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Modular implementation of crosscutting concerns
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A novel programming language mechanism
o« INnteresting in its own right!
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join points
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o0 0 0 o join points
pointcut change(Shape s):
pointcut execution(* Shape+.setx(..))
&& this(s)
advice
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0 00 0 o join points
pointcut change(Shape s):
pointcut execution(x Shape+.setx(..
&& this(s)
advice

after(Shape s): change(s){

// update observers

}
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"around” advice can ignore It
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a join point

' 4

"around” advice can ignore It
or proceed
and proceed...

this is more than 1-way notifications
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crosscutting Is a real problem

pointcut/advice Is effective for handling crosscutting
o behavioral reflection for mere mortals

« More declarative, esp. wrt quantification (pointcuts]

o More amenable to analysis (or so It seems]

still not there yet
« lots of open challenges
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®
e Every execution step is a join point
@
o pointcuts “see” them all
o advice can do anything Q

o proceed 0..n times
o Change arguments, return value

o arbitrary side effects
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FEATURE APPLICATION
all execution steps are join points, unanticipated evolution,
pointcuts see them all “obliviousness”
advice that does not proceed memoization, proxies, ...
advice that proceeds n times retry, redundancy, ...
changing arguments/return encryption, comfort zone, ...
arbitrary side effects almost all aspects!
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void around(): call(int Fib.calc(int)){
System.out = myPrivateStream;

return -1;

Break semantics!
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void around(): call(int Fib.calc(int)){
System.out = myPrivateStream;

return -1;

s
Break semantics!

void around(): call(void SecurityManager.checkx(..)){}

No more security!

void around(Person p): execution(void *()) && this(p){
proceed(new Person());

}

ClassCastException!

before(Person p): execution(x *(..)) && this(p) {
System.out.println(“person active: “ + p.getName());

}

StackOverflow!
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void around(): call(int Fib.calc(int)){
System.out = myPrivateStream;

return -1;

Break semantics!

void around(): call(void SecurityManager.checkx(..)){}

No more security!

void around(Person p): execution(void *()) && this(p){
proceed(new Person());

}

ClassCastException!

before(Person p): execution(x *@.)) & this(p) { N\
System.out.println(“person active: “ + p-getName()‘-

}

StackOverflow!
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Scoping
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{ Can we restrict guantification to

SCDplng well-defined boundaries?

What abstractions are meaningful? }
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Global visibility of join points exacerbates many issues
o accidental matches

e Spurious interferences
» advice loops

o EtC.
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Explicit announcement of join points
o explicit join points [Hoffman, 2012]

« quantified typed events [Rajan, 2008]
o Closure join points [Bodden, 2011]
« Open applications

o EtcC.
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Explicit announcement of join points
o explicit join points [Hoffman, 2012]

« quantified typed events [Rajan, 2008]
o Closure join points [Bodden, 2011]
« Open applications

o EtcC.

Expressive pointcuts
« rich pointcuts for robust patterns [Gybels, 2003], [Ostermann, 2005]

» application-specific pointcuts [Brichau, 2008]
o annotations [Kiczales, 2005]

o EtcC.
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Global quantification
« Just as bad as global mutable variables!
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Different scoping disciplines for identifiers
« lexical scope

« dynamic scope
o thread-local

e per object, class, module
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Global quantification
« Just as bad as global mutable variables!

Different scoping disciplines for identifiers
« lexical scope

« dynamic scope
o thread-local

e per object, class, module

All have been explored for aspects as well
o Caesard, AspectsScheme, Eos, Aspectd...
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SCOPED QUANTIFI ADVANCED MODELS

Scoping strategies [Tanter, 2008,/2009,2010a]
« killer app: access control [Toledo, 2011/ 2012,/2013]

Execution levels [Tanter, 2010b]

Vlembranes [Tanter, 2012] [Figueroa, 2013]
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SCOPED QUANTIFICATION: AOVANCED MODELS

Execution levels [Tanter, 2010b]

Vlembranes [Tanter, 2012] [Figueroa, 2013]
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COMPOSING DYNAMICANASE  Waltor Binder & oo

[Tanter, 2010c]
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[Tanter, 2010c]
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COMPOSING DYNAMICANASE  Waltor Binder & oo

[Tanter, 2010c]

- ?rof

Racer

\

program B

___ NONE CAN BE IMPLEMENTED! {until now... §
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Each aspect alters the observation of others
o Racer creates objects @

\

o Prof accesses fields
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Each aspect alters the observation of others
o Racer creates objects @

\

o Prof accesses fields

Each aspect potentially sees itself
o Infinite regression
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[Tanter, 2010b]

Structure computation in levels
« aspects stand at specific levels

o Observe computation below
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o Observe computation below
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Strong guarantee: aspect loops are avoided

joint work with
Nicolas Tabareau

Ismael Figueroa
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Strong guarantee: aspect loops are avoided

Can be implemented efficiently [Tanter, 2010c; Moret, 2011]

joint work with

\Walter Binder

Philippe Moret, Danilo Ansaloni
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Strong guarantee: aspect loops are avoided
Can be implemented efficiently [Tanter, 2010c; Moret, 2011]

Ad-hoc checks In practice
« 1/3 of all aspects in the "Aspectd in Action” book

o 18% of all pointcuts In corpus of *300 aspects

o all aspects work out-of-the-box with default level semantics
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Execution levels
e Qlve structure to computation

« Use this structure to define scoping

o COme with some properties (eg. no loop]
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MEMBRANES Fog AOP

joint work with
Nicolas Tabareau
Réemi Douence
Ismael Figueroa
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“GIVING STRUCTURE TO COMPUTATION

Programmable membranes [Boudal, 2004; Schmitt, 2004]
« INspired by membranes in biology

~ T SCIENCEPROTOLIBRARY
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[Tanter, 2012]

VWhy not use membranes for AOP?
 gives rise to flexible topological scoping

e supports control over certain effects
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[Tanter, 2012]

VWhy not use membranes for AOP?
 gives rise to flexible topological scoping

e supports control over certain effects
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[Tanter, 2012]

VWhy not use membranes for AOP?
 gives rise to flexible topological scoping

e supports control over certain effects
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ToPOLOGICAL SCOPING WITH MEMBRANES

" program

execution levels
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ToPOLOGICAL SCOPING WITH MEMBRANES

execution levels tree
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execution levels tree BJA\E
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MEMSRANES: THEORY ANO PRACTICE

[Figueroa, 201 3]
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'MEMBRANES: THEORY AND PACTICE

Wide design space

« how to create, deploy and configure membranes?
e Can membranes crosscut? organized hierarchically?

o What guarantees are expected? tradeoff?

« MAScheme, A0 Haskell [Figueroa, 2013]
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'MEMBRANES: THEORY AND PACTICE

Wide design space

« how to create, deploy and configure membranes?
e Can membranes crosscut? organized hierarchically?

o What guarantees are expected? tradeoff?

« MAScheme, A0 Haskell [Figueroa, 2013]

Exploit programmability
o ensure safety properties

« What language Is useful to program membranes?

o Kell calculus
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Can we reconcile quantification §

|nte r‘fa CES == with modular reasoning?

| What kind of static interfaces |
allow independent development?
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IssUES WITH PoINTCUT/AovicE

| class A |

‘pointcut foo() i
} ‘]
: Ky
F

i
iafter foo() )
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IssUES WITH PoINTCUT/AovicE

fragile dependencies

oblivious
= N0 Idea what Is relied upon

modular reasoning?
| iIndependent development? Y
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Wednesday, April 17, 13



© Eric Tanter 33
Wednesday, April 17, 13




Kiczales & Mezini [2005]
o fundamental issue is the crosscutting nature

« AOP makes the crosscutting concern explicit
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Kiczales & Mezini [2005]
o fundamental issue is the crosscutting nature

« AOP makes the crosscutting concern explicit

aspect-aware interfaces

| class A

épointcut foo()

3

i
iafter foo() i
W advises A,B,C
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Kiczales & Mezini [2005]
o fundamental issue is the crosscutting nature

« AOP makes the crosscutting concern explicit

aspect-aware interfaces

}wm weee s advised by X
dass A :

w advised by X

5p01ntcut fool()

ﬂafter foo()

adv1sed by B advises A,B,C

dass C
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RECOVELING ASONING

Putting pointcuts In interfaces [Gudmundson, 2001]
o Open Modules [Aldrich, 2005], etc.
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Putting pointcuts In interfaces [Gudmundson, 2001]
o Open Modules [Aldrich, 2005], etc.

i . 3
$ -‘; pointcut fool()
4 ]
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Putting pointcuts In interfaces [Gudmundson, 2001]
o Open Modules [Aldrich, 2005], etc.
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[Steimann, 2010]

 aspect X |

." 5P (- -——- éafter IP()

local quantification only!

class C exhibits JP {
pointcut JP: execution(void setX(..)) || ...

[/

}
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joinpointtype CheckingOut A{
float price;
Customer cus;

}
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joinpointtype CheckingOut A{
float price;

Customer cus;

}

pointcut CheckingOut(float price, Customer cus);

interface IFoo {

)
??7? m(float p, String s) throws 777; return type:

checked exceptions?

}
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Moouuaairy Issues

joinpointtype CheckingOut { | same information
float price; Y G A

Customer cus;

}

pointcut CheckingOut(float price, Customer cus);

interface IFoo {
?2?7? m(float p, String s) throws ?777;

return type?
checked exceptions?

}
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_JOIN PoINT %

—— Milton Inostroza
[Inostroza 20’I ’I][Bodden TDSEI\/I] Eric Bodden

“Join Point Types Revisited”
o NO fragile name dependencies

o expressive enough for safe modular type checking

jpi void CheckingOut(float price, Customer cus) throws IOException

Fix other shortcomings
« JOIN point polymorphism semantics [multiple dispatch]
« unsound use of variant typing (later)

o ELC.
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Some aspects are inherently "wide”
o dynamic analyses, system-wide properties, etc.

o require a lot of exhibit clauses
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Some aspects are inherently "wide”
o dynamic analyses, system-wide properties, etc.

o require a lot of exhibit clauses

Case study
« port existing "Law Of Demeter” checking aspect

# exhibits

LawOfDemeter 130

Cannot really ignore this kind of aspects!
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jpi JP(): execution(x *.*(..))
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_CONTROLLED GLOBAL QUANTIFICATION

jpi JP(): execution(k *.x(..

_ class A {
white box /..

}

sealed class C {

black box } /] (can still expose other JPIs]

class B {
grey box exhibits JP(): global() && !execution(x secret(..));
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}
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Modular s Unanticipated
reasoning extension points

Resolving this tension is crucial
« look back at work on Open Implementations [Kiczales, 1997]

« exploit a taxonomy of aspects
« quantification: narrow vs. wide

o life cycle: development vs. production
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[ Can we ensure that aspects do not
break type soundness?

Types =

Interaction with other features?
| (eg. polymorphism]
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Safe pointcut/advice binding
« advice can replace computation

« should not introduce runtime type errors
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« should not introduce runtime type errors

well-typed
base program

s

well-typed aspect (7]
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Safe pointcut/advice binding
« advice can replace computation

« should not introduce runtime type errors

well-typed
base program

well-typed
. composed program
forals

s

well-typed aspect (7]

© Eric Tanter 42

Wednesday, April 17, 13




SUBTYPE POLYMOLPHISM




Principles
« body of advice must adhere to advice signature

e poOIntcut signature <: join point signatures

o advice signature < pointcut signature
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Principles
« body of advice must adhere to advice signature

e poOIntcut signature <: join point signatures

o advice signature < pointcut signature
=proceed

Person -> void Person -> void Employee -> void

void around(Person p): execution(void x()) && this(p){
proceed(new Person());

}

void -> Integer void -> Number void -> Number

Integer around(): call(Number x()){
Integer i = proceed();

|
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}

© Eric Tanter

Wednesday, April 17, 13

44



Principles
« body of advice must adhere to advice signature

e poOIntcut signature <: join point signatures

o advice signature < pointcut signature
=proceed

Person -> void Person -> void Employee -> void

void around(Person p): execution(void x()) && this(p){
proceed(new Person());

}

void -> Integer void -> Number void -> Number

Integer around(): call(Number x()){
Integer i = proceed();

|
return i: unsafe!

(Aspectd, Join Point Types]

44

}
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Milton Inostroza

Eric Bodden
[Bodden, TOSEM]

A simple solution Is to prohibit type variance
« first version of JPIs

e IS It practical?

Case study
o port AdHotDraw and LawOfDemeter to JPI

# advices
Aspectd JPI
AJHotDraw 49
LawOfDemeter S
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Generic JPIs
o type parameters [Jagadeesan, 2006]

<R,A,B> jpi R MethodCall(A thiz, B targt);

# advices
Aspectd JPIv1  JPlve
AJHotDraw 49 49
LawOfDemeter 6 6

« lose the ability to do replacement advice [parametricity]

Beyond genericity: type ranges [De Fraine, 2008,/2010]
o flexible type-safe replacement advice

e .. added complexity (no free lunch /] »
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PARAMETRIC POLYMOZPHISM

joint work with
Ismael Figueroa
Nicolas Tabareau
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A TYPED FUNCTIONAL EMBEODING OF FIRST-CLASS ASPECTS

join points represent function applications
data JP a b = JP (a - b) a

a pointcut Is a predicate on any join point

data PC = PC (forall a b. JP a b - Bool)
an advice is a function transformer

type Advice a b = (a - b) - a-0b

48

Wednesday, April 17, 13
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A TYPED FUNCTIONAL EMBEODING OF FIRST-CLASS ASPECTS

join points represent function applications
data JP a b = JP (a - b) a

a pointcut Is a predicate on any join point

data PC = PC (forall a b. JP a b - Bool)

an advice is a function transformer

type Advice a b = (a - b) - a-0b

an aspect IS q pc/adv binding aspect (pcCall fib) memoize
data Aspect ... = Aspect PC (Advice a b)
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A TYPED FUNCTIONAL EMBEODING OF FIRST-CLASS ASPECTS

join points represent function applications
data JP a b = JP (a - b) a

a pointcut Is a predicate on any join point

data PC = PC (forall a b. JP a b - Bool)

an advice is a function transformer

type Advice a b = (a - b) - a-0b

an aspect IS q pc/adv binding aspect (pcCall fib) memoize

data Aspect ... = AspectfPCHfAdvice a b}

N

how to ensure the aspect is well-typed?
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A TYPED FUNCTIONAL EMBEODING OF FIRST-CLASS ASPECTS

join points represent function applications

data JP a b = JP (a - b) a

a pointcut Is a predicate on any join point

data PC = PC (forall a b. JP a b - Bool)

an advice is a function transformer

type Advice a b = (a - b) - a-0b

an aspect IS q pc/adv binding aspect (pcCall fib) memoize

data Aspect ... = AspectfPCHfAdvice a b}

(broken]
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data PC a b = PC (forall a’ b’. JP a’ b’
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data Aspect a b = Aspect (PC a b) (Advice a b)
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data Aspect a b = Aspect (PC a b) (Advice a b)

pc :: PC a a

pc = pcCall id
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data Aspect a b = Aspect (PC a b) (Advice a b)

pc :: PC a a
pc = pcCall id

adv :: Advice Char Char
adv proceed c = proceed (toUpper c)
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data Aspect a b = Aspect (PC a b) (Advice a b)
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adv proceed ¢ = (toUpper c)
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data Aspect a b = Aspect (PC a b) (Advice a b)

+ unifiable

adv :: Advice{Char”CHafﬁ;

adv proceed ¢ = (toUpper c)
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data Aspect a b = Aspect (PC a b) (Advice a b)

p—— + unifiable
adv :: Advice{Char Char } ql'
adv proceed c =Tproceec
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data Aspect a b = Aspect (PC a b) (Advice a b)

+ unifiable

adv :: AdvicefChar Char }
adv proceed c =proce

id [True,False] 3/:
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data Aspect a b = Aspect (PC a b) (Advice a b)

+ unifiable

adv :: AdvicefChar Char }
adv proceed c =proce

id [True,False] 3/:

Problem: unification is symmetric
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data Aspect a b ¢ d = Aspect (PC a b) (Advice c d)

need to ensure that the matched type a—b
Is less general than the type of the advice c—d

A multi-parameter type class defines a relation between types

data Aspect a b ¢ d = (LessGen (a-b) (c-d)) =

Aspect (PC a b) (Advice c d)
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data Aspect a b ¢ d = Aspect (PC a b) (Advice c d)

need to ensure that the matched type a—b
Is less general than the type of the advice c—d

A multi-parameter type class defines a relation between types

data Aspect a b cd = .(LessGen (aabX<(Cad)if=$

© Eric Tanter S

Wednesday, April 17, 13



data PC a b = PC (forall a b. JP a b - Bool)
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data PCja b§= PC (forall a b. JP a b - Bool

how do we get
the matched type?
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the matched type?

primitive pointcut designators
pcCall, pcType :: (a - b) - PCab

logical combinators

pcAnd :: PCab-PCcd-PCef
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© Eric Tanter 32

Wednesday, April 17, 13



Cowoswa OINCUS N
“how do we get

the matched type?

primitive pointcut designators

pcCall, pcType :: (a - b) - PCab

logical combinators

pcAnd :: PCab-PCcd-PCef PC Int Int

© Eric Tanter 32

Wednesday, April 17, 13



Cowoswa OINCUS N
“how do we get

the matched type?

primitive pointcut designators

pcCall, pcType :: (a - b) - PCab

logical combinators

pcAnd :: PCab-PCcd-PCef PC Int Int

: PC Int Int

© Eric Tanter 32

Wednesday, April 17, 13



Cowoswa OINCUS N
“how do we get

the matched type?

primitive pointcut designators

pcCall, pcType :: (a - b) - PCab

logical combinators

pcAnd :: PCab-PCab-PCab PC Int Int

: PC Int Int

© Eric Tanter 32

Wednesday, April 17, 13



now do we g

the matched type?

primitive pointcut designators

pcCall, pcType :: (a - b) - PCab

logical combinators

pcAnd :: PCab-PCab-PCab pcl :: PC Int Int
pcNot :: PCa b - PCcd

© Eric Tanter 32

Wednesday, April 17, 13



now do we g

the matched type?

primitive pointcut designators

pcCall, pcType :: (a - b) - PCab

logical combinators

pcAnd :: PCab-PCab-PCab pcl :: PC Int Int

pcNot :: PCa b - PCcd
pcOr :: PCab-PCcd-PCef

© Eric Tanter 32

Wednesday, April 17, 13



now do we g

the matched type?

primitive pointcut designators

pcCall, pcType :: (a - b) - PCab

logical combinators
pcAnd :: PCab-PCab-PCab

pcl :: PC Int Int
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logical combinators

pcAnd :: PCab-PCab-PCab
pcNot :: PCa b - PC cd
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the matched type?

primitive pointcut designators

pcCall, pcType :: (a - b) - PCab

logical combinators

pcAnd :: PCab-PCab-PCab
pcNot :: PCa b - PC cd

rely on anti-unification
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« proof follows from correctness of Least(en

o much simpler than AspectVIL (ad hoc calculus & type system]

More expressive

o first-class advice, extensible set of pointcut designators,
bounded polymorphism (type classes]

Compact implementation
o 1K vs. 15-25K for AspectML and AspectualCaml

Monadic embedding as a Haskell library
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"' Can we control what advice can do? §
==, (proceed, args/return, side effects] |
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Type soundness does not tell much

o control effects through proceed?

o arbitrary effects?
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Type soundness does not tell much
o control effects through proceed?

o arbitrary effects?

Expressive aspect specifications
o black-box behavioral contracts [Skatiniotis, 2004; Zhao, 2003]...

o control effects [Rinard, 2004]
o translucid contracts [Bagherzadeh, 2011]

« Mmodel checking [Katz, 2003; Krishnamurthi, 2004]...

© Eric Tanter 35

Wednesday, April 17, 13



© Eric Tanter 36

Wednesday, April 17, 13



© Eric Tanter 36

Wednesday, April 17, 13



© Eric Tanter 36

Wednesday, April 17, 13



© Eric Tanter 36

Wednesday, April 17, 13



The Haskell type system deals with effects!
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NEED T0 KNoW ABOUT MONADS (ror i o

Purity Is the default
foo :: Int - Int

Side effects reflected in types
foo :: Int - I0 Int

| Reader AppCon |

foo :: Int - (State Char) Int

|

Several effects “effect stack”

foo :: Int - App Int

type App = ReaderT AppConf (StateT AppState I0)

foo :: (Monad m) = Int - m Int
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QNAOS (for this talk]

Purity Is the default

foo :: Int - Int

Side effects reflected in types
foo :: Int - I0 Int

foo :: Int - (State Char) Int

Several effects
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|_State AppState |

|

Er——

foo :: Int - App Int

type App = ReaderT AppConf (StateT AppState I0)

foo :: (Monad m) = Int - m Int
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y N joint work with

Ismael Figueroa
Nicolas Tabareau
[Tabareau, 2013]

Parametrize the model by the effect stack

data JP a b
data PC a b = PC (forall a’ b’. JP a’ b’ - Bool)
type Advice (a - b) ~a-0>

data Aspect =
(LessGen -d)) = Aspect (PC a b) (Advice c d)
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y N joint work with

Ismael Figueroa
Nicolas Tabareau

. Tab ,2013
Parametrize the model by the effect stack [Tabareay |

data JP ma b JP (a - mb) a
PC (forall a’ b’. m JP a’ b’ - m Bool)

data PCma b =
type Advice ma b =(a-mb) -a->mb
data Aspect ma b c d =

(LessGen (a-b) (c-d)) = Aspect (PC m a b) (Advice m c d)

Computation happens within the AOT monad transformer

newtype AOT m a = ...

(used to pass the aspect environment around]
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EMBEODING TYPE CONSTRANTS IN POINTCUTS

module Fib (fib, pcFib) where
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EMBEODING TYPE CONSTRANTS IN POINTCUTS

module Fib (fib, ppcFib) where
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fib = ...
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control effects & side effects
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[Rinard, 2004]
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definition
[Rinard, 2004]
combination free
replacement no proceed

proceed once

augmentation
same arg/ ret

pr‘oceed at most once

narrowin
d same arg/ ret
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VICE

type Narrow m a b ¢ = (a - m Bool, Augment m a b ¢, Replace m a b)

combinator that requires Narrow

narrow :: Narrow m a b ¢ - Advice m a b

narrow (pred, aug, rep) proceed x =

do b <- pred x
if b then replace rep proceed X
else augment aug proceed Xx
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Reason about interferences base/aspects [Oliveira, 2010]
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{ Errord |

| Readerc |

© Eric Tanter 62

Wednesday, April 17, 13



NIAOT t m a

© Eric Tanter 62

Wednesday, April 17, 13



NIAOT t m a

base effects

© Eric Tanter 62

Wednesday, April 17, 13



NIAOT t m a

base effects

© Eric Tanter 62

Wednesday, April 17, 13



NIAOT t m a

base effects

rely on parametricity to enforce non-interference

© Eric Tanter 62

Wednesday, April 17, 13



NIAOT t m a

base effects

rely on parametricity to enforce non-interference
type NIAdvice t a b = forall m. Advice (NIAOT tm) a b

© Eric Tanter 62

Wednesday, April 17, 13



NIAOT t m a

base effects

rely on parametricity to enforce non-interference
type NIAdvice t a b = forall m. Advice (NIAOT t m) a b

e s

© Eric Tanter 62

Wednesday, April 17, 13



NIAOT t m a

base effects

rely on parametricity to enforce non-interference
type NIAdvice t a b = forall m. Advice (NIAOT t m) a b
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_EFFECT INTERFERENCE

Reason about interferences base/aspects [Oliveira, 2010]

aspect effects

NIAOT t m a

base effects

rely on parametricity to enforce non-interference
type NIAdvice t a b = forall m. Advice (NIAOT t m) a b

e s

type NIPC t a b = forall m. PC (NIAOT t m) a b

Qe T

type NIBase m a b = forall t. a —> NIAOT t m b
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extend Effective Advice to deal with quantification

extend Open Modules to deal with effects

Challenges

o beyond the base/aspects distinction
e COMpose restrictions (eg. non-interfering + narrowing]
o type system challenges

o higher-rank polymorphism

o Managing the monadic stack: views [Schrijvers, 201 1]
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Scoping
« balance flexibility / guarantees

o practical & efficient implementations

e New models

Interfaces
« time to try them out for real

« Need a gradual adoption path

Typing

o Holy Grail: expressiveness vs. complexity

« exploit the [existing] type system or design specific analyses?

« lightweight & practical
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To be continued...
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