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What is this talk about?

Coq User Experience & Wishlist

Certified 
Cryptography

Proof about 
R / JavaScript 
programs
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Software quality attributes



Proof developers tend 
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—mainly robustness.
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Practices precluding the robustness of Coq developments 

Inductive exp : Set := 
| Const : nat -> exp 
| Plus : exp -> exp -> exp.

Fixpoint eval (e : exp) : nat :=  
  match e with 
    | Const n => n 
    | Plus e1 e2 => eval e1 + eval e2  
  end.

Fixpoint times (k : nat) (e : exp) : exp :=  
  match e with  
    | Const n => Const (k * n) 
    | Plus e1 e2 => Plus (times k e1) (times k e2) 
  end.   



Proof scripts that are sensitive to the naming of automatically 
generated terms

7

Practices precluding the robustness of Coq developments 

Theorem eval_times : forall k e, 
  eval (times k e) = k * eval e. 
Proof. 
  induction e. 
    trivial. 

    simpl. 
    rewrite IHe1. 
    rewrite IHe2. 
    rewrite mul_add_distr_l. 

 trivial. 
Qed. 
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Practices precluding the robustness of Coq developments 

k * eval x1 + k * eval x2 = 
k * (eval x1 + eval x2)

k : nat 
x1, x2 : exp 
IHx1 : eval (times k x1) = k * eval x1 
IHx2 : eval (times k x2) = k * eval x2

The reference IHe1 was not found 
in the current environment!!!
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Practices precluding the robustness of Coq developments 

Flipped the 
order of constr.

Inductive exp : Set := 
| Plus : exp -> exp -> exp 
| Const : nat -> exp.

Theorem eval_times : forall k e, 
  eval (times k e) = k * eval e. 
Proof. 
  induction e. 
    trivial. 

    simpl. 
    rewrite IHe1. 
    rewrite IHe2. 
    rewrite mul_add_distr_l. 

 trivial. 
Qed. 

Attempt to save an incomplete 
proof
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Practices precluding the robustness of Coq developments 
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POSSIBLE SOLUTION:

“Proof analysis” identifying possible robustness issues 

Provide a linter implementing the analysis
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Terrific formalisation 
in Coq

Why not extend 
the result?

Ok! Let’s see 
what it takes.

Is it really feasible?

How much effort would it take? 

What is the best way to implement it?

How shall I do it?



Coq developments tend to   
evolve over time. However, 
there is no mechanism for 
assessing the impact of 
introducing changes.
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Change  

impact



15

HOW DOES A CHANGE TO A PART OF THE DEVELOPMENT IMPACT ON 
THE REST OF THE DEVELOPMENT?



15

What else should be changed? 

HOW DOES A CHANGE TO A PART OF THE DEVELOPMENT IMPACT ON 
THE REST OF THE DEVELOPMENT?



15

What else should be changed? 

What do these changes consist in: extension, removal, adaptation?
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What else should be changed? 

Where should these changes take exactly place?

What do these changes consist in: extension, removal, adaptation?

HOW DOES A CHANGE TO A PART OF THE DEVELOPMENT IMPACT ON 
THE REST OF THE DEVELOPMENT?
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Desired tool support

Inductive tree (A : Set) : Set := 
| Leaf : A -> tree A 
| Node : tree A -> tree A -> tree A.

Fixpoint size_tree (A : Set)  (t : tree A) : nat := 
  match t with 
    | Leaf _ => 1 
    | Node t1 t2  => 1 + (size_tree t1) + (size_tree t2) 
  end.

Binary trees with elements in leaves
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Inductive tree (A : Set) : Set := 
| Leaf : A -> tree A 
| Node : A -> tree A -> tree A -> tree A.

Fixpoint size_tree (A : Set)  (t : tree A) : nat := 
  match t with 
    | Leaf _ => 1 
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Requires attention 
- Constructor has changed 
- Adapt return expression?

Lemma size_map_mirror_tree : forall (A B : Set) (f : A -> B) (t : tree A), 
 size_tree (map_tree f t) = size_tree (mirror_tree  t). 
Proof. 
  intros. 
  rewrite size_map_tree, size_mirror_tree. 
  trivial. 
Qed.

Requires no modification
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User-defined 

tactics

User-defined tactics are 
awesome (for automation & 
robustness), but their 

18

use is hindered by 
several limitations.
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Tactics support no query mechanism

$ grep -r Ltac * | wc -l 
471 → There probably are redundant definitions.
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Tactics support no query mechanism

$ grep -r Ltac * | wc -l 
471 → There probably are redundant definitions.

Print TLC.LibTactics. → All Gallina definitions, no Ltac definitions. 

A tactic “specification” language similar to SearchAbout?
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Debugging

A debugger exists, but it is very basic.

When debugging, we typically look for a failing branch. The tracing 
tool of Coq exactly ignores these.



21

Two kinds of tactics

Tactics building terms Tactics with side effects

Ltac ltac_inter l1 l2 := 
  match l2 with 
  | nil => 
    constr:(@nil 
      ltac:(match type of l1 with  
                list ?T => T end)) 
  | ?a :: ?l => 
    let is_in := ltac_mem a l1 in 
    let r := ltac_inter l1 l in 
    match is_in with 
    | true => constr:(a :: l) 
    | false => r 
    end 
  end.

rewrite, idtac, everything using “;”, etc.

They can not be mixed
idtac; constr:(1) will always fail.
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Type for tactics?

t ::= <effect> | <constr> | t -> t | 'a
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Type for tactics?

This would have detected my last week’s bug:
Ltac get_something e k := 
  let aux k' := 
    let H := fresh "H" in 
     assert (H : something e); [ prove_something | k' H ] 
   in 
   match goal with 
   | L : lemma_for_something |- _ => 
     aux (fun H => 
       apply (change_something L) to H; 
       k H) 
  end.

Ltac get_something e k := 
  let aux k' := 
    let H := fresh "H" in 
     assert (H : something e); [ prove_something | k' H (fun r => k r; try clear H) ] 
   in 
   match goal with 
   | L : lemma_for_something |- _ => 
     aux (fun H => 
       apply (change_something L) to H; 
       k H) 
  end.

→ Error: No matching clauses for match.

t ::= <effect> | <constr> | t -> t | 'a
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Miscellaneous

Fresh and its hints.

Lists of hypotheses.

“fresh "IH" e” fails when “e” is not an identifier.

crush’s done, TLC’s boxer, SSReflect stack, etc.

Getting constructors and projections as a list.

let x := constr:(ltac:(constructor) : T) in ltac:(induction x; exact I) : True

A timing and memory model for Ltac?

My Coq development last month: Fatal error: out of memory.
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We can develop in Ltac, but we are lacking some tools

Any proof analysis tool would be greatly welcomed;

Any way of looking through already defined tactics;

Conclusion

Ltac definitely needs more types.
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We can develop in Ltac, but we are lacking some tools

Any proof analysis tool would be greatly welcomed;

Any way of looking through already defined tactics;

Conclusion

Thanks!

Ltac definitely needs more types.


