Language-based Cryptographic Proofs in Coq

 or
Coq for Probabilistic Programs

Federico Olmedo
University of Chile

ICSEC KICK-OFF WORKSHOP Santiago, Chile - March 2018

Motivation

Why certified cryptographic proofs?

Rigor crisis in the cryptographic community

In our opinion, many proofs in cryptography have become essentially unverifiable. Our field may be approaching a crisis of rigor.

Bellare \& Rogaway (2006)

Do we have a problem with cryptographic proofs? Yes, we do. The problem is that as a community, we generate more proofs than we carefully verify (and as a consequence some of our published proofs are incorrect).

Halevi (2005)

The rigor crisis of the cryptographic community

The case of OAEP encryption scheme

The rigor crisis of the cryptographic community

The case of OAEP encryption scheme

Introduction and security proof

Worldwide industrial standard

Standard

Security proof is flawed
And 7 years later...

There appears to be a non-trivial gap in the OAEP security proof [and] this gap cannot be filled.

Shoup (2001)

The rigor crisis of the cryptographic community

The case of BONEH-FRANKLIN encryption scheme

Introduction and security proof

Used as subcomponent of several cryptographic protocols

The rigor crisis of the cryptographic community

The case of BONEH-FRANKLIN encryption scheme

Introduction and security proof

Used as subcomponent of several cryptographic protocols

Security proof is flawed

This is just another example in which a well-known and widely used construction turns out to have an unnoticed flawed security reduction.

Galindo (2005)

CertiCrypt:

Framework for constructing certified cryptographic proofs in Coq http://certicrypt.gforge.inria.fr/

CertiCrypt:

Framework for constructing certified cryptographic proofs in Coq http://certicrypt.gforge.inria.fr/

Substantial effort

- 30.000 lines
- 4-6 years
- 6 people

CertiCrypt:
 Framework for constructing certified cryptographic proofs in Coq

http://certicrypt.gforge.inria.fr/

Substantial effort

- 30.000 lines
- 4-6 years
- 6 people

High impact

- Formalization of several encryption schemes, digital signatures, hash functions, zero-knowledge protocols, etc
- 12 publications

Basics about CertiCrypt

What is a secure cryptographic scheme?

What is a secure cryptographic scheme?

A cryptographic scheme is secure if an efficient adversary can break it only with negligible probability

What is a secure cryptographic scheme?

A cryptographic scheme is secure if an efficient adversary can break it only with negligible probability

What is a secure cryptographic scheme?

A cryptographic scheme is secure if an efficient adversary can break it only with negligible probability
\Rightarrow Cryptographic schemes must be probabilistic (Goldwasser \& Micali, '82)

What is a secure cryptographic scheme?

A cryptographic scheme is secure if an efficient adversary can break it only with negligible probability
\Rightarrow Cryptographic schemes must be probabilistic (Goldwasser \& Micali, '82)

What is a secure cryptographic scheme?

A cryptographic scheme is secure if an efficient adversary can break it only with negligible probability
\Rightarrow Cryptographic schemes must be probabilistic (Goldwasser \& Micali, '82)
\rightarrow Adversaries should run in probabilistic polynomial time (PPT)

What is a secure cryptographic scheme?

A cryptographic scheme is secure if an efficient adversary can break it only with negligible probability
\Rightarrow Cryptographic schemes must be probabilistic (Goldwasser \& Micali, '82)
\rightarrow Adversaries should run in probabilistic polynomial time (PPT)

What is a secure cryptographic scheme?

A cryptographic scheme is secure if an efficient adversary can break it only with negligible probability
\Rightarrow Cryptographic schemes must be probabilistic (Goldwasser \& Micali, '82)
\rightarrow Adversaries should run in probabilistic polynomial time (PPT)
\rightarrow There exists a standard security notion for each kind of cryptographic scheme

What is a secure cryptographic scheme?

A cryptographic scheme is secure if an efficient adversary can break it only with negligible probability
\Rightarrow Cryptographic schemes must be probabilistic (Goldwasser \& Micali, '82)
\rightarrow Adversaries should run in probabilistic polynomial time (PPT)
\rightarrow There exists a standard security notion for each kind of cryptographic scheme

Attack game

What is a secure cryptographic scheme?

A cryptographic scheme is secure if an efficient adversary can break it only with negligible probability
\Rightarrow Cryptographic schemes must be probabilistic (Goldwasser \& Micali, '82)
\Rightarrow Adversaries should run in probabilistic polynomial time (PPT)
\rightarrow There exists a standard security notion for each kind of cryptographic scheme

Attack game

$$
\operatorname{Pr}\left[\begin{array}{l}
\mathcal{A} \text { breaks } \\
\text { the scheme }
\end{array}\right] \leq \epsilon
$$

How do security proof proceed?

By stepwise transformation of the attack game, towards a "simpler" game

How do security proof proceed?

By stepwise transformation of the attack game, towards a "simpler" game

Attack game
Final game

$\operatorname{Pr}_{G_{0}}\left[E_{0}\right] \leq f_{1}\left(\operatorname{Pr}_{G_{1}}\left[E_{1}\right]\right)$

Probability of
breaking the scheme

How do security proof proceed?

By stepwise transformation of the attack game, towards a "simpler" game

Attack game
Final game

Probability of
breaking the scheme

How do security proof proceed?

By stepwise transformation of the attack game, towards a "simpler" game

Attack game
Final game

$$
\operatorname{Pr}_{G_{0}}\left[E_{0}\right] \leq f_{1}\left(\operatorname{Pr}_{G_{1}}\left[E_{1}\right]\right) \leq \cdots \quad \leq f_{n}\left(\operatorname{Pr}_{G_{n}}\left[E_{n}\right]\right)
$$

Probability of
breaking the scheme

$$
\operatorname{Pr}_{G_{0}}\left[E_{0}\right] \leq f\left(\operatorname{Pr}_{G_{n}}\left[E_{n}\right]\right) \leq \epsilon
$$

How do security proof proceed?

By stepwise transformation of the attack game, towards a "simpler" game

How do we
represent games?

Attack game

Probability of

$\operatorname{Pr}_{G_{0}}\left[E_{0}\right]$

How do security proof proceed?

By stepwise transformation of the attack game, towards a "simpler" game

$$
\operatorname{Pr}_{G_{0}}\left[E_{0}\right] \leq f_{1}\left(\operatorname{Pr}_{G_{1}}\left[E_{1}\right]\right) \leq \cdots \leq f_{n}\left(\operatorname{Pr}_{G_{n}}\left[E_{n}\right]\right)
$$

Probability of breaking the scheme

How do we relate the probabilities of events between consecutive games?

Language-based cryptographic proofs

Language-based cryptographic proofs

Games $\quad \Longrightarrow \quad$ (probabilistic) programs

Language-based cryptographic proofs

Games
$\Longrightarrow \quad$ (probabilistic) programs

Probability space

Probability of event

Game transformations

Generic adversary \Longrightarrow

Language-based cryptographic proofs

Language-based cryptographic proofs

Games	\Longrightarrow	(probabilistic) programs
Probability space	\Longrightarrow	program denotation
Probability of event	\Longrightarrow	probability of postcondition
Game transformations	\Longrightarrow	
Generic adversary	\Longrightarrow	

Language-based cryptographic proofs

Games	\Longrightarrow	(probabilistic) programs
Probability space	\Longrightarrow	program denotation
Probability of event	\Longrightarrow	probability of postcondition
Game transformations	\Longrightarrow	program transformations
Generic adversary	\Longrightarrow	

Language-based cryptographic proofs

Games	\Longrightarrow	(probabilistic) programs
Probability space	\Longrightarrow	program denotation
Probability of event	\Longrightarrow	probability of postcondition
Game transformations	\Longrightarrow	program transformations
Generic adversary	\Longrightarrow	unspecified procedure

The probabilistic language

$\mathcal{C}:$	skip	nop
	$\mathcal{C} ; \mathcal{C}$	sequence
	$\mathcal{V} \leftarrow \mathcal{E}$	assignment
$\mathcal{V} \leftarrow \mathcal{D} \mathcal{E}$	random sampling	
if \mathcal{E} then \mathcal{C} else \mathcal{C}	conditional	
while \mathcal{E} do \mathcal{C}	while loop	
$\mathcal{V} \leftarrow \mathcal{P}(\mathcal{E}, \ldots, \mathcal{E})$	procedure call	

The probabilistic language

$\underset{\sim}{\mathcal{C}:}$| $:=$ | skip | nop |
| :--- | :--- | :--- |
| $\mathcal{C} ; \mathcal{C}$ | sequence | |
| $\mathcal{V} \leftarrow \mathcal{E}$ | assignment | |
| $\mathcal{V} \leftarrow \mathcal{D} \mathcal{E}$ | random sampling | |
| if \mathcal{E} then \mathcal{C} else \mathcal{C} | conditional | |
| while \mathcal{E} do \mathcal{C} | while loop | |
| $\mathcal{V} \leftarrow \mathcal{P}(\mathcal{E}, \ldots, \mathcal{E})$ | procedure call | |

$$
\llbracket c \rrbracket: \mathbb{S} \rightarrow \mathcal{D}(\mathbb{S})
$$

The probabilistic language

$\mathcal{C} \quad::=$	skip	nop
\|	$\mathcal{C} ; \mathcal{C}$	sequence
\|	$\mathcal{V} \leftarrow \mathcal{E}$	assignment
\|	$\mathcal{V} \stackrel{\mathcal{L} \mathcal{E}}{ }$	random sampling
	if \mathcal{E} then \mathcal{C} else \mathcal{C}	conditional
	while \mathcal{E} do \mathcal{C}	while loop
	$\mathcal{V} \leftarrow \mathcal{P}(\mathcal{E}, \ldots, \mathcal{E})$	procedure call

How do we relate the probability of program?

How do we relate the probability of program?

We need to prove claims of the form

$$
\operatorname{Pr}_{c_{1}\left(s_{1}\right)}\left[E_{1}\right] \leq f\left(\operatorname{Pr}_{c_{2}\left(s_{2}\right)}\left[E_{2}\right]\right)
$$

How do we relate the probability of program?

We need to prove claims of the form

$$
\operatorname{Pr}_{c_{1}\left(s_{1}\right)}\left[E_{1}\right] \leq f\left(\operatorname{Pr}_{c_{2}\left(s_{2}\right)}\left[E_{2}\right]\right)
$$

But usually, it suffices proving claims of the form

$$
\operatorname{Pr}_{c_{1}\left(s_{1}\right)}[E]=\operatorname{Pr}_{c_{2}\left(s_{2}\right)}[E]
$$

How do we relate the probability of program?

We need to prove claims of the form

$$
\operatorname{Pr}_{c_{1}\left(s_{1}\right)}\left[E_{1}\right] \leq f\left(\operatorname{Pr}_{c_{2}\left(s_{2}\right)}\left[E_{2}\right]\right)
$$

But usually, it suffices proving claims of the form

$$
\operatorname{Pr}_{c_{1}\left(s_{1}\right)}[E]=\operatorname{Pr}_{c_{2}\left(s_{2}\right)}[E]
$$

for which we can rely on observational equivalence between programs:

$$
\{I\} c_{1} \sim c_{2}\{O\}
$$

How do we relate the probability of program?

We need to prove claims of the form

$$
\operatorname{Pr}_{c_{1}\left(s_{1}\right)}\left[E_{1}\right] \leq f\left(\operatorname{Pr}_{c_{2}\left(s_{2}\right)}\left[E_{2}\right]\right)
$$

But usually, it suffices proving claims of the form

$$
\operatorname{Pr}_{c_{1}\left(s_{1}\right)}[E]=\operatorname{Pr}_{c_{2}\left(s_{2}\right)}[E]
$$

for which we can rely on observational equivalence between programs:

How do we relate the probability of program?

We need to prove claims of the form

$$
\operatorname{Pr}_{c_{1}\left(s_{1}\right)}\left[E_{1}\right] \leq f\left(\operatorname{Pr}_{c_{2}\left(s_{2}\right)}\left[E_{2}\right]\right)
$$

But usually, it suffices proving claims of the form

$$
\operatorname{Pr}_{c_{1}\left(s_{1}\right)}[E]=\operatorname{Pr}_{c_{2}\left(s_{2}\right)}[E]
$$

for which we can rely on observational equivalence between programs:

How do we relate the probability of program?

We need to prove claims of the form

$$
\operatorname{Pr}_{c_{1}\left(s_{1}\right)}\left[E_{1}\right] \leq f\left(\operatorname{Pr}_{c_{2}\left(s_{2}\right)}\left[E_{2}\right]\right)
$$

But usually, it suffices proving claims of the form

$$
\operatorname{Pr}_{c_{1}\left(s_{1}\right)}[E]=\operatorname{Pr}_{c_{2}\left(s_{2}\right)}[E]
$$

for which we can rely on observational equivalence between programs:

How do we relate the probability of program?

We need to prove claims of the form

$$
\operatorname{Pr}_{c_{1}\left(s_{1}\right)}\left[E_{1}\right] \leq f\left(\operatorname{Pr}_{c_{2}\left(s_{2}\right)}\left[E_{2}\right]\right)
$$

But usually, it suffices proving claims of the form

$$
\operatorname{Pr}_{c_{1}\left(s_{1}\right)}[E]=\operatorname{Pr}_{c_{2}\left(s_{2}\right)}[E]
$$

for which we can rely on observational equivalence between programs:

How do we relate the probability of program?

We need to prove claims of the form

$$
\operatorname{Pr}_{c_{1}\left(s_{1}\right)}\left[E_{1}\right] \leq f\left(\operatorname{Pr}_{c_{2}\left(s_{2}\right)}\left[E_{2}\right]\right)
$$

But usually, it suffices proving claims of the form

$$
\operatorname{Pr}_{c_{1}\left(s_{1}\right)}[E]=\operatorname{Pr}_{c_{2}\left(s_{2}\right)}[E]
$$

for which we can rely on observational equivalence between programs:

Proving observational equivalence

CertiCrypt provides several mechanised program transformations for establishing observational equivalence

Proving observational equivalence

CertiCrypt provides several mechanised program transformations for establishing observational equivalence

Program Transformation:

$$
\mathcal{T}\left(c_{1}, c_{2}, l, O\right)=\left(c_{1}^{\prime}, c_{2}^{\prime}, I^{\prime}, O^{\prime}\right)
$$

Proving observational equivalence

CertiCrypt provides several mechanised program transformations for establishing observational equivalence

Program Transformation:

$$
\mathcal{T}\left(c_{1}, c_{2}, l, O\right)=\left(c_{1}^{\prime}, c_{2}^{\prime}, I^{\prime}, O^{\prime}\right)
$$

SOUNDNESS RESULT:

Proving observational equivalence

CertiCrypt provides several mechanised program transformations for establishing observational equivalence

Program Transformation:

$$
\mathcal{T}\left(c_{1}, c_{2}, l, O\right)=\left(c_{1}^{\prime}, c_{2}^{\prime}, I^{\prime}, O^{\prime}\right)
$$

SOUNDNESS RESULT:

$$
\{1\} c_{1} \sim c_{2}\{O\}
$$

Proving observational equivalence

CertiCrypt provides several mechanised program transformations for establishing observational equivalence

Program Transformation:

$$
\mathcal{T}\left(c_{1}, c_{2}, l, O\right)=\left(c_{1}^{\prime}, c_{2}^{\prime}, I^{\prime}, O^{\prime}\right)
$$

SOUNDNESS RESULT:

$$
\frac{\mathcal{T}\left(c_{1}, c_{2}, l, O\right)=\left(c_{1}^{\prime}, c_{2}^{\prime}, l^{\prime}, O^{\prime}\right)}{\{I\} c_{1} \sim c_{2}\{O\}}
$$

Proving observational equivalence

CertiCrypt provides several mechanised program transformations for establishing observational equivalence

Program Transformation:

$$
\mathcal{T}\left(c_{1}, c_{2}, l, O\right)=\left(c_{1}^{\prime}, c_{2}^{\prime}, I^{\prime}, O^{\prime}\right)
$$

SOUNDNESS RESULT:

$$
\frac{\mathcal{T}\left(c_{1}, c_{2}, l, O\right)=\left(c_{1}^{\prime}, c_{2}^{\prime}, I^{\prime}, O^{\prime}\right) \quad\left\{I^{\prime}\right\} c_{1}^{\prime} \sim c_{2}^{\prime}\left\{O^{\prime}\right\}}{\{I\} c_{1} \sim c_{2}\{O\}}
$$

Proving observational equivalence

CertiCrypt provides several mechanised program transformations for establishing observational equivalence

Program Transformation:

$$
\mathcal{T}\left(c_{1}, c_{2}, l, O\right)=\left(c_{1}^{\prime}, c_{2}^{\prime}, l^{\prime}, O^{\prime}\right)
$$

Soundness Result:

$$
\frac{\mathcal{T}\left(c_{1}, c_{2}, I, O\right)=\left(c_{1}^{\prime}, c_{2}^{\prime}, I^{\prime}, O^{\prime}\right) \quad\left\{I^{\prime}\right\} c_{1}^{\prime} \sim c_{2}^{\prime}\left\{O^{\prime}\right\}}{\{I\} c_{1} \sim c_{2}\{O\}}
$$

Some Instances:

- Deadcode elimination
- Constant propagation
- Procedure call inlining
- Common prefix/suffix elimination

Proving observational equivalence

CertiCrypt provides an (incomplete) tactic for proving self-equivalence

Does $\{I\} c \sim c\{O\}$ hold?

Proving observational equivalence

CertiCrypt provides an (incomplete) tactic for proving self-equivalence

Does $\{I\} c \sim c\{O\}$ hold?

- Analyse dependencies to compute l' such that $\left\{I^{\prime}\right\} c \sim c\{O\}$

Proving observational equivalence

CertiCrypt provides an (incomplete) tactic for proving self-equivalence

Does $\{I\} c \sim c\{O\}$ hold?

- Analyse dependencies to compute I^{\prime} such that $\left\{I^{\prime}\right\} c \sim c\{O\}$
- Check that $I^{\prime} \subseteq I$

Security proof of ElGamal encryption scheme

Security proof of ElGamal encryption scheme

Observational equivalence is not enough

Observational equivalence is not enough
$\frac{? ? ?}{\{x\} \quad \text { if }(x=0) \text { then } y \leftarrow x \text { else } y \leftarrow 1 \quad \sim \quad \text { if }(x=0) \text { then } y \leftarrow 0 \text { else } y \leftarrow 1 \quad\{x, y\}}$

Observational equivalence is not enough

- Establishing observational equivalence may require additional contextual information
$\frac{? ? ?}{\{x\} \text { if }(x=0) \text { then } y \leftarrow x \text { else } y \leftarrow 1 \sim \text { if }(x=0) \text { then } y \leftarrow 0 \text { else } y \leftarrow 1 \quad\{x, y\}}$

Observational equivalence is not enough

- Establishing observational equivalence may require additional contextual information
???
$\overline{\{x\}}$ if $(x=0)$ then $y \leftarrow x$ else $y \leftarrow 1 \sim$ if $(x=0)$ then $y \leftarrow 0$ else $y \leftarrow 1 \quad\{x, y\}$
- Cryptographic proofs may involve weaker relationships between consecutive games, e.g.

$$
\operatorname{Pr}_{c_{1}\left(s_{1}\right)}\left[E_{1}\right] \leq \operatorname{Pr}_{c_{2}\left(s_{2}\right)}\left[E_{2}\right]
$$

Relational Hoare logic

Relational Hoare logic

Standard Hoare Logic (HL)

$$
\{P\} \subset\{Q\}
$$

Relational Hoare logic

Standard Hoare Logic (HL)
$\{P\} \subset\{Q\}$
$\int_{s^{\prime}}^{s} P\left(s^{\prime}\right)$

Relational Hoare logic

Standard Hoare Logic (HL)
$\{P\} \subset\{Q\}$

Relational Hoare Logic (RHL)

$$
\{P\} c_{1} \sim c_{2}\{Q\}
$$

Relational Hoare logic

Standard Hoare Logic (HL)
$\{P\} \subset\{Q\}$

Relational Hoare Logic (RHL)

$$
\{P\} c_{1} \sim c_{2}\{Q\}
$$

Relational Hoare logic

Standard Hoare Logic (HL)
$\{P\} \subset\{Q\}$

Relational Hoare Logic (RHL)

$$
\{P\} c_{1} \sim c_{2}\{Q\}
$$

Relational Hoare logic

Standard Hoare Logic (HL)

Relational Hoare Logic (RHL)

$$
\{P\} c_{1} \sim c_{2}\{Q\}
$$

$$
s_{1} \longleftrightarrow P \longrightarrow s_{2}
$$

Relational Hoare logic

Standard Hoare Logic (HL)
Relational Hoare Logic (RHL)

$$
\{P\} \subset\{Q\}
$$

Relational Hoare logic - Judgment examples

$$
z:=y+1 \sim z:=x
$$

Relational Hoare logic - Judgment examples

- $\models\{y\langle 1\rangle+1=x\langle 2\rangle\} z:=y+1 \sim z:=x$

Relational Hoare logic - Judgment examples

- $\models\{y\langle 1\rangle+1=x\langle 2\rangle\} z:=y+1 \sim z:=x\{z\langle 1\rangle=z\langle 2\rangle\}$

Relational Hoare logic - Judgment examples

- $\vDash\{y\langle 1\rangle+1=x\langle 2\rangle\} \quad z:=y+1 \sim z:=x \quad\{z\langle 1\rangle=z\langle 2\rangle\}$

$$
\begin{array}{r}
\text { if } b \text { then } x:=0 \\
\text { else } x:=1 \quad \sim \text { if } b \text { then } x:=1 \\
\text { else } x:=0
\end{array}
$$

Relational Hoare logic - Judgment examples

- $\vDash\{y\langle 1\rangle+1=x\langle 2\rangle\} \quad z:=y+1 \sim z:=x \quad\{z\langle 1\rangle=z\langle 2\rangle\}$
- $\models\{b\langle 1\rangle=b\langle 2\rangle\} \begin{array}{r}\text { if } b \text { then } x:=0 \\ \text { else } x:=1\end{array} \sim \begin{array}{r}\text { if } b \text { then } x:=1 \\ \text { else } x:=0\end{array}$

Relational Hoare logic - Judgment examples

- $\vDash\{y\langle 1\rangle+1=x\langle 2\rangle\} \quad z:=y+1 \sim z:=x \quad\{z\langle 1\rangle=z\langle 2\rangle\}$
- $\models\left\{b_{\langle 1\rangle}=b_{\langle 2\rangle}\right\} \begin{array}{r}\text { if } b \text { then } x:=0 \\ \text { else } x:=1\end{array} \sim \begin{array}{r}\text { if } b \text { then } x:=1 \\ \text { else } x:=0\end{array} \quad\left\{x_{\langle(1)}=1-x_{\langle 2\rangle}\right\}$

Proof system

Proof system

- Most rules are direct adaptations of traditional HL rules

Proof system

- Most rules are direct adaptations of traditional HL rules

$$
(\vdash\{P\} \text { skip }\{P\})
$$

Proof system

- Most rules are direct adaptations of traditional HL rules

$$
\vdash\{P\} \text { skip } \sim \operatorname{skip}\{P\}
$$

$$
(\vdash\{P\} \operatorname{skip}\{P\})
$$

Proof system

- Most rules are direct adaptations of traditional HL rules

$$
\begin{array}{ll}
\vdash\{P\} \text { skip } \sim \operatorname{skip}\{P\} & (\vdash\{P\} \text { skip }\{P\}) \\
& \left(\frac{\vdash\{P\} \subset\left\{Q^{\prime}\right\} \vdash\left\{Q^{\prime}\right\} c^{\prime}\{Q\}}{\vdash\{P\} c^{\prime} c^{\prime}\{Q\}}\right)
\end{array}
$$

Proof system

- Most rules are direct adaptations of traditional HL rules
$\vdash\{P\}$ skip $\sim \operatorname{skip}\{P\}$
$(\vdash\{P\} \operatorname{skip}\{P\})$
$\frac{\vdash\{P\} c_{1} \sim c_{2}\left\{Q^{\prime}\right\} \quad \vdash\left\{Q^{\prime}\right\} c_{1}^{\prime} \sim c_{2}^{\prime}\{Q\}}{\vdash\{P\} c_{1} ; c_{1}^{\prime} \sim c_{2} ; c_{2}^{\prime}\{Q\}}$
$\left(\frac{\vdash\{P\} c\left\{Q^{\prime}\right\} \quad \vdash\left\{Q^{\prime}\right\} c^{\prime}\{Q\}}{\vdash\{P\} c ; c^{\prime}\{Q\}}\right)$

Proof system

- Most rules are direct adaptations of traditional HL rules

$$
\begin{array}{ll}
\vdash\{P\} \text { skip } \sim \operatorname{skip}\{P\} & (\vdash\{P\} \text { skip }\{P\}) \\
\frac{\vdash\{P\} c_{1} \sim c_{2}\left\{Q^{\prime}\right\} \quad \vdash\left\{Q^{\prime}\right\} c_{1}^{\prime} \sim c_{2}^{\prime}\{Q\}}{\vdash\{P\} c_{1} ; c_{1}^{\prime} \sim c_{2} ; c_{2}^{\prime}\{Q\}} & \left(\frac{\vdash\{P\} c\left\{Q^{\prime}\right\} \quad \vdash\left\{Q^{\prime}\right\} c^{\prime}\{Q\}}{\vdash\{P\} c_{;} c^{\prime}\{Q\}}\right)
\end{array}
$$

- Requires programs to execute lockstep

Proof system

- Most rules are direct adaptations of traditional HL rules

$$
\begin{array}{ll}
\vdash\{P\} \text { skip } \sim \operatorname{skip}\{P\} & (\vdash\{P\} \text { skip }\{P\}) \\
\frac{\vdash\{P\} c_{1} \sim c_{2}\left\{Q^{\prime}\right\}}{\vdash\left\{\left\{Q^{\prime}\right\} c_{1}^{\prime} \sim c_{2}^{\prime}\{Q\}\right.} & \left(\frac{\vdash\{P\} \subset\left\{Q^{\prime}\right\} \vdash\left\{c_{1} ; c_{1}^{\prime} \sim c_{2} ; c_{2}^{\prime}\{Q\}\right.}{\vdash\{P\} c ; c^{\prime}\{Q\}}\right)
\end{array}
$$

- Requires programs to execute lockstep

$$
\frac{\vdash\left\{I \wedge G_{1\langle 1\rangle}\right\} c_{1} \sim c_{2}\{I\} \quad \models\left(I \Longrightarrow G_{1\langle 1\rangle}=G_{2\langle 2\rangle}\right)}{\vdash\{I\} \text { while } G_{1} \text { do } c_{1} \sim \text { while } G_{2} \text { do } c_{2}\left\{I \wedge \neg G_{1\langle 1\rangle}\right\}} \text { [while] }
$$

Proof system

- Most rules are direct adaptations of traditional HL rules

$$
\begin{array}{ll}
\vdash\{P\} \text { skip } \sim \operatorname{skip}\{P\} & (\vdash\{P\} \text { skip }\{P\}) \\
\frac{\vdash\{P\} c_{1} \sim c_{2}\left\{Q^{\prime}\right\} \quad \vdash\left\{Q^{\prime}\right\} c_{1}^{\prime} \sim c_{2}^{\prime}\{Q\}}{\vdash\{P\} c_{1} ; c_{1}^{\prime} \sim c_{2} ; c_{2}^{\prime}\{Q\}} & \left(\frac{\vdash\{P\} \subset\left\{Q^{\prime}\right\} \vdash\left\{Q^{\prime}\right\} c^{\prime}\{Q\}}{\vdash\{P\} c ; c^{\prime}\{Q\}}\right)
\end{array}
$$

- Requires programs to execute lockstep

$$
\frac{\vdash\left\{I \wedge G_{1\langle 1\rangle}\right\} c_{1} \sim c_{2}\{I\} \quad \models\left(I \Longrightarrow G_{1\langle 1\rangle}=G_{2\langle 2\rangle}\right)}{\vdash\{I\} \text { while } G_{1} \text { do } c_{1} \sim \text { while } G_{2} \text { do } c_{2}\left\{I \wedge \neg G_{1\langle 1\rangle}\right\}} \text { [while] }
$$

- (The classic fragment) only relates programs that are structurally equal.

Proof system

- Most rules are direct adaptations of traditional HL rules

$$
\begin{array}{ll}
\vdash\{P\} \text { skip } \sim \operatorname{skip}\{P\} & (\vdash\{P\} \text { skip }\{P\}) \\
\frac{\vdash\{P\} c_{1} \sim c_{2}\left\{Q^{\prime}\right\} \quad \vdash\left\{Q^{\prime}\right\} c_{1}^{\prime} \sim c_{2}^{\prime}\{Q\}}{\vdash\{P\} c_{1} ; c_{1}^{\prime} \sim c_{2} ; c_{2}^{\prime}\{Q\}} & \left(\frac{\vdash\{P\} \subset\left\{Q^{\prime}\right\} \vdash\left\{Q^{\prime}\right\} c^{\prime}\{Q\}}{\vdash\{P\} c ; c^{\prime}\{Q\}}\right)
\end{array}
$$

- Requires programs to execute lockstep

$$
\left.\frac{\vdash\left\{I \wedge G_{1\langle 1\rangle}\right\} c_{1} \sim c_{2}\{I\} \quad \models\left(I \Longrightarrow G_{1\langle 1\rangle}=G_{2\langle 2\rangle}\right)}{\vdash\{I\} \text { while } G_{1} \text { do } c_{1} \sim \text { while } G_{2} \text { do } c_{2}\left\{I \wedge \neg G_{1\langle 1\rangle}\right\}} \text { [while }\right]
$$

- (The classic fragment) only relates programs that are structurally equal. But the logic can be extended with "one-sided" rules, e.g.

Proof system

- Most rules are direct adaptations of traditional HL rules

$$
\begin{array}{ll}
\vdash\{P\} \text { skip } \sim \operatorname{skip}\{P\} & (\vdash\{P\} \text { skip }\{P\}) \\
\frac{\vdash\{P\} c_{1} \sim c_{2}\left\{Q^{\prime}\right\} \quad \vdash\left\{Q^{\prime}\right\} c_{1}^{\prime} \sim c_{2}^{\prime}\{Q\}}{\vdash\{P\} c_{1} ; c_{1}^{\prime} \sim c_{2} ; c_{2}^{\prime}\{Q\}} & \left(\frac{\vdash\{P\} \subset\left\{Q^{\prime}\right\} \vdash\left\{Q^{\prime}\right\} c^{\prime}\{Q\}}{\vdash\{P\} c ; c^{\prime}\{Q\}}\right)
\end{array}
$$

- Requires programs to execute lockstep

$$
\frac{\vdash\left\{I \wedge G_{1\langle 1\rangle}\right\} c_{1} \sim c_{2}\{I\} \quad \cong\left(I \Longrightarrow G_{1\langle 1\rangle}=G_{2\langle 2\rangle}\right)}{\vdash\{I\} \text { while } G_{1} \text { do } c_{1} \sim \text { while } G_{2} \text { do } c_{2}\left\{I \wedge \neg G_{1\langle 1\rangle}\right\}} \text { [while] }
$$

- (The classic fragment) only relates programs that are structurally equal. But the logic can be extended with "one-sided" rules, e.g.

$$
\vdash \vdash\{P\} \text { if } G \text { then } c_{1} \text { else } c_{1}^{\prime} \sim c_{2}\{Q\} \quad[c \text {-branch }]
$$

Proof system

- Most rules are direct adaptations of traditional HL rules

$$
\begin{array}{ll}
\vdash\{P\} \text { skip } \sim \operatorname{skip}\{P\} & (\vdash\{P\} \text { skip }\{P\}) \\
\frac{\vdash\{P\} c_{1} \sim c_{2}\left\{Q^{\prime}\right\}}{\vdash\left\{\left\{Q^{\prime}\right\} c_{1}^{\prime} \sim c_{2}^{\prime}\{Q\}\right.} & \left(\frac{\vdash\{P\} \subset\left\{Q^{\prime}\right\} \vdash\left\{Q^{\prime}\right\} c^{\prime}\{Q\}}{\vdash\{P\} c ; c_{1}^{\prime} \sim c_{2} ; c_{2}^{\prime}\{Q\}}\right)
\end{array}
$$

- Requires programs to execute lockstep

$$
\left.\frac{\vdash\left\{I \wedge G_{1\langle 1\rangle}\right\} c_{1} \sim c_{2}\{I\} \quad \models\left(I \Longrightarrow G_{1\langle 1\rangle}=G_{2\langle 2\rangle}\right)}{\vdash\{I\} \text { while } G_{1} \text { do } c_{1} \sim \text { while } G_{2} \text { do } c_{2}\left\{I \wedge \neg G_{1\langle 1\rangle}\right\}} \text { [while }\right]
$$

- (The classic fragment) only relates programs that are structurally equal. But the logic can be extended with "one-sided" rules, e.g.

$$
\frac{\vdash\left\{P \wedge G_{(1)}\right\} c_{1} \sim c_{2}\{Q\} \quad \vdash\left\{P \wedge \neg G_{(1)}\right\} c_{1}^{\prime} \sim c_{2}\{Q\}}{\vdash\{P\} \text { if } G \text { then } c_{1} \text { else } c_{1}^{\prime} \sim c_{2}\{Q\}}[\text { c-branch }]
$$

From the logic to probability claims

From the logic to probability claims
$\overline{\operatorname{Pr}\left[c_{1}\left(s_{1}\right): A\right]=\operatorname{Pr}\left[c_{2}\left(s_{2}\right): B\right]}[\operatorname{Pr}-\mathrm{Eq}]$

From the logic to probability claims

$$
\frac{\models\{P\} c_{1} \sim c_{2}\{Q\}}{\operatorname{Pr}\left[c_{1}\left(s_{1}\right): A\right]=\operatorname{Pr}\left[c_{2}\left(s_{2}\right): B\right]}[\operatorname{Pr}-\mathrm{Eq}]
$$

From the logic to probability claims

$$
\frac{\models\{P\} c_{1} \sim c_{2}\{Q\} \quad Q \Longrightarrow\left(A_{\langle 1\rangle} \Longleftrightarrow B_{\langle 2\rangle}\right)}{\operatorname{Pr}\left[c_{1}\left(s_{1}\right): A\right]=\operatorname{Pr}\left[c_{2}\left(s_{2}\right): B\right]}[\operatorname{Pr} \text {-Eq }]
$$

From the logic to probability claims

$$
\frac{s_{1} P s_{2} \models\{P\} c_{1} \sim c_{2}\{Q\} \quad Q \Longrightarrow\left(A_{\langle 1\rangle} \Longleftrightarrow B\langle\langle \rangle)\right.}{\operatorname{Pr}\left[c_{1}\left(s_{1}\right): A\right]=\operatorname{Pr}\left[c_{2}\left(s_{2}\right): B\right]}[\operatorname{Pr}-\mathrm{Eq}]
$$

From the logic to probability claims

$$
\frac{s_{1} P s_{2} \quad \models\{P\} c_{1} \sim c_{2}\{Q\} \quad Q \Longrightarrow\left(A_{\langle 1\rangle} \Longleftrightarrow B_{\langle 2\rangle}\right)}{\operatorname{Pr}\left[c_{1}\left(s_{1}\right): A\right]=\operatorname{Pr}\left[c_{2}\left(s_{2}\right): B\right]} \text { Pr-Eq] }
$$

$\operatorname{Pr}\left[c_{1}\left(s_{1}\right): A\right] \leq \operatorname{Pr}\left[c_{2}\left(s_{2}\right): B\right]$

From the logic to probability claims

$$
\left.\begin{array}{l}
\frac{s_{1} P s_{2} \quad \models\{P\} c_{1} \sim c_{2}\{Q\} \quad Q \Longrightarrow\left(A_{\langle 1\rangle} \Longleftrightarrow B\langle\langle \rangle)\right.}{} \operatorname{Pr}\left[c_{1}\left(s_{1}\right): A\right]=\operatorname{Pr}\left[c_{2}\left(s_{2}\right): B\right] \\
\\
\frac{\left.s_{1} P s_{2}-E q\right]}{} \quad \models\{P\} c_{1} \sim c_{2}\{Q\} \quad Q \Longrightarrow\left(A_{\langle 1\rangle} \Longrightarrow B\langle 2\rangle\right) \\
\operatorname{Pr}\left[c_{1}\left(s_{1}\right): A\right] \leq \operatorname{Pr}\left[c_{2}\left(s_{2}\right): B\right]
\end{array} \text { Pr-Le }\right]
$$

Wrapping up

Conclusion

Conclusion

Successful application of machine-checked proofs to the field of cryptography

Conclusion

Successful application of machine-checked proofs to the field of cryptography

- Formal semantics of probabilistic language
- A probabilistic relational Hoare logic
- Mechanised program transformations
- Formalization of emblematic schemes: OAEP, ElGammal, FDH, etc.

Conclusion

Successful application of machine-checked proofs to the field of cryptography

- Formal semantics of probabilistic language
- A probabilistic relational Hoare logic
- Mechanised program transformations
- Formalization of emblematic schemes: OAEP, EIGammal, FDH, etc.

Key Insight:

View cryptographic proofs as a problem of (relational) probabilistic program verification

Conclusion

Successful application of machine-checked proofs to the field of cryptography

- Formal semantics of probabilistic language
- A probabilistic relational Hoare logic
- Mechanised program transformations
- Formalization of emblematic schemes: OAEP, EIGammal, FDH, etc.

Key Insight:

View cryptographic proofs as a problem of (relational) probabilistic program verification

Thanks!

Backup Slides

Language semantics

$$
\begin{aligned}
& \text { 【skip】 } m \quad=\text { unit } m \\
& \llbracket c ; c^{\prime} \rrbracket m=\operatorname{bind}(\llbracket c \rrbracket m) \llbracket c^{\prime} \rrbracket \\
& \llbracket x \leftarrow e \rrbracket m \quad=\text { unit }\left(m\left\{\llbracket e \rrbracket_{\mathcal{E}} m / x\right\}\right) \\
& \llbracket x \leftrightarrow d \rrbracket m=\operatorname{bind}\left(\llbracket d \rrbracket_{\mathcal{D E}} m\right)(\lambda v \text {. unit }(m\{v / x\})) \\
& \llbracket \text { assert } e \rrbracket m \quad=\text { if }\left(\llbracket e \rrbracket_{\mathcal{E}} m=\text { true) then (unit } m \text {) else } \mu_{0}\right. \\
& \llbracket \text { if } e \text { then } c_{1} \text { else } c_{2} \rrbracket m=\mathbf{i f}\left(\llbracket e \rrbracket_{\mathcal{E}} m=\text { true }\right) \text { then }\left(\llbracket c_{1} \rrbracket m\right) \text { else }\left(\llbracket c_{2} \rrbracket m\right) \\
& \llbracket \text { while } e \text { do } c \rrbracket m=\lambda f \text {. lub }\left(\lambda n \text {. }\left(\left[[\text { while } e \text { do } c]_{n} \rrbracket m\right)(f)\right)\right. \\
& \text { [while } e \text { do } c]_{0}=\text { assert } \neg e \\
& \left.[\text { while } e \text { do } c]_{n+1}=\text { if } e \text { then } c \text {; [while } e \text { do } c\right]_{n}
\end{aligned}
$$

The measure monad (ALEA library)

$$
\begin{aligned}
\mathcal{D}(A) & \triangleq(A \rightarrow[0,1]) \rightarrow[0,1] \\
\mu(f) & =" \text { expected value of } f \text { wrt } \mu^{\prime \prime} \\
\text { unit } & : A \rightarrow \mathcal{D}(A) \\
& \stackrel{\text { def }}{=} \lambda x \cdot \lambda f \cdot f(x) \\
\text { bind } & : \mathcal{D}(A) \rightarrow(A \rightarrow \mathcal{D}(B)) \rightarrow \mathcal{D}(B) \\
& \stackrel{\text { def }}{=} \lambda \mu \cdot \lambda M \cdot \lambda f \cdot \mu(\lambda x \cdot M(x)(f)) .
\end{aligned}
$$

Example

$$
\begin{array}{r}
\llbracket b_{1} \leftrightarrow\{t, f\} ; b_{2} \leftrightarrow\{t, f\} \rrbracket s=\lambda f . \frac{1}{4} f\left(s\left[b_{1}, b_{2} / t, t\right]\right)+\frac{1}{4} f\left(s\left[b_{1}, b_{2} / t, f\right]\right) \\
\frac{1}{4} f\left(s\left[b_{1}, b_{2} / f, t\right]\right)+\frac{1}{4} f\left(s\left[b_{1}, b_{2} / f, f\right]\right)
\end{array}
$$

Lifting relations to distributions via couplings

Lifting relations to distributions via couplings

Proof system (two-sided rules)

$$
\begin{aligned}
& \overline{\vdash\{P\} \text { skip } \sim \operatorname{skip}\{P\}}[\text { skip }] \quad \overline{\vdash\left\{Q\left[x_{\langle 1\rangle} / A_{\langle 1\rangle}, y_{\langle 2\rangle} / B_{\langle 2\rangle}\right]\right\} \times:=A \sim y:=B\{Q\}}[\text { assgn }] \\
& \overline{\vdash\{\text { true }\} \text { abort } \sim \text { abort }\{Q\}} \text { [abort }] \quad \frac{\vdash\{P\} c_{1} \sim c_{2}\left\{Q^{\prime}\right\} \quad \vdash\left\{Q^{\prime}\right\} c_{1}^{\prime} \sim c_{2}^{\prime}\{Q\}}{\vdash\{P\} c_{1} ; c_{1}^{\prime} \sim c_{2} ; c_{2}^{\prime}\{Q\}}[\text { seq }] \\
& \frac{\models\left(P \Longrightarrow P^{\prime}\right) \quad \vdash\left\{P^{\prime}\right\} c_{1} \sim c_{2}\left\{Q^{\prime}\right\} \quad \models\left(Q^{\prime} \Longrightarrow Q\right)}{\vdash\{P\} c_{1} \sim c_{2}\{Q\}}[\mathrm{cons}] \\
& \vDash\left(P \Longrightarrow G_{1\langle 1\rangle}=G_{2\langle 2\rangle}\right) \\
& \left.\frac{\vdash\left\{P \wedge G_{1\langle 1\rangle}\right\} c_{1} \sim c_{2}\{Q\} \quad \vdash\left\{P \wedge \neg G_{1\langle 1\rangle}\right\} c_{1}^{\prime} \sim c_{2}^{\prime}\{Q\}}{\vdash\{P\} \text { if } G_{1} \text { then } c_{1} \text { else } c_{1}^{\prime} \sim \text { if } G_{2} \text { then } c_{2} \text { else } c_{2}^{\prime}\{Q\}} \text { [if }\right] \\
& \frac{\vdash\left\{I \wedge G_{1\langle 1\rangle}\right\} c_{1} \sim c_{2}\{I\} \quad \models\left(I \Longrightarrow G_{1\langle 1\rangle}=G_{2\langle 2\rangle}\right)}{\vdash\{I\} \text { while } G_{1} \text { do } c_{1} \sim \text { while } G_{2} \text { do } c_{2}\left\{I \wedge \neg G_{1\langle 1\rangle}\right\}} \text { [while] } \\
& \frac{\vdash\left\{P^{-1}\right\} c_{2} \sim c_{1}\left\{Q^{-1}\right\}}{\vdash\{P\} c_{1} \sim c_{2}\{Q\}}[\mathrm{inv}] \quad \frac{\vdash\{P\} c_{1} \sim c_{2}\{Q\} \quad \vdash\left\{P^{\prime}\right\} c_{2} \sim c_{3}\left\{Q^{\prime}\right\}}{\vdash\left\{P \circ P^{\prime}\right\} c_{1} \sim c_{3}\left\{Q \circ Q^{\prime}\right\}}[\mathrm{comp}] \\
& \frac{s_{1} P s_{2} \triangleq\left(\mu_{1} \wedge \lambda v \cdot \eta_{s_{1}\left[x_{1} / v\right]}\right) \mathcal{L}(Q)\left(\mu_{2} \wedge \lambda v \cdot \eta_{s_{2}\left[x_{2} / v\right]}\right)}{\vdash\{P\} x_{1}: \stackrel{s}{=} \mu_{1} \sim x_{2}: \stackrel{s}{=} \mu_{2}\{Q\}}[\text { rand }]
\end{aligned}
$$

Proof system (one-sided rules)

$$
\begin{aligned}
& \overline{\digamma\{\text { false }\} c_{1} \sim c_{2}\{Q\}}{ }^{[c o n t r]} \\
& \digamma\left\{Q\left[x_{(1)} / A_{(1)}\right]\right\} \times:=A \sim \operatorname{skip}\{Q\}{ }^{[d-a s s g n]} \\
& \frac{\vdash\left\{P \wedge G_{(1)}\right\} c_{1} \sim c_{2}\{Q\} \quad \vdash\left\{P \wedge \neg G_{(1)}\right\} c_{1}^{\prime} \sim c_{2}\{Q\}}{\vdash\{P\} \text { if } G \text { then } c_{1} \text { else } c_{1}^{\prime} \sim c_{2}\{Q\}}[c \text {-branch }] \\
& \overline{\digamma\left\{P \wedge \neg G_{\{11}\right\} \text { while } G \text { do } c \sim \operatorname{skip}\left\{P \wedge \neg G_{\langle 1\rangle}\right\}}[d \text {-while }]
\end{aligned}
$$

