
Confined Gradual Typing

Esteban Allende, Johan Fabry, Ronald Garcia, Éric Tanter

University of Chile University of British Columbia

OOPSLA 2014

2

Static Dynamic

2

[Siek & Taha]

Static Dynamic

Gradual Typing

2

[Siek & Taha]

Static Dynamic

Gradual Typing

T1 = T2

equality

2

[Siek & Taha]

Static Dynamic

Gradual Typing

T1 = T2

equality

T1 ~ T2

consistency

2

[Siek & Taha]

Static Dynamic

Gradual Typing

T1 = T2

equality

T1 ~ T2

consistency

T ~ Dyn
Dyn ~ T

2

[Siek & Taha]

Static Dynamic

Gradual Typing

T1 = T2

equality

T1 ~ T2

consistency

2

[Siek & Taha]

Static Dynamic

Gradual Typing

definitely go well

T1 = T2

equality

T1 ~ T2

consistency

2

[Siek & Taha]

Static Dynamic

Gradual Typing

might go welldefinitely go well

T1 = T2

equality

T1 ~ T2

consistency

2

[Siek & Taha]

Static Dynamic

Gradual Typing

might go welldefinitely go well

T1 = T2

equality

T1 ~ T2

consistency

@runtime: casts

3

untyped library

String→String typed ctx

Type Checking
Runtime

3

untyped library

String→String typed ctx

Type Checking
Runtime

3

untyped library

String→String typed ctx

Type Checking
Runtime

3

untyped library

String→String typed ctx

: Dyn

Type Checking
Runtime

3

untyped library

String→String typed ctx

: Dyn ~ String→String

Type Checking
Runtime

3

untyped library

String→String typed ctx

: Dyn ~ String→String

Type Checking
Runtime

3

untyped library

String→String typed ctx

Type Checking
Runtime

3

untyped library

String→String typed ctx

Type Checking
Runtime

3

untyped library

String→String typed ctx

⟨Dyn ⇐ Int⟩

Type Checking
Runtime

3

untyped library

String→String typed ctx

⟨Dyn ⇐ Int⟩

a tagged Int

Type Checking
Runtime

3

untyped library

String→String typed ctx

⟨Dyn ⇐ Int⟩

Type Checking
Runtime

3

untyped library

String→String typed ctx

⟨Dyn ⇐ Int⟩

Type Checking
Runtime

3

untyped library

⟨Dyn ⇐ Int→Int⟩

λ

String→String typed ctx

⟨Dyn ⇐ Int⟩

Type Checking
Runtime

3

untyped library

⟨Dyn ⇐ Int→Int⟩

λ

String→String typed ctx

⟨Dyn ⇐ Int⟩

Type Checking
Runtime

3

untyped library

⟨Dyn ⇐ Int→Int⟩

λ

String→String typed ctx

⟨Dyn ⇐ Int⟩

eager cast errors

Type Checking
Runtime

3

untyped library

⟨Dyn ⇐ Int→Int⟩

λ

String→String typed ctx

⟨Dyn ⇐ Int⟩

λ

⟨Dyn ⇐ Dyn→Dyn⟩

eager cast errors

Type Checking
Runtime

3

untyped library

⟨Dyn ⇐ Int→Int⟩

λ

String→String typed ctx

⟨Dyn ⇐ Int⟩

λ

⟨Dyn ⇐ Dyn→Dyn⟩

??eager cast errors

Type Checking
Runtime

3

untyped library

⟨Dyn ⇐ Int→Int⟩

λ

String→String typed ctx

⟨Dyn ⇐ Int⟩

λ

⟨Dyn ⇐ Dyn→Dyn⟩

λ wrapper
lazy check

String→String
conformance

eager cast errors

Type Checking
Runtime

3

untyped library

⟨Dyn ⇐ Int→Int⟩

λ

String→String typed ctx

⟨Dyn ⇐ Int⟩

λ

⟨Dyn ⇐ Dyn→Dyn⟩

λ wrapper
lazy check

String→String
conformance

eager cast errors

Type Checking
Runtime

λx:String.
 ⟨String ⇐ Dyn⟩ ((⟨Dyn ⇐ String⟩ x))λ

3

untyped library

⟨Dyn ⇐ Int→Int⟩

λ

String→String typed ctx

⟨Dyn ⇐ Int⟩

λ

⟨Dyn ⇐ Dyn→Dyn⟩

λ wrapper
lazy check

String→String
conformance

eager cast errors

Type Checking
Runtime

3

untyped library

⟨Dyn ⇐ Int→Int⟩

λ

String→String typed ctx

⟨Dyn ⇐ Int⟩

λ

⟨Dyn ⇐ Dyn→Dyn⟩

λ

wrapper
lazy check

String→String
conformance

eager cast errors

Type Checking
Runtime

4

issues with higher-order wrappers
λ

4

issues with higher-order wrappers

reliability

λ

4

issues with higher-order wrappers

reliability

λ

lazy cast errors
can happen anywhere

4

issues with higher-order wrappers

reliability

λ

lazy cast errors
can happen anywhere

performance

4

issues with higher-order wrappers

reliability

space and
time issues

λ

lazy cast errors
can happen anywhere

performance

λ
λ λ

5

programming with gradual types

5

unpredictable

casts are
introduced
implicitly

programming with gradual types

5

unpredictable

casts are
introduced
implicitly

fragile

a missing type
annotation can

have a big impact

programming with gradual types

5

unpredictable

casts are
introduced
implicitly

fragile

a missing type
annotation can

have a big impact

programming with gradual types
DLS’13

5

unpredictable

casts are
introduced
implicitly

fragile

a missing type
annotation can

have a big impact

programming with gradual types

5

unpredictable

casts are
introduced
implicitly

cannot “seal” a typed module to protect it from
cast errors and costly wrappers

fragile

a missing type
annotation can

have a big impact

programming with gradual types

6

tackling higher-order wrappers

6

tackling higher-order wrappers
space efficiency: coercions [Hermann+], threesomes [Siek+]

6

tackling higher-order wrappers

eliminate some wrappers
[Rastogi+]

space efficiency: coercions [Hermann+], threesomes [Siek+]

6

tackling higher-order wrappers

eliminate some wrappers
[Rastogi+]

space efficiency: coercions [Hermann+], threesomes [Siek+]

type-based static analysis

6

tackling higher-order wrappers

eliminate some wrappers
[Rastogi+]

space efficiency: coercions [Hermann+], threesomes [Siek+]

reduce (?) the need for wrappers
[Tobin-Hochstadt+]

type-based static analysis

6

tackling higher-order wrappers

eliminate some wrappers
[Rastogi+]

space efficiency: coercions [Hermann+], threesomes [Siek+]

reduce (?) the need for wrappers
[Tobin-Hochstadt+]

type-based static analysis coarse-grained gradual typing

6

tackling higher-order wrappers

eliminate some wrappers
[Rastogi+]

space efficiency: coercions [Hermann+], threesomes [Siek+]

reduce (?) the need for wrappers
[Tobin-Hochstadt+]

forbid implicit wrappers
[Swamy+]

type-based static analysis coarse-grained gradual typing

6

tackling higher-order wrappers

eliminate some wrappers
[Rastogi+]

space efficiency: coercions [Hermann+], threesomes [Siek+]

reduce (?) the need for wrappers
[Tobin-Hochstadt+]

forbid implicit wrappers
[Swamy+]

ban wrappers
[Wrigstad+]

type-based static analysis coarse-grained gradual typing

Confined Gradual Typing

7

Confined Gradual Typing

Gradual Typing without Losing Control

providing explicit means to

trade some flexibility

increase predictability, reliability, performance

7

Confined Gradual Typing

8

Confined Gradual Typing

8

type qualifiers to control the flow of values

at the typed-untyped boundary

↑T
protects the future flow

Confined Gradual Typing

8

type qualifiers to control the flow of values

at the typed-untyped boundary

↑T
protects the future flow

↓T
constrains the past flow

Confined Gradual Typing

8

type qualifiers to control the flow of values

at the typed-untyped boundary

9

Confined Gradual Typing

comes in two flavors!

relaxedstrict

Strict CGT

10

Strict CGT

10

↑T
cannot flow into untyped

Strict CGT

10

↑T
cannot flow into untyped

foo(f : ↑T) =
let g : Dyn = …
 … g(f) …

Strict CGT

10

↑T
cannot flow into untyped

foo(f : ↑T) =
let g : Dyn = …
 … g(f) … type error

Strict CGT

10

↑T
cannot flow into untyped

↓T
has never flowed
through untyped

foo(f : ↑T) =
let g : Dyn = …
 … g(f) … type error

Strict CGT

10

foo(f : ↓T) =
 … f() …

↑T
cannot flow into untyped

↓T
has never flowed
through untyped

foo(f : ↑T) =
let g : Dyn = …
 … g(f) … type error

Strict CGT

10

foo(f : ↓T) =
 … f() …
 … h(f) …

↑T
cannot flow into untyped

↓T
has never flowed
through untyped

foo(f : ↑T) =
let g : Dyn = …
 … g(f) … type error

Strict CGT

10

foo(f : ↓T) =
 … f() …
 … h(f) …

↑T
cannot flow into untyped

↓T
has never flowed
through untyped

fully static, but restrictive

foo(f : ↑T) =
let g : Dyn = …
 … g(f) … type error

11

Relaxed CGT

if what matters most is the performance guarantee
we can allow some boundary crossing

11

Relaxed CGT

if what matters most is the performance guarantee
we can allow some boundary crossing

↑T
cannot be wrapped

11

Relaxed CGT

if what matters most is the performance guarantee
we can allow some boundary crossing

↑T
cannot be wrapped

↓T
has not been wrapped

12

12

↓(String→String) typed ctx

12

↓(String→String) typed ctx

12

↓(String→String) typed ctx

12

↓(String→String) typed ctx

⟨Dyn ⇐ String→String⟩

λ

12

↓(String→String) typed ctx

⟨Dyn ⇐ String→String⟩

λ

(would have been rejected by Strict CGT)

12

↓(String→String) typed ctx

⟨Dyn ⇐ String→String⟩

λ

12

↓(String→String) typed ctx

⟨Dyn ⇐ String→String⟩

λ λ

12

↓(String→String) typed ctx

⟨Dyn ⇐ String→String⟩

λ

λ

12

↓(String→String) typed ctx

⟨Dyn ⇐ String→String⟩

λ

λ

cannot fail, no extra cost

12

↓(String→String) typed ctx

λ

⟨Dyn ⇐ Dyn→Dyn⟩⟨Dyn ⇐ String→String⟩

λ

cannot fail, no extra cost

12

↓(String→String) typed ctx

λ

⟨Dyn ⇐ Dyn→Dyn⟩

λ

⟨Dyn ⇐ String→String⟩

λ

cannot fail, no extra cost

12

↓(String→String) typed ctx

λ

⟨Dyn ⇐ Dyn→Dyn⟩

λ

⟨Dyn ⇐ String→String⟩

λ

cannot fail, no extra cost
wrapping error @runtime

12

↓(String→String) typed ctx

λ

⟨Dyn ⇐ Dyn→Dyn⟩

λ

⟨Dyn ⇐ String→String⟩

λ

cannot fail, no extra cost
wrapping error @runtime

new kind of (eager) runtime errors at the boundary

Directed consistency

13

↝

Directed consistency

13

T1 ↝ T2

T1 ↝ ↑T2

↝

Directed consistency

13

T1 ↝ T2

T1 ↝ ↑T2

can impose restriction on future
but cannot lose it

↝

Directed consistency

13

T1 ↝ T2

T1 ↝ ↑T2

can impose restriction on future
but cannot lose it

T1 ↝ T2

↓T1 ↝ T2

↝

Directed consistency

13

T1 ↝ T2

T1 ↝ ↑T2

can impose restriction on future
but cannot lose it

T1 ↝ T2

↓T1 ↝ T2

can lose guarantee on the past
but cannot forge it

↝

Directed consistency

13

T1 ↝ T2

T1 ↝ ↑T2

can impose restriction on future
but cannot lose it

T1 ↝ T2

↓T1 ↝ T2

can lose guarantee on the past
but cannot forge it

↑T ↝ Dyn

Strict CGT

Relaxed CGT

Dyn ↝ ↓T

↝

Directed consistency

13

T1 ↝ T2

T1 ↝ ↑T2

can impose restriction on future
but cannot lose it

T1 ↝ T2

↓T1 ↝ T2

can lose guarantee on the past
but cannot forge it

↑T ↝ Dyn

Strict CGT

Relaxed CGT

Dyn ↝ ↓T

↝

Directed consistency

13

T1 ↝ T2

T1 ↝ ↑T2

can impose restriction on future
but cannot lose it

T1 ↝ T2

↓T1 ↝ T2

can lose guarantee on the past
but cannot forge it

↑T ↝ Dyn

Strict CGT

Relaxed CGT

Dyn ↝ ↓T

↝

Directed consistency

13

T1 ↝ T2

T1 ↝ ↑T2

can impose restriction on future
but cannot lose it

T1 ↝ T2

↓T1 ↝ T2

can lose guarantee on the past
but cannot forge it

runtime semantics rejects
wrappers from ↑T or to ↓T

↑T ↝ Dyn

Strict CGT

Relaxed CGT

Dyn ↝ ↓T

↝

Correctness of qualifiers

14

beyond soundness…

Correctness of qualifiers

Strict CGT: taint tracking semantics

14

 [Grossman+]

beyond soundness…

Correctness of qualifiers

Strict CGT: taint tracking semantics

14

a value of type ↓T is untainted

a value of type ↑T (“untaintable”) is not tagged

 [Grossman+]

beyond soundness…

Correctness of qualifiers

Strict CGT: taint tracking semantics

14

Relaxed CGT

a value of type ↓T is untainted

a value of type ↑T (“untaintable”) is not tagged

 [Grossman+]

beyond soundness…

Correctness of qualifiers

Strict CGT: taint tracking semantics

14

Relaxed CGT

a value of type ↓T is untainted

a value of type ↑T (“untaintable”) is not tagged

 [Grossman+]

no function wrapper has ↑T as source type
or ↓T as target type

beyond soundness…

Experiments

Implemented in Gradualtalk, a gradually-typed Smalltalk

Benchmarks confirm the performance costs/benefits

15

in the paper

Usage Scenarios

16

Usage Scenarios
post-hoc

add type qualifiers to track “leaks”

leave them in place to prevent future issues

16

Usage Scenarios
post-hoc

add type qualifiers to track “leaks”

leave them in place to prevent future issues

interface provider

add qualifiers to interface of critical components

eg. GUI callbacks (perfs), core system components (reliability)

16

Usage Scenarios
post-hoc

add type qualifiers to track “leaks”

leave them in place to prevent future issues

interface provider

add qualifiers to interface of critical components

eg. GUI callbacks (perfs), core system components (reliability)

interface client

annotate callbacks passed to a critical, typed, 3rd-party library

16

Perspectives

17

Perspectives

Language design

17

Perspectives

Language design

combine both variants

17

Perspectives

Language design

combine both variants

dual semantics: use qualifiers to allow boundary crossing

17

Perspectives

Language design

combine both variants

dual semantics: use qualifiers to allow boundary crossing

inference of qualifiers

17

Perspectives

Language design

combine both variants

dual semantics: use qualifiers to allow boundary crossing

inference of qualifiers

More practical experience (other languages)

17

Confined Gradual Typing

18

Gradual Typing without Losing Control

providing explicit means to

trade some flexibility

increase predictability, reliability, performance

Confined Gradual Typing

18

↓¿ questions ?↑

Gradual Typing without Losing Control

providing explicit means to

trade some flexibility

increase predictability, reliability, performance

