Confined Gradual Typing

Esteban Allende, Johan Fabry, Ronald Garcia, Eric Tanter

University of Chile University of British Columbia

OOPSLA 2014






[Siek & Taha]

Gradual Typing




[Siek & Taha]

Gradual Typing

equality
T+=1To



[Siek & Taha]

Gradual Typing

equality consistency

T1:T2 # T‘INTZ



[Siek & Taha]

Gradual Typing

equality consistency
T1=1o # T1~ 1o
T ~ Dyn

Dyn ~ T



[Siek & Taha]

Gradual Typing

equality consistency

T1:T2 # T‘INTZ



[Siek & Taha]

Gradual Typing

equality consistency

T1:T2 # T‘INTZ

definitely go well



[Siek & Taha]

Gradual Typing

equality consistency

T1=1» # T4~ 1o

definitely go well might go well



[Siek & Taha]

Gradual Typing

equality consistency
T1=1o * T4~ 12
definitely go well might go well

@runtime: casts



Type Checking
Runtime




Type Checking
Runtime




Type Checking
Runtime




Type Checking
Runtime

‘ : Dyn




Type Checking

Runtime
‘ : Dyn ~ String— String




Type Checking
Runtime

‘ : Dyn ~ String— String ,




Type Checking
Runtime




Type Checking
Runtime




Type Checking
Runtime

(Dyn < Int)




Type Checking
Runtime

a tagged Int

\

(Dyn < Int)




Type Checking
Runtime

(Dyn < Int)




Type Checking
Runtime




Type Checking
Runtime

(Dyn < Int—Int)




Type Checking
Runtime




Type Checking
Runtime

eager cast errors




Type Checking
Runtime

(D Ind’_ D (Dyn < Dyn—Dyn)

eager cast errors




Type Checking
Runtime

(D Ind’_ D (Dyn < Dyn—Dyn)

eager cast errors 29




Type Checking

Runtime
(Dy= <= |n1_, % (Dyn < Dyn—Dyn)
i ____——— Wrapper
" lazy check
eager cast errors String— String

conformance




Type Checking
Runtime

eager cast




Type Checking

Runtime
(Dy= <= |n1_, % (Dyn < Dyn—Dyn)
i ____——— Wrapper
" lazy check
eager cast errors String— String

conformance




Type Checking

Runtime
(Dy= <= |n1_, % (Dyn < Dyn—Dyn)
i ) ) ‘ wrapper
| lazy check
eager cast errors String— String

conformance




Issues with higher-order wrappers




Issues with higher-order wrappers

reliability




Issues with higher-order wrappers

reliability

lazy cast errors
can happen anywhere



Issues with higher-order wrappers

reliability performance

lazy cast errors
can happen anywhere



Issues with higher-order wrappers

®

reliability performance

lazy cast errors space and
can happen anywhere time issues



programming with gradual types




programming with gradual types

unpredictable

casts are
introduced
implicitly




programming with gradual types

unpredictable fragile

casts are a missing type
introduced annotation can
implicitly have a big impact




programming with gradual types

.~
4

DLS’13

Cast Insertion Strategies for Gradually-'lyped Objects

|
ragile
u n p red i ( Esteban Allende ! Johan Fabry Eric Tanter

PLEIAD [abor 2ory
Mnputer Science Departmen LDCC)
University of Chile

C

{eallende jfabry.ctanter V@doc.uchile.cf

ssing type
casts ptation can
[pligelell ...

N ot e big impact
Impli

scen a lot of "XU"-'\JI\ of

[ cither stat: C lype systems for dyr
languages, or partial 1

MATEC
tems that allow a comb nnaton of both
U

Sy's
Fpproaches (2.5, 10 l‘ 14,
Gradual ¢ "l.n_' [15, 16] is a part 1l typin

lechn L‘U‘ proposed
by Sick and Taha that allows devel OPeTs o define which section sof

o
| 4

inlegration of

€S 4 smooth and progressive
slali r\l Iypin

I'he semantics of

code are st ..lu.xl ¥ lyped and which are dynar 1...] Yiyped, ata very
' by translation 10 an Intermediate ime level of grang l;.Axl\ oy selectively placin Iype annotations
ype checks that contro] (he boundaries between where desired vp,‘ ,,-,L system ensures that d
15! dvmarn . . as of P — -
sulu_..w...)..u_f...,.. ically-tyg \.d portions of a program Ihis pag violate the assumy
studies the perf

program is ,.':
Casis rumty

gradually. Ivped
|

anguage with

yYoamac code does not
Ons made in statical v-1y 'xJ code. This makes
it possible 1o cho IS¢ between lhg exibility provided by 4 dvnamic
I¥pe system, and the robustress o [ a static Lype system

he semantics of a
nsizhon 1o & mle

nce of differer il cast
the context of Gradualtal kK, a g

Cuzlly-typed S:
implement the < slralegy specified by \r"k
Casts at call sites. We then « tudy t

and Tuha, which ins Serts
he dual approach, whch co
performi ng casts in callees. Based
strategzes perform well §

:uJ-.‘. Y-lyped language is Lypacally given

ediate kingus e with casts,
the observation that both ¥pe checks that control the ¢
d:fferent sc cenanos, we design a hybe:d code. A mya
srategy that combines the best of c...'f: J.}""" B We evaluate
Ihese three strategics U\H'J. both m

nsists

L. rur l b4 o
"'Ju Wy ped

iyped lun-
...r-uch'\'l"-

ouncanes between lyped ;

or challenge in the ad ption of gradually-
Euages is the cost of

. these casts, c\v:u...\;':N T
Iro- and macro- l'g'.' marks, We

Iheoretical appe s have been devele ped to tackle the s pace i
4IS0 discuss the ir “““l' these strategies on mem ‘\J- iy Measion (11, 17], but execution time is also an issue. T fus hag lv:
ard inheritance, Lhe hybrid stra CEY consttutes a ; OImisin £ cast certan lar IgUages Lo favor a Coanse- grained integration of t vped &
nsertion strategy for a dding t.l...l lypes o existing amscally. untyped code [22] or to ¢ onsider & weaker form of integration that
lyped lang oS,

SVOICS Costly casts [24]. Othes
10g: et al. [14), using Jocal ¢
:l*ml‘c: ol casis tha

f approaches include = Lie work of Ras-

ype inference 1o cantly reduce the
1 are reguired

Categories and Subject Dese riplors D34
THGRe f‘ ¥ TOCessor S

Programming |

LR -

1 developing G radualtadi’, o gradua ly-typed Smallialk. our

General Terms Languages, Performance i:r\l concem was the design of the gradual type system, with its v ar-

. . o 1ous features [11. In Lthe current stage of this work, We are concerned

Keywords  gragual WPIng. casts, Gradualtalk with the efficiency of casts. especially those related 1o ¢ od in-

! Ihis is because method vOCations are naturally very

1. llllﬂ)dufll'l')ﬂ TRQUEnt in object-onented ¢ PrOgrams, espe clally in pure object.

Ihe popula ity of dynamic languages and th Xir use in the const truc- onented l.‘r:yu;n‘.'w ke Smalhalk. Casts incur # Tuntime cost, and
tor of large and coms plex soltware Sy \lg 5 makes the 'm\--lulxl\ to we Bre :'1';‘rc~'u. lh{” efliciency so as to achieve in acceptal

l"'ll‘. ErOwn protolypes

, ance withos
€ MCTpLs using the guaran: lees of a static level o ”“’“ hanc ithout

losmng the features o gradual l_\:r
mng. In the ndationa peron gradually.ryy .'h':‘:\- 6], Sie
Lype system x'rpcnhr.. \'- adve research 1n co mf’-.r:xr_. statie and dy- < i - "J | paper P Scuaty-typed sl o
2 ANC 122 Sescribe the swmantics of cast msert
NAMIC typing started more Hu.r‘ IWenly years ago, recent vears have = - e

using & caller-side
Jue 1o implementation

strategy—which we te ' the call strate ey |
" This work is pastially funded by ¥ FONDECYT Project 111005) ISSUES (which have si nee be
‘ y o o N tion of ¢
Estcban Allende is fuy ded by 2 CONICYT-Chile PhD. S p

T res( \'-Jt o ".c'\ frst impl
Ly Jacment

cmenta-

¥ Sick-Taha approsch

wRle Ph D, Scholars)




programming with gradual types

unpredictable fragile

casts are a missing type
introduced annotation can
implicitly have a big impact




programming with gradual types

unpredictable fragile

casts are a missing type
introduced annotation can
implicitly have a big impact




tackling higher-order wrappers




tackling higher-order wrappers

/1‘ .
space efficiency: coercions [Hermann+], threesomes [Siek+] K@




tackling higher-order wrappers

space efficiency: coercions [Hermann+], threesomes [Siek+] ¥

eliminate some wrappers
[Rastogi+]

@ O
® @
®

O O




tackling higher-order wrappers

space efficiency: coercions [Hermann+], threesomes [Siek+]

eliminate some wrappers

[Rastogi+]

type-based static analysis



tackling higher-order wrappers

space efficiency: coercions [Hermann+], threesomes [Siek+] @

eliminate some wrappers reduce (?) the need for wrappers
[Rastogi+] [Tobin-Hochstadt+]

O

type-based static analysis



tackling higher-order wrappers

space efficiency: coercions [Hermann+], threesomes [Siek+] @

eliminate some wrappers reduce (?) the need for wrappers
[Rastogi+] [Tobin-Hochstadt+]

o S~

coarse-grained gradual typing

type-based static analysis



tackling higher-order wrappers

space efficiency: coercions [Hermann+], threesomes [Siek+]

eliminate some wrappers reduce (?) the need for wrappers
[Rastogi+] [Tobin-Hochstadt+]

o S~

coarse-grained gradual typing

type-based static analysis

forbid implicit wrappers
[Swamy+]



tackling higher-order wrappers

//1
space efficiency: coercions [Hermann+], threesomes [Siek+] %ﬂ;;

eliminate some wrappers reduce (?) the need for wrappers
[Rastogi+] [Tobin-Hochstadt+]

o S~

coarse-grained gradual typing

type-based static analysis

forbid implicit wrappers ban wrappers
[Swamy+] [Wrigstad+]



Confined Gradual Typing



Confined Gradual Typing

Gradual Typing without Losing Control
providing explicit means to
trade some flexibility

iIncrease predictability, reliability, performance



Confined Gradual Typing



Confined Gradual Typing

type qualifiers to control the flow of values

at the typed-untyped boundary



Confined Gradual Typing

type qualifiers to control the flow of values

at the typed-untyped boundary

T

protects the future flow



Confined Gradual Typing

type qualifiers to control the flow of values

at the typed-untyped boundary

T 1

protects the future flow constrains the past flow



Confined Gradual Typing

strict ' ,relaxed

comes in two flavors!

\ 4




Strict CGT

\



Strict CGT
TT

cannot flow into untyped

\



Strict CGT
TT

cannot flow into untyped

\

foo(f: TT) =
let g : Dyn = ...
..g(f) ...



Strict CGT
TT

cannot flow into untyped

foo(f: TT) =
let g : Dyn = ...

.. ... type error

\

10



Strict CGT
TT 1T

cannot flow into untyped has never flowed
through untyped

foo(f: TT) =
let g : Dyn = ...

.. ... type error

\

10



Strict CGT

T

cannot flow into untyped

foo(f: TT) =
let g : Dyn = ...

.. ... type error

$1

has never flowed
through untyped

foo(f: I T) =
L 10 ...

\

10



Strict CGT

T

cannot flow into untyped

foo(f: TT) =
let g : Dyn = ...

el £
i

A ee. . Type error

$1

has never flowed
through untyped

foo(f: I T) =
N
... h(f) ...

\

10



Strict CGT
T T

cannot flow into untyped has never flowed
through untyped

%

foo(f: TT) =
Iét g [gyn _ foo(f: 1T) =
. 10 ...
L. type error L h(f) ...

10



Relaxed CGT

If what matters most is the performance guarantee

we can allow some boundary crossing

4

11



Relaxed CGT

If what matters most is the performance guarantee

we can allow some boundary crossing

T

cannot be wrapped

4

11



Relaxed CGT

4

If what matters most is the performance guarantee

we can allow some boundary crossing

T +1

cannot be wrapped has not been wrapped

11



12



12



12



12



(Dyn < String— String)

12



(would have been rejected by Strict CGT)

(Dyn < String— String)

12



(Dyn < String— String)

12



(Dyn < String— String)

12



(Dyn < String— String)

12



(Dyn < String— String)

cannot fail, no extra cost

12



(Dyn < String— String)

cannot fail, no extra cost

(Dyn < Dyn—Dyn)

12



(Dyn < String— String)

cannot fail, no extra cost

(Dyn < Dyn—Dyn)

12



(Dyn < String— String)

cannot fail, no extra cost

~ (Byn < Dyn—=Dyn)

wrapping error @runtime

12



(Dyn < String— String) ~ Dyn <= Dyn=Dyn)

wrapping error @runtime
cannot fail, no extra cost

new kind of (eager) runtime errors at the boundary

12



Directed consistency ~

13



Directed consistency ~

T1~ T2

T~ TT>

13



Directed consistency ~

T1~To can impose restriction on future

T~ TT> but cannot lose it

13



Directed consistency ~

T1~To can impose restriction on future

T~ TT> but cannot lose it

T1~To

IT1~To

13



Directed consistency ~

T1~To can impose restriction on future

T~ TT> but cannot lose it

T1~1T2 can lose guarantee on the past

1T~ T> but cannot forge it

13



Directed consistency ~

T1~ T2 can impose restriction on future
T~ TT> but cannot lose it

T1~T> can lose guarantee on the past
1T~ T> but cannot forge it

TT~Dyn Dyn~ 1T

Strict CGT
Relaxed CGT

13



Directed consistency ~

T1~ T2 can impose restriction on future
T~ TT> but cannot lose it

T1~T> can lose guarantee on the past
1T~ T> but cannot forge it

TT~Dyn Dyn~ 1T

Strict CGT X %
Relaxed CGT

13



Directed consistency ~

T1~ T2 can impose restriction on future
T~ TT> but cannot lose it

T1~T> can lose guarantee on the past
1T~ T> but cannot forge it

TT~Dyn Dyn~ 1T

Strict CGT 5/; 5/’
Relaxed CGT V4 v

13



Directed consistency ~

T1~ T2 can impose restriction on future
T~ TT> but cannot lose it

T1~T> can lose guarantee on the past
1T~ T> but cannot forge it

TT~Dyn Dyn~ 1T

Strict CGT 5/; 5/’

runtime semantics rejects
Relaxed CGT / "/ wrappers from TTorto 1T

13



beyond soundness...

Correctness of qualifiers

14



beyond soundness...

Correctness of qualifiers

Strict CGT: taint tracking semantics [Grossman-+]

14



beyond soundness...

Correctness of qualifiers

Strict CGT: taint tracking semantics [Grossman-+]

a value of type 1T is untainted

a value of type 1T (“untaintable”) is not tagged

14



beyond soundness...

Correctness of qualifiers

Strict CGT: taint tracking semantics [Grossman-+]

a value of type 1T is untainted

a value of type 1T (“untaintable”) is not tagged

Relaxed CGT

14



beyond soundness...

Correctness of qualifiers

Strict CGT: taint tracking semantics [Grossman-+]

a value of type 1T is untainted

a value of type 1T (“untaintable”) is not tagged

Relaxed CGT

no function wrapper has 1T as source type

or 1 T as target type

14



Expe rl mentS in the paper

Implemented in Gradualtalk, a gradually-typed Smalltalk

Benchmarks confirm the performance costs/benefits

15



Usage Scenarios



Usage Scenarios

post-hoc
@ add type qualifiers to track “leaks”

@ leave them in place to prevent future issues

16



Usage Scenarios

post-hoc
@ add type qualifiers to track “leaks”

@ leave them in place to prevent future issues

interface provider
@ add qualifiers to interface of critical components

o eg. GUI callbacks (perfs), core system components (reliability)

16



Usage Scenarios

post-hoc
@ add type qualifiers to track “leaks”

@ leave them in place to prevent future issues

interface provider
@ add qualifiers to interface of critical components

o eg. GUI callbacks (perfs), core system components (reliability)

interface client

@ annotate callbacks passed to a critical, typed, 3rd-party library

16



Perspectives



Perspectives

Language design



Perspectives

Language design

e combine both variants



Perspectives

Language design
e combine both variants

¢ dual semantics: use qualifiers to allow boundary crossing

17



Perspectives

Language design
e combine both variants
e dual semantics: use qualifiers to allow boundary crossing

e inference of qualifiers

17



Perspectives

Language design
e combine both variants
e dual semantics: use qualifiers to allow boundary crossing

e inference of qualifiers

More practical experience (other languages)

17



Confined Gradual Typing

Gradual Typing without Losing Control
providing explicit means to
trade some flexibility

iIncrease predictability, reliability, performance

18



Confined Gradual Typing

Gradual Typing without Losing Control
providing explicit means to
trade some flexibility

iIncrease predictability, reliability, performance

| & questions 71

18



