type soundness

• proof follows from correctness of LeastGen

• much simpler than AspectML (ad hoc calculus & type system)

More expressive

• first-class advice, extensible set of pointcut designators,
bounded polymorphism (type classes)

Compact implementation

• 1K vs. 15-25K for AspectML and AspectualCaml

Monadic embedding as a Haskell library

53

© Éric Tanter

Scoping

Interfaces

Types

Effects

54

© Éric Tanter

Scoping

Interfaces

Types

Effects
Can we control what advice can do?

 (proceed, args/return, side effects)

54

© Éric Tanter

Beyond Types

55

© Éric Tanter

Beyond Types

Type soundness does not tell much

• control effects through proceed?

• arbitrary effects?

55

© Éric Tanter

Beyond Types

Type soundness does not tell much

• control effects through proceed?

• arbitrary effects?

Expressive aspect specifications

• black-box behavioral contracts [Skotiniotis, 2004; Zhao, 2003]...

• control effects [Rinard, 2004]

• translucid contracts [Bagherzadeh, 2011]

• model checking [Katz, 2003; Krishnamurthi, 2004]...

55

© Éric Tanter

Rich Types

56 module M

© Éric Tanter

Rich Types

56

aspect X
after M.foo()class B

class A

class C

module M

pointcut foo()

© Éric Tanter

Rich Types

56

aspect X
after M.foo()class B

class A

class C

module M

pointcut foo()

Can we enrich aspect interfaces with effect specs?

© Éric Tanter

Rich Types

56

aspect X
after M.foo()class B

class A

class C

module M

pointcut foo()

Can we enrich aspect interfaces with effect specs?

© Éric Tanter

Rich Types

56

The Haskell type system deals with effects!

aspect X
after M.foo()class B

class A

class C

module M

pointcut foo()

Can we enrich aspect interfaces with effect specs?

© Éric Tanter

All You Need to Know About Monads

57

(for this talk)

© Éric Tanter

All You Need to Know About Monads

57

Purity is the default
foo :: Int → Int

(for this talk)

© Éric Tanter

All You Need to Know About Monads

57

Purity is the default
foo :: Int → Int

Side effects reflected in types
foo :: Int → IO Int

(for this talk)

© Éric Tanter

All You Need to Know About Monads

57

Purity is the default
foo :: Int → Int

Side effects reflected in types
foo :: Int → IO Int

foo :: Int → (State Char) Int

(for this talk)

© Éric Tanter

All You Need to Know About Monads

57

Purity is the default
foo :: Int → Int

Side effects reflected in types
foo :: Int → IO Int

foo :: Int → (State Char) Int

monads

(for this talk)

© Éric Tanter

All You Need to Know About Monads

57

Purity is the default
foo :: Int → Int

Side effects reflected in types
foo :: Int → IO Int

foo :: Int → (State Char) Int

(for this talk)

© Éric Tanter

All You Need to Know About Monads

57

Purity is the default
foo :: Int → Int

Side effects reflected in types
foo :: Int → IO Int

foo :: Int → (State Char) Int

Several effects
foo :: Int → App Int

(for this talk)

© Éric Tanter

All You Need to Know About Monads

57

Purity is the default
foo :: Int → Int

Side effects reflected in types
foo :: Int → IO Int

foo :: Int → (State Char) Int

type App = ReaderT AppConf (StateT AppState IO)

Several effects
foo :: Int → App Int

(for this talk)

© Éric Tanter

All You Need to Know About Monads

57

Purity is the default
foo :: Int → Int

Side effects reflected in types
foo :: Int → IO Int

foo :: Int → (State Char) Int

type App = ReaderT AppConf (StateT AppState IO)

Several effects
foo :: Int → App Int

monad transformers

(for this talk)

© Éric Tanter

All You Need to Know About Monads

57

Purity is the default
foo :: Int → Int

Side effects reflected in types
foo :: Int → IO Int

foo :: Int → (State Char) Int

type App = ReaderT AppConf (StateT AppState IO)

Several effects
foo :: Int → App Int

(for this talk)

© Éric Tanter

All You Need to Know About Monads

57

Purity is the default
foo :: Int → Int

Side effects reflected in types
foo :: Int → IO Int

foo :: Int → (State Char) Int

type App = ReaderT AppConf (StateT AppState IO)

Several effects
foo :: Int → App Int

“effect stack”

(for this talk)

© Éric Tanter

All You Need to Know About Monads

57

Purity is the default
foo :: Int → Int

Side effects reflected in types
foo :: Int → IO Int

foo :: Int → (State Char) Int

type App = ReaderT AppConf (StateT AppState IO)

Several effects
foo :: Int → App Int

IO

“effect stack”

(for this talk)

© Éric Tanter

All You Need to Know About Monads

57

Purity is the default
foo :: Int → Int

Side effects reflected in types
foo :: Int → IO Int

foo :: Int → (State Char) Int

type App = ReaderT AppConf (StateT AppState IO)

Several effects
foo :: Int → App Int

IO

State AppState

“effect stack”

(for this talk)

© Éric Tanter

All You Need to Know About Monads

57

Purity is the default
foo :: Int → Int

Side effects reflected in types
foo :: Int → IO Int

foo :: Int → (State Char) Int

type App = ReaderT AppConf (StateT AppState IO)

Several effects
foo :: Int → App Int

IO

State AppState

Reader AppConf

“effect stack”

(for this talk)

© Éric Tanter

All You Need to Know About Monads

57

Purity is the default
foo :: Int → Int

Side effects reflected in types
foo :: Int → IO Int

foo :: Int → (State Char) Int

type App = ReaderT AppConf (StateT AppState IO)

Several effects
foo :: Int → App Int

IO

State AppState

Reader AppConf

“effect stack”

foo :: (Monad m) ⟹ Int → m Int

(for this talk)

© Éric Tanter

All You Need to Know About Monads

57

Purity is the default
foo :: Int → Int

Side effects reflected in types
foo :: Int → IO Int

foo :: Int → (State Char) Int

type App = ReaderT AppConf (StateT AppState IO)

Several effects
foo :: Int → App Int

IO

State AppState

Reader AppConf

“effect stack”

foo :: (Monad m) ⟹ Int → m Int

(we’ll omit the constraints on monadic type variables)

(for this talk)

© Éric Tanter

Talking About Effects

data JP a b = JP (a → b) a
data PC a b = PC (forall a’ b’. JP a’ b’ → Bool)
type Advice a b = (a → b) → a → b
data Aspect a b c d =
 (LessGen (a→b) (c→d)) ⟹ Aspect (PC a b) (Advice c d)

Parametrize the model by the effect stack

58

joint work with

Ismael Figueroa
Nicolas Tabareau

© Éric Tanter

Talking About Effects

data JP a b = JP (a → b) a
data PC a b = PC (forall a’ b’. JP a’ b’ → Bool)
type Advice a b = (a → b) → a → b
data Aspect a b c d =
 (LessGen (a→b) (c→d)) ⟹ Aspect (PC a b) (Advice c d)

Parametrize the model by the effect stack

58

joint work with

Ismael Figueroa
Nicolas Tabareau

data JP m a b = JP (a → m b) a
data PC m a b = PC (forall a’ b’. m JP a’ b’ → m Bool)
type Advice m a b = (a → m b) → a → m b
data Aspect m a b c d =
 (LessGen (a→b) (c→d)) ⟹ Aspect (PC m a b) (Advice m c d)

© Éric Tanter

Talking About Effects

data JP a b = JP (a → b) a
data PC a b = PC (forall a’ b’. JP a’ b’ → Bool)
type Advice a b = (a → b) → a → b
data Aspect a b c d =
 (LessGen (a→b) (c→d)) ⟹ Aspect (PC a b) (Advice c d)

Parametrize the model by the effect stack

58

joint work with

Ismael Figueroa
Nicolas Tabareau

newtype AOT m a = ...

Computation happens within the AOT monad transformer

(used to pass the aspect environment around)

data JP m a b = JP (a → m b) a
data PC m a b = PC (forall a’ b’. m JP a’ b’ → m Bool)
type Advice m a b = (a → m b) → a → m b
data Aspect m a b c d =
 (LessGen (a→b) (c→d)) ⟹ Aspect (PC m a b) (Advice m c d)

© Éric Tanter

Embedding Type Constraints in Pointcuts

59

© Éric Tanter

Embedding Type Constraints in Pointcuts

59

module Fib (fib, pcFib) where

© Éric Tanter

Embedding Type Constraints in Pointcuts

59

module Fib (fib, pcFib) where

innerFib = ...
fib = ...

© Éric Tanter

Embedding Type Constraints in Pointcuts

59

module Fib (fib, pcFib) where

innerFib = ...
fib = ...

pcFib :: PC m Int Int
pcFib = pcCall innerFib

© Éric Tanter

Embedding Type Constraints in Pointcuts

59

module Fib (fib, pcFib) where

innerFib = ...
fib = ...

pcFib :: PC m Int Int
pcFib = pcCall innerFib

© Éric Tanter

Embedding Type Constraints in Pointcuts

59

module Fib (fib, pcFib) where

innerFib = ...
fib = ...

comb :: t → Advice m a b

pcFib :: PC m Int Int
pcFib = pcCall innerFib

© Éric Tanter

Embedding Type Constraints in Pointcuts

59

module Fib (fib, pcFib) where

innerFib = ...
fib = ...

comb :: t → Advice m a b

pcFib :: PC m Int Int
pcFib = pcCall innerFib

© Éric Tanter

Embedding Type Constraints in Pointcuts

59

module Fib (fib, pcFib) where

innerFib = ...
fib = ...

module Fib (fib, ppcFib) where

comb :: t → Advice m a b

pcFib :: PC m Int Int
pcFib = pcCall innerFib

ppcFib :: ProtectedPC m Int Int t a b
ppcFib = protectPC pcFib comb

© Éric Tanter

Embedding Type Constraints in Pointcuts

59

module Fib (fib, pcFib) where

innerFib = ...
fib = ...

myadvice :: t
myadvice = ...

module Fib (fib, ppcFib) where

comb :: t → Advice m a b

pcFib :: PC m Int Int
pcFib = pcCall innerFib

ppcFib :: ProtectedPC m Int Int t a b
ppcFib = protectPC pcFib comb

© Éric Tanter

Embedding Type Constraints in Pointcuts

59

module Fib (fib, pcFib) where

innerFib = ...
fib = ...

myadvice :: t
myadvice = ...

myaspect = aspect ppcFib myadvice

module Fib (fib, ppcFib) where

comb :: t → Advice m a b

pcFib :: PC m Int Int
pcFib = pcCall innerFib

ppcFib :: ProtectedPC m Int Int t a b
ppcFib = protectPC pcFib comb

© Éric Tanter

Embedding Type Constraints in Pointcuts

59

module Fib (fib, pcFib) where

innerFib = ...
fib = ...

myadvice :: t
myadvice = ...

myaspect = aspect ppcFib myadvice

module Fib (fib, ppcFib) where

comb :: t → Advice m a b

pcFib :: PC m Int Int
pcFib = pcCall innerFib

ppcFib :: ProtectedPC m Int Int t a b
ppcFib = protectPC pcFib comb

© Éric Tanter

Embedding Type Constraints in Pointcuts

59

module Fib (fib, pcFib) where

innerFib = ...
fib = ...

myadvice :: t
myadvice = ...

myaspect = aspect ppcFib myadvice

module Fib (fib, ppcFib) where

comb :: t → Advice m a b

pcFib :: PC m Int Int
pcFib = pcCall innerFib

ppcFib :: ProtectedPC m Int Int t a b
ppcFib = protectPC pcFib comb

© Éric Tanter

Embedding Type Constraints in Pointcuts

59

module Fib (fib, pcFib) where

innerFib = ...
fib = ...

myadvice :: t
myadvice = ...

myaspect = aspect ppcFib myadvice

module Fib (fib, ppcFib) where

comb :: t → Advice m a b

pcFib :: PC m Int Int
pcFib = pcCall innerFib

ppcFib :: ProtectedPC m Int Int t a b
ppcFib = protectPC pcFib comb

control effects & side effects

© Éric Tanter

Control Flow Effects

60

[Rinard, 2004]

© Éric Tanter

Control Flow Effects

60

definition type

combination

replacement

augmentation

narrowing

free

no proceed
no access to proceed

proceed once
same arg/ret

pair before/after

proceed at most once
same arg/ret

predicate + rep + aug

[Rinard, 2004]

© Éric Tanter

Control Flow Effects

60

definition type

combination

replacement

augmentation

narrowing

free

no proceed
no access to proceed

proceed once
same arg/ret

pair before/after

proceed at most once
same arg/ret

predicate + rep + aug

[Rinard, 2004]

Advice m a b

EffectiveAdvice
[Oliveira, 2010]

© Éric Tanter

Control Flow Effects

60

definition type

combination

replacement

augmentation

narrowing

free

no proceed
no access to proceed

proceed once
same arg/ret

pair before/after

proceed at most once
same arg/ret

predicate + rep + aug

[Rinard, 2004]

Advice m a b

Replace m a b

EffectiveAdvice
[Oliveira, 2010]

© Éric Tanter

Control Flow Effects

60

definition type

combination

replacement

augmentation

narrowing

free

no proceed
no access to proceed

proceed once
same arg/ret

pair before/after

proceed at most once
same arg/ret

predicate + rep + aug

[Rinard, 2004]

Advice m a b

Replace m a b

Augment m a b c

EffectiveAdvice
[Oliveira, 2010]

© Éric Tanter

Control Flow Effects

60

definition type

combination

replacement

augmentation

narrowing

free

no proceed
no access to proceed

proceed once
same arg/ret

pair before/after

proceed at most once
same arg/ret

predicate + rep + aug

[Rinard, 2004]

Advice m a b

Replace m a b

Augment m a b c

Narrow m a b c

EffectiveAdvice
[Oliveira, 2010]

© Éric Tanter

Control Flow Effects

60

definition type

combination

replacement

augmentation

narrowing

free

no proceed
no access to proceed

proceed once
same arg/ret

pair before/after

proceed at most once
same arg/ret

predicate + rep + aug

[Rinard, 2004]

Advice m a b

Replace m a b

Augment m a b c

Narrow m a b c

memoization?

EffectiveAdvice
[Oliveira, 2010]

© Éric Tanter

Control Flow Effects

60

definition type

combination

replacement

augmentation

narrowing

free

no proceed
no access to proceed

proceed once
same arg/ret

pair before/after

proceed at most once
same arg/ret

predicate + rep + aug

[Rinard, 2004]

Advice m a b

Replace m a b

Augment m a b c

Narrow m a b c

memoization?

EffectiveAdvice
[Oliveira, 2010]

© Éric Tanter

Enforcing Narrowing Advice

61

type Narrow m a b c = (a → m Bool, Augment m a b c, Replace m a b)

© Éric Tanter

Enforcing Narrowing Advice

61

narrow :: Narrow m a b c → Advice m a b
combinator that requires Narrow

type Narrow m a b c = (a → m Bool, Augment m a b c, Replace m a b)

© Éric Tanter

Enforcing Narrowing Advice

61

narrow :: Narrow m a b c → Advice m a b
combinator that requires Narrow

type Narrow m a b c = (a → m Bool, Augment m a b c, Replace m a b)

narrow (pred, aug, rep) proceed x =
do b <- pred x

if b then replace rep proceed x
 else augment aug proceed x

© Éric Tanter

Enforcing Narrowing Advice

61

narrow :: Narrow m a b c → Advice m a b
combinator that requires Narrow

type Narrow m a b c = (a → m Bool, Augment m a b c, Replace m a b)

© Éric Tanter

Enforcing Narrowing Advice

61

module Fib (fib, pcFib) where

ppcFib = protectPC pcFib narrow

module Fib (fib, ppcFib) where

narrow :: Narrow m a b c → Advice m a b
combinator that requires Narrow

type Narrow m a b c = (a → m Bool, Augment m a b c, Replace m a b)

© Éric Tanter

Enforcing Narrowing Advice

61

module Fib (fib, pcFib) where

ppcFib = protectPC pcFib narrow

module Fib (fib, ppcFib) where

narrow :: Narrow m a b c → Advice m a b
combinator that requires Narrow

type Narrow m a b c = (a → m Bool, Augment m a b c, Replace m a b)

© Éric Tanter

Enforcing Narrowing Advice

61

module Fib (fib, pcFib) where

ppcFib = protectPC pcFib narrow

module Fib (fib, ppcFib) where

narrow :: Narrow m a b c → Advice m a b
combinator that requires Narrow

type Narrow m a b c = (a → m Bool, Augment m a b c, Replace m a b)

memoize :: Narrow ...
memoize = ...

© Éric Tanter

Enforcing Narrowing Advice

61

module Fib (fib, pcFib) where

ppcFib = protectPC pcFib narrow

module Fib (fib, ppcFib) where

narrow :: Narrow m a b c → Advice m a b
combinator that requires Narrow

type Narrow m a b c = (a → m Bool, Augment m a b c, Replace m a b)

memoize :: Narrow ...
memoize = ...

crazy :: Advice ...
crazy = ...

© Éric Tanter

Effect Interference

62

© Éric Tanter

Effect Interference
Reason about interferences base/aspects [Oliveira, 2010]

62

© Éric Tanter

Effect Interference
Reason about interferences base/aspects [Oliveira, 2010]

62

AOT m a

© Éric Tanter

Effect Interference
Reason about interferences base/aspects [Oliveira, 2010]

62

IO

State b

Reader c

Error d

AOT m a

© Éric Tanter

Effect Interference
Reason about interferences base/aspects [Oliveira, 2010]

62

IO

State b

Reader c

Error d

AOT m aNIAOT t m a

© Éric Tanter

Effect Interference
Reason about interferences base/aspects [Oliveira, 2010]

base effects

62

IO

State b

Reader c

Error d

AOT m aNIAOT t m a

© Éric Tanter

Effect Interference
Reason about interferences base/aspects [Oliveira, 2010]

base effects

62

IO

State b

Reader c

Error d

AOT m aNIAOT t m a

aspect effects

© Éric Tanter

Effect Interference
Reason about interferences base/aspects [Oliveira, 2010]

base effects

62

IO

State b

Reader c

Error d

rely on parametricity to enforce non-interference

AOT m aNIAOT t m a

aspect effects

© Éric Tanter

Effect Interference
Reason about interferences base/aspects [Oliveira, 2010]

type NIAdvice t a b = forall m. Advice (NIAOT t m) a b

type NIPC t a b = forall m. PC (NIAOT t m) a b

type NIBase m a b = forall t. a -> NIAOT t m b

base effects

62

IO

State b

Reader c

Error d

rely on parametricity to enforce non-interference

AOT m aNIAOT t m a

aspect effects

© Éric Tanter

Effect Interference
Reason about interferences base/aspects [Oliveira, 2010]

type NIAdvice t a b = forall m. Advice (NIAOT t m) a b

type NIPC t a b = forall m. PC (NIAOT t m) a b

type NIBase m a b = forall t. a -> NIAOT t m b

base effects

62

IO

State b

Reader c

Error d

rely on parametricity to enforce non-interference

AOT m aNIAOT t m a

aspect effects

© Éric Tanter

Effect Interference
Reason about interferences base/aspects [Oliveira, 2010]

type NIAdvice t a b = forall m. Advice (NIAOT t m) a b

type NIPC t a b = forall m. PC (NIAOT t m) a b

type NIBase m a b = forall t. a -> NIAOT t m b

base effects

62

IO

State b

Reader c

Error d

rely on parametricity to enforce non-interference

AOT m aNIAOT t m a

aspect effects

© Éric Tanter

Effect Interference
Reason about interferences base/aspects [Oliveira, 2010]

type NIAdvice t a b = forall m. Advice (NIAOT t m) a b

type NIPC t a b = forall m. PC (NIAOT t m) a b

type NIBase m a b = forall t. a -> NIAOT t m b

base effects

62

IO

State b

Reader c

Error d

rely on parametricity to enforce non-interference

AOT m aNIAOT t m a

aspect effects

© Éric Tanter

Enforcing Non-Interfering Advice

63

type NIAdvice t a b = forall m. Advice (NIAOT t m) a b

© Éric Tanter

Enforcing Non-Interfering Advice

63

niAdvice :: NIAdvice t a b -> Advice (NIAOT t m) a b
combinator that requires NIAdvice

type NIAdvice t a b = forall m. Advice (NIAOT t m) a b

© Éric Tanter

Enforcing Non-Interfering Advice

63

module Fib (fib, pcFib) where

ppcFib = protectPC pcFib niAdvice

module Fib (fib, ppcFib) where

niAdvice :: NIAdvice t a b -> Advice (NIAOT t m) a b
combinator that requires NIAdvice

type NIAdvice t a b = forall m. Advice (NIAOT t m) a b

© Éric Tanter

Enforcing Non-Interfering Advice

63

module Fib (fib, pcFib) where

ppcFib = protectPC pcFib niAdvice

module Fib (fib, ppcFib) where

niAdvice :: NIAdvice t a b -> Advice (NIAOT t m) a b
combinator that requires NIAdvice

type NIAdvice t a b = forall m. Advice (NIAOT t m) a b

© Éric Tanter

Enforcing Non-Interfering Advice

63

module Fib (fib, pcFib) where

ppcFib = protectPC pcFib niAdvice

module Fib (fib, ppcFib) where

niAdvice :: NIAdvice t a b -> Advice (NIAOT t m) a b
combinator that requires NIAdvice

type NIAdvice t a b = forall m. Advice (NIAOT t m) a b

memoize :: NIAdvice ...
memoize = ...

© Éric Tanter

Perspectives

64

© Éric Tanter

Perspectives

64

extend EffectiveAdvice to deal with quantification

© Éric Tanter

Perspectives

64

extend EffectiveAdvice to deal with quantification

extend Open Modules to deal with effects

© Éric Tanter

Perspectives

Challenges

64

extend EffectiveAdvice to deal with quantification

extend Open Modules to deal with effects

© Éric Tanter

Perspectives

Challenges

• beyond the base/aspects distinction

64

extend EffectiveAdvice to deal with quantification

extend Open Modules to deal with effects

© Éric Tanter

Perspectives

Challenges

• beyond the base/aspects distinction

• compose restrictions (eg. non-interfering + narrowing)

64

extend EffectiveAdvice to deal with quantification

extend Open Modules to deal with effects

© Éric Tanter

Perspectives

Challenges

• beyond the base/aspects distinction

• compose restrictions (eg. non-interfering + narrowing)

• type system challenges

• higher-rank polymorphism

• managing the monadic stack: views [Schrijvers, 2011]

64

extend EffectiveAdvice to deal with quantification

extend Open Modules to deal with effects

© Éric Tanter

Conclusions

65

© Éric Tanter 66

© Éric Tanter

Scoping

• balance flexibility / guarantees

• practical & efficient implementations

• new models

66

© Éric Tanter

Scoping

• balance flexibility / guarantees

• practical & efficient implementations

• new models

Interfaces

• time to try them out for real

• need a gradual adoption path

66

© Éric Tanter

Scoping

• balance flexibility / guarantees

• practical & efficient implementations

• new models

Interfaces

• time to try them out for real

• need a gradual adoption path

Typing

• Holy Grail: expressiveness vs. complexity

66

© Éric Tanter

Scoping

• balance flexibility / guarantees

• practical & efficient implementations

• new models

Interfaces

• time to try them out for real

• need a gradual adoption path

Typing

• Holy Grail: expressiveness vs. complexity

Effects

• exploit the (existing) type system or design specific analyses?

• lightweight & practical
66

© Éric Tanter

SPECT

RIENTATION

AMING

Power

Control

To be continued...

© Éric Tanter 68

[Aldrich, 2005] Jonathan Aldrich: Open Modules: Modular Reasoning About Advice. ECOOP 2005:144-168

[Bagherzadeh, 2011] Mehdi Bagherzadeh, Hridesh Rajan, Gary T. Leavens, Sean L. Mooney: Translucid contracts: expressive specification and
modular verification for aspect-oriented interfaces. AOSD 2011:141-152

[Bodden, 2011] Eric Bodden: Closure joinpoints: block joinpoints without surprises. AOSD 2011:117-128

[Boudol, 2004] Gérard Boudol: A Generic Membrane Model (Note). Global Computing 2004: 208-222

[Brichau, 2008] Johan Brichau, Andy Kellens, Kris Gybels, Kim Mens, Robert Hirschfeld, Theo D'Hondt: Application-specific models and pointcuts using
a logic metalanguage. Computer Languages, Systems & Structures (CL) 34(2-3):66-82 (2008)

[De Fraine, 2008] Bruno De Fraine, Mario Südholt, Viviane Jonckers: StrongAspectJ: flexible and safe pointcut/advice bindings. AOSD 2008:60-71

[De Fraine, 2010] Bruno De Fraine, Erik Ernst, Mario Südholt: Essential AOP: The A Calculus. ECOOP 2010:101-125

[Gudmundson, 2001] Stephan Gudmundson, Gregor Kiczales: Addressing Practical Software Development Issues in AspectJ with a Pointcut Interface.
Workshop on Advanced Separation of Concerns 2001

[Gybels, 2003] Kris Gybels, Johan Brichau: Arranging language features for more robust pattern-based crosscuts. AOSD 2003:60-69

[Hoffman, 2012] Kevin Hoffman, Patrick Eugster: Trading Obliviousness for Modularity with Cooperative Aspect-oriented Programming. TOSEM, to
appear.

[Inostroza, 2011] Milton Inostroza, Éric Tanter, Eric Bodden: Join point interfaces for modular reasoning in aspect-oriented programs. SIGSOFT FSE
2011: 508-511

[Jagadeesan, 2006] R. Jagadeesan, A. Jeffrey, and J. Riely. Typed parametric polymor- phism for aspects. Science of Computer Programming, 63(3):
267– 296, 2006.

[Katz, 2003] Shmuel Katz, Marcelo Sihman: Aspect Validation Using Model Checking. Verification: Theory and Practice 2003:373-394

[Kiczales, 1997] Gregor Kiczales, John Lamping, Cristina Videira Lopes, Chris Maeda, Anurag Mendhekar, Gail C. Murphy: Open Implementation
Design Guidelines. ICSE 1997:481-490

[Kiczales, 2005] Gregor Kiczales, Mira Mezini: Separation of Concerns with Procedures, Annotations, Advice and Pointcuts. ECOOP 2005:195-213

[Krishnamurthi, 2004] Shriram Krishnamurthi, Kathi Fisler, Michael Greenberg: Verifying aspect advice modularly. SIGSOFT FSE 2004:137-146

© Éric Tanter 69

[Moret, 2011] Philippe Moret, Walter Binder, Éric Tanter: Polymorphic bytecode instrumentation. AOSD 2011: 129-140

[Rajan, 2008] Hridesh Rajan, Gary T. Leavens: Ptolemy: A Language with Quantified, Typed Events. ECOOP 2008:155-179

[Rinard, 2004] Martin C. Rinard, Alexandru Salcianu, Suhabe Bugrara: A classification system and analysis for aspect-oriented programs. SIGSOFT
FSE 2004: 147-158

[Oliveira, 2010] Bruno C. d. S. Oliveira, Tom Schrijvers, William R. Cook: EffectiveAdvice: disciplined advice with explicit effects. AOSD 2010: 109-120

[Ostermann, 2005] Klaus Ostermann, Mira Mezini, Christoph Bockisch: Expressive Pointcuts for Increased Modularity. ECOOP 2005: 214-240

[Schmitt, 2004] Alan Schmitt, Jean-Bernard Stefani: The Kell Calculus: A Family of Higher-Order Distributed Process Calculi. Global Computing 2004:
146-178

[Schrijvers, 2011] Tom Schrijvers, Bruno C. d. S. Oliveira: Monads, zippers and views: virtualizing the monad stack. ICFP 2011: 32-44

[Skotiniotis, 2004] Therapon Skotiniotis, David H. Lorenz: Cona: aspects for contracts and contracts for aspects. OOPSLA Companion 2004: 196-197

[Steimann, 2010] Friedrich Steimann, Thomas Pawlitzki, Sven Apel, Christian Kästner: Types and modularity for implicit invocation with implicit
announcement. ACM Trans. Softw. Eng. Methodol. 20(1): (2010)

[Tanter, 2008] Éric Tanter: Expressive scoping of dynamically-deployed aspects. AOSD 2008:168-179

[Tanter, 2009] Éric Tanter: Beyond static and dynamic scope. DLS 2009:3-14

[Tanter, 2010a] Éric Tanter, Johan Fabry, Rémi Douence, Jacques Noyé, Mario Südholt: Scoping strategies for distributed aspects. Sci. Comput.
Program. (SCP) 75(12):1235-1261 (2010)

[Tanter, 2010b] Éric Tanter: Execution levels for aspect-oriented programming. AOSD 2010:37-48

[Tanter, 2010c] Éric Tanter, Philippe Moret, Walter Binder, Danilo Ansaloni: Composition of dynamic analysis aspects. GPCE 2010: 113-122

[Tanter, 2012] Éric Tanter, Nicolas Tabareau, Rémi Douence: Taming aspects with membranes. FOAL 2012:3-8

[Toledo, 2011] Rodolfo Toledo, Éric Tanter: Access Control in JavaScript. IEEE Software 28(5): 76-84 (2011)

[Toledo, 2012] Rodolfo Toledo, Angel Núñez, Éric Tanter, Jacques Noyé: Aspectizing Java Access Control. IEEE Trans. Software Eng. 38(1): 101-117
(2012)

[Zhao, 2003] Jianjun Zhao, Martin C. Rinard: Pipa: A Behavioral Interface Specification Language for AspectJ. FASE 2003:150-165

© Éric Tanter 70

