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wrapping error @runtime
cannot fail, no extra cost

new kind of (eager) runtime errors at the boundary
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T1~ T2 can impose restriction on future
T~ TT> but cannot lose it

T1~T> can lose guarantee on the past
1T~ T> but cannot forge it

TT~Dyn Dyn~ 1T

Strict CGT 5/; 5/’

runtime semantics rejects
Relaxed CGT / "/ wrappers from TTorto 1T

13



beyond soundness...

Correctness of qualifiers

14



beyond soundness...

Correctness of qualifiers

Strict CGT: taint tracking semantics [Grossman-+]

14



beyond soundness...

Correctness of qualifiers

Strict CGT: taint tracking semantics [Grossman-+]

a value of type 1T is untainted

a value of type 1T (“untaintable”) is not tagged

14



beyond soundness...

Correctness of qualifiers

Strict CGT: taint tracking semantics [Grossman-+]

a value of type 1T is untainted

a value of type 1T (“untaintable”) is not tagged

Relaxed CGT

14



beyond soundness...

Correctness of qualifiers

Strict CGT: taint tracking semantics [Grossman-+]

a value of type 1T is untainted

a value of type 1T (“untaintable”) is not tagged

Relaxed CGT

no function wrapper has 1T as source type

or 1 T as target type
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Expe rl mentS in the paper

Implemented in Gradualtalk, a gradually-typed Smalltalk

Benchmarks confirm the performance costs/benefits
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@ add type qualifiers to track “leaks”

@ leave them in place to prevent future issues

interface provider
@ add qualifiers to interface of critical components

o eg. GUI callbacks (perfs), core system components (reliability)

interface client

@ annotate callbacks passed to a critical, typed, 3rd-party library
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e dual semantics: use qualifiers to allow boundary crossing

e inference of qualifiers

More practical experience (other languages)
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