
Improving the Proof Experience in Coq

MARTIN BODIN FEDERICO OLMEDO
UNIVERSITY OF CHILE

ICSEC KICK-OFF WORKSHOP
SANTIAGO, CHILE — MARCH 2018

2

What is this talk about?

Coq User Experience & Wishlist

Certified
Cryptography

Proof about
R / JavaScript
programs

3

1

4

Software quality attributes

Proof developers tend
to neglect elementary
engineering qualities

5

Proof developers tend
to neglect elementary
engineering qualities

5

—mainly robustness.

6

Practices precluding the robustness of Coq developments

Proof scripts that are sensitive to the naming of automatically
generated terms

6

Practices precluding the robustness of Coq developments

Proof scripts that are sensitive to the naming of automatically
generated terms

6

Practices precluding the robustness of Coq developments

Inductive exp : Set :=
| Const : nat -> exp
| Plus : exp -> exp -> exp.

Proof scripts that are sensitive to the naming of automatically
generated terms

6

Practices precluding the robustness of Coq developments

Inductive exp : Set :=
| Const : nat -> exp
| Plus : exp -> exp -> exp.

Fixpoint eval (e : exp) : nat :=
 match e with
 | Const n => n
 | Plus e1 e2 => eval e1 + eval e2
 end.

Proof scripts that are sensitive to the naming of automatically
generated terms

6

Practices precluding the robustness of Coq developments

Inductive exp : Set :=
| Const : nat -> exp
| Plus : exp -> exp -> exp.

Fixpoint eval (e : exp) : nat :=
 match e with
 | Const n => n
 | Plus e1 e2 => eval e1 + eval e2
 end.

Fixpoint times (k : nat) (e : exp) : exp :=
 match e with
 | Const n => Const (k * n)
 | Plus e1 e2 => Plus (times k e1) (times k e2)
 end.

Proof scripts that are sensitive to the naming of automatically
generated terms

7

Practices precluding the robustness of Coq developments

Theorem eval_times : forall k e,
 eval (times k e) = k * eval e.
Proof.
 induction e.
 trivial.

 simpl.
 rewrite IHe1.
 rewrite IHe2.
 rewrite mul_add_distr_l.

 trivial.
Qed.

Proof scripts that are sensitive to the naming of automatically
generated terms

7

Practices precluding the robustness of Coq developments

Theorem eval_times : forall k e,
 eval (times k e) = k * eval e.
Proof.
 induction e.
 trivial.

 simpl.
 rewrite IHe1.
 rewrite IHe2.
 rewrite mul_add_distr_l.

 trivial.
Qed.

Proof scripts that are sensitive to the naming of automatically
generated terms

7

Practices precluding the robustness of Coq developments

Theorem eval_times : forall k e,
 eval (times k e) = k * eval e.
Proof.
 induction e.
 trivial.

 simpl.
 rewrite IHe1.
 rewrite IHe2.
 rewrite mul_add_distr_l.

 trivial.
Qed.

eval (times k (Const n)) = k * eval (Const n)

k, n : nat

Proof scripts that are sensitive to the naming of automatically
generated terms

7

Practices precluding the robustness of Coq developments

Theorem eval_times : forall k e,
 eval (times k e) = k * eval e.
Proof.
 induction e.
 trivial.

 simpl.
 rewrite IHe1.
 rewrite IHe2.
 rewrite mul_add_distr_l.

 trivial.
Qed.

eval (times k (Const n)) = k * eval (Const n)

k, n : nat

Proof scripts that are sensitive to the naming of automatically
generated terms

7

Practices precluding the robustness of Coq developments

Theorem eval_times : forall k e,
 eval (times k e) = k * eval e.
Proof.
 induction e.
 trivial.

 simpl.
 rewrite IHe1.
 rewrite IHe2.
 rewrite mul_add_distr_l.

 trivial.
Qed.

eval (times k (Plus e1 e2)) = k * eval (Plus e1 e2)

k : nat
e1, e2 : exp
IHe1 : eval (times k e1) = k * eval e1
IHe2 : eval (times k e2) = k * eval e2

Proof scripts that are sensitive to the naming of automatically
generated terms

7

Practices precluding the robustness of Coq developments

Theorem eval_times : forall k e,
 eval (times k e) = k * eval e.
Proof.
 induction e.
 trivial.

 simpl.
 rewrite IHe1.
 rewrite IHe2.
 rewrite mul_add_distr_l.

 trivial.
Qed.

eval (times k e1) + eval (times k e2) =
k * (eval e1 + eval e2)

k : nat
e1, e2 : exp
IHe1 : eval (times k e1) = k * eval e1
IHe2 : eval (times k e2) = k * eval e2

Proof scripts that are sensitive to the naming of automatically
generated terms

7

Practices precluding the robustness of Coq developments

Theorem eval_times : forall k e,
 eval (times k e) = k * eval e.
Proof.
 induction e.
 trivial.

 simpl.
 rewrite IHe1.
 rewrite IHe2.
 rewrite mul_add_distr_l.

 trivial.
Qed.

k * eval e1 + k * eval e2 =
k * (eval e1 + eval e2)

k : nat
e1, e2 : exp
IHe1 : eval (times k e1) = k * eval e1
IHe2 : eval (times k e2) = k * eval e2

Proof scripts that are sensitive to the naming of automatically
generated terms

7

Practices precluding the robustness of Coq developments

Theorem eval_times : forall k e,
 eval (times k e) = k * eval e.
Proof.
 induction e.
 trivial.

 simpl.
 rewrite IHe1.
 rewrite IHe2.
 rewrite mul_add_distr_l.

 trivial.
Qed.

k * eval e1 + k * eval e2 =
k * (eval e1 + eval e2)

k : nat
e1, e2 : exp
IHe1 : eval (times k e1) = k * eval e1
IHe2 : eval (times k e2) = k * eval e2

Proof scripts that are sensitive to the naming of automatically
generated terms

7

Practices precluding the robustness of Coq developments

Theorem eval_times : forall k e,
 eval (times k e) = k * eval e.
Proof.
 induction e.
 trivial.

 simpl.
 rewrite IHe1.
 rewrite IHe2.
 rewrite mul_add_distr_l.

 trivial.
Qed.

k * eval e1 + k * eval e2 =
k * (eval e1 + eval e2)

k : nat
e1, e2 : exp
IHe1 : eval (times k e1) = k * eval e1
IHe2 : eval (times k e2) = k * eval e2

Proof scripts that are sensitive to the naming of automatically
generated terms

7

Practices precluding the robustness of Coq developments

Theorem eval_times : forall k e,
 eval (times k e) = k * eval e.
Proof.
 induction e.
 trivial.

 simpl.
 rewrite IHe1.
 rewrite IHe2.
 rewrite mul_add_distr_l.

 trivial.
Qed.

k * eval e1 + k * eval e2 =
k * (eval e1 + eval e2)

k : nat
e1, e2 : exp
IHe1 : eval (times k e1) = k * eval e1
IHe2 : eval (times k e2) = k * eval e2

Replace
e with x

Theorem eval_times : forall k x,
 eval (times k x) = k * eval x.
Proof.
 induction x.
 trivial.

 simpl.
 rewrite IHe1.

Proof scripts that are sensitive to the naming of automatically
generated terms

8

Practices precluding the robustness of Coq developments

Theorem eval_times : forall k x,
 eval (times k x) = k * eval x.
Proof.
 induction x.
 trivial.

 simpl.
 rewrite IHe1.

Proof scripts that are sensitive to the naming of automatically
generated terms

8

Practices precluding the robustness of Coq developments

Theorem eval_times : forall k x,
 eval (times k x) = k * eval x.
Proof.
 induction x.
 trivial.

 simpl.
 rewrite IHe1.

Proof scripts that are sensitive to the naming of automatically
generated terms

8

Practices precluding the robustness of Coq developments

eval (times k (Const n)) = k * eval (Const n)

k, n : nat

Theorem eval_times : forall k x,
 eval (times k x) = k * eval x.
Proof.
 induction x.
 trivial.

 simpl.
 rewrite IHe1.

Proof scripts that are sensitive to the naming of automatically
generated terms

8

Practices precluding the robustness of Coq developments

eval (times k (Const n)) = k * eval (Const n)

k, n : nat

Theorem eval_times : forall k x,
 eval (times k x) = k * eval x.
Proof.
 induction x.
 trivial.

 simpl.
 rewrite IHe1.

Proof scripts that are sensitive to the naming of automatically
generated terms

8

Practices precluding the robustness of Coq developments

eval (times k (Plus x1 x2)) = k * eval (Plus x1 x2)

k : nat
x1, x2 : exp
IHx1 : eval (times k x1) = k * eval x1
IHx2 : eval (times k x2) = k * eval x2

Theorem eval_times : forall k x,
 eval (times k x) = k * eval x.
Proof.
 induction x.
 trivial.

 simpl.
 rewrite IHe1.

Proof scripts that are sensitive to the naming of automatically
generated terms

8

Practices precluding the robustness of Coq developments

k * eval x1 + k * eval x2 =
k * (eval x1 + eval x2)

k : nat
x1, x2 : exp
IHx1 : eval (times k x1) = k * eval x1
IHx2 : eval (times k x2) = k * eval x2

Theorem eval_times : forall k x,
 eval (times k x) = k * eval x.
Proof.
 induction x.
 trivial.

 simpl.
 rewrite IHe1.

Proof scripts that are sensitive to the naming of automatically
generated terms

8

Practices precluding the robustness of Coq developments

k * eval x1 + k * eval x2 =
k * (eval x1 + eval x2)

k : nat
x1, x2 : exp
IHx1 : eval (times k x1) = k * eval x1
IHx2 : eval (times k x2) = k * eval x2

The reference IHe1 was not found
in the current environment!!!

9

Practices precluding the robustness of Coq developments

Proof scripts that are sensitive to the order of constructors of
inductive types.

9

Practices precluding the robustness of Coq developments

Proof scripts that are sensitive to the order of constructors of
inductive types.

9

Practices precluding the robustness of Coq developments

Flipped the
order of constr.

Inductive exp : Set :=
| Plus : exp -> exp -> exp
| Const : nat -> exp.

Proof scripts that are sensitive to the order of constructors of
inductive types.

9

Practices precluding the robustness of Coq developments

Flipped the
order of constr.

Inductive exp : Set :=
| Plus : exp -> exp -> exp
| Const : nat -> exp.

Theorem eval_times : forall k e,
 eval (times k e) = k * eval e.
Proof.
 induction e.
 trivial.

 simpl.
 rewrite IHe1.
 rewrite IHe2.
 rewrite mul_add_distr_l.

 trivial.
Qed.

Proof scripts that are sensitive to the order of constructors of
inductive types.

9

Practices precluding the robustness of Coq developments

Flipped the
order of constr.

Inductive exp : Set :=
| Plus : exp -> exp -> exp
| Const : nat -> exp.

Theorem eval_times : forall k e,
 eval (times k e) = k * eval e.
Proof.
 induction e.
 trivial.

 simpl.
 rewrite IHe1.
 rewrite IHe2.
 rewrite mul_add_distr_l.

 trivial.
Qed.

Attempt to save an incomplete
proof

10

Practices precluding the robustness of Coq developments

Proof scripts that are sensitive to the order of lemmas’ hypotheses

10

Practices precluding the robustness of Coq developments

Proof developers tend to neglect elementary
engineering qualities—mainly robustness.

11

Proof developers tend to neglect elementary
engineering qualities—mainly robustness.

11

POSSIBLE SOLUTION:

Proof developers tend to neglect elementary
engineering qualities—mainly robustness.

11

POSSIBLE SOLUTION:

“Proof analysis” identifying possible robustness issues

Provide a linter implementing the analysis

12

2

13

13

Terrific formalisation
in Coq

13

Terrific formalisation
in Coq

Why not extend
the result?

13

Terrific formalisation
in Coq

Why not extend
the result?

Ok! Let’s see
what it takes.

13

Terrific formalisation
in Coq

Why not extend
the result?

Ok! Let’s see
what it takes.

What is the best way to implement it?

How shall I do it?

13

Terrific formalisation
in Coq

Why not extend
the result?

Ok! Let’s see
what it takes.

Is it really feasible?

How much effort would it take?

What is the best way to implement it?

How shall I do it?

Coq developments tend to
evolve over time. However,
there is no mechanism for
assessing the impact of
introducing changes.

14

Change  

impact

15

HOW DOES A CHANGE TO A PART OF THE DEVELOPMENT IMPACT ON
THE REST OF THE DEVELOPMENT?

15

What else should be changed?

HOW DOES A CHANGE TO A PART OF THE DEVELOPMENT IMPACT ON
THE REST OF THE DEVELOPMENT?

15

What else should be changed?

What do these changes consist in: extension, removal, adaptation?

HOW DOES A CHANGE TO A PART OF THE DEVELOPMENT IMPACT ON
THE REST OF THE DEVELOPMENT?

15

What else should be changed?

Where should these changes take exactly place?

What do these changes consist in: extension, removal, adaptation?

HOW DOES A CHANGE TO A PART OF THE DEVELOPMENT IMPACT ON
THE REST OF THE DEVELOPMENT?

16

Desired tool support

Inductive tree (A : Set) : Set :=
| Leaf : A -> tree A
| Node : tree A -> tree A -> tree A.

Fixpoint size_tree (A : Set) (t : tree A) : nat :=
 match t with
 | Leaf _ => 1
 | Node t1 t2 => 1 + (size_tree t1) + (size_tree t2)
 end.

Binary trees with elements in leaves

16

Desired tool support

Fixpoint size_tree (A : Set) (t : tree A) : nat :=
 match t with
 | Leaf _ => 1
 | Node t1 t2 => 1 + (size_tree t1) + (size_tree t2)
 end.

Inductive tree (A : Set) : Set :=
| Leaf : A -> tree A
| Node : A -> tree A -> tree A -> tree A.

Binary trees with elements in leaves and internal nodes

16

Desired tool support

Fixpoint size_tree (A : Set) (t : tree A) : nat :=
 match t with
 | Leaf _ => 1
 | Node t1 t2 => 1 + (size_tree t1) + (size_tree t2)
 end.

Inductive tree (A : Set) : Set :=
| Leaf : A -> tree A
| Node : A -> tree A -> tree A -> tree A.

Binary trees with elements in leaves and internal nodes

16

Desired tool support

Inductive tree (A : Set) : Set :=
| Leaf : A -> tree A
| Node : A -> tree A -> tree A -> tree A.

Fixpoint size_tree (A : Set) (t : tree A) : nat :=
 match t with
 | Leaf _ => 1
 | Node t1 t2 => 1 + (size_tree t1) + (size_tree t2)
 end.

Binary trees with elements in leaves and internal nodes

Requires attention 
- Constructor has changed 
- Adapt return expression?

16

Desired tool support

Inductive tree (A : Set) : Set :=
| Leaf : A -> tree A
| Node : A -> tree A -> tree A -> tree A.

Fixpoint size_tree (A : Set) (t : tree A) : nat :=
 match t with
 | Leaf _ => 1
 | Node t1 t2 => 1 + (size_tree t1) + (size_tree t2)
 end.

Binary trees with elements in leaves and internal nodes

Requires attention 
- Constructor has changed 
- Adapt return expression?

Lemma size_map_mirror_tree : forall (A B : Set) (f : A -> B) (t : tree A),
 size_tree (map_tree f t) = size_tree (mirror_tree t).
Proof.
 intros.
 rewrite size_map_tree, size_mirror_tree.
 trivial.
Qed.

16

Desired tool support

Inductive tree (A : Set) : Set :=
| Leaf : A -> tree A
| Node : A -> tree A -> tree A -> tree A.

Fixpoint size_tree (A : Set) (t : tree A) : nat :=
 match t with
 | Leaf _ => 1
 | Node t1 t2 => 1 + (size_tree t1) + (size_tree t2)
 end.

Binary trees with elements in leaves and internal nodes

Requires attention 
- Constructor has changed 
- Adapt return expression?

Lemma size_map_mirror_tree : forall (A B : Set) (f : A -> B) (t : tree A),
 size_tree (map_tree f t) = size_tree (mirror_tree t).
Proof.
 intros.
 rewrite size_map_tree, size_mirror_tree.
 trivial.
Qed.

Requires no modification

17

3

User-defined

tactics

User-defined tactics are
awesome (for automation &
robustness), but their

18

use is hindered by
several limitations.

19

Tactics support no query mechanism

$ grep -r Ltac * | wc -l
471 → There probably are redundant definitions.

19

Tactics support no query mechanism

$ grep -r Ltac * | wc -l
471 → There probably are redundant definitions.

Print TLC.LibTactics. → All Gallina definitions, no Ltac definitions.

A tactic “specification” language similar to SearchAbout?

20

Debugging

A debugger exists, but it is very basic.

When debugging, we typically look for a failing branch. The tracing
tool of Coq exactly ignores these.

21

Two kinds of tactics

Tactics building terms Tactics with side effects

Ltac ltac_inter l1 l2 :=
 match l2 with
 | nil =>
 constr:(@nil
 ltac:(match type of l1 with
 list ?T => T end))
 | ?a :: ?l =>
 let is_in := ltac_mem a l1 in
 let r := ltac_inter l1 l in
 match is_in with
 | true => constr:(a :: l)
 | false => r
 end
 end.

rewrite, idtac, everything using “;”, etc.

They can not be mixed
idtac; constr:(1) will always fail.

22

Type for tactics?

t ::= <effect> | <constr> | t -> t | 'a

22

Type for tactics?

This would have detected my last week’s bug:
Ltac get_something e k :=
 let aux k' :=
 let H := fresh "H" in
 assert (H : something e); [prove_something | k' H]
 in
 match goal with
 | L : lemma_for_something |- _ =>
 aux (fun H =>
 apply (change_something L) to H;
 k H)
 end.

t ::= <effect> | <constr> | t -> t | 'a

22

Type for tactics?

This would have detected my last week’s bug:
Ltac get_something e k :=
 let aux k' :=
 let H := fresh "H" in
 assert (H : something e); [prove_something | k' H]
 in
 match goal with
 | L : lemma_for_something |- _ =>
 aux (fun H =>
 apply (change_something L) to H;
 k H)
 end.

Ltac get_something e k :=
 let aux k' :=
 let H := fresh "H" in
 assert (H : something e); [prove_something | k' H (fun r => k r; try clear H)]
 in
 match goal with
 | L : lemma_for_something |- _ =>
 aux (fun H =>
 apply (change_something L) to H;
 k H)
 end.

t ::= <effect> | <constr> | t -> t | 'a

22

Type for tactics?

This would have detected my last week’s bug:
Ltac get_something e k :=
 let aux k' :=
 let H := fresh "H" in
 assert (H : something e); [prove_something | k' H]
 in
 match goal with
 | L : lemma_for_something |- _ =>
 aux (fun H =>
 apply (change_something L) to H;
 k H)
 end.

Ltac get_something e k :=
 let aux k' :=
 let H := fresh "H" in
 assert (H : something e); [prove_something | k' H (fun r => k r; try clear H)]
 in
 match goal with
 | L : lemma_for_something |- _ =>
 aux (fun H =>
 apply (change_something L) to H;
 k H)
 end.

→ Error: No matching clauses for match.

t ::= <effect> | <constr> | t -> t | 'a

23

Miscellaneous

Fresh and its hints.

Lists of hypotheses.

“fresh "IH" e” fails when “e” is not an identifier.

crush’s done, TLC’s boxer, SSReflect stack, etc.

Getting constructors and projections as a list.

let x := constr:(ltac:(constructor) : T) in ltac:(induction x; exact I) : True

A timing and memory model for Ltac?

My Coq development last month: Fatal error: out of memory.

24

We can develop in Ltac, but we are lacking some tools

Any proof analysis tool would be greatly welcomed;

Any way of looking through already defined tactics;

Conclusion

Ltac definitely needs more types.

24

We can develop in Ltac, but we are lacking some tools

Any proof analysis tool would be greatly welcomed;

Any way of looking through already defined tactics;

Conclusion

Thanks!

Ltac definitely needs more types.

