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pointcut change(Shape s): 

after(Shape s): change(s){
// update observers

}

Quantification

   execution(* Shape+.set*(..))
   && this(s)
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Why is this exciting?

crosscutting is a real problem

pointcut/advice is effective for handling crosscutting

• behavioral reflection for mere mortals

• more declarative, esp. wrt quantification (pointcuts)

• more amenable to analysis (or so it seems)

still not there yet

• lots of open challenges
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• every execution step is a join point

• pointcuts “see” them all

• advice can do anything

• proceed 0..n times

• change arguments, return value

• arbitrary side effects
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Interfaces

Types

Effects

Can we restrict quantification to 
  well-defined boundaries?

  What abstractions are meaningful?
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Explicit announcement of join points

• explicit join points [Hoffman, 2012]

• quantified typed events [Rajan, 2008]

• closure join points [Bodden, 2011] 

• open applications

• etc.

Expressive pointcuts

• rich pointcuts for robust patterns [Gybels, 2003], [Ostermann, 2005]

• application-specific pointcuts [Brichau, 2008]

• annotations [Kiczales, 2005] 

• etc.
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Scoped Quantification

Global quantification 

• just as bad as global mutable variables!

Different scoping disciplines for identifiers

• lexical scope

• dynamic scope

• thread-local

• per object, class, module

All have been explored for aspects as well

• CaesarJ, AspectScheme, Eos, AspectJ...
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Composing Dynamic Analyses 

Racer
Prof

program

Racer
Prof

program

Racer

Racer

program

NONE CAN BE IMPLEMENTED! (until now...)

[Tanter, 2010c]
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Each aspect alters the observation of others

• Racer creates objects

• Prof accesses fields

Each aspect potentially sees itself

• infinite regression

Racer
Prof

program
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Levels: Theory and Practice

Strong guarantee: aspect loops are avoided

Can be implemented efficiently [Tanter, 2010c; Moret, 2011]

Ad-hoc checks in practice

• 1/3 of all aspects in the “AspectJ in Action” book

• 18% of all pointcuts in corpus of ≈500 aspects

• all aspects work out-of-the-box with default level semantics
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Programmable membranes [Boudol, 2004; Schmitt, 2004]

• inspired by membranes in biology
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Why not use membranes for AOP?

• gives rise to flexible topological scoping

• supports control over certain effects

[Tanter, 2012]
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Membranes: Theory and Practice

Wide design space

• how to create, deploy and configure membranes?

• can membranes crosscut? organized hierarchically?

• what guarantees are expected? tradeoff?

• MAScheme 

Exploit programmability

• ensure safety properties

• what language is useful to program membranes?

• Kell calculus

30
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Scoping

Interfaces

Types

Effects

Can we reconcile quantification 
  with modular reasoning? 

  What kind of static interfaces 
  allow independent development?
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Issues with Pointcut/Advice

class A

class B

class C

aspect X
pointcut foo()

after foo()

fragile dependencies

oblivious
⇒ no idea what is relied upon

modular reasoning?
independent development?
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class C exhibits JP {
  pointcut JP: execution(void setX(..)) || ...
  //...
}

local quantification only!
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• expressive enough for safe modular type checking

Fix other shortcomings

• join point polymorphism semantics (multiple dispatch)

• unsound use of variant typing (later)

• etc.
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• dynamic analyses, system-wide properties, etc.
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Case study

• port existing “Law Of Demeter” checking aspect

# exhibits

LawOfDemeter 130

Cannot really ignore this kind of aspects!
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• look back at  work on Open Implementations [Kiczales, 1997]

• exploit a taxonomy of aspects
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Types

Effects

Can we ensure that aspects do not
  break type soundness?

  Interaction with other features?
  (eg. polymorphism)
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  proceed(new Person());
}

Integer around(): call(Number *()){
  Integer i = proceed();
  return i; 
}

unsafe!
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Recovering Flexibility
Generic JPIs

• type parameters

• lose the ability to do replacement advice (parametricity)

Beyond genericity: type ranges [De Fraine, 2008/2010]

• flexible type-safe replacement advice

• ... added complexity (no free lunch :/)
46
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Ismael Figueroa
Nicolas Tabareau
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• first-class advice, extensible set of pointcut designators, 
bounded polymorphism (type classes)

Compact implementation 

• 1K vs. 15-25K for AspectML and AspectualCaml

Monadic embedding as a Haskell library
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Interfaces

Types

Effects
Can we control what advice can do?

 (proceed, args/return, side effects)
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Beyond Types

Type soundness does not tell much

• control effects through proceed?

• arbitrary effects?

Expressive aspect specifications

• black-box behavioral contracts [Skotiniotis, 2004; Zhao, 2003]...

• control effects [Rinard, 2004]

• translucid contracts [Bagherzadeh, 2011]

• model checking [Katz, 2003; Krishnamurthi, 2004]...
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The Haskell type system deals with effects!

aspect X
after M.foo()class B

class A

class C

module M

pointcut foo()

Can we enrich aspect interfaces with effect specs?
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Purity is the default
foo :: Int → Int

Side effects reflected in types
foo :: Int → IO Int

foo :: Int → (State Char) Int

type App = ReaderT AppConf (StateT AppState IO) 

Several effects
foo :: Int → App Int

IO

State AppState

Reader AppConf

“effect stack”

foo :: (Monad m) ⟹ Int → m Int

(we’ll omit the constraints on monadic type variables)

(for this talk)



© Éric Tanter

Talking About Effects

data JP a b = JP (a → b) a
data PC a b = PC (forall a’ b’. JP a’ b’ → Bool)
type Advice a b = (a → b) → a → b
data Aspect a b c d = 
  (LessGen (a→b) (c→d)) ⟹ Aspect (PC a b) (Advice c d)

Parametrize the model by the effect stack

58

joint work with 

Ismael Figueroa
Nicolas Tabareau



© Éric Tanter

Talking About Effects

data JP a b = JP (a → b) a
data PC a b = PC (forall a’ b’. JP a’ b’ → Bool)
type Advice a b = (a → b) → a → b
data Aspect a b c d = 
  (LessGen (a→b) (c→d)) ⟹ Aspect (PC a b) (Advice c d)

Parametrize the model by the effect stack

58

joint work with 

Ismael Figueroa
Nicolas Tabareau

data JP m a b = JP (a → m b) a
data PC m a b = PC (forall a’ b’. m JP a’ b’ → m Bool)
type Advice m a b = (a → m b) → a → m b
data Aspect m a b c d = 
  (LessGen (a→b) (c→d)) ⟹ Aspect (PC m a b) (Advice m c d)



© Éric Tanter

Talking About Effects

data JP a b = JP (a → b) a
data PC a b = PC (forall a’ b’. JP a’ b’ → Bool)
type Advice a b = (a → b) → a → b
data Aspect a b c d = 
  (LessGen (a→b) (c→d)) ⟹ Aspect (PC a b) (Advice c d)

Parametrize the model by the effect stack

58

joint work with 

Ismael Figueroa
Nicolas Tabareau

newtype AOT m a = ...

Computation happens within the AOT monad transformer

(used to pass the aspect environment around)

data JP m a b = JP (a → m b) a
data PC m a b = PC (forall a’ b’. m JP a’ b’ → m Bool)
type Advice m a b = (a → m b) → a → m b
data Aspect m a b c d = 
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pcFib :: PC m Int Int
pcFib = pcCall innerFib

ppcFib :: ProtectedPC m Int Int t a b
ppcFib = protectPC pcFib comb
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crazy :: Advice ...
crazy = ...
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• beyond the base/aspects distinction

• compose restrictions (eg. non-interfering + narrowing)

• type system challenges 

• higher-rank polymorphism

• managing the monadic stack: views [Schrijvers, 2011]
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Scoping

• balance flexibility / guarantees 

• practical & efficient implementations

• new models

Interfaces

• time to try them out for real 

• need a gradual adoption path 

Typing

• Holy Grail: expressiveness vs. complexity

Effects

• exploit the (existing) type system or design specific analyses?

• lightweight & practical
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