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Why certified cryptographic proofs?
Rigor crisis in the cryptographic community

In our opinion, many proofs in cryptography have become
essentially unverifiable. Our field may be approaching a crisis
of rigor.

Bellare & Rogaway (2006)

Do we have a problem with cryptographic proofs?
Yes, we do. The problem is that as a community, we generate
more proofs than we carefully verify (and as a consequence

some of our published proofs are incorrect).
Halevi (2005)
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The rigor crisis of the cryptographic community

The case of OAEP encryption scheme

Introduction and security proof

Worldwide industrial standard

PKCS#1 v2
IEEE P1363

ISO 18033-2
Standard

Security proof is flawed And 7 years later...

i i e I S

There appears to be a non-trivial gap in the OAEP
security proof [and] this gap cannot be filled.

Shoup (2001)
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The rigor crisis of the cryptographic community

The case of BONEH-FRANKLIN encryption scheme

Introduction and security proof

Used as subcomponent of several cryptographic protocols

Security proof is flawed

This is just another example in which a well-known and widely
used construction turns out to have an unnoticed flawed

security reduction.
F Galindo (2005)
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® 6 people
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CertiCrypt:
Framework for constructing certified cryptographic proofs in Coq

http://certicrypt.gforge.inria.fr/

Substantial effort High impact
= 30.000 lines = Formalization of several encryption
s 4-6 years schemes, digital signatures, hash

functions, zero-knowledge protocols, etc
® 6 people o
= 12 publications


http://certicrypt.gforge.inria.fr/

Basics about CertiCrypt
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What is a secure cryptographic scheme?

A cryptographic scheme is secure if an efficient
adversary can break it only with negligible probability

=» Cryptographic schemes must be probabilistic (Goldwasser & Micali, '82)
=) Adversaries should run in probabilistic polynomial time (PPT)

=) There exists a standard security notion for each kind of cryptographic scheme

the scheme

o [A breaks

Attack game



How do security proof proceed?
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How do security proof proceed?

By stepwise transformation of the attack game,
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How do security proot proceed?

How do we
represent games?

Go G

10



How do security proot proceed?

PrGO[EO] < fl (Prgl[El]) < - < fn (Pan[En])

How do we relate the probabilities of

events between consecutive games?

11
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Language-based cryptographic proofs

Games

Probability space
Probability of event
Game transformations

Generic adversary

AR

(probabilistic) programs
program denotation
probability of postcondition
program transformations

unspecified procedure

12



The probabilistic language

skip

C; C

V&

YV & DE

if £ then C else C
while £ do C
V+—PE,....E)

nop
sequence
assignment
random sampling
conditional

while loop
procedure call

13



The probabilistic language

C == skip
C; C

| ZR
YV & DE

] -

nop
sequence
assignment
random sampling

if &€ then C else C conditional

while £ do C while loop
V+—PE,...,E) procedure call

S — D(S)
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The probabilistic language

C == skip nop
C; C sequence
| ZR assignment
YV & DE random sampling
if £ then C else C conditional
while £ do C while loop
V+—PE,...,E) procedure call

lc] : Y(k:N). Sk — D(Sy)

security parameter

13
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How do we relate the probability of program?
We need to prove claims of the form

Pre,(s) [E1] < f( Pre,(s) [EQ])

But usually, it suffices proving claims of the form

PrCl(Sl)[E] — PrC2(S2)[E]

for which we can rely on observational equivalence between programs:

Input set of variables Output set of variables

fV(E) C O {/} Ci ~ O {O} 51 =1 S
PrCl(Sl)[E] — PrC2(52)[E]
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Proving observational equivalence

CertiCrypt provides several mechanised program transformations
for establishing observational equivalence

PROGRAM TRANSFORMATION: T(c1,,1,0)=(c;, e, 1", 0"

SOUNDNESS RESULT: T(c1, ¢, 1,0) = (¢, 6, I',O) {I'} ¢ ~ & {O'}

{It aa ~ {0}

SOME INSTANCES: o Deadcode elimination
o Constant propagation
o Procedure call inlining

o Common prefix/suffix elimination
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Proving observational equivalence

CertiCrypt provides an (incomplete) tactic for proving self-equivalence

Does {/} ¢ ~ ¢ {O} hold?

= Analyse dependencies to compute I’ such that {/'} ¢ ~ ¢ {O}
s Checkthat /' C/
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Security proof of EIGamal encryption scheme

(D
-

inline_1 KG.
inline_1 Enc.
ep.

deadcode.
swap.

\gqobs_ln. Y

Game ElGamal :
(z, ) «— KG();
(mo,m1) «— A();

b & {0,1};

(8,¢) < Enc(a, myp);
v — A'(a, 3,();
d—b=1"V

-~

Game ElGamalg :

2)

inline_r B.
ep.

deadcode.
eqobs_in.

& Lgs y & ZLy;
(mo, m1) — A(g");
b & {0, 1}

¢ — g*¥ X mp;

b — A'(g9%, 9Y,Q);
d—b=10

Game ElGamals :
x & Zg; y & ZLyg;
(mo, m1) < A(g9”);
z & Zg; ¢ g7

b — A (g%, 9", Q);

b& {0,1};
d—b=1V
=d

Game ElGamal; :

x & Lq; y & Ly,
(mo,m1) < A(g”);

b & {0,1};

2 & Lg; C — g% X my;
b — A'(g%, 9", Q);
d—b=1V

_________ T T
Game DDHj : Adversary B(a, 8,7) : Game DDHj : :
x & Lg; (mo,m1) «— A(a); x & Lg;

y & Lqg; b & {0,1}; y & ZLg;
d «— B(g9”,9Y,9"Y) o — A, B,y X mp); z & Lg;
return b = b’ d — B(g",g¥,9%)

Lemma B_PPT : PPT B. Lemma B_wf : WFAdv B.
Proof. PPT_tac. Qed. Proof. ... Qed.

4)

swap.
eqobs_hd 4.
eqobs_tl 2.

apply mult_pad.

(5)
/inline_r B:\
ep.
deadcode.
swap.

\gqobs_ln. D

17



Game ElGamals :
r & Ly, y & Ly
(mo, m1) — A(g”);
z & Lg; ¢ — g%

b" — A'(g%, g¥,¢);
b & {0,1};

Security proof of EIGamal encryption scheme

d—b=1" fswap.
~ eqobs_hd 4.
—~d = eqobs_tl 2.
Game ElGamal; : _apply mult_pad.

x & Ly y & Ly;
(mo, m1) < A(g%);

b & {0,1};

z & Zq; C < g% X my;
b' — A'(g9”,9Y,C);
d—b=1"

18
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Observational equivalence is not enough

B Establishing observational equivalence may require additional
contextual information

777

{x} if (x=0) then y<—x else y<-1 ~ if (x=0) then y<-0 else y<-1 {x,y}

m Cryptographic proofs may involve weaker relationships between
consecutive games, e.g.

PrCl(Sl) [El] < PrCz(Sz) [EQ]

19
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Relational Hoare logic

Standard Hoare Logic (HL)

1P}y ci1Qj

s P(s)

s’ Q(s')

Relational Hoare Logic (RHL)

probabilistic programs

{P}ci~{Q}

S1€—— P—>s)

1 €6——Q —— u>
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Relational Hoare logic I

Standard Hoare Logic (HL) Relational Hoare Logic (RHL)
1P} c{Q} (PYc, ~ o {Q)
s P(s) S1€—— P —>s)

of Q to the

space of distributions

/ , 1
s’ Q(s') f1€6—Q —> uo

20



Relational Hoare logic — Judgment examples

& Z=y+1 ~ z=x
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Relational Hoare logic — Judgment examples

B E{yo+l=x2} z=y+1 ~ z:=x {zq) =z}

if b then x :=0 if bthen x =1
B = 1ba) = by elsex =1 " ’ else;lx =0
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Relational Hoare logic — Judgment examples

B E{yo+l=x2} z=y+1 ~ z:=x {zq) =z}

if bth =0 if bth =1
B = by = b2} i else:;((:: 1~ i elseél;::: 0 xm =1-x@}
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Conclusion I

Successful application of machine-checked proofs to the
field of cryptography

Formal semantics of probabilistic language

A probabilistic relational Hoare logic

Mechanised program transformations

Formalization of emblematic schemes: OAEP, ElGammal, FDH, etc.

KEY INSIGHT:

View cryptographic proofs as a problem of (relational) probabilistic

program verification

Thanks!
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Language semantics

[assert e] m

[while e do ¢] m

where

unit m

bind ([¢] m) []

unit (m {[le]s m/x})

bind ([[d]pe m) (Av. unit (m{v/z}))

if ([e]e m = true) then (unit m) else ug

[if e then ¢y else 3] m = if ([e]e m = true) then ([c1] m) else ([c2] m)

Af. lub (An. ([[while e do c],] m)(f))

\while e do ¢|g = assert —e
\while e do ¢, ; = if e then ¢; [while e do ¢],

27



The measure monad (ALEA library)

Example

DA £ (A—0,1]) — [0, 1]

u(f) = "expected value of f wrt u”

unit : A — D(A)
Tz M. f(x)

bind : D(A) — (A — D(B)) — D(B)
= A AM.f. p(hx. M(2)(f)).

[b1 < {t, f}; bo & {t, f}]s = Af. 1 f(s[b1, ba/t,t]) + % f(s[br, ba/t, f])

2 f(slb1, bo/f, t]) + 3 f(s[br, b2/, f])
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Lifting relations to distributions via couplings
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Lifting relations to distributions via couplings

. Q Q" . o
relation over relation over *distributions*
program states on program states

{m(u) = u1 A To(p) = p2, and
Pr,[-Q] =0

(L1, 2) E QY = 3u € D(SxS).

coupling between p4 and p;

* See Logical, Metric, and Algorithmic Characterisations of Probabilistic Bisimulation, Deng & Du.
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Proof system (two-sided rules)

[skip] [assgn]

- {P} skip ~ skip {P} - {Q[X<1>/A<1>,y<2>/8<2>]} x =A~y:=B{Q}

F{Pla~a{d} H{Q}aq~q{Q}
F{Praiq~aiq{d;

[abort] [seq]

- {true} abort ~ abort {Q}

=(P=PFP) FH{Pla~a{l} F(Q@=Q)
'_{P}C]_NC2{Q}

[cons]

|: ('D:> G1<1> = G2<2>)
F{PANGpnta~a{QF F{PA-Gu}aq~c{Q}
- {P} if Gj then c; else c{ ~ if G, then ¢, else Cé {Q} [lf]

|—{//\G1<1>}C1NC2 {/} ):(/:>G1<1> :G2<2>)
= {/} while Gy do ¢; ~ while Gpdo & {/ A =Gyqy}

[while]

|—{P_1} Co ~ (C1 {Q_l} [jnV] |—{P} C1 NCQ{Q} |—{Pl} C2NC3{Q/}
|—{P}C1NC2{Q} '_{POP’}ClNC3{QOQ’}

[comp]

s1 Ps = (ﬂl > Ave 7751[X1/v]) /:’(Q) (:u2 > Av e 7752[X2/V])
= {P} x| = Ui ~ Xo == 42 {Q}

[rand]
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Proof system (one-sided rules)

[contr]

- {false} c1 ~ &2 {Q}

- {Q[X<1>/A<1>]} X = A ~ skip {Q} [d-aSSgn]

|—{P/\ G<1>}C1NC2 {Q} |_{P/\—IG<1>}C{NC2{Q}
- {P} if G then c¢; else ¢; ~ & {Q}

[c-branch]

= {PA=Gg}while G do c ~ skip {P A Gy} [d-while]
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