Eric Tanter

& University of Chile

.‘”.

Plelad’ "

© Eric Tanter
Wednesday, April 17, 13

OO

BY NC SA

This work is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 3.0
Unported License.To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/3.0/ or
send a letter to Creative Commons, 444 Castro
Street, Suite 900, Mountain View, California, 94041,
USA.

© Eric Tanter
Wednesday, April 17, 13

You are free

to Share | a { sl
to Remix to adapt the work

Under the following conditions
/ff\l Altribution You must att=dute !
(¥) author or kcensor (bul not in any v
- - - a »f tha -
N your use of the work
£\ Noncommercia u may not
\\ \'7\.-
\\7/'

1

7 / d

o\ Share Alike
sind

Jio the res

With the understanding that:

Waiver An

y of the &

copyrght holder

Public Domain

1D aw

Other Rights

ns May n

orm, or budd upon this work

@ SAME Or sMear

you may

conse loths o

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

ASPECTS?

© Eric Tanter 3

Wednesday, April 17, 13

Modular implementation of crosscutting concerns

© Eric Tanter 4

Wednesday, April 17, 13

Modular implementation of crosscutting concerns

_ concerns
requirements

© Eric Tanter 4

Wednesday, April 17, 13

Modular implementation of crosscutting concerns

Monitoring
Security
Coordination

_ concerns
requirements

© Eric Tanter 4

Wednesday, April 17, 13

Modular implementation of crosscutting concerns

w;m,l{'

Monitoring
Security
Coordination

_ concerns
requirements

© Eric Tanter 4

Wednesday, April 17, 13

Modular implementation of crosscutting concerns

Monitoring
Security
Coordination

l’”lil]l][‘

_ concerns
requirements

© Eric Tanter 4

Wednesday, April 17, 13

Modular implementation of crosscutting concerns

Monitoring | "’IH" Hll!“j\]['
Security | ~ |
Coordination
components
_ concerns aspects
requirements

weaver

© Eric Tanter 4

Wednesday, April 17, 13

Modular implementation of crosscutting concerns

Security

Monitoring | 'l’m'l “11{||1\|[z
Coordination

Components
concerns aspects

requirements

weaver

one goal, different mechanisms

© Eric Tanter 4

Wednesday, April 17, 13

A novel programming language mechanism
o« INnteresting in its own right!

© Eric Tanter 3

Wednesday, April 17, 13

A novel programming language mechanism
o« INnteresting in its own right!

pointcut

v

© Eric Tanter
Wednesday, April 17, 13

A novel programming language mechanism
o« INnteresting in its own right!

pointcut

Y

Q advice

© Eric Tanter
Wednesday, April 17, 13

A novel programming language mechanism
o« INnteresting in its own right!

join points

pointcut

Y

Q advice

© Eric Tanter
Wednesday, April 17, 13

A novel programming language mechanism
o« INnteresting in its own right!

I .. .
JOIN points

pointcut

Y

Q advice

© Eric Tanter
Wednesday, April 17, 13

A novel programming language mechanism
o« INnteresting in its own right!

Y

join points

pointcut

Q advice

© Eric Tanter
Wednesday, April 17, 13

A novel programming language mechanism
o« INnteresting in its own right!

e o0 .. .
JOIN points

pointcut

advice

© Eric Tanter
Wednesday, April 17, 13

A novel programming language mechanism
o« INnteresting in its own right!

e o0 .. .
JOIN points

Y pointcut
Q advice

© Eric Tanter
Wednesday, April 17, 13

A novel programming language mechanism
o« INnteresting in its own right!

join points

pointcut

u advice

© Eric Tanter
Wednesday, April 17, 13

A novel programming language mechanism
o« INnteresting in its own right!

join points

pointcut

u advice

“glorification” of the observer pattern

© Eric Tanter
Wednesday, April 17, 13

join points

pointcut

advice

© Eric Tanter
Wednesday, April 17, 13

join points

pointcut

advice

© Eric Tanter
Wednesday, April 17, 13

join points

pointcut execution(* Shape+.setx(..))

advice

© Eric Tanter
Wednesday, April 17, 13

join points

pointcut execution(* Shape+.setx(..))

&& this(s)

advice

© Eric Tanter
Wednesday, April 17, 13

o0 0 0 o join points
pointcut change(Shape s):
pointcut execution(* Shape+.setx(..))
&& this(s)
advice

© Eric Tanter
Wednesday, April 17, 13

0 00 0 o join points
pointcut change(Shape s):
pointcut execution(x Shape+.setx(..
&& this(s)
advice

after(Shape s): change(s){

// update observers

}

© Eric Tanter
Wednesday, April 17, 13

a join point

© Eric Tanter 7

Wednesday, April 17, 13

a join point

p

© Eric Tanter 7

Wednesday, April 17, 13

a join point

)

© Eric Tanter 7

Wednesday, April 17, 13

a join point

© Eric Tanter
Wednesday, April 17, 13

a join point

“around” advice can ignore it

© Eric Tanter
Wednesday, April 17, 13

a join point

“around” advice can ignore it
or proceed

© Eric Tanter
Wednesday, April 17, 13

a join point

/

"around” advice can ignore It
or proceed
and proceed...

© Eric Tanter
Wednesday, April 17, 13

a join point

' 4

"around” advice can ignore It
or proceed
and proceed...

this is more than 1-way notifications

© Eric Tanter
Wednesday, April 17, 13

© Eric Tanter 8
Wednesday, April 17, 13

crosscutting Is a real problem

© Eric Tanter 8

Wednesday, April 17, 13

crosscutting Is a real problem

pointcut/advice Is effective for handling crosscutting

© Eric Tanter 8

Wednesday, April 17, 13

crosscutting Is a real problem

pointcut/advice Is effective for handling crosscutting
o behavioral reflection for mere mortals

© Eric Tanter 8

Wednesday, April 17, 13

crosscutting Is a real problem

pointcut/advice Is effective for handling crosscutting
o behavioral reflection for mere mortals

« More declarative, esp. wrt quantification (pointcuts]

© Eric Tanter 8

Wednesday, April 17, 13

crosscutting Is a real problem

pointcut/advice Is effective for handling crosscutting
o behavioral reflection for mere mortals

« More declarative, esp. wrt quantification (pointcuts]

o More amenable to analysis (or so It seems]

© Eric Tanter 8

Wednesday, April 17, 13

crosscutting Is a real problem

pointcut/advice Is effective for handling crosscutting
o behavioral reflection for mere mortals

« More declarative, esp. wrt quantification (pointcuts]

o More amenable to analysis (or so It seems]

still not there yet
« lots of open challenges

© Eric Tanter 8

Wednesday, April 17, 13

© Eric Tanter ?
Wednesday, April 17, 13

e Every execution step is a join point

© Eric Tanter ?
Wednesday, April 17, 13

e Every execution step is a join point

o pointcuts “see” them all ::

© Eric Tanter
Wednesday, April 17, 13

e Every execution step is a join point

o pointcuts “see” them all
o advice can do anything Q

© Eric Tanter
Wednesday, April 17, 13

e Every execution step is a join point
o pointcuts “see” them all
o advice can do anything Q

o proceed 0..n times

© Eric Tanter
Wednesday, April 17, 13

®
®
e Every execution step is a join point
@
o pointcuts “see” them all
o advice can do anything Q

o proceed 0..n times

o Change arguments, return value

© Eric Tanter
Wednesday, April 17, 13

®
®
e Every execution step is a join point
@
o pointcuts “see” them all
o advice can do anything Q

o proceed 0..n times
o Change arguments, return value

o arbitrary side effects

© Eric Tanter
Wednesday, April 17, 13

© Eric Tanter 10

Wednesday, April 17, 13

FEATURE APPLICATION

© Eric Tanter 10

Wednesday, April 17, 13

FEATURE APPLICATION

all execution steps are join points,
pointcuts see them all

© Eric Tanter 10

Wednesday, April 17, 13

FEATURE APPLICATION

all execution steps are join points, unanticipated evolution,
pointcuts see them all "obliviousness”

© Eric Tanter 10

Wednesday, April 17, 13

FEATURE APPLICATION

all execution steps are join points, unanticipated evolution,
pointcuts see them all "obliviousness”

advice that does not proceed

© Eric Tanter 10

Wednesday, April 17, 13

FEATURE APPLICATION

all execution steps are join points, unanticipated evolution,
pointcuts see them all "obliviousness”
advice that does not proceed memoization, proxies, ...

© Eric Tanter 10

Wednesday, April 17, 13

FEATURE APPLICATION

all execution steps are join points, unanticipated evolution,
pointcuts see them all "obliviousness”
advice that does not proceed memoization, proxies, ...

advice that proceeds n times

© Eric Tanter 10

Wednesday, April 17, 13

FEATURE APPLICATION

all execution steps are join points, unanticipated evolution,
pointcuts see them all "obliviousness”
advice that does not proceed memoization, proxies, ...
advice that proceeds n times retry, redundancy, ...

© Eric Tanter 10

Wednesday, April 17, 13

FEATURE APPLICATION

all execution steps are join points, unanticipated evolution,
pointcuts see them all "obliviousness”
advice that does not proceed memoization, proxies, ...
advice that proceeds n times retry, redundancy, ...

changing arguments/return

© Eric Tanter 10

Wednesday, April 17, 13

FEATURE APPLICATION

all execution steps are join points, unanticipated evolution,
pointcuts see them all “obliviousness”
advice that does not proceed memoization, proxies, ...
advice that proceeds n times retry, redundancy, ...
changing arguments/return encryption, comfort zone, ...

© Eric Tanter 10

Wednesday, April 17, 13

FEATURE APPLICATION

all execution steps are join points, unanticipated evolution,
pointcuts see them all “obliviousness”
advice that does not proceed memoization, proxies, ...
advice that proceeds n times retry, redundancy, ...
changing arguments/return encryption, comfort zone, ...

arbitrary side effects

© Eric Tanter 10

Wednesday, April 17, 13

FEATURE APPLICATION
all execution steps are join points, unanticipated evolution,
pointcuts see them all “obliviousness”
advice that does not proceed memoization, proxies, ...
advice that proceeds n times retry, redundancy, ...
changing arguments/return encryption, comfort zone, ...
arbitrary side effects almost all aspects!

© Eric Tanter 10

Wednesday, April 17, 13

BUT...

© Eric Tanter !

Wednesday, April 17, 13

BUT...

void around(): call(int Fib.calc(int)){
System.out = myPrivateStream;

return -1;

Break semantics!

© Eric Tanter H

Wednesday, April 17, 13

BUT...

void around(): call(int Fib.calc(int)){
System.out = myPrivateStream;

return -1;

Break semantics!

void around(): call(void SecurityManager.checkx(..)){}

No more security!

© Eric Tanter !

Wednesday, April 17, 13

BUT...

void around(): call(int Fib.calc(int)){
System.out = myPrivateStream;

return -1;

s
Break semantics!

void around(): call(void SecurityManager.checkx(..)){}

No more security!

void around(Person p): execution(void *()) && this(p){
proceed(new Person());

}

ClassCastException!

© Eric Tanter !

Wednesday, April 17, 13

BUT...

void around(): call(int Fib.calc(int)){
System.out = myPrivateStream;

return -1;

s
Break semantics!

void around(): call(void SecurityManager.checkx(..)){}

No more security!

void around(Person p): execution(void *()) && this(p){
proceed(new Person());

}

ClassCastException!

before(Person p): execution(x *(..)) && this(p) {
System.out.println(“person active: “ + p.getName());

}

StackOverflow!
© Eric Tanter !

BUT...

void around(): call(int Fib.calc(int)){
System.out = myPrivateStream;

return -1;

Break semantics!

void around(): call(void SecurityManager.checkx(..)){}

No more security!

void around(Person p): execution(void *()) && this(p){
proceed(new Person());

}

ClassCastException!

before(Person p): execution(x *@.)) & this(p) { N\
System.out.println(“person active: “ + p-getName()‘-

}

StackOverflow!
© Eric Tanter !

ASPECT

ORIENTATION

© Eric Tanter 12

Wednesday, April 17, 13

oPECT

IENTATION

© Eric Tanter 12

Wednesday, April 17, 13

ASPECT

77

ORIENTATION

© Eric Tanter
Wednesday, April 17, 13

© Eric Tanter I3

Wednesday, April 17, 13

ASPECT

ORIENTATION

© Eric Tanter I3

Wednesday, April 17, 13

oPECT

IENTATION

© Eric Tanter I3

Wednesday, April 17, 13

AMIN

L)

oPECT

IENTATION

© Eric Tanter
Wednesday, April 17, 13

AMIN

L)

oPECT

IENTATION

© Eric Tanter
Wednesday, April 17, 13

© Eric Tanter 14

Wednesday, April 17, 13

Scoping
Interfaces

Types

Effects

© Eric Tanter 14

Wednesday, April 17, 13

SCDpiﬂg Dynamic
Interfaces

Types

Effects Static

© Eric Tanter 14

Wednesday, April 17, 13

Scoping

© Eric Tanter 15

Wednesday, April 17, 13

{ Can we restrict guantification to

SCDplng well-defined boundaries?

What abstractions are meaningful? }

© Eric Tanter 15

Wednesday, April 17, 13

© Eric Tanter 6
Wednesday, April 17, 13

Global visibility of join points exacerbates many issues

© Eric Tanter 16

Wednesday, April 17, 13

Global visibility of join points exacerbates many issues
o accidental matches

© Eric Tanter 16

Wednesday, April 17, 13

Global visibility of join points exacerbates many issues
o accidental matches

« spurious interferences

© Eric Tanter 16

Wednesday, April 17, 13

Global visibility of join points exacerbates many issues
o accidental matches

« spurious interferences

» advice loops

© Eric Tanter 16

Wednesday, April 17, 13

Global visibility of join points exacerbates many issues
o accidental matches

e Spurious interferences
» advice loops

o EtC.

© Eric Tanter 16

Wednesday, April 17, 13

© Eric Tanter 17
Wednesday, April 17, 13

Explicit announcement of join points
o explicit join points [Hoffman, 2012]

« quantified typed events [Rajan, 2008]
o Closure join points [Bodden, 2011]
« Open applications

o EtcC.

© Eric Tanter 17

Wednesday, April 17, 13

Explicit announcement of join points
o explicit join points [Hoffman, 2012]

« quantified typed events [Rajan, 2008]
o Closure join points [Bodden, 2011]
« Open applications

o EtcC.

Expressive pointcuts
« rich pointcuts for robust patterns [Gybels, 2003], [Ostermann, 2005]

» application-specific pointcuts [Brichau, 2008]
o annotations [Kiczales, 2005]

o EtcC.

© Eric Tanter

Wednesday, April 17, 13

© Eric Tanter 8
Wednesday, April 17, 13

Global quantification
« Just as bad as global mutable variables!

© Eric Tanter 18

Wednesday, April 17, 13

Global quantification
« Just as bad as global mutable variables!

Different scoping disciplines for identifiers
« lexical scope

« dynamic scope
o thread-local

e per object, class, module

© Eric Tanter 18

Wednesday, April 17, 13

Global quantification
« Just as bad as global mutable variables!

Different scoping disciplines for identifiers
« lexical scope

« dynamic scope
o thread-local

e per object, class, module

All have been explored for aspects as well
o Caesard, AspectsScheme, Eos, Aspectd...

© Eric Tanter 18

Wednesday, April 17, 13

SCOPED QUANTIFICATION: AOVANCED MODELS

© Eric Tanter 19
Wednesday, April 17, 13

SCOPED QUANTIFI ADVANCED MODELS

Scoping strategies [Tanter, 2008,/2009,2010a]
« killer app: access control [Toledo, 2011/ 2012,/2013]

Execution levels [Tanter, 2010b]

Vlembranes [Tanter, 2012] [Figueroa, 2013]

© Eric Tanter 19

Wednesday, April 17, 13

SCoPED ADVANCED MODELS

Scoping strategies [Tanter, 2008,/2009,2010a]
« killer app: access control [Toledo, 2011/ 2012,/2013]

© Eric Tanter 19

Wednesday, April 17, 13

SCOPED QUANTIFICATION: AOVANCED MODELS

Execution levels [Tanter, 2010b]

Vlembranes [Tanter, 2012] [Figueroa, 2013]

© Eric Tanter 19
Wednesday, April 17, 13

EXECUTION LEVELS

ComPosING DYNAMIC ANALYSES Wt 4

[Tanter ED’I Dc]

© Eric Tanter 2l
Wednesday, April 17, 13

COMPOSING DYNAMICANASE Waltor Binder & oo

[Tanter, 2010c]

/

PT‘OS\‘QM)

© Eric Tanter pA

Wednesday, April 17, 13

COMPOSING DYNAMICANASE Waltor Binder & oo

[Tanter, 2010c]

‘Fronf
@ Racer «—
TO
PT‘OS\'QW‘! PT’OST‘O\M h
© Eric Tanter pA|

Wednesday, April 17, 13

COMPOSING DYNAMICANASE Waltor Binder & oo

[Tanter, 2010c]

‘Fronf
(Zacer «—
program |
© Eric Tanter pA

Wednesday, April 17, 13

COMPOSING DYNAMICANASE Waltor Binder & oo

[Tanter, 2010c]

- ?rof

Racer

\

program B

___ NONE CAN BE IMPLEMENTED! {until now... §

© Eric Tanter 22

Wednesday, April 17, 13

Each aspect alters the observation of others
o Racer creates objects @

\

o Prof accesses fields

© Eric Tanter 22

Wednesday, April 17, 13

Each aspect alters the observation of others
o Racer creates objects @

\

o Prof accesses fields

Each aspect potentially sees itself
o Infinite regression

© Eric Tanter 22

Wednesday, April 17, 13

[Tanter, 2010b]

Structure computation in levels
« aspects stand at specific levels

o Observe computation below

© Eric Tanter 23

Wednesday, April 17, 13

[Tanter, 2010b]

Structure computation in levels
« aspects stand at specific levels

o Observe computation below

level O \ proegram J

SsC - S TS

© Eric Tanter 23

Wednesday, April 17, 13

[Tanter, 2010b]

Structure computation in levels
« aspects stand at specific levels

o Observe computation below

level 1

level O \ proegram J

SsC - S TS

© Eric Tanter 23

Wednesday, April 17, 13

[Tanter, 2010b]

Structure computation in levels
« aspects stand at specific levels

o Observe computation below

level 1

level O \ proegram J

S e g

© Eric Tanter 23

Wednesday, April 17, 13

[Tanter, 2010b]

Structure computation in levels
« aspects stand at specific levels

o Observe computation below

level 1

level O \ proegram J

S e g

© Eric Tanter 23

Wednesday, April 17, 13

[Tanter, 2010b]

Structure computation in levels
« aspects stand at specific levels

o Observe computation below

level 2
level 1
level O \ proegram J

S e g

© Eric Tanter 23

Wednesday, April 17, 13

[Tanter, 2010b]

Structure computation in levels
« aspects stand at specific levels

o Observe computation below

level 2
level 1
level O \ proegram J

S e g

© Eric Tanter 23

Wednesday, April 17, 13

[Tanter, 2010b]

Structure computation in levels
« aspects stand at specific levels

o Observe computation below

level 2
level 1
level O \ proegram J

S e g

© Eric Tanter 23

Wednesday, April 17, 13

LEVELS: THEORY AND PRACTICE

© Eric Tanter 24
Wednesday, April 17, 13

Strong guarantee: aspect loops are avoided

joint work with
Nicolas Tabareau

Ismael Figueroa
© Eric Tanter 24

Wednesday, April 17, 13

Strong guarantee: aspect loops are avoided

Can be implemented efficiently [Tanter, 2010c; Moret, 2011]

joint work with

\Walter Binder

Philippe Moret, Danilo Ansaloni
© Eric Tanter 24

Wednesday, April 17, 13

Strong guarantee: aspect loops are avoided
Can be implemented efficiently [Tanter, 2010c; Moret, 2011]

Ad-hoc checks In practice
« 1/3 of all aspects in the "Aspectd in Action” book

o 18% of all pointcuts In corpus of *300 aspects

o all aspects work out-of-the-box with default level semantics

© Eric Tanter 24

Wednesday, April 17, 13

© Eric Tanter 2>
Wednesday, April 17, 13

Execution levels
e Qlve structure to computation

« Use this structure to define scoping

o COme with some properties (eg. no loop]

© Eric Tanter 25

Wednesday, April 17, 13

Execution levels
e Qlve structure to computation

« Use this structure to define scoping

o COme with some properties (eg. no loop]

This I1s an example of topological scoping
« topology: tower

o What about others®?

© Eric Tanter 25

Wednesday, April 17, 13

Execution levels
e Qlve structure to computation

« Use this structure to define scoping

o COme with some properties (eg. no loop]

This I1s an example of topological scoping
« topology: tower

o What about others®?

© Eric Tanter 25

Wednesday, April 17, 13

MEMBRANES Fog AOP

joint work with
Nicolas Tabareau
Réemi Douence
Ismael Figueroa

© Eric Tanter L

Wednesday, April 17, 13

“GIVING STRUCTURE TO COMPUTATION

Programmable membranes [Boudal, 2004; Schmitt, 2004]
« INspired by membranes in biology

~ T SCIENCEPROTOLIBRARY
© Eric Tanter 27
Wednesday, April 17, 13

[Tanter, 2012]

VWhy not use membranes for AOP?
 gives rise to flexible topological scoping

e supports control over certain effects

© Eric Tanter 28

Wednesday, April 17, 13

~ [Tanter, 2012]

VWhy not use membranes for AOP?
 gives rise to flexible topological scoping

e supports control over certain effects

Y

© Eric Tanter 28

Wednesday, April 17, 13

~ [Tanter, 2012]

VWhy not use membranes for AOP?
 gives rise to flexible topological scoping

e supports control over certain effects

© Eric Tanter 28

Wednesday, April 17, 13

[Tanter, 2012]

VWhy not use membranes for AOP?
 gives rise to flexible topological scoping

e supports control over certain effects

© Eric Tanter 28

Wednesday, April 17, 13

[Tanter, 2012]

VWhy not use membranes for AOP?
 gives rise to flexible topological scoping

e supports control over certain effects

1 ,{// AN
mi 4 X\
4 N
/r/ \\

ui ’ § A \

¢ R \

[\\

i , 3

f sx \

3 31 \
i K
J(
|
{ 1
| it

= S
D \
o > 2
= S— “»f*f"f"'
= 28

© Eric Tanter

Wednesday, April 17, 13

[Tanter, 2012]

VWhy not use membranes for AOP?
 gives rise to flexible topological scoping

e supports control over certain effects

) 1)
T B S
J i N
b i
i
f d
| i
| ?3
L
= =
IS "
N
._\:
— vy 2)
T~
e, _ o
B — " — - S —— =
= 28

© Eric Tanter

Wednesday, April 17, 13

_ToPOLOGICAL SCOPING WITH MEMBRANES

© Eric Tanter 29
Wednesday, April 17, 13

ToPOLOGICAL SCOPING WITH MEMBRANES

" program

execution levels
© Eric Tanter -

Wednesday, April 17, 13

ToPOLOGICAL SCOPING WITH MEMBRANES

execution levels tree

© Eric Tanter

29

Wednesday, April 17, 13

execution levels tree BJA\E

© Eric Tanter
Wednesday, April 17, 13

29

MEMSRANES: THEORY ANO PRACTICE

[Figueroa, 201 3]

© Eric Tanter 30
Wednesday, April 17, 13

'MEMBRANES: THEORY AND PACTICE

Wide design space

« how to create, deploy and configure membranes?
e Can membranes crosscut? organized hierarchically?

o What guarantees are expected? tradeoff?

« MAScheme, A0 Haskell [Figueroa, 2013]

© Eric Tanter 30

Wednesday, April 17, 13

'MEMBRANES: THEORY AND PACTICE

Wide design space

« how to create, deploy and configure membranes?
e Can membranes crosscut? organized hierarchically?

o What guarantees are expected? tradeoff?

« MAScheme, A0 Haskell [Figueroa, 2013]

Exploit programmability
o ensure safety properties

« What language Is useful to program membranes?

o Kell calculus

© Eric Tanter 30

Wednesday, April 17, 13

Interfaces

© Eric Tanter 31

Wednesday, April 17, 13

Can we reconcile quantification §

|nte r‘fa CES == with modular reasoning?

| What kind of static interfaces |
allow independent development?

© Eric Tanter 31

Wednesday, April 17, 13

IssUES WITH PoINTCUT/AovicE

| class A |

‘pointcut foo() i
} ‘]
: Ky
F

i
iafter foo())

© Eric Tanter 32

Wednesday, April 17, 13

IssUES WITH PoINTCUT/AovicE

fragile dependencies

© Eric Tanter 32

Wednesday, April 17, 13

IssUES WITH PoINTCUT/AovicE

fragile dependencies

oblivious
= N0 Idea what Is relied upon

© Eric Tanter 32

Wednesday, April 17, 13

IssUES WITH PoINTCUT/AovicE

fragile dependencies

oblivious
= N0 Idea what Is relied upon

modular reasoning?
| iIndependent development? Y
© Eric Tanter

Wednesday, April 17, 13

© Eric Tanter 33
Wednesday, April 17, 13

Kiczales & Mezini [2005]
o fundamental issue is the crosscutting nature

« AOP makes the crosscutting concern explicit

© Eric Tanter 33

Wednesday, April 17, 13

Kiczales & Mezini [2005]
o fundamental issue is the crosscutting nature

« AOP makes the crosscutting concern explicit

aspect-aware interfaces

© Eric Tanter 33

Wednesday, April 17, 13

Kiczales & Mezini [2005]
o fundamental issue is the crosscutting nature

« AOP makes the crosscutting concern explicit

aspect-aware interfaces

© Eric Tanter 33

Wednesday, April 17, 13

Kiczales & Mezini [2005]
o fundamental issue is the crosscutting nature

« AOP makes the crosscutting concern explicit

aspect-aware interfaces

| class A

épointcut foo()

3

i
iafter foo() i
W advises A,B,C

© Eric Tanter 33

Wednesday, April 17, 13

Kiczales & Mezini [2005]
o fundamental issue is the crosscutting nature

« AOP makes the crosscutting concern explicit

aspect-aware interfaces

}wm weee s advised by X
dass A :

w advised by X

5p01ntcut fool()

ﬂafter foo()

adv1sed by B advises A,B,C

dass C

© Eric Tanter 33

Wednesday, April 17, 13

Kiczales & Mezini [2005]
o fundamental issue is the crosscutting nature

« AOP makes the crosscutting concern explicit

aspect-aware interfaces

o advised by X

Epointcut foo()

"after fool()
=3 x - "i |
adv1sed by W odyvises A,B,C

dass -

explicit dependencies
© Eric Tanter 33

Kiczales & Mezini [2005]
o fundamental issue is the crosscutting nature

« AOP makes the crosscutting concern explicit

aspect-aware interfaces

o advised by X

Epointcut foo()

"after fool()
=3 x - "i |
adv1sed by W odyvises A,B,C

dass -

explicit dependencies
© Eric Tanter 33

RECOVELING ASONING

Putting pointcuts In interfaces [Gudmundson, 2001]
o Open Modules [Aldrich, 2005], etc.

© Eric Tanter 34

Wednesday, April 17, 13

Putting pointcuts In interfaces [Gudmundson, 2001]
o Open Modules [Aldrich, 2005], etc.

© Eric Tanter 34

Wednesday, April 17, 13

Putting pointcuts In interfaces [Gudmundson, 2001]
o Open Modules [Aldrich, 2005], etc.

© Eric Tanter 34

Wednesday, April 17, 13

Putting pointcuts In interfaces [Gudmundson, 2001]
o Open Modules [Aldrich, 2005], etc.

i . 3
$ -‘; pointcut fool()
4]

© Eric Tanter 34

Wednesday, April 17, 13

RECOVELING ASONING

Putting pointcuts In interfaces [Gudmundson, 2001]
o Open Modules [Aldrich, 2005], etc.

© Eric Tanter 34

Wednesday, April 17, 13

[Steimann, 2010]

© Eric Tanter 35

Wednesday, April 17, 13

[Steimann, 2010]

© Eric Tanter 35

Wednesday, April 17, 13

[Steimann, 2010]

© Eric Tanter 35

Wednesday, April 17, 13

[Steimann, 2010]

© Eric Tanter 35

Wednesday, April 17, 13

[Steimann, 2010]

 aspect X |

." 5P (- -——- éafter IP()

local quantification only!

class C exhibits JP {
pointcut JP: execution(void setX(..)) || ...

[/

}

© Eric Tanter 35

Wednesday, April 17, 13

joinpointtype CheckingOut A{
float price;
Customer cus;

}

© Eric Tanter 36

Wednesday, April 17, 13

joinpointtype CheckingOut A{
float price;
Customer cus;

}

pointcut CheckingOut(float price, Customer cus);

© Eric Tanter 36

Wednesday, April 17, 13

joinpointtype CheckingOut { | same information
float price; Y G A

Customer cus;

}

pointcut CheckingOut(float price, Customer cus);

© Eric Tanter 36

Wednesday, April 17, 13

joinpointtype CheckingOut A{
float price;

Customer cus;

}

pointcut CheckingOut(float price, Customer cus);

interface IFoo {

m(float p, String s);

}

© Eric Tanter 36

Wednesday, April 17, 13

joinpointtype CheckingOut A{
float price;

Customer cus;

}

pointcut CheckingOut(float price, Customer cus);

interface IFoo {

)
??7? m(float p, String s) throws 777; return type:

checked exceptions?

}

© Eric Tanter 36

Wednesday, April 17, 13

Moouuaairy Issues

joinpointtype CheckingOut { | same information
float price; Y G A

Customer cus;

}

pointcut CheckingOut(float price, Customer cus);

interface IFoo {
?2?7? m(float p, String s) throws ?777;

return type?
checked exceptions?

}

© Eric Tanter 36

Wednesday, April 17, 13

_JOIN PoINT %

—— Milton Inostroza
[Inostroza 20’I ’I][Bodden TDSEI\/I] Eric Bodden

© Eric Tanter 37

Wednesday, April 17, 13

_JOIN PoINT %

—— Milton Inostroza
[Inostroza 20’I ’I][Bodden TDSEI\/I] Eric Bodden

“Join Point Types Revisited”

© Eric Tanter 37

Wednesday, April 17, 13

_JOIN PoINT %

—— Milton Inostroza
[Inostroza 20’I ’I][Bodden TDSEI\/I] Eric Bodden

“Join Point Types Revisited”
o NO fragile name dependencies

© Eric Tanter 37

Wednesday, April 17, 13

_JOIN PoINT %

—— Milton Inostroza
[Inostroza 20’I ’I][Bodden TDSEI\/I] Eric Bodden

“Join Point Types Revisited”
o NO fragile name dependencies

o expressive enough for safe modular type checking

© Eric Tanter 37

Wednesday, April 17, 13

_JOIN PoINT %

—— Milton Inostroza
[Inostroza 20’I ’I][Bodden TDSEI\/I] Eric Bodden

“Join Point Types Revisited”
o NO fragile name dependencies

o expressive enough for safe modular type checking

jpi void CheckingOut(float price, Customer cus) throws IOException

© Eric Tanter 37

Wednesday, April 17, 13

_JOIN PoINT %

—— Milton Inostroza
[Inostroza 20’I ’I][Bodden TDSEI\/I] Eric Bodden

“Join Point Types Revisited”
o NO fragile name dependencies

o expressive enough for safe modular type checking

jpi void CheckingOut(float price, Customer cus) throws IOException

Fix other shortcomings
« JOIN point polymorphism semantics [multiple dispatch]
« unsound use of variant typing (later)

o ELC.

© Eric Tanter 37

Wednesday, April 17, 13

© Eric Tanter 38
Wednesday, April 17, 13

Some aspects are inherently "wide”
o dynamic analyses, system-wide properties, etc.

o require a lot of exhibit clauses

© Eric Tanter 38

Wednesday, April 17, 13

Some aspects are inherently "wide”
o dynamic analyses, system-wide properties, etc.

o require a lot of exhibit clauses

Case study
« port existing "Law Of Demeter” checking aspect

© Eric Tanter 38

Wednesday, April 17, 13

Some aspects are inherently "wide”
o dynamic analyses, system-wide properties, etc.

o require a lot of exhibit clauses

Case study
« port existing "Law Of Demeter” checking aspect

exhibits

LawOfDemeter 130

© Eric Tanter 38

Wednesday, April 17, 13

Some aspects are inherently "wide”
o dynamic analyses, system-wide properties, etc.

o require a lot of exhibit clauses

Case study
« port existing "Law Of Demeter” checking aspect

exhibits

LawOfDemeter 130

Cannot really ignore this kind of aspects!

© Eric Tanter 38

Wednesday, April 17, 13

CONTROLLED GLOBAL QUANTIFICATION

jpi JP(): execution(x *.*(..))

© Eric Tanter 39
Wednesday, April 17, 13

CONTROLLED GLOBAL QUANTIFICATION

e rare

1p1 JP(): execution(x x.x(..))

© Eric Tanter 39
Wednesday, April 17, 13

CONTROLLED GLOBAL QUANTIFICATION

jpi JP(): execution(k >x.*(..))

_ class A {
white box /]

}

© Eric Tanter 39
Wednesday, April 17, 13

CONTROLLED GLOBAL QUANTIFICATION

white box

sealed class C {

black box \ /]

© Eric Tanter 39

Wednesday, April 17, 13

CONTROLLED GLOBAL QUANTIFICATION

white box

sealed class C {

black box } /] (can still expose other JPIs]

© Eric Tanter 39

Wednesday, April 17, 13

_CONTROLLED GLOBAL QUANTIFICATION

jpi JP(): execution(k *.x(..

_ class A {
white box /..

}

sealed class C {

black box } /] (can still expose other JPIs]

class B {
grey box exhibits JP(): global() && !execution(x secret(..));
[/,

}

© Eric Tanter 39

Wednesday, April 17, 13

_CONTROLLED GLOBAL QUANTIFICATION

jpi JP(): execution(k *.x(..

_ class A {
white box /..

}

sealed class C {

black box } /] (can still expose other JPIs]

class B {
grey box exhibits JP(): global() && !execution(x secret(..));

[/ “

}

© Eric Tanter 39

Wednesday, April 17, 13

© Eric Tanter 40
Wednesday, April 17, 13

VS

© Eric Tanter 40
Wednesday, April 17, 13

Modular
reasoning

VS

© Eric Tanter 40

Wednesday, April 17, 13

Modular s Unanticipated
reasoning extension points

© Eric Tanter 40

Wednesday, April 17, 13

Modular s Unanticipated
reasoning extension points

Resolving this tension is crucial

© Eric Tanter 40

Wednesday, April 17, 13

Modular s Unanticipated
reasoning extension points

Resolving this tension is crucial
« look back at work on Open Implementations [Kiczales, 1997]

© Eric Tanter 40

Wednesday, April 17, 13

Modular s Unanticipated
reasoning extension points

Resolving this tension is crucial
« look back at work on Open Implementations [Kiczales, 1997]

« exploit a taxonomy of aspects

© Eric Tanter 40

Wednesday, April 17, 13

Modular s Unanticipated
reasoning extension points

Resolving this tension is crucial
« look back at work on Open Implementations [Kiczales, 1997]

« exploit a taxonomy of aspects

« quantification: narrow vs. wide

© Eric Tanter 40

Wednesday, April 17, 13

Modular s Unanticipated
reasoning extension points

Resolving this tension is crucial
« look back at work on Open Implementations [Kiczales, 1997]

« exploit a taxonomy of aspects
« quantification: narrow vs. wide

o life cycle: development vs. production

© Eric Tanter 40

Wednesday, April 17, 13

Types

© Eric Tanter 41

Wednesday, April 17, 13

[Can we ensure that aspects do not
break type soundness?

Types =

Interaction with other features?
| (eg. polymorphism]

© Eric Tanter 41
Wednesday, April 17, 13

Safe pointcut/advice binding
« advice can replace computation

« should not introduce runtime type errors

© Eric Tanter 42

Wednesday, April 17, 13

Safe pointcut/advice binding
« advice can replace computation

« should not introduce runtime type errors

well-typed
base program

s

well-typed aspect (7]

© Eric Tanter 42

Wednesday, April 17, 13

Safe pointcut/advice binding
« advice can replace computation

« should not introduce runtime type errors

well-typed
base program

well-typed
. composed program
forals

s

well-typed aspect (7]

© Eric Tanter 42

Wednesday, April 17, 13

SUBTYPE POLYMOLPHISM

Principles
« body of advice must adhere to advice signature

e poOIntcut signature <: join point signatures

o advice signature < pointcut signature

© Eric Tanter 44

Wednesday, April 17, 13

Principles
« body of advice must adhere to advice signature

e poOIntcut signature <: join point signatures

o advice signature < pointcut signature
=proceed

© Eric Tanter 44

Wednesday, April 17, 13

Principles
« body of advice must adhere to advice signature

e poOIntcut signature <: join point signatures

o advice signature < pointcut signature
=proceed

void around(Person p): execution(void x()) && this(p){

proceed(new Person());

}

© Eric Tanter 44

Wednesday, April 17, 13

Principles
« body of advice must adhere to advice signature

e poOIntcut signature <: join point signatures

o advice signature < pointcut signature
=proceed

Person -> void

void around(Person p): execution(void x()) && this(p){

proceed(new Person());

}

© Eric Tanter 44

Wednesday, April 17, 13

Principles
« body of advice must adhere to advice signature

e poOIntcut signature <: join point signatures

o advice signature < pointcut signature
=proceed

Person -> void Person -> void

void around(Person p): execution(void x()) && this(p){

proceed(new Person());

}

© Eric Tanter 44

Wednesday, April 17, 13

Principles
« body of advice must adhere to advice signature

e poOIntcut signature <: join point signatures

o advice signature < pointcut signature
=proceed

Person -> void Person -> void Employee -> void

void around(Person p): execution(void x()) && this(p){
proceed(new Person());

}

© Eric Tanter 44

Wednesday, April 17, 13

Principles
« body of advice must adhere to advice signature

e poOIntcut signature <: join point signatures

o advice signature < pointcut signature
=proceed

Person -> void Person -> void Employee -> void

void around(Person p): execution(void x()) && this(p){
proceed(new Person());

}

Integer around(): call(Number x()){
Integer i = proceed();
return 1,

}

© Eric Tanter 44

Wednesday, April 17, 13

Principles
« body of advice must adhere to advice signature

e poOIntcut signature <: join point signatures

o advice signature < pointcut signature
=proceed

Person -> void Person -> void Employee -> void

void around(Person p): execution(void x()) && this(p){
proceed(new Person());

}

void -> Number

Integer around(): call(Number x()){
Integer i = proceed();
return 1,

}

© Eric Tanter

Wednesday, April 17, 13

44

Principles
« body of advice must adhere to advice signature

e poOIntcut signature <: join point signatures

o advice signature < pointcut signature
=proceed

Person -> void Person -> void Employee -> void

void around(Person p): execution(void x()) && this(p){
proceed(new Person());

}

void -> Integer void -> Number

Integer around(): call(Number x()){
Integer i = proceed();
return 1,

}

© Eric Tanter

Wednesday, April 17, 13

44

Principles
« body of advice must adhere to advice signature

e poOIntcut signature <: join point signatures

o advice signature < pointcut signature
=proceed

Person -> void Person -> void Employee -> void

void around(Person p): execution(void x()) && this(p){
proceed(new Person());

}

void -> Integer void -> Number void -> Number

Integer around(): call(Number x()){
Integer i = proceed();
return 1,

}

© Eric Tanter

Wednesday, April 17, 13

44

Principles
« body of advice must adhere to advice signature

e poOIntcut signature <: join point signatures

o advice signature < pointcut signature
=proceed

Person -> void Person -> void Employee -> void

void around(Person p): execution(void x()) && this(p){
proceed(new Person());

}

void -> Integer void -> Number void -> Number

Integer around(): call(Number x()){
Integer i = proceed();

|
return is unsafe!

}

© Eric Tanter

Wednesday, April 17, 13

44

Principles
« body of advice must adhere to advice signature

e poOIntcut signature <: join point signatures

o advice signature < pointcut signature
=proceed

Person -> void Person -> void Employee -> void

void around(Person p): execution(void x()) && this(p){
proceed(new Person());

}

void -> Integer void -> Number void -> Number

Integer around(): call(Number x()){
Integer i = proceed();

|
return i: unsafe!

(Aspectd, Join Point Types]

44

}

© Eric Tanter

Wednesday, April 17, 13

Milton Inostroza
Eric Bodden
[Bodden, TOSEM]

© Eric Tanter)

Wednesday, April 17, 13

Milton Inostroza
Eric Bodden
[Bodden, TOSEM]

A simple solution Is to prohibit type variance
« first version of JPIs

o IS It practical?

© Eric Tanter 45

Wednesday, April 17, 13

Milton Inostroza
Eric Bodden
[Bodden, TOSEM]

A simple solution Is to prohibit type variance
« first version of JPIs

o IS It practical?

Case study
o port AJHotDraw and LawOfDemeter to JPI

© Eric Tanter 45

Wednesday, April 17, 13

Milton Inostroza

Eric Bodden
[Bodden, TOSEM]

A simple solution Is to prohibit type variance
« first version of JPIs

e IS It practical?

Case study
o port AdHotDraw and LawOfDemeter to JPI

advices
Aspectd JPI
AJHotDraw 49
LawOfDemeter S

© Eric Tanter 45

Wednesday, April 17, 13

[Jagadeesan, 2006]

© Eric Tanter 46
Wednesday, April 17, 13

Generic JPIs
o Cype parameters [Jagadeesan, 2006]

© Eric Tanter 46

Wednesday, April 17, 13

Generic JPIs
o Cype parameters [Jagadeesan, 2006]

<R,A,B> jpi R MethodCall(A thiz, B targt);

© Eric Tanter 46

Wednesday, April 17, 13

Generic JPIs
o type parameters [Jagadeesan, 2006]

<R,A,B> jpi R MethodCall(A thiz, B targt);

advices
Aspectd JPIv1 JPlve
AJHotDraw 49 49
LawOfDemeter 6 6

© Eric Tanter 46

Wednesday, April 17, 13

Generic JPIs
o type parameters [Jagadeesan, 2006]

<R,A,B> jpi R MethodCall(A thiz, B targt);

advices
Aspectd JPIv1 JPlve
AJHotDraw 49 49
LawOfDemeter 6 6

« lose the ability to do replacement advice [parametricity]

© Eric Tanter 46

Wednesday, April 17, 13

Generic JPIs
o type parameters [Jagadeesan, 2006]

<R,A,B> jpi R MethodCall(A thiz, B targt);

advices
Aspectd JPIv1 JPlve
AJHotDraw 49 49
LawOfDemeter 6 6

« lose the ability to do replacement advice [parametricity]

Beyond genericity: type ranges [De Fraine, 2008,/2010]
o flexible type-safe replacement advice

e .. added complexity (no free lunch /] »
© Eric Tanter

Wednesday, April 17, 13

PARAMETRIC POLYMOZPHISM

joint work with
Ismael Figueroa
Nicolas Tabareau

© Eric Tanter 47

Wednesday, April 17, 13

A TYPED FUNCTIONAL EMBEODING OF FIRST-CLASS ASPECTS

© Eric Tanter 48

Wednesday, April 17, 13

A TYPED FUNCTIONAL EMBEODING OF FIRST-CLASS ASPECTS

join points represent function applications

© Eric Tanter 48

Wednesday, April 17, 13

A TYPED FUNCTIONAL EMBEODING OF FIRST-CLASS ASPECTS

join points represent function applications
data JP a b = JP (a - b) a

© Eric Tanter 48

Wednesday, April 17, 13

A TYPED FUNCTIONAL EMBEODING OF FIRST-CLASS ASPECTS

join points represent function applications
data JP a b = JP (a - b) a

a pointcut Is a predicate on any join point

© Eric Tanter 48

Wednesday, April 17, 13

A TYPED FUNCTIONAL EMBEODING OF FIRST-CLASS ASPECTS

join points represent function applications
data JP a b = JP (a - b) a

a pointcut Is a predicate on any join point

data PC = PC (forall a b. JP a b - Bool)

© Eric Tanter 48

Wednesday, April 17, 13

A TYPED FUNCTIONAL EMBEODING OF FIRST-CLASS ASPECTS

join points represent function applications
data JP a b = JP (a - b) a

a pointcut Is a predicate on any join point

data PC = PC (forall a b. JP a b - Bool)

an advice is a function transformer

© Eric Tanter 48

Wednesday, April 17, 13

A TYPED FUNCTIONAL EMBEODING OF FIRST-CLASS ASPECTS

join points represent function applications
data JP a b = JP (a - b) a

a pointcut Is a predicate on any join point

data PC = PC (forall a b. JP a b - Bool)
an advice is a function transformer

type Advice a b = (a - b) - a-0b

48

Wednesday, April 17, 13

© Eric Tanter

A TYPED FUNCTIONAL EMBEODING OF FIRST-CLASS ASPECTS

join points represent function applications
data JP a b = JP (a - b) a

a pointcut Is a predicate on any join point

data PC = PC (forall a b. JP a b - Bool)

an advice is a function transformer

type Advice a b = (a - b) - a-0b

an aspect IS q pc/adv binding aspect (pcCall fib) memoize

© Eric Tanter 48

Wednesday, April 17, 13

A TYPED FUNCTIONAL EMBEODING OF FIRST-CLASS ASPECTS

join points represent function applications
data JP a b = JP (a - b) a

a pointcut Is a predicate on any join point

data PC = PC (forall a b. JP a b - Bool)

an advice is a function transformer

type Advice a b = (a - b) - a-0b

an aspect IS q pc/adv binding aspect (pcCall fib) memoize
data Aspect ... = Aspect PC (Advice a b)

© Eric Tanter 48

Wednesday, April 17, 13

A TYPED FUNCTIONAL EMBEODING OF FIRST-CLASS ASPECTS

join points represent function applications
data JP a b = JP (a - b) a

a pointcut Is a predicate on any join point

data PC = PC (forall a b. JP a b - Bool)

an advice is a function transformer

type Advice a b = (a - b) - a-0b

an aspect IS q pc/adv binding aspect (pcCall fib) memoize

data Aspect ... = AspectfPCHfAdvice a b}

N

how to ensure the aspect is well-typed?

© Eric Tanter 48

Wednesday, April 17, 13

A TYPED FUNCTIONAL EMBEODING OF FIRST-CLASS ASPECTS

join points represent function applications

data JP a b = JP (a - b) a

a pointcut Is a predicate on any join point

data PC = PC (forall a b. JP a b - Bool)

an advice is a function transformer

type Advice a b = (a - b) - a-0b

an aspect IS q pc/adv binding aspect (pcCall fib) memoize

data Aspect ... = AspectfPCHfAdvice a b}

(broken]

© Eric Tanter 48

Wednesday, April 17, 13

how to ensure the aspect is well-typed?

annotate PC with their matched type

data PC a b = PC (forall a’ b’. JP a’ b’

© Eric Tanter 49

Wednesday, April 17, 13

annotate PC with their matched type

data PC;émbiz PC (forall a’ b’. JP a’ b’ - Bool)

possibly matches applications of functions a—b

© Eric Tanter 49

Wednesday, April 17, 13

annotate PC with their matched type

data PC a b = PC (forall a’' b’. JP a’ b’ - Bool)

possibly matches applications of functions a—b

pc = pcCall id

© Eric Tanter 49

Wednesday, April 17, 13

annotate PC with their matched type

data PC a b = PC (forall a’' b’. JP a’ b’ - Bool)

possibly matches applications of functions a—b

pc :: PC a a

pc = pcCall id

© Eric Tanter 49

Wednesday, April 17, 13

annotate PC with their matched type

data PC a b = PC (forall a’' b’. JP a’ b’ - Bool)

possibly matches applications of functions a—b

pc :: PC a a

pc = pcCall id

enforce that both types are compatible
data Aspect a b = Aspect (PC a b) (Advice a b)

© Eric Tanter 49

Wednesday, April 17, 13

annotate PC with their matched type
data PC a b = PC (forall a’ b’. JP a’ b’ - Bool)

possibly matches applications of functions a—b

pc :: PC a a
pc = pcCall id

enforce that both types are compatible
data Aspect a b = Aspect (PCja @} (Adviceja b}

© Eric Tanter 49

Wednesday, April 17, 13

annotate PC with their matched type
data PC a b = PC (forall a’ b’. JP a’ b’ - Bool)

possibly matches applications of functions a—b

pc :: PC a a
pc = pcCall id

enforce that both types are compatible
data Aspect a b = Aspect (PCja @} (Adviceja b}

(broken]

© Eric Tanter 49

Wednesday, April 17, 13

data Aspect a b = Aspect (PC a b) (Advice a b)

© Eric Tanter 50

Wednesday, April 17, 13

data Aspect a b = Aspect (PC a b) (Advice a b)

pc :: PC a a

pc = pcCall id

© Eric Tanter 50

Wednesday, April 17, 13

data Aspect a b = Aspect (PC a b) (Advice a b)

pc :: PC a a
pc = pcCall id

adv :: Advice Char Char
adv proceed c = proceed (toUpper c)

© Eric Tanter 50

Wednesday, April 17, 13

data Aspect a b = Aspect (PC a b) (Advice a b)

adv :: Advice{Char”CHafﬁ;

adv proceed ¢ = (toUpper c)

© Eric Tanter 50

Wednesday, April 17, 13

data Aspect a b = Aspect (PC a b) (Advice a b)

+ unifiable

adv :: Advice{Char”CHafﬁ;

adv proceed ¢ = (toUpper c)

© Eric Tanter 50

Wednesday, April 17, 13

data Aspect a b = Aspect (PC a b) (Advice a b)

p—— + unifiable
adv :: Advice{Char Char } ql'
adv proceed c =Tproceec

© Eric Tanter >0

Wednesday, April 17, 13

data Aspect a b = Aspect (PC a b) (Advice a b)

+ unifiable

adv :: AdvicefChar Char }
adv proceed c =proce

id [True,False] 3/:

© Eric Tanter >0

Wednesday, April 17, 13

data Aspect a b = Aspect (PC a b) (Advice a b)

+ unifiable

adv :: AdvicefChar Char }
adv proceed c =proce

id [True,False] 3/:

Problem: unification is symmetric

© Eric Tanter 50

Wednesday, April 17, 13

data Aspect a b ¢ d = Aspect (PC a b) (Advice c d)

© Eric Tanter S

Wednesday, April 17, 13

data Aspect a b ¢ d = Aspect (PC a b) (Advice c d)

need to ensure that the matched type a—b
Is less general than the type of the advice c—d

© Eric Tanter S

Wednesday, April 17, 13

data Aspect a b ¢ d = Aspect (PC a b) (Advice c d)

need to ensure that the matched type a—b
Is less general than the type of the advice c—d

A multi-parameter type class defines a relation between types

© Eric Tanter S

Wednesday, April 17, 13

data Aspect a b ¢ d = Aspect (PC a b) (Advice c d)

need to ensure that the matched type a—b
Is less general than the type of the advice c—d

A multi-parameter type class defines a relation between types

data Aspect a b ¢ d = (LessGen (a-b) (c-d)) =

Aspect (PC a b) (Advice c d)

© Eric Tanter S

Wednesday, April 17, 13

data Aspect a b ¢ d = Aspect (PC a b) (Advice c d)

need to ensure that the matched type a—b
Is less general than the type of the advice c—d

A multi-parameter type class defines a relation between types

data Aspect a b cd = .(LessGen (aabX<(Cad)if=$

© Eric Tanter S

Wednesday, April 17, 13

data PC a b = PC (forall a b. JP a b - Bool)

© Eric Tanter 52

Wednesday, April 17, 13

data PCja b§= PC (forall a b. JP a b - Bool

how do we get
the matched type?

© Eric Tanter 52

Wednesday, April 17, 13

data PC a b = PC (forall a b. JP a b - Bool) how do we get
the matched type?

primitive pointcut designators

pcCall, pcType :: (a - b) - PCab

© Eric Tanter 32

Wednesday, April 17, 13

data PC a b = PC (forall a b. JP a b - Bool) how do we get
the matched type?

primitive pointcut designators
pcCall, pcType :: (a - b) - PCab

logical combinators

© Eric Tanter 32

Wednesday, April 17, 13

data PC a b = PC (forall a b. JP a b - Bool) how do we get
the matched type?

primitive pointcut designators
pcCall, pcType :: (a - b) - PCab

logical combinators

pcAnd :: PCab-PCcd-PCef

© Eric Tanter 32

Wednesday, April 17, 13

now do we g

the matched type?

primitive pointcut designators

pcCall, pcType :: (a - b) - PCab

logical combinators

pcAnd :: PCab-PCcd-PCef pcl :: PC Int Int

© Eric Tanter 32

Wednesday, April 17, 13

Cowoswa OINCUS N
“how do we get

the matched type?

primitive pointcut designators

pcCall, pcType :: (a - b) - PCab

logical combinators

pcAnd :: PCab-PCcd-PCef PC Int Int

© Eric Tanter 32

Wednesday, April 17, 13

Cowoswa OINCUS N
“how do we get

the matched type?

primitive pointcut designators

pcCall, pcType :: (a - b) - PCab

logical combinators

pcAnd :: PCab-PCcd-PCef PC Int Int

: PC Int Int

© Eric Tanter 32

Wednesday, April 17, 13

Cowoswa OINCUS N
“how do we get

the matched type?

primitive pointcut designators

pcCall, pcType :: (a - b) - PCab

logical combinators

pcAnd :: PCab-PCab-PCab PC Int Int

: PC Int Int

© Eric Tanter 32

Wednesday, April 17, 13

now do we g

the matched type?

primitive pointcut designators

pcCall, pcType :: (a - b) - PCab

logical combinators

pcAnd :: PCab-PCab-PCab pcl :: PC Int Int
pcNot :: PCa b - PCcd

© Eric Tanter 32

Wednesday, April 17, 13

now do we g

the matched type?

primitive pointcut designators

pcCall, pcType :: (a - b) - PCab

logical combinators

pcAnd :: PCab-PCab-PCab pcl :: PC Int Int

pcNot :: PCa b - PCcd
pcOr :: PCab-PCcd-PCef

© Eric Tanter 32

Wednesday, April 17, 13

now do we g

the matched type?

primitive pointcut designators

pcCall, pcType :: (a - b) - PCab

logical combinators
pcAnd :: PCab-PCab-PCab

pcl :: PC Int Int
pc2 :: PC Int Bool

pcNot :: PCa b - PC cd

pcOr :: PCab-PCcd-PCef

© Eric Tanter 52

Wednesday, April 17, 13

data PC a b = PC (forall a b. JP a b - Bool) how do we get
the matched type?

primitive pointcut designators

pcCall, pcType :: (a - b) - PCab

logical combinators

pcAnd :: PCab-PCab-PCab

pcNot :: PCa b - PC cd
pcOr :: PCab-PCcd-PCef

pcl :: PC Int Int
pc2 :: PC Int Bool

: PC

Int a

© Eric Tanter 52

Wednesday, April 17, 13

data PC a b = PC (forall a b. JP a b - Bool) how do we gat

the matched type?

primitive pointcut designators

pcCall, pcType :: (a - b) - PCab

logical combinators

pcAnd :: PCab-PCab-PCab
pcNot :: PCa b - PC cd

pcl :: PC Int Int
pc2 :: PC Int Bool

: PC

pcOr :: (LeastGen (a-b) (c-d) (e-f)) =

Int a
PCab-PCcd-PCef

© Eric Tanter 52

Wednesday, April 17, 13

now do we g

the matched type?

primitive pointcut designators

pcCall, pcType :: (a - b) - PCab

logical combinators

pcAnd :: PCab-PCab-PCab
pcNot :: PCa b - PC cd

rely on anti-unification

© Eric Tanter 52

Wednesday, April 17, 13

_AOVANTAGES OF THE APPROACH rrabwems.cona

© Eric Tanter >3
Wednesday, April 17, 13

Type soundness
« proof follows from correctness of Least(en

o much simpler than AspectVIL (ad hoc calculus & type system]

© Eric Tanter 33

Wednesday, April 17, 13

Type soundness
« proof follows from correctness of Least(en

o much simpler than AspectVIL (ad hoc calculus & type system]

More expressive

o first-class advice, extensible set of pointcut designators,
bounded polymorphism (type classes]

© Eric Tanter 33

Wednesday, April 17, 13

Type soundness
« proof follows from correctness of Least(en

o much simpler than AspectVIL (ad hoc calculus & type system]

More expressive

o first-class advice, extensible set of pointcut designators,
bounded polymorphism (type classes]

Compact implementation
o 1K vs. 15-25K for AspectML and AspectualCaml

© Eric Tanter 33

Wednesday, April 17, 13

Type soundness
« proof follows from correctness of Least(en

o much simpler than AspectVIL (ad hoc calculus & type system]

More expressive

o first-class advice, extensible set of pointcut designators,
bounded polymorphism (type classes]

Compact implementation
o 1K vs. 15-25K for AspectML and AspectualCaml

Monadic embedding as a Haskell library

© Eric Tanter 33

Wednesday, April 17, 13

Effects

© Eric Tanter >4

Wednesday, April 17, 13

"' Can we control what advice can do? §
==, (proceed, args/return, side effects] |

© Eric Tanter -

Wednesday, April 17, 13

© Eric Tanter >>
Wednesday, April 17, 13

Type soundness does not tell much

o control effects through proceed?

o arbitrary effects?

© Eric Tanter 55

Wednesday, April 17, 13

Type soundness does not tell much
o control effects through proceed?

o arbitrary effects?

Expressive aspect specifications
o black-box behavioral contracts [Skatiniotis, 2004; Zhao, 2003]...

o control effects [Rinard, 2004]
o translucid contracts [Bagherzadeh, 2011]

« Mmodel checking [Katz, 2003; Krishnamurthi, 2004]...

© Eric Tanter 35

Wednesday, April 17, 13

© Eric Tanter 36

Wednesday, April 17, 13

© Eric Tanter 36

Wednesday, April 17, 13

© Eric Tanter 36

Wednesday, April 17, 13

© Eric Tanter 36

Wednesday, April 17, 13

The Haskell type system deals with effects!

© Eric Tanter 36

Wednesday, April 17, 13

You NEED T0 KNoWw ABOUT MONADS (ior i o

© Eric Tanter >7
Wednesday, April 17, 13

ALL YOU NEEO TO KNow ABOUT MONAOS (for this talk]

Purlty IS the default
foo Int - Int

© Eric Tanter >7
Wednesday, April 17, 13

ALL You NEED TO KNow ABOUT MONADS (for this tak)

Purlty IS the default
foo Int - Int

Side effects reflected in types
foo :: Int - I0 Int

© Eric Tanter 37

Wednesday, April 17, 13

ALL You NEED TO KNow ABOUT MONADS (for this tak)

Purlty IS the default
foo Int - Int

Side effects reflected in types
foo :: Int - I0 Int

foo :: Int - (State Char) Int

© Eric Tanter 37

Wednesday, April 17, 13

ALL You NEED TO KNow ABOUT MONADS (for this tak)

Purlty IS the default
foo Int - Int

Side effects reflected in types
foo :: Int aingnt

foo :: Int - (State Char) Int

monads

© Eric Tanter 37

Wednesday, April 17, 13

ALL You NEED TO KNow ABOUT MONADS (for this tak)

Purlty IS the default
foo Int - Int

Side effects reflected in types
foo :: Int - I0 Int

foo :: Int - (State Char) Int

© Eric Tanter 37

Wednesday, April 17, 13

NEED 70 KNOW ABOUT MONADS (o s o

Purity Is the default

foo :: Int - Int

Side effects reflected in types

foo :: Int - I0 Int

foo :: Int - (State Char) Int

Several effects

foo :: Int - App Int

© Eric Tanter 57

Wednesday, April 17, 13

You NEED T0 KNow ABOUT MONADS (for e e

Purity Is the default

foo :: Int - Int

Side effects reflected in types

foo :: Int - I0 Int

foo :: Int - (State Char) Int

Several effects

foo :: Int - App Int

type App = ReaderT AppConf (StateT AppState I0)

© Eric Tanter 57

Wednesday, April 17, 13

You NEED T0 KNOW ABOUT MONADS or it

Purity Is the default
foo :: Int - Int

Side effects reflected in types
foo :: Int - I0 Int

foo :: Int - (State Char) Int

Several effects
foo :: Int - App Int

type App ='Rqung AppConf (SthgT“AppState 10

monad transformers

© Eric Tanter 37

Wednesday, April 17, 13

You NEED T0 KNow ABOUT MONADS (for e e

Purity Is the default

foo :: Int - Int

Side effects reflected in types

foo :: Int - I0 Int

foo :: Int - (State Char) Int

Several effects

foo :: Int - App Int

type App = ReaderT AppConf (StateT AppState I0)

© Eric Tanter 57

Wednesday, April 17, 13

NEED T0 KNoW ABOUT MONADS (ror i o

Purity Is the default
foo :: Int - Int

Side effects reflected in types
foo :: Int - I0 Int

foo :: Int - (State Char) Int

Several effects “effect stack”

foo :: Int - App Int

type App = ReaderT AppConf (StateT AppState I0)

© Eric Tanter 57

Wednesday, April 17, 13

NEED T0 KNoW ABOUT MONADS (ror i o

Purity Is the default
foo :: Int - Int

Side effects reflected in types
foo :: Int - I0 Int

foo :: Int - (State Char) Int

|

Several effects “effect stack”

foo :: Int - App Int

type App = ReaderT AppConf (StateT AppState I0)

© Eric Tanter 57

Wednesday, April 17, 13

You NEED T0 KNOW ABOUT MONADS or it

Purity Is the default
foo :: Int - Int

Side effects reflected in types
foo :: Int - I0 Int

foo :: Int - (State Char) Int

e e T —
Several effects “effect stack”

foo :: Int - App Int

type App = ReaderT AppConf (StateT AppState I0)

© Eric Tanter 57

Wednesday, April 17, 13

NEED T0 KNoW ABOUT MONADS for i ok

Purity Is the default
foo :: Int - Int

Side effects reflected in types
foo :: Int - I0 Int

' AReade»ronf

foo :: Int - (State Char) Int

(@] |
.
Several effects “effect stack”
foo :: Int - App Int
type App = ReaderT AppConf (StateT AppState I0)
© Eric Tanter 57

Wednesday, April 17, 13

NEED T0 KNoW ABOUT MONADS (ror i o

Purity Is the default
foo :: Int - Int

Side effects reflected in types
foo :: Int - I0 Int

| Reader AppCon |

foo :: Int - (State Char) Int

|

Several effects “effect stack”

foo :: Int - App Int

type App = ReaderT AppConf (StateT AppState I0)

foo :: (Monad m) = Int - m Int

© Eric Tanter 37

Wednesday, April 17, 13

You NED To KNow A8

QNAOS (for this talk]

Purity Is the default

foo :: Int - Int

Side effects reflected in types
foo :: Int - I0 Int

foo :: Int - (State Char) Int

Several effects

' AReade»ronf

|_State AppState |

|

Er——

foo :: Int - App Int

type App = ReaderT AppConf (StateT AppState I0)

foo :: (Monad m) = Int - m Int

© Eric Tanter

(we’ll omit the constraints on monadic type variables] 57

Wednesday, April 17, 13

y N joint work with

Ismael Figueroa
Nicolas Tabareau
[Tabareau, 2013]

Parametrize the model by the effect stack

data JP a b
data PC a b = PC (forall a’ b’. JP a’ b’ - Bool)
type Advice (a - b) ~a-0>

data Aspect =
(LessGen -d)) = Aspect (PC a b) (Advice c d)

© Eric Tanter 58

Wednesday, April 17, 13

y N joint work with

Ismael Figueroa
Nicolas Tabareau

. Tab ,2013
Parametrize the model by the effect stack [abareay |

data JP ma b JP (a - mb) a
data PCma b = PC (forall a’ b’. m JP a’ b’ - m Bool)
type Advice ma b =(a-mb) -a->mb

a
data Aspect ma b c d =
(LessGen (a-b) (c-d)) = Aspect (PC m a b) (Advice m c d)

© Eric Tanter 58

Wednesday, April 17, 13

y N joint work with

Ismael Figueroa
Nicolas Tabareau

. Tab ,2013
Parametrize the model by the effect stack [Tabareay |

data JP ma b JP (a - mb) a
PC (forall a’ b’. m JP a’ b’ - m Bool)

data PCma b =
type Advice ma b =(a-mb) -a->mb
data Aspect ma b c d =

(LessGen (a-b) (c-d)) = Aspect (PC m a b) (Advice m c d)

Computation happens within the AOT monad transformer

newtype AOT m a = ...

(used to pass the aspect environment around]

© Eric Tanter 58

Wednesday, April 17, 13

POINTCUTS

© Eric Tanter 'i >9
Wednesday, April 17, 13

EMBEODING TYPE CONSTRANTS IN POINTCUTS

module Fib (fib, pcFib) where

© Eric Tanter 59

Wednesday, April 17, 13

EMBEODING TYPE CONSTRANTS IN POINTCUTS

module Fib (fib, pcFib) where

innerFib = ...
fib = ...

© Eric Tanter 59

Wednesday, April 17, 13

EMBEODING TYPE CONSTRANTS IN POINTCUTS

module Fib (fib, pcFib) where

innerFib = ...
fib = ...

pcFib :: PC m Int Int
pcFib = pcCall innerFib

© Eric Tanter 39

Wednesday, April 17, 13

EMBEODING TYPE CONSTRANTS IN POINTCUTS

module Fib (fib, pcFib) where

innerFib = ...
fib = ...

pcFib :: PC m Int Int
pcFib = pcCall innerFib

© Eric Tanter 39

Wednesday, April 17, 13

EMBEODING TYPE CONSTRANTS IN POINTCUTS

module Fib (fib, pcFib) where

innerFib = ...
fib = ...

pcFib :: PC m Int Int
pcFib = pcCall innerFib

comb :: t - Advice m a b

© Eric Tanter 59

Wednesday, April 17, 13

EMBEODING TYPE CONSTRANTS IN POINTCUTS

module Fib (fib, pcFib) where

innerFib = ...
fib = ...

pcFib :: PC m Int Int
pcFib = pcCall innerFib

© Eric Tanter 39

Wednesday, April 17, 13

EMBEODING TYPE CONSTRANTS IN POINTCUTS

module Fib (fib, ppcFib) where

innerFib = ...
fib = ...

| ppcFib :: ProtectedPC m Int Int t a b}
ppcFib = protectPC pcFib comb)

pcFib :: PC m Int Int
pcFib = pcCall innerFib

comb :: t - Advice ma b

© Eric Tanter 59

Wednesday, April 17, 13

EMBEODING TYPE CONSTRANTS IN POINTCUTS

module Fib (fib, ppcFib) where

innerFib = ...
fib = ...

| ppcFib :: ProtectedPC m Int Int t a b} myadvice :: t
ppcFib = protectPC pcFib comb | myadvice = ...

pcFib :: PC m Int Int
pcFib = pcCall innerFib

comb :: t - Advice ma b

© Eric Tanter 59

Wednesday, April 17, 13

(EM8EODING TYPE CONSTRAINTS IN POINTCUTS

module Fib (fib, ppcFib) where

innerFib = ...
fib = ...

| ppcFib :: ProtectedPC m Int Int t a b} myadvice ::
ppcFib = protectPC pcFib comb | myadvice = ...

pcFib :: PC m Int Int

comb :: t - Advice ma b

pcFib = pcCall innerFib i myaspect = aspect ppcFib myadvice

© Eric Tanter 59

Wednesday, April 17, 13

(EM8EODING TYPE CONSTRAINTS IN POINTCUTS

module Fib (fib, ppcFib) where

innerFib = ...
fib = ...

M opcFib :: ProtectedPC m Int Int t a b} myadvice ::{t 8
ppcFib = protectPC pcFib comb | myadvice = .4.

pcFib :: PC m Int Int | _
pcFib = pcCall innerFib j myaspect = aspect ppcFib myadvice

comb :: t - Advice ma b

© Eric Tanter 59

Wednesday, April 17, 13

(EM8EODING TYPE CONSTRAINTS IN POINTCUTS

module Fib (fib, ppcFib) where

innerFib = ...
fib = ...

M opcFib :: “th ol myadvice ::TT§
ppcFib = protectPC pcFib comb \"i_ | myadvice = ;g-

pcFib :: PC m Int Int | , _
pcFib = pcCall innerFib j myaspect = aspect ppcFib myadvice

comb :: t - Advice ma b

© Eric Tanter 59

Wednesday, April 17, 13

EMBEODING TYPE CONSTRANTS IN POINTCUTS

module Fib (fib, ppcFib) where

innerFib = ...
fib = ...

M opcFib :: “th ol myadvice ::TT§
ppcFib = protectPC pcFib comb \"i_ | myadvice = ;g-

pcFib :: PC m Int Int | , _
pcFib = pcCall innerFib j myaspect = aspect ppcFib myadvice

comb :: t - Advice ma b

control effects & side effects

© Eric Tanter 59

Wednesday, April 17, 13

[Rinard, 2004]

© Eric Tanter 60
Wednesday, April 17, 13

definition
[Rinard, 2004]
combination free
replacement no proceed

proceed once

augmentation
same arg/ ret

pr‘oceed at most once

narrowin
d same arg/ ret

© Eric Tanter 60

Wednesday, April 17, 13

CoNTROL FLOW EFFECTS

EffectiveAdvice
[Qliveira, 2010]

definition type
[Rinard, 2004]

replacement no proceed

proceed once

augmentation
same arg/ ret

pr‘oceed at most once

narrowin
d same arg/ ret

© Eric Tanter 60

Wednesday, April 17, 13

CoNTROL FLOW EFFECTS

EffectiveAdvice
[Qliveira, 2010]

definition type
[Rinard, 2004]

NO access to proceed

replacement no proceed Replace m a b

proceed once

augmentation
same arg/ ret

pr‘oceed at most once

narrowin
d same arg/ ret

© Eric Tanter 60

Wednesday, April 17, 13

CoNTROL FLOW EFFECTS

EffectiveAdvice
[Qliveira, 2010]

definition type
[Rinard, 2004]

NO access to proceed

replacement no proceed Replace m a b

pair before/ after

: proceed once
augmentation Augment m a b c
same arg/ ret

pr‘oceed at most once

narrowin
d same arg/ ret

© Eric Tanter 60

Wednesday, April 17, 13

CoNTROL FLOW EFFECTS

EffectiveAdvice
[Oliveira, 2010]

definition type
[Rinard, 2004]

NO access to proceed

replacement no proceed Replace m a b

pair before/ after
: proceed once
augmentation Augment m a b c
same arg/ ret

proceed at most once predicate + rep + aug

same arg/ret

narrowing

© Eric Tanter 60

Wednesday, April 17, 13

CoNTROL FLOW EFFECTS

EffectiveAdvice
[Oliveira, 2010]

definition type
[Rinard, 2004]

NO access to proceed

replacement no proceed Replace m a b

pair before/ after
: proceed once
augmentation Augment m a b c
same arg/ ret

proceed at most once predicate + rep + aug

same arg/ret

narrowing

memoization?
© Eric Tanter 60

Wednesday, April 17, 13

CoNTROL FLOW EFFECTS

EffectiveAdvice
[Oliveira, 2010]

definition type
[Rinard, 2004]

NO access to proceed

replacement no proceed Replace m a b

pair before/ after
: proceed once
augmentation Augment m a b c
same arg/ ret

proceed at most once predicate + rep + aug

same arg/ret

narrowing

memoization?
© Eric Tanter 60

Wednesday, April 17, 13

type Narrow m a b ¢ = (a - m Bool, Augment m a b ¢, Replace m a b)

© Eric Tanter 6l

Wednesday, April 17, 13

type Narrow m a b ¢ = (a - m Bool, Augment m a b ¢, Replace m a b)

combinator that requires Narrow

narrow :: Narrow m a b ¢ - Advice m a b

© Eric Tanter 6l

Wednesday, April 17, 13

VICE

type Narrow m a b ¢ = (a - m Bool, Augment m a b ¢, Replace m a b)

combinator that requires Narrow

narrow :: Narrow m a b ¢ - Advice m a b

narrow (pred, aug, rep) proceed x =

do b <- pred x
if b then replace rep proceed X
else augment aug proceed Xx

© Eric Tanter 6l

Wednesday, April 17, 13

type Narrow m a b ¢ = (a - m Bool, Augment m a b ¢, Replace m a b)

combinator that requires Narrow

narrow :: Narrow m a b ¢ - Advice m a b

© Eric Tanter 6l

Wednesday, April 17, 13

type Narrow m a b ¢ = (a - m Bool, Augment m a b ¢, Replace m a b)

combinator that requires Narrow

narrow :: Narrow m a b ¢ - Advice m a b

module Fib (fib, ppcFib) where

© Eric Tanter 6l

Wednesday, April 17, 13

type Narrow m a b ¢ = (a - m Bool, Augment m a b ¢, Replace m a b)

combinator that requires Narrow

narrow :: Narrow m a b ¢ - Advice m a b

module Fib (fib, ppcFib) where

narrow

e e e

© Eric Tanter 6l

Wednesday, April 17, 13

type Narrow m a b ¢ = (a - m Bool, Augment m a b ¢, Replace m a b)

combinator that requires Narrow

narrow :: Narrow m a b ¢ - Advice m a b

module Fib (fib, ppcFib) where

memoilze :: Narrow ...
narrow emoize arro

e e e

memolze = ...

© Eric Tanter 6l

Wednesday, April 17, 13

VICE

type Narrow m a b ¢ = (a - m Bool, Augment m a b ¢, Replace m a b)

combinator that requires Narrow

narrow :: Narrow m a b ¢ - Advice m a b

module Fib (fib, ppcFib) where

memoilze :: Narrow ...

narrow

memolze = ...

© Eric Tanter

Wednesday, April 17, 13

© Eric Tanter 62
Wednesday, April 17, 13

Reason about interferences base/aspects [Oliveira, 2010]

© Eric Tanter 62

Wednesday, April 17, 13

Reason about interferences base/aspects [Oliveira, 2010]

© Eric Tanter 62

Wednesday, April 17, 13

{ Errord |

| Readerc |

© Eric Tanter 62

Wednesday, April 17, 13

NIAOT t m a

© Eric Tanter 62

Wednesday, April 17, 13

NIAOT t m a

base effects

© Eric Tanter 62

Wednesday, April 17, 13

NIAOT t m a

base effects

© Eric Tanter 62

Wednesday, April 17, 13

NIAOT t m a

base effects

rely on parametricity to enforce non-interference

© Eric Tanter 62

Wednesday, April 17, 13

NIAOT t m a

base effects

rely on parametricity to enforce non-interference
type NIAdvice t a b = forall m. Advice (NIAOT tm) a b

© Eric Tanter 62

Wednesday, April 17, 13

NIAOT t m a

base effects

rely on parametricity to enforce non-interference
type NIAdvice t a b = forall m. Advice (NIAOT t m) a b

e s

© Eric Tanter 62

Wednesday, April 17, 13

NIAOT t m a

base effects

rely on parametricity to enforce non-interference
type NIAdvice t a b = forall m. Advice (NIAOT t m) a b

e s

type NIPC t a b = forall m. PC (NIAOT t m) a b

© Eric Tanter 62

Wednesday, April 17, 13

_EFFECT INTERFERENCE

Reason about interferences base/aspects [Oliveira, 2010]

aspect effects

NIAOT t m a

base effects

rely on parametricity to enforce non-interference
type NIAdvice t a b = forall m. Advice (NIAOT t m) a b

e s

type NIPC t a b = forall m. PC (NIAOT t m) a b

Qe T

type NIBase m a b = forall t. a —> NIAOT t m b

© Eric Tanter

Wednesday, April 17, 13

(ENFORCING NON-INTEQFERING ADVICE

type NIAdvice t a b = forall m. Advice (NIAOT t m) a b

© Eric Tanter 63
Wednesday, April 17, 13

_ENFORCING NON-INTERFERING ADVICE

type NIAdvice t a b = forall m. Advice (NIAOT t m) a b

combinator that requires NIAdvice
niAdvice :: NIAdvice t a b —> Advice (NIAOT t m) a b

© Eric Tanter 63

Wednesday, April 17, 13

_ENFORCING NON-INTERFERING ADVICE

type NIAdvice t a b = forall m. Advice (NIAOT t m) a b

combinator that requires NIAdvice
niAdvice :: NIAdvice t a b —> Advice (NIAOT t m) a b

module Fib (fib, ppcFib) where

© Eric Tanter 63

Wednesday, April 17, 13

_ENFORCING NON-INTERFERING ADVICE

type NIAdvice t a b = forall m. Advice (NIAOT t m) a b

combinator that requires NIAdvice
niAdvice :: NIAdvice t a b —> Advice (NIAOT t m) a b

module Fib (fib, ppcFib) where

) Advicqw

S o —rerenee

© Eric Tanter 63

Wednesday, April 17, 13

_ENFORCING NON-INTERFERING ADVICE

type NIAdvice t a b = forall m. Advice (NIAOT t m) a b

combinator that requires NIAdvice
niAdvice :: NIAdvice t a b —> Advice (NIAOT t m) a b

module Fib (fib, ppcFib) where

memoize :: NIAdvice ...

Advice .
Sl memolze = ...

S o —rerenee

© Eric Tanter 63

Wednesday, April 17, 13

© Eric Tanter 64
Wednesday, April 17, 13

extend Effective Advice to deal with quantification

© Eric Tanter 64

Wednesday, April 17, 13

extend Effective Advice to deal with quantification

extend Open Modules to deal with effects

© Eric Tanter 64

Wednesday, April 17, 13

extend Effective Advice to deal with quantification

extend Open Modules to deal with effects

Challenges

© Eric Tanter 64

Wednesday, April 17, 13

extend Effective Advice to deal with quantification

extend Open Modules to deal with effects

Challenges

o beyond the base/aspects distinction

© Eric Tanter 64

Wednesday, April 17, 13

extend Effective Advice to deal with quantification

extend Open Modules to deal with effects

Challenges

o beyond the base/aspects distinction

e COMpose restrictions (eg. non-interfering + narrowing]

© Eric Tanter 64

Wednesday, April 17, 13

extend Effective Advice to deal with quantification

extend Open Modules to deal with effects

Challenges

o beyond the base/aspects distinction
e COMpose restrictions (eg. non-interfering + narrowing]
o type system challenges

o higher-rank polymorphism

o Managing the monadic stack: views [Schrijvers, 201 1]

© Eric Tanter 64

Wednesday, April 17, 13

CONCLUSIONS

© Eric Tanter 66

Wednesday, April 17, 13

Scoping
« balance flexibility / guarantees

o practical & efficient implementations

e New models

© Eric Tanter 66

Wednesday, April 17, 13

Scoping
« balance flexibility / guarantees

o practical & efficient implementations

e New models

Interfaces
« time to try them out for real

« Need a gradual adoption path

© Eric Tanter 66

Wednesday, April 17, 13

Scoping
« balance flexibility / guarantees

o practical & efficient implementations

e New models

Interfaces
« time to try them out for real

« Need a gradual adoption path

Typing

o Holy Grail: expressiveness vs. complexity

© Eric Tanter 66

Wednesday, April 17, 13

Scoping
« balance flexibility / guarantees

o practical & efficient implementations

e New models

Interfaces
« time to try them out for real

« Need a gradual adoption path

Typing

o Holy Grail: expressiveness vs. complexity

« exploit the [existing] type system or design specific analyses?

« lightweight & practical

© Eric Tanter 66

Wednesday, April 17, 13

AMIN

L)

oPECT

IENTATION

To be continued...

© Eric Tanter
Wednesday, April 17, 13

[Aldrich, 2005] Jonathan Aldrich: Open Modules: Modular Reasoning About Advice. ECOOP 2005:144-168

[Bagherzadeh, 201 1] Mehdi Bagherzadeh, Hridesh Rajan, Gary T. Leavens, Sean L. Mooney: Translucid contracts: expressive specification and
modular verification for aspect-oriented interfaces. AOSD 2011:141-152

[Bodden, 201 1] Eric Bodden: Closure joinpoints: block joinpoints without surprises. AOSD 2011:117-128
[Bodden, 2013] Eric Bodden, Eric Tanter, Milton Inostroza. Join Point Interfaces for Safe and Flexible Decoupling of Aspects. TOSEM, to appear.
[Boudol, 2004] Gérard Boudol: A Generic Membrane Model (Note). Global Computing 2004: 208-222

[Brichau, 2008] Johan Brichau, Andy Kellens, Kris Gybels, Kim Mens, Robert Hirschfeld, Theo D'Hondt: Application-specific models and pointcuts using
a logic metalanguage. Computer Languages, Systems & Structures (CL) 34(2-3):66-82 (2008)

[De Fraine, 2008] Bruno De Fraine, Mario Studholt, Viviane Jonckers: StrongAspectd: flexible and safe pointcut/advice bindings. AOSD 2008:60-71
[De Fraine, 2010] Bruno De Fraine, Erik Ernst, Mario Stdholt: Essential AOP: The A Calculus. ECOOP 2010:101-125
[Figueroa, 2013] Ismael Figueroa, Nicolas Tabareau, Eric Tanter. Taming Aspects with Monads and Membranes. FOAL 2013:1-6

[Gudmundson, 2001] Stephan Gudmundson, Gregor Kiczales: Addressing Practical Software Development Issues in Aspectd with a Pointcut Interface.
Workshop on Advanced Separation of Concerns 2001

[Gybels, 2003] Kris Gybels, Johan Brichau: Arranging language features for more robust pattern-based crosscuts. AOSD 2003:60-69

[Hoffman, 2012] Kevin Hoffman, Patrick Eugster: Trading Obliviousness for Modularity with Cooperative Aspect-oriented Programming. TOSEM, to
appear.

[Inostroza, 2011] Milton Inostroza, Eric Tanter, Eric Bodden: Join point interfaces for modular reasoning in aspect-oriented programs. SIGSOFT
FSE 2011: 508-511

[Jagadeesan, 2006] R. Jagadeesan, A. Jeffrey, and J. Riely. Typed parametric polymor- phism for aspects. Science of Computer Programming, 63(3):
267 - 296, 2006.

[Katz, 2003] Shmuel Katz, Marcelo Sihman: Aspect Validation Using Model Checking. Verification: Theory and Practice 2003:373-394

[Kiczales, 1997] Gregor Kiczales, John Lamping, Cristina Videira Lopes, Chris Maeda, Anurag Mendhekar, Gail C. Murphy: Open Implementation
Design Guidelines. ICSE 1997:481-490

[Kiczales, 2005] Gregor Kiczales, Mira Mezini: Separation of Concerns with Procedures, Annotations, Advice and Pointcuts. ECOOP 2005:195-213

[Krishnamurthi, 2004] Shriram Krishnamurthi, Kathi Fisler, Michael Greenberg: Verifying aspect advice modularly. SIGSOFT FSE 2004:137-146

Wednesday, April 17, 13

[Moret, 2011] Philippe Moret, Walter Binder, Eric Tanter: Polymorphic bytecode instrumentation. AOSD 2011: 129-140
[Rajan, 2008] Hridesh Rajan, Gary T. Leavens: Ptolemy: A Language with Quantified, Typed Events. ECOOP 2008:155-179

[Rinard, 2004] Martin C. Rinard, Alexandru Salcianu, Suhabe Bugrara: A classification system and analysis for aspect-oriented programs. SIGSOFT FSE
2004: 147-158

[Oliveira, 2010] Bruno C. d. S. Oliveira, Tom Schrijvers, William R. Cook: EffectiveAdvice: disciplined advice with explicit effects. AOSD 2010: 109-120
[Ostermann, 2005] Klaus Ostermann, Mira Mezini, Christoph Bockisch: Expressive Pointcuts for Increased Modularity. ECOOP 2005: 214-240

[Schmitt, 2004] Alan Schmitt, Jean-Bernard Stefani: The Kell Calculus: A Family of Higher-Order Distributed Process Calculi. Global Computing 2004
146-178

[Schrijvers, 201 1] Tom Schrijvers, Bruno C. d. S. Oliveira: Monads, zippers and views: virtualizing the monad stack. ICFP 2011: 32-44
[Skatiniotis, 2004] Therapon Skatiniotis, David H. Lorenz: Cona: aspects for contracts and contracts for aspects. OOPSLA Companion 2004: 196-197

[Steimann, 2010] Friedrich Steimann, Thomas Pawlitzki, Sven Apel, Christian K&stner: Types and modularity for implicit invocation with implicit
announcement. ACM Trans. Softw. Eng. Methodol. 20(1): (2010)

[Tabareau, 2013] Nicolas Tabareau, Ismael Figueroa, Eric Tanter. A Typed Monadic Embedding of Aspects. AOSD 2013:171-184.
[Tanter, 2008] Eric Tanter: Expressive scoping of dynamically-deployed aspects. AOSD 2008:168-179
[Tanter, 2009] Eric Tanter: Beyond static and dynamic scope. DLS 2009:3-14

[Tanter, 2010a] Eric Tanter, Johan Fabry, Rémi Douence, Jacques Noyé, Mario Siidholt: Scoping strategies for distributed aspects. Sci. Comput.
Program. (SCP) 75(12):1235-1261 (2010)

[Tanter, 2010b] Eric Tanter: Execution levels for aspect-oriented programming. AOSD 2010:37-48

[Tanter, 2010c] Eric Tanter, Philippe Moret, Walter Binder, Danilo Ansaloni: Composition of dynamic analysis aspects. GPCE 2010: 113-122
[Tanter, 2012] Eric Tanter, Nicolas Tabareau, Rémi Douence: Taming aspects with membranes. FOAL 2012:3-8

[Toledo, 2011] Rodolfo Toledo, Eric Tanter: Access Control in JavaScript. IEEE Software 28(5): 76-84 (2011)

[Toledo, 2012] Rodolfo Toledo, Angel Nufiez, Eric Tanter, Jacques Noyé: Aspectizing Java Access Control. IEEE Trans. Software Eng. 38(1):
101-117 (2012)

[Toledo, 2013] Rodolfo Toledo, Eric Tanter. Secure and Modular Access Control with Aspects. AOSD 2013:157-170

[Zhao, 2003] Jianjun Zhao, Martin C. Rinard: Pipa: A Behavioral Interface Specification Language for Aspectd. FASE 2003:150-165

Wednesday, April 17, 13

© Eric Tanter 70

Wednesday, April 17, 13

