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Gradual Typing
In a Nutshell

“traditional way”



Static vs Dynamic Type Checking

early error detection 
enforce abstractions 
checked documentation 
efficiency

flexible programming idioms 
rapid prototyping 
no spurious errors 
simplicity

Java, Scala, C#/…,  
ML, Haskell, Go, Rust, etc.

Python, JavaScript, Racket, 
Clojure, PHP, Smalltalk, etc.

Long-standing divide in programming languages

static dynamic



why should we have to choose? 

can’t we have both?



Static and Dynamic Checking
many recent languages try to have both

C# 4.0
Dart

ActionScript
TypeScript

Hack
Typed Racket

Typed Clojure

Scala Perl 6

very different flavor & guarantees…



Static and Dynamic Checking
many different theories too!

hybrid typing
soft typing

quasi-static typing
gradual typing

optional typingRTTI

multi-language  
programs

manifest contracts dynamic typing

very different flavor & guarantees…



Gradual Typing

• Combine both checking disciplines in a single language 

• Programmer controls which discipline is used where 

• Supports seamless evolution between static/dynamic 

• Pay-as-you-go: static regions can be safely optimized

[Siek & Taha, 2006]



Fully Static & Fully Dynamic

def f(x) = x + 2
def h(g) = g(1)
h(f)

def f(x) = x + 2
def h(g) = g(true)
h(f)

def f(x:int) = x + 2
def h(g:int!int) = g(1)
h(f)

def f(x:int) = x + 2
def h(g:int!int) = g(true)
h(f)

true + 23

3

Gradual as superset of static and dynamic

runtime error

static error



Sound Interoperability

def f(x:int) = x + 2
def h(g) = g(1)
h(f)

3

def f(x:int) = x + 2
def h(g) = g(true)
h(f)

at the boundary

f(true)

Partially-typed programs

protect assumptions made in static code

runtime error



Inside Gradual Typing

def f(x) = x + 2
def h(g) = g(true)
h(f)

def f(x:?) = x + 2
def h(g:?) = g(true)
h(f)

unknown type ?

=



Inside Gradual Typing

type equality

T = T
T ~ ? ? ~ T

T ~ T

type consistency

S → T ~ S’ → T’
S ~ S’  T ~ T’not transitive!

int ~ ?    ? ~ bool

int ≁ bool
def f(x:int) = x + 2
f(true) static error

static semantics: consistency



<int⇐?>true + 2

Inside Gradual Typing
dynamic semantics: casts

def f(x:?) = x + 2

f(5)

f(true)

def f(x:?) = <int⇐?>x + 2

<int⇐?>5 + 2 5 + 2 7

cast error

check it is an int



def f(x:int) = x + 2
def h(g) = g(true)
h(f)

def f(x:int) = x + 2
def h(g:?) = (<?!?⇐?>g)(<?⇐bool>true)
h(<?⇐int!int>f)

cast error

(<?!?⇐?><?⇐int!int>f)(<?⇐bool>true)

(<?!?⇐int!int>f)(<?⇐bool>true)

fun(x:?){<?⇐int>f(<int⇐?>x)}(<?⇐bool>true)

<?⇐int>f(<int⇐?><?⇐bool>true)

<?⇐int>f(<int⇐bool>true)

body is safe!
can be compiled efficiently

check it is a functiontagged value



The End
?



Beyond Simple Gradual Typing

• Subtyping (structural, nominal, objects) 

• Parametric polymorphism (“blame for all”) 

• Type inference and gradual types 

• Union and recursive types
[Siek&Taha’07, Ina&Igarashi’11]

[Ahmed et al ’08 ‘11]
[Siek&Vachharajani’08, Garcia&Cimini’15]

[Siek&Tobin-Hochstadt’16]



Gradual Typing  
=  

reconciling static and dynamic typing
reconciling type disciplines of different strength

Parametricity Effects Dependencies

RefinementsTypestates
Security

Communication

Simple types

“Uni-typed”

Subtyping Ownership



Gradualized Type Disciplines 

• typestates 

• effects 

• refinements, dependencies 

• security typing

[ECOOP’11, TOPLAS’14]

[ICFP’14, OOPSLA’15, TOPLAS’16]

[DLS’15, ICFP’16, on-going]

[arXiv’15, on-going]

high cost
renegotiation of foundations 

ingenious “tricks” 
ad hoc justifications

Parametricity Effects Dependencies

RefinementsTypestates
Security

Communication

Simple types

“Uni-typed”

Subtyping Ownership



What do you mean “Gradual”?
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Abstract
Siek and Taha [2006] coined the term gradual typing to describe a theory for integrating static
and dynamic typing within a single language that 1) puts the programmer in control of which
regions of code are statically or dynamically typed and 2) enables the gradual evolution of code
between the two typing disciplines. Since 2006, the term gradual typing has become quite popular
but its meaning has become diluted to encompass anything related to the integration of static
and dynamic typing. This dilution is partly the fault of the original paper, which provided an
incomplete formal characterization of what it means to be gradually typed. In this paper we
draw a crisp line in the sand that includes a new formal property, named the gradual guarantee,
that relates the behavior of programs that di�er only with respect to their type annotations. We
argue that the gradual guarantee provides important guidance for designers of gradually typed
languages. We survey the gradual typing literature, critiquing designs in light of the gradual
guarantee. We also report on a mechanized proof that the gradual guarantee holds for the
Gradually Typed Lambda Calculus.

1998 ACM Subject Classification F.3.3 Studies of Program Constructs – Type structure

Keywords and phrases gradual typing, type systems, semantics, dynamic languages

Digital Object Identifier 10.4230/LIPIcs.SNAPL.2015.274

1 Introduction

Statically and dynamically typed languages have complementary strengths. Static typing
guarantees the absence of type errors, facilitates the generation of e�cient code, and provides
machine-checked documentation. On the other hand, dynamic typing enables rapid prototyp-
ing, flexible programming idioms, and fast adaptation to changing requirements. The theory
of gradual typing provides both of these typing disciplines within a single language, puts the
programmer in control of which discipline is used for each region of code, provides seamless
interoperability, and enables the convenient evolution of code between the two disciplines.
Gradual typing touches both the static type system and the dynamic semantics of a language.
The key innovation in the static type system is the consistency relation on types, which
allows implicit casts to and from the unknown type, here written ı, while still catching static
type errors [5, 50, 27].1 The dynamic semantics for gradual typing is based on the semantics

ú
This work was partially supported by NSF grant 1360694.

1
The consistency relation is also known as compatibility.

© Jeremy Siek, Michael Vitousek, Matteo Cimini, John Tang Boyland;

licensed under Creative Commons License CC-BY
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Eds.: Thomas Ball, Rastislav Bodík, Shriram Krishnamurthi, Benjamin S. Lerner, and Greg Morrisett; pp. 274–293

Leibniz International Proceedings in Informatics
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“its meaning has become diluted 
to encompass anything related to 

the integration […]”

“include a new formal property, 
named the gradual guarantee”

“relates the behavior of programs 
that differ only wrt their type 

annotations” 

gradual guarantee
losing precision preserves both 

typeability and reducibility 



Stepping back…



Traditional Approach to Gradual Typing

gradual language cast calculus
translation

TYPE 
SYSTEM’

RUNTIME 
SEMANTICS

TYPE 
SYSTEM

RUNTIME 
SEMANTICS

type safe

preserves 
typing

accounts  
for unknown 

type information

inserts casts 
at boundariestype safetype safe

enforces static 
assumptions



Challenges of Traditional Approach

gradual language cast calculus
translation

TYPE 
SYSTEM’

RUNTIME 
SEMANTICS

TYPE 
SYSTEM

RUNTIME 
SEMANTICS

where does it 
come from?

is it unique?
is it “right”?

how should unknown 
information be dealt with?

can’t we define runtime 
semantics directly?

what are the 
“right” definitions? 

scale to advanced 
type disciplines?

gradual 
guarantees?

what’s the connection to the 
static language?



general foundations

systematic design  
principles

crisp connection to 
static language

formal justification



AGTAbstracting Gradual Typing

[POPL 2016]



static type system
& type safety proof

interpretation of 
gradual types

?

AGT

gradual language

n1 + n2 �! n3

(�x : T.t)v �! t[v/x]
if true then t2 else t3 �! t2

if false then t2 else t3 �! t3

. . .

TYPE 
SYSTEM

RUNTIME 
SEMANTICS

type safe
gradual 

guarantee

by construction



What is a gradual type?

AGT

interpretation of 
gradual types

?



eT ::= Int | Bool | eT ! eT | ?

T ::= Int | Bool | T ! T | ?
static types

gradual types

“represents”

Type

GType



?

Int

Int ! ? Int ! Int
Int ! Bool

Int ! Int ! Int
Int ! Bool ! Int

Int

any static type!

eT ::= Int | Bool | eT ! eT | ?

“represents”

Int ! . . .



�(Int) = { Int }
�(Bool) = {Bool }

�( eT1 ! eT2) = {T1 ! T2 | T1 2 �( eT1), T2 2 �( eT2) }
�(?) = Type

Concretization

� : GType ! P(Type)

�(Int ! ?) = { Int ! T | T 2 Type }

�(?) = Type

e.g.



Design Space of Gradual Types
� : GType ! P(Type)

�(?) = { Int,Bool }

�(?T ) = {T 0 2 Type | T 0 <: T }

�(T?) = {T`, ` 2 Label }

This is the only design decision! 
all the rest follows by AGT

�(?) = Type

�



Precision of Gradual Types

eT1
eT2v

a.k.a. “naive subtyping” 

Int ! Int v ?Int ! ? v? ! ?v

[Wadler & Findler, 2009]

[Henglein, 1994]
less unknown

aka.
more precise



Precision of Gradual Types

eT1
eT2v

✓

�( eT1) �( eT2)
x

x

x

x
x

x
x

x

concretization induces the classic notion



I - Static Semantics

AGT



Gradualizing the Type System

0.  start from a static typing discipline



explicit 
side conditions

partial 
functions

(T+)
� ` t1 : T1 � ` t2 : T2 T1 = Int T2 = Int

� ` t1 + t2 : Int

(Tapp)
� ` t1 : T1 � ` t2 : T2 T2 = dom(T1)

� ` t1 t2 : cod(T1)

(T if)
� ` t1 : T1 � ` t2 : T2 � ` t3 : T3 T1 = Bool

� ` if t1 then t2 else t3 : equate(T2, T3)cod : Type * Type
cod(T1 ! T2) = T2

cod(T ) undefined otherwise

AGT
syntax-directed 

rules

[Garcia & Cimini, 2015]



(eT+)
� ` et1 : eT1 � ` et2 : eT2

eT1 ⇠ Int eT2 ⇠ Int

� ` et1 + et2 : Int

(eTapp)
� ` et1 : eT1 � ` et2 : eT2

eT2 ⇠ fidom( eT1)

� ` et1 et2 : gcod( eT1)

(eT if)
� ` et1 : eT1 � ` et2 : eT2 � ` et3 : eT3

eT1 ⇠ Bool

� ` if

et1 then

et2 else

et3 : eT2 u eT3

we now need to define and justify all of this!

compositional
lifting

consistent
side conditions

lifted partial 
functions gradual meet



Gradualizing the Type System

1. lift type predicates 
2. lift type functions 



Gradualizing the Type System

1. lift type predicates
2. lift type functions 



Lifting Type Predicates

38

P ✓ Type⇥Type eP ✓ GType⇥GType

T1 = T2 fT1 ⇠ fT2

T1 <: T2 fT1 . fT2



Lifting Type Predicates

‹P ( eT1, eT2)

plausibility

i↵ P (T1, T2) for some hT1, T2i 2 �( eT1)⇥ �( eT2)

39

P
P

P

P

x
x

x
x

x

�( eT1)

x x

x

x

�( eT2)



Lifting Equality

40

x
x

x
x

x

�( eT1)

x x

x

x

�( eT2)

fT1 ⇠ fT2

=
=

=

coincides with [Siek & Taha, 2006]

i↵ T1 = T2 for some hT1, T2i 2 �( eT1)⇥ �( eT2).



Lifting Subtyping

41

x
x

x
x

x

�( eT1)

x x

x

x

�( eT2)

fT1 . fT2

<:

<:
<:

<:

coincides with [Siek & Taha, 2007]

i↵ T1 <: T2 for some hT1, T2i 2 �( eT1)⇥ �( eT2).



Lifting Subtyping

[Siek & Taha, 2007]

42

i↵ T1 <: T2 for some hT1, T2i 2 �( eT1)⇥ �( eT2).

subtyping on 
gradual types

gradual type 
masking



Gradualizing the Type System

1. lift type predicates 
2. lift type functions



Lifting Type Functions

44

F : Typen * Type

cod(T )

T1 <
:

T2

f
cod( eT )

eT1
e

<
: eT2



what’s the corresponding
 gradual type?

we need a notion of abstraction

x
x

x
x

x

x x

x
x

‹F ( eT1, eT2)
�

x
x

F
x

x

x
x

x

x
x

x
x

x

x
x x

x
xx

pointwise
�



Abstraction

Int ! Bool

Bool ! Bool

Int

Bool ! Int

Bool

Int

Int ? ! Bool?

↵ ↵ ↵

↵ : P(Type) * GType

Galois connection
(sound & optimal)



x
x

x
x

x

x x

x
x

‹F ( eT1, eT2)
�

x
x

F
x

x

x
x

x

x
x

x
x

x

x
x x

x
xx

�

↵

eT

‹F ( eT1, eT2) = ↵({F (T1, T2) | hT1, T2i 2 �( eT1)⇥ �( eT2) })



Lifting cod
cod : Type * Type
cod(T1 ! T2) = T2

cod(T ) undefined otherwise

g
cod : GType * GType
g
cod(

eT1 ! eT2) =
eT2

g
cod(?) = ?
g
cod(

eT ) undefined otherwise



Lifting equate

(Tif)
� ` t1 : T1 � ` t2 : T2 � ` t3 : T3 T1 = Bool

� ` if t1 then t2 else t3 : equate(T2, T3)

equate : Type⇥Type * Type
equate(T, T ) = T
equate(T1, T2) undefined otherwise

eT1 u eT2 = ↵(�( eT1) \ �( eT2))

‡equate( eT1, eT2) = eT1 u eT2

meet on 
gradual types

“It was interesting to see how it justifies using meet 
for conditional expressions… 

before that I had always thought that 
I was making an arbitrary choice 

to prefer meet over join.” 
- J. Siek



Lifting subtyping join

50

� ` t1 : Bool
� ` t2 : T1 � ` t2 : T2

� ` if t1 then t2 else t3 : T1 <
:

T2

� ` et1 : eT0
eT0 . Bool

� ` et2 : eT1 � ` et2 : eT2

� ` if

et1 then

et2 else

et3 : eT1
e

<
: eT2



by construction
Properties of Gradual Languages

(part 1: static semantics)

`S t : T if and only if ` t : T
equivalence for static terms

If

ˇt is closed then ` dˇte : ?
embedding of dynamic terms

If ` et1 : eT1 and et1 v et2, then ` et2 : eT2 and eT1 v eT2

losing precision preserves typing [Siek et al, 2015]

[Siek & Taha, 2006]

[Siek & Taha, 2006]



II - Dynamic Semantics

AGT



Curry-Howard

Logic PL

Propositions Types

Proofs Programs

Proof reduction Program evaluation



Type Safety Proof as Reduction

` t : T ` t0 : T

t 7�! t0

D D0=)
relies on transitivity 

of type relations

P (T1, T2)

P (T2, T3)

P (T1, T3)

P (T1, T2) ^ P (T2, T3) ) P (T1, T3)



Reduction of Gradual Derivations

D D0=)

` et : eT ` et0 : eT 0

transitivity of 
consistent relations 

may fail!

‹P ( eT1, eT3)

‹P ( eT1, eT2)

‹P ( eT2, eT3)

Int ⇠ ? ? ⇠ Bool

Int 6⇠ Bool

‹P ( eT1, eT2) ^ ‹P ( eT2, eT3) )? ‹P ( eT1, eT3)



Evidence of Consistent Judgments

D

` et : eT

‹P ( eT1, eT2)

‹P ( eT2, eT3)

"12 ` ‹P ( eT1, eT2)

why?

introduce evidence

dynamic “local justification” 
for consistent judgment



Initial Evidence
"12 ` ‹P ( eT1, eT2)

corresponds to 
Threesome middle type

[Siek & Wadler, 2010]

‹P ( eT1, eT2)

x
x

x
x

x

x x

x
x

� �

↵ ↵

h eT 0
1, eT 0

2i

[x : Int ! ?, y : ?] . [x : ? ! Bool]

[x : Int ! Bool, y : ?] [x : Int ! Bool]

v v

h eT 0
1, eT 0

2i



Evidence

D

` et : eT

‹P ( eT1, eT2)

‹P ( eT2, eT3)

"23 ` ‹P ( eT2, eT3)

"12 ` ‹P ( eT1, eT2)h eT 0
1, eT 0

2i



Consistent Transitivity

"13 = "12 �P "23
D0

` et0 : eT 0

‹P ( eT1, eT3)

=)?D

` et : eT

"23 ` ‹P ( eT2, eT3)

"12 ` ‹P ( eT1, eT2)

refutation
(“cast error”)

"13 ` ‹P ( eT1, eT3)

"12

"23

"13 = "12 �P "23

consistent transitivity



Consistent Transitivity
"13 = "12 �P "23h eT1, eT21i �P h eT22, eT3i

x x

x
x

x

x x

x
x

x
x

x
x

x

x x

x

x

h eT 0
1, eT 0

3i

↵

↵2({hT1, T3i 2 �2( eT1, eT3) | 9T2 2 �( eT21) \ �( eT22). P (T1, T2) ^ P (T2, T3)})

undefined if empty↵
refutation / “cast error”

��



by construction
Properties of Gradual Languages

(part 2: dynamic semantics)

losing precision preserves reduction
Suppose

et1 v et2 with ` et1 :

eT1 and ` et2 :

eT2

If

et1 7�! et01 then

et2 7�! et02 and

et01 v et02

type safety
If ` et : eT then either

et is a value v, or et 7�! et0 with ` et0 : eT
or

et 7�! error

[Siek et al, 2015]



Conclusions

AGT



general foundations

systematic design  
principles

crisp connection to 
static language

formal justification

RECOVERED 
precision 

consistency 
consistent subtyping 

gradual meet 
threesomes 

runtime semantics 
cast errors 

gradual guarantees



Breadth of AGT
• Applications of AGT so far  

• records with subtyping 

• gradual rows (à la row polymorphism) 

• gradual effects 

• gradual references 

• gradual security typing 

• gradual refinements 

• (quite) some more ;-)

POPL’16

ICFP’14 & co  
(statics based on AGT)

on going!



Future work on AGT

• Cast calculi 
• representation of computational content of derivation trees 

• validate existing cast calculi wrt “reference semantics” 

• space and time efficiency (eliminate useless evidence) 

• Blame tracking 

• Relational soundness properties (eg. non-interference) 
• Static vs dynamic abstractions



static type system
& type safety proof

interpretation of 
gradual types

?

AGT

gradual language

n1 + n2 �! n3

(�x : T.t)v �! t[v/x]
if true then t2 else t3 �! t2

if false then t2 else t3 �! t3

. . .

TYPE 
SYSTEM

RUNTIME 
SEMANTICS

type safe
gradual 

guarantees

by construction

↵� eT


