Language-based Cryptographic Proofs in Coq

or

Coq for Probabilistic Programs

FEDERICO OLMEDO
UNIVERSITY OF CHILE

ICSEC KICK-OFF WORKSHOP
SANTIAGO, CHILE — MARCH 2018
Motivation
Rigor crisis in the cryptographic community

In our opinion, many proofs in cryptography have become essentially unverifiable. Our field may be approaching a crisis of rigor.

Bellare & Rogaway (2006)

Do we have a problem with cryptographic proofs?
Yes, we do. The problem is that as a community, we generate more proofs than we carefully verify (and as a consequence some of our published proofs are incorrect).

Halevi (2005)
The case of OAEP encryption scheme

Introduction and security proof

Since 1994

Worldwide industrial standard

- PKCS#1 v2
- IEEE P1363
- ISO 18033-2
The rigor crisis of the cryptographic community

The case of OAEP encryption scheme

1994

Introduction and security proof

Since 1994

Worldwide industrial standard

Standard

PKCS#1 v2
IEEE P1363
ISO 18033-2

2001

Security proof is flawed

And 7 years later...

There appears to be a non-trivial gap in the OAEP security proof [and] this gap cannot be filled.

Shoup (2001)
The rigorous crisis of the cryptographic community

The case of BONEH-FRANKLIN encryption scheme

- Introduction and security proof
- Used as subcomponent of several cryptographic protocols
The rigor crisis of the cryptographic community

The case of BONEH-FRANKLIN encryption scheme

- **2001**: Introduction and security proof
- **Since 2001**: Used as subcomponent of several cryptographic protocols
- **2005**: Security proof is flawed

This is just another example in which a well-known and widely used construction turns out to have an unnoticed flawed security reduction.

Galindo (2005)
CertiCrypt:
Framework for constructing certified cryptographic proofs in Coq

http://certicrypt.gforge.inria.fr/
CertiCrypt:
Framework for constructing certified cryptographic proofs in Coq

http://certicrypt.gforge.inria.fr/

Substantial effort
- 30,000 lines
- 4-6 years
- 6 people
CertiCrypt: Framework for constructing certified cryptographic proofs in Coq

http://certicrypt.gforge.inria.fr/

Substantial effort
- 30,000 lines
- 4-6 years
- 6 people

High impact
- Formalization of several encryption schemes, digital signatures, hash functions, zero-knowledge protocols, etc
- 12 publications
Basics about CertiCrypt
What is a secure cryptographic scheme?
What is a secure cryptographic scheme?

A cryptographic scheme is **secure** if an efficient adversary can break it only with negligible probability.
What is a secure cryptographic scheme?

A cryptographic scheme is secure if an efficient adversary can break it only with negligible probability.
What is a secure cryptographic scheme?

A cryptographic scheme is **secure** if an efficient adversary can break it only with negligible *probability*

Cryptographic schemes *must* be probabilistic (Goldwasser & Micali, ’82)
What is a secure cryptographic scheme?

A cryptographic scheme is secure if an efficient adversary can break it only with negligible probability.

Cryptographic schemes must be probabilistic (Goldwasser & Micali, ’82).
What is a secure cryptographic scheme?

A cryptographic scheme is secure if an efficient adversary can break it only with negligible probability.

- Cryptographic schemes must be probabilistic (Goldwasser & Micali, ’82)
- Adversaries should run in probabilistic polynomial time (PPT)
What is a secure cryptographic scheme?

A cryptographic scheme is secure if an efficient adversary can break it only with negligible probability.

- Cryptographic schemes must be probabilistic (Goldwasser & Micali, ’82)
- Adversaries should run in probabilistic polynomial time (PPT)
What is a secure cryptographic scheme?

A cryptographic scheme is secure if an efficient adversary can break it only with negligible probability.

- Cryptographic schemes must be probabilistic (Goldwasser & Micali, ’82)

- Adversaries should run in probabilistic polynomial time (PPT)

- There exists a standard security notion for each kind of cryptographic scheme
What is a secure cryptographic scheme?

A cryptographic scheme is **secure** if an **efficient** adversary can **break** it only with negligible **probability**

- Cryptographic schemes **must** be probabilistic (Goldwasser & Micali, ’82)
- Adversaries should run in **probabilistic polynomial time** (PPT)
- There exists a **standard security notion** for each kind of cryptographic scheme

Attack game
What is a secure cryptographic scheme?

A cryptographic scheme is secure if an efficient adversary can break it only with negligible probability.

- Cryptographic schemes must be probabilistic (Goldwasser & Micali, ’82)
- Adversaries should run in probabilistic polynomial time (PPT)
- There exists a standard security notion for each kind of cryptographic scheme

\[\Pr[\text{\textit{A} breaks the scheme}] \leq \epsilon \]
How do security proof proceed?

By stepwise transformation of the attack game, towards a “simpler” game.
How do security proof proceed?

By stepwise transformation of the attack game, towards a “simpler” game

\[
\Pr_{G_0}[E_0] \leq f_1 \left(\Pr_{G_1}[E_1] \right)
\]

Probability of breaking the scheme
How do security proof proceed?

By stepwise transformation of the attack game, towards a “simpler” game

Probability of breaking the scheme
How do security proof proceed?

By stepwise transformation of the attack game, towards a “simpler” game

Probability of breaking the scheme

\[\Pr_{G_0}[E_0] \leq f_1(\Pr_{G_1}[E_1]) \leq \cdots \leq f_n(\Pr_{G_n}[E_n]) \]
How do security proof proceed?

By stepwise transformation of the attack game, towards a “simpler” game

Attack game

\[G_0 \rightarrow G_1 \rightarrow \ldots \rightarrow G_n \]

Final game

\[\Pr_{G_0}[E_0] \leq f_1(\Pr_{G_1}[E_1]) \leq \ldots \leq f_n(\Pr_{G_n}[E_n]) \]

How do we represent games?

Probability of breaking the scheme

\[\Pr_{G_0}[E_0] \leq f(\Pr_{G_n}[E_n]) \leq \epsilon \]
How do security proof proceed?

By stepwise transformation of the attack game, towards a “simpler” game

\[
\Pr_{G_0}[E_0] \leq f_1(\Pr_{G_1}[E_1]) \leq \cdots \leq f_n(\Pr_{G_n}[E_n])
\]

How do we relate the probabilities of events between consecutive games?
Language-based cryptographic proofs
Language-based cryptographic proofs

Games \implies (probabilistic) programs
Language-based cryptographic proofs

- Games \implies (probabilistic) programs
- Probability space \implies
- Probability of event \implies
- Game transformations \implies
- Generic adversary \implies
Language-based cryptographic proofs

Games \implies (probabilistic) programs

Probability space \implies program denotation

Probability of event \implies

Game transformations \implies

Generic adversary \implies
Language-based cryptographic proofs

<table>
<thead>
<tr>
<th>Concept</th>
<th>Implication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Games</td>
<td>\implies (probabilistic) programs</td>
</tr>
<tr>
<td>Probability space</td>
<td>\implies program denotation</td>
</tr>
<tr>
<td>Probability of event</td>
<td>\implies probability of postcondition</td>
</tr>
<tr>
<td>Game transformations</td>
<td>\implies</td>
</tr>
<tr>
<td>Generic adversary</td>
<td>\implies</td>
</tr>
</tbody>
</table>
Language-based cryptographic proofs

Games \implies (probabilistic) programs

Probability space \implies program denotation

Probability of event \implies probability of postcondition

Game transformations \implies program transformations

Generic adversary \implies
Language-based cryptographic proofs

<table>
<thead>
<tr>
<th>Concept</th>
<th>Transformation</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Games</td>
<td>⟹</td>
<td>(probabilistic) programs</td>
</tr>
<tr>
<td>Probability space</td>
<td>⟹</td>
<td>program denotation</td>
</tr>
<tr>
<td>Probability of event</td>
<td>⟹</td>
<td>probability of postcondition</td>
</tr>
<tr>
<td>Game transformations</td>
<td>⟹</td>
<td>program transformations</td>
</tr>
<tr>
<td>Generic adversary</td>
<td>⟹</td>
<td>unspecified procedure</td>
</tr>
</tbody>
</table>
The probabilistic language

\[C ::= \begin{array}{l}
\text{skip} & \text{nop} \\
C; C & \text{sequence} \\
V \leftarrow E & \text{assignment} \\
V \leftarrow \mathcal{D}E & \text{random sampling} \\
\text{if } E \text{ then } C \text{ else } C & \text{conditional} \\
\text{while } E \text{ do } C & \text{while loop} \\
V \leftarrow \mathcal{P}(E, \ldots, E) & \text{procedure call}
\end{array} \]
The probabilistic language

\[\mathcal{C} ::= \begin{array}{ll}
\text{skip} & \text{nop} \\
\mathcal{C}; \mathcal{C} & \text{sequence} \\
V \leftarrow \mathcal{E} & \text{assignment} \\
V \leftarrow \mathcal{D}\mathcal{E} & \text{random sampling} \\
\text{if } \mathcal{E} \text{ then } \mathcal{C} \text{ else } \mathcal{C} & \text{conditional} \\
\text{while } \mathcal{E} \text{ do } \mathcal{C} & \text{while loop} \\
V \leftarrow \mathcal{P} (\mathcal{E}, \ldots, \mathcal{E}) & \text{procedure call}
\end{array} \]

\[[c] : \mathcal{S} \rightarrow \mathcal{D}(\mathcal{S}) \]
The probabilistic language

\[C ::= \begin{align*}
 & \text{skip} \quad & \text{nop} \\
| & C ; C \quad & \text{sequence} \\
| & V \leftarrow \mathcal{E} \quad & \text{assignment} \\
| & V \leftarrow \mathcal{D}\mathcal{E} \quad & \text{random sampling} \\
| & \text{if } \mathcal{E} \text{ then } C \text{ else } C \quad & \text{conditional} \\
| & \text{while } \mathcal{E} \text{ do } C \quad & \text{while loop} \\
| & V \leftarrow \mathcal{P}(\mathcal{E}, \ldots, \mathcal{E}) \quad & \text{procedure call}
\end{align*} \]

\[[c] : \forall (k : \mathbb{N}). \mathbb{S}_k \rightarrow \mathcal{D}(\mathbb{S}_k) \]
How do we relate the probability of program?
How do we relate the probability of program?

We need to prove claims of the form

$$\Pr_{c_1(s_1)}[E_1] \leq f(\Pr_{c_2(s_2)}[E_2])$$
How do we relate the probability of program?

We need to prove claims of the form

$$Pr_{c_1(s_1)}[E_1] \leq f(Pr_{c_2(s_2)}[E_2])$$

But usually, it suffices proving claims of the form

$$Pr_{c_1(s_1)}[E] = Pr_{c_2(s_2)}[E]$$
How do we relate the probability of program?

We need to prove claims of the form

\[\Pr_{c_1(s_1)}[E_1] \leq f(\Pr_{c_2(s_2)}[E_2]) \]

But usually, it suffices proving claims of the form

\[\Pr_{c_1(s_1)}[E] = \Pr_{c_2(s_2)}[E] \]

for which we can rely on **observational equivalence** between programs:

\[\{I\} \ c_1 \sim c_2 \ \{O\} \]
How do we relate the probability of program?

We need to prove claims of the form

$$\Pr_{c_1(s_1)}[E_1] \leq f(\Pr_{c_2(s_2)}[E_2])$$

But usually, it suffices proving claims of the form

$$\Pr_{c_1(s_1)}[E] = \Pr_{c_2(s_2)}[E]$$

for which we can rely on **observational equivalence** between programs:

{\{I\} c_1 \sim c_2 \{O\}}
How do we relate the probability of program?

We need to prove claims of the form

$$\Pr_{c_1(s_1)}[E_1] \leq f(\Pr_{c_2(s_2)}[E_2])$$

But usually, it suffices proving claims of the form

$$\Pr_{c_1(s_1)}[E] = \Pr_{c_2(s_2)}[E]$$

for which we can rely on observational equivalence between programs:
How do we relate the probability of program?

We need to prove claims of the form

$$\Pr_{c_1(s_1)}[E_1] \leq f(\Pr_{c_2(s_2)}[E_2])$$

But usually, it suffices proving claims of the form

$$\Pr_{c_1(s_1)}[E] = \Pr_{c_2(s_2)}[E]$$

for which we can rely on **observational equivalence** between programs:
How do we relate the probability of program?

We need to prove claims of the form

\[
\Pr_{c_1(s_1)}[E_1] \leq f(\Pr_{c_2(s_2)}[E_2])
\]

But usually, it suffices proving claims of the form

\[
\Pr_{c_1(s_1)}[E] = \Pr_{c_2(s_2)}[E]
\]

for which we can rely on **observational equivalence** between programs:

\[
f_v(E) \subseteq O \quad \{I\} \quad c_1 \sim c_2 \quad \{O\}
\]

\[
\Pr_{c_1(s_1)}[E] = \Pr_{c_2(s_2)}[E]
\]
How do we relate the probability of program?

We need to prove claims of the form

\[\Pr_{c_1(s_1)}[E_1] \leq f(\Pr_{c_2(s_2)}[E_2]) \]

But usually, it suffices proving claims of the form

\[\Pr_{c_1(s_1)}[E] = \Pr_{c_2(s_2)}[E] \]

for which we can rely on observational equivalence between programs:

\[
\begin{align*}
fv(E) \subseteq O \\
\{l\} c_1 \sim c_2 \{O\} \\
Pr_{c_1(s_1)}[E] = Pr_{c_2(s_2)}[E] \\
s_1 =_l s_2
\end{align*}
\]
Proving observational equivalence

CertiCrypt provides several *mechanised program transformations* for establishing observational equivalence.
CertiCrypt provides several *mechanised program transformations* for establishing observational equivalence

Program Transformation:

\[T(c_1, c_2, l, O) = (c'_1, c'_2, l', O') \]
CertiCrypt provides several *mechanised program transformations* for establishing observational equivalence

Program Transformation:

\[\mathcal{T}(c_1, c_2, I, O) = (c'_1, c'_2, I', O') \]

Soundness Result:
Proving observational equivalence

CertiCrypt provides several *mechanised program transformations* for establishing observational equivalence

Program Transformation: \(\mathcal{T}(c_1, c_2, l, O) = (c'_1, c'_2, l', O') \)

Soundness Result:

\(\{l\} \ c_1 \sim c_2 \ \{O\} \)
Proving observational equivalence

CertiCrypt provides several *mechanised program transformations* for establishing observational equivalence

Program Transformation:

\[T(c_1, c_2, I, O) = (c'_1, c'_2, I', O') \]

Soundness Result:

\[
\frac{T(c_1, c_2, I, O) = (c'_1, c'_2, I', O')}{\{I\} \ c_1 \sim c_2 \ {O}}
\]
Proving observational equivalence

CertiCrypt provides several *mechanised program transformations* for establishing observational equivalence

Program Transformation:

\[T(c_1, c_2, I, O) = (c'_1, c'_2, I', O') \]

Soundness Result:

\[T(c_1, c_2, I, O) = (c'_1, c'_2, I', O') \]

\[\{ I' \} c'_1 \sim c'_2 \{ O' \} \]

\[\{ I \} c_1 \sim c_2 \{ O \} \]
Proving observational equivalence

CertiCrypt provides several *mechanised program transformations* for establishing observational equivalence

Program Transformation:

\[\mathcal{T}(c_1, c_2, I, O) = (c'_1, c'_2, I', O') \]

Soundness Result:

\[
\begin{align*}
\mathcal{T}(c_1, c_2, I, O) &= (c'_1, c'_2, I', O') \\
\{I\} c_1 &\sim c_2 \{O\}
\end{align*}
\]

Some Instances:

- Deadcode elimination
- Constant propagation
- Procedure call inlining
- Common prefix/suffix elimination
CertiCrypt provides an (incomplete) tactic for proving *self-equivalence*

Does \(\{I\} \ c \sim c \ \{O\} \) hold?
Proving observational equivalence

CertiCrypt provides an (incomplete) tactic for proving *self-equivalence*

Does \(\{I\} c \sim c \{O\} \) hold?

- Analyse dependencies to compute \(I' \) such that \(\{I'\} c \sim c \{O\} \)
CertiCrypt provides an (incomplete) tactic for proving \textit{self-equivalence}

Does \(\{I\} \ c \sim c \{O\} \) hold?

- Analyse dependencies to compute \(I' \) such that \(\{I'\} \ c \sim c \{O\} \)
- Check that \(I' \subseteq I \)
Security proof of ElGamal encryption scheme

Game ElGamal:
\[(x, \alpha) \leftarrow \text{KG}();\]
\[(m_0, m_1) \leftarrow \mathcal{A}(\alpha);\]
\[b \leftarrow \{0, 1\};\]
\[(\beta, \zeta) \leftarrow \text{Enc}(\alpha, m_b);\]
\[b' \leftarrow \mathcal{A}'(\alpha, \beta, \zeta);\]
\[d \leftarrow b = b'.\]

Game ElGamal_0:
\[x \leftarrow \mathbb{Z}_q; y \leftarrow \mathbb{Z}_q;\]
\[(m_0, m_1) \leftarrow \mathcal{A}(g^x);\]
\[b \leftarrow \{0, 1\};\]
\[\zeta \leftarrow g^{xy} \times m_b;\]
\[b' \leftarrow \mathcal{A}'(g^x, g^y, \zeta);\]
\[d \leftarrow b = b'.\]

Game ElGamal_1:
\[x \leftarrow \mathbb{Z}_q; y \leftarrow \mathbb{Z}_q;\]
\[(m_0, m_1) \leftarrow \mathcal{A}(g^x);\]
\[z \leftarrow \mathbb{Z}_q; \zeta \leftarrow g^{z};\]
\[b' \leftarrow \mathcal{A}'(g^x, g^y, \zeta);\]
\[d \leftarrow b = b'.\]

Game ElGamal_2:
\[x \leftarrow \mathbb{Z}_q; y \leftarrow \mathbb{Z}_q;\]
\[(m_0, m_1) \leftarrow \mathcal{A}(g^x);\]
\[z \leftarrow \mathbb{Z}_q; \zeta \leftarrow g^{z};\]
\[b' \leftarrow \mathcal{A}'(g^x, g^y, \zeta);\]
\[d \leftarrow b = b'.\]

Game DDH_0:
\[x \leftarrow \mathbb{Z}_q;\]
\[y \leftarrow \mathbb{Z}_q;\]
\[d \leftarrow \mathcal{B}(g^x, g^y, g^{xy})\]

Game DDH_1:
\[x \leftarrow \mathbb{Z}_q;\]
\[y \leftarrow \mathbb{Z}_q;\]
\[d \leftarrow \mathcal{B}(g^x, g^y, g^z)\]

Adversary \(B(\alpha, \beta, \gamma)\):
\[(m_0, m_1) \leftarrow \mathcal{A}(\alpha);\]
\[b \leftarrow \{0, 1\};\]
\[b' \leftarrow \mathcal{A}'(\alpha, \beta \times m_b);\]
\[\text{return } b = b'.\]

Lemma B.PPT: PPT B. Proof. PPT_tac. Qed.

Lemma B_wf: WFAdv B. Proof. ... Qed.
Security proof of ElGamal encryption scheme

\textbf{Game ElGamal}_2:
\begin{align*}
x & \leftarrow \mathbb{Z}_q; \quad y \leftarrow \mathbb{Z}_q; \\
(m_0, m_1) & \leftarrow A(g^x); \\
z & \leftarrow \mathbb{Z}_q; \quad \zeta \leftarrow g^z; \\
b' & \leftarrow A'(g^x, g^y, \zeta); \\
b & \leftarrow \{0, 1\}; \\
d & \leftarrow b = b'\end{align*}

\textbf{Game ElGamal}_1:
\begin{align*}
x & \leftarrow \mathbb{Z}_q; \quad y \leftarrow \mathbb{Z}_q; \\
(m_0, m_1) & \leftarrow A(g^x); \\
b & \leftarrow \{0, 1\}; \\
z & \leftarrow \mathbb{Z}_q; \quad \zeta \leftarrow g^z \times m_b; \\
b' & \leftarrow A'(g^x, g^y, \zeta); \\
d & \leftarrow b = b'\end{align*}

\text{swap. eqobs_hd 4. eqobs_tl 2. apply mult_pad.}
Observational equivalence is not enough
Observational equivalence is not enough

\[
\{x\} \quad \text{if} \ (x=0) \ \text{then} \ y\leftarrow x \ \text{else} \ y\leftarrow 1 \ \sim \ \text{if} \ (x=0) \ \text{then} \ y\leftarrow 0 \ \text{else} \ y\leftarrow 1 \quad \{x, y\}
\]
Observational equivalence is not enough

- Establishing observational equivalence may require additional contextual information

\[
\{x\} \quad \text{if } (x=0) \quad \text{then } y \leftarrow x \quad \text{else } y \leftarrow 1 \quad \sim \quad \text{if } (x=0) \quad \text{then } y \leftarrow 0 \quad \text{else } y \leftarrow 1 \quad \{x, y\}
\]
Observational equivalence is not enough

- Establishing observational equivalence may require additional contextual information

\[
\{x\} \quad \text{if} \ (x=0) \quad \text{then} \quad y \leftarrow x \quad \text{else} \quad y \leftarrow 1 \quad \sim \quad \text{if} \ (x=0) \quad \text{then} \quad y \leftarrow 0 \quad \text{else} \quad y \leftarrow 1 \quad \{x, y\}
\]

- Cryptographic proofs may involve weaker relationships between consecutive games, e.g.

\[
\Pr_{c_1(s_1)}[E_1] \leq \Pr_{c_2(s_2)}[E_2]
\]
Relational Hoare logic
Relational Hoare logic

Standard Hoare Logic (HL)

\(\{ P \} c \{ Q \} \)
Relational Hoare logic

Standard Hoare Logic (HL)

\[\{ P \} \ c \ \{ Q \} \]

\[s \rightarrow P(s) \]

\[c \]

\[s' \rightarrow Q(s') \]
Relational Hoare logic

Standard Hoare Logic (HL)

\[\{ P \} \ c \ { Q \} \]

\[
\begin{align*}
 s & \quad P(s) \\
 c & \\
 s' & \quad Q(s')
\end{align*}
\]

Relational Hoare Logic (RHL)

\[\{ P \} \ c_1 \sim c_2 \ { Q \} \]
Relational Hoare logic

Standard Hoare Logic (HL)

\(\{ P \} \; c \; \{ Q \} \)

\(s \quad P(s) \)

\(\downarrow \quad c \quad \uparrow \)

\(s' \quad Q(s') \)

Relational Hoare Logic (RHL)

\(\{ P \} \; c_1 \sim c_2 \; \{ Q \} \)

\(s_1 \quad P \quad s_2 \)

\(\downarrow \quad c_1 \quad \uparrow \quad c_2 \)

\(s_1' \quad Q \quad s_2' \)
Relational Hoare logic

Standard Hoare Logic (HL)

\[\{P\} c \{Q\} \]

\[s \xrightarrow{P(s)} s' \]

\[s \xrightarrow{c} s' \xrightarrow{Q(s')} \]

Relational Hoare Logic (RHL)

\[\{P\} c_1 \sim c_2 \{Q\} \]

\[s_1 \xrightarrow{P} s_2 \]

\[s_1 \xleftarrow{c_1} P \xrightarrow{c_2} s_2 \]

\[s_1' \xrightarrow{Q} s_2' \]

\[s_1' \xleftarrow{Q} s_2' \]
Relational Hoare logic

Standard Hoare Logic (HL)

\[\{ P \} \ c \ \{ Q \} \]
\[s \rightarrow P(s) \]
\[c \rightarrow c \]
\[s' \leftarrow Q(s') \]

Relational Hoare Logic (RHL)

probabilistic programs

\[\{ P \} \ c_1 \sim c_2 \ \{ Q \} \]
\[s_1 \leftarrow P \rightarrow s_2 \]
\[c_1 \rightarrow c_1 \]
\[c_2 \rightarrow c_2 \]
\[\mu_1 \leftarrow Q \rightarrow \mu_2 \]
distributions over states
Relational Hoare logic

Standard Hoare Logic (HL)

\[
\{ P \} \ c \ \{ Q \}
\]

\[
s \quad \quad

Relational Hoare logic — Judgment examples

$z := y+1 \sim z := x$
Relational Hoare logic — Judgment examples

\[\models \{ y(1)+1 = x(2) \} \quad z := y+1 \sim z := x \]
Relational Hoare logic — Judgment examples

\[\models \{ y_1 + 1 = x_2 \} \quad z := y + 1 \sim z := x \quad \{ z_1 = z_2 \} \]
Relational Hoare logic — Judgment examples

\[= \{y(1)+1 = x(2)\} \quad z := y+1 \sim z := x \quad \{z(1) = z(2)\} \]

\[\text{if } b \text{ then } x := 0 \quad \sim \quad \text{if } b \text{ then } x := 1 \]
\[\text{else } x := 1 \quad \sim \quad \text{else } x := 0 \]
Relational Hoare logic — Judgment examples

\[\models \{ y(1) + 1 = x(2) \} \quad z := y + 1 \sim z := x \quad \{ z(1) = z(2) \} \]

\[\models \{ b(1) = b(2) \} \quad \text{if } b \text{ then } x := 0 \quad \text{else } x := 1 \sim \text{if } b \text{ then } x := 1 \quad \text{else } x := 0 \]
Relational Hoare logic — Judgment examples

\[\models \{y_1 + 1 = x_2\} \quad z := y + 1 \sim z := x \quad \{z_1 = z_2\}\]

\[\models \{b_1 = b_2\} \quad \text{if } b \text{ then } x := 0 \quad \text{else } x := 1 \sim \text{if } b \text{ then } x := 1 \quad \text{else } x := 0 \quad \{x_1 = 1 - x_2\}\]
Proof system
Proof system

- Most rules are direct adaptations of traditional HL rules
Proof system

Most rules are direct adaptations of traditional HL rules

(\texttt{-\{P\} skip \{P\}})
Proof system

Most rules are direct adaptations of traditional HL rules

⊢ \{P\} \text{skip} ~ \text{skip} \{P\}

(⊢ \{P\} \text{skip} \{P\})
Proof system

Most rules are direct adaptations of traditional HL rules

\[
\vdash \{ P \} \text{skip} \sim \text{skip} \{ P \} \quad \quad (\vdash \{ P \} \text{skip} \{ P \})
\]

\[
\begin{align*}
&\vdash \{ P \} \ c \{ Q' \} \quad \vdash \{ Q' \} \ c' \{ Q \} \\
&\Rightarrow \vdash \{ P \} \ c; c' \{ Q \}
\end{align*}
\]
Most rules are direct adaptations of traditional HL rules

\[\vdash \{P\} \text{skip} \sim \text{skip} \{P\}\]

\[\vdash \{P\} c_1 \sim c_2 \{Q'\} \quad \vdash \{Q'\} c'_1 \sim c'_2 \{Q\}\]

\[\vdash \{P\} c_1; c'_1 \sim c_2; c'_2 \{Q\}\]
Proof system

Most rules are direct adaptations of traditional HL rules

\[\vdash \{P\} \text{skip} \sim \text{skip} \{P\} \]

\[\vdash \{P\} c_1 \sim c_2 \{Q'\} \quad \vdash \{Q'\} c'_1 \sim c'_2 \{Q\} \]

\[\vdash \{P\} c_1; c'_1 \sim c_2; c'_2 \{Q\} \]

\[\vdash \{P\} \text{skip} \{P\} \]

\[\vdash \{P\} \text{skip} \{P\} \]

\[\vdash \{P\} c \{Q'\} \quad \vdash \{Q'\} c' \{Q\} \]

\[\vdash \{P\} c; c' \{Q\} \]

Requires programs to execute lockstep
Proof system

- Most rules are direct adaptations of traditional HL rules

\[\vdash \{ P \} \text{skip} \sim \text{skip} \{ P \} \]
\[\vdash \{ P \} c_1 \sim c_2 \{ Q' \} \quad \vdash \{ Q' \} c'_1 \sim c'_2 \{ Q \} \]
\[\vdash \{ P \} c_1; c'_1 \sim c_2; c'_2 \{ Q \} \]
\[(\vdash \{ P \} \text{skip} \{ P \}) \]

\[\vdash \{ P \} c \{ Q' \} \vdash \{ Q' \} c' \{ Q \} \]
\[\vdash \{ P \} c; c' \{ Q \} \]

- Requires programs to execute lockstep

\[\vdash \{ I \land G_{1\langle 1 \rangle} \} c_1 \sim c_2 \{ I \} \quad \models (I \Rightarrow G_{1\langle 1 \rangle} = G_{2\langle 2 \rangle}) \]
\[\vdash \{ I \} \text{while } G_1 \text{ do } c_1 \sim \text{while } G_2 \text{ do } c_2 \{ I \land \neg G_{1\langle 1 \rangle} \} \]
[while]
Proof system

- Most rules are direct adaptations of traditional HL rules

\[
\begin{align*}
\vdash \{P\} \text{skip} \sim \text{skip} \{P\} \quad \vdash \{P\} \ c_1 \sim c_2 \ \{Q'\} \quad \vdash \{Q'\} \ c'_1 \sim c'_2 \ \{Q\} \\
\vdash \{P\} \ c_1; c'_1 \sim c_2; c'_2 \ \{Q\} \\
\end{align*}
\]

\[
\vdash \{P\} \ c \ {Q'} \vdash \{Q'\} \ c' \ \{Q\}
\]

- Requires programs to execute lockstep

\[
\begin{align*}
\vdash \{I \land G_1(1)\} \ c_1 \sim c_2 \ \{I\} \\
\vdash \{I\} \ \text{while} \ G_1 \ \text{do} \ c_1 \sim \text{while} \ G_2 \ \text{do} \ c_2 \ \{I \land \neg G_1(1)\}
\end{align*}
\]

\[
\vdash \{I\} \quad \vdash \{I \implies G_1(1) = G_2(2)\}
\]

- (The classic fragment) only relates programs that are structurally equal.
Proof system

- Most rules are direct adaptations of traditional HL rules

\[\vdash \{ P \} \text{skip} \sim \text{skip} \{ P \} \quad (\vdash \{ P \} \text{skip} \{ P \}) \]
\[\vdash \{ P \} c_1 \sim c_2 \{ Q' \} \quad \vdash \{ Q' \} c'_1 \sim c'_2 \{ Q \} \]
\[\vdash \{ P \} c_1; c'_1 \sim c_2; c'_2 \{ Q \} \]
\[(\vdash \{ P \} c_1; c'_1 \sim c_2; c'_2 \{ Q \}) \]

- Requires programs to execute lockstep

\[\vdash \{ l \land G_{1(1)} \} c_1 \sim c_2 \{ l \} \quad \models \left(l \implies G_{1(1)} = G_{2(2)} \right) \]
\[\vdash \{ l \} \text{while } G_1 \text{ do } c_1 \sim \text{while } G_2 \text{ do } c_2 \{ l \land \neg G_{1(1)} \} \]
\[\text{[while]} \]

- The classic fragment only relates programs that are structurally equal.
 But the logic can be extended with “one-sided” rules, e.g.
Proof system

- Most rules are direct adaptations of traditional HL rules

\[
\vdash \{P\} \text{skip} \sim \text{skip} \{P\} \\
\vdash \{P\} c_1 \sim c_2 \{Q\} \quad \vdash \{Q\} c'_1 \sim c'_2 \{Q\} \\
\hline
\vdash \{P\} c_1; c'_1 \sim c_2; c'_2 \{Q\}
\]

(\vdash \{P\} \text{skip} \{P\})

(\vdash \{P\} c \{Q\} \quad \vdash \{Q\} c' \{Q\})

(\vdash \{P\} c; c' \{Q\})

- Requires programs to execute lockstep

\[
\vdash \{I \land G_{1(1)}\} c_1 \sim c_2 \{I\} \\
\hline
\vdash \{I\} \text{while } G_1 \text{ do } c_1 \sim \text{while } G_2 \text{ do } c_2 \{I \land \neg G_{1(1)}\}
\]

\(\vdash \{I \implies G_{1(1)} = G_{2(2)}\}\) [while]

- (The classic fragment) only relates programs that are structurally equal. But the logic can be extended with “one-sided” rules, e.g.

\[
\vdash \{P\} \text{if } G \text{ then } c_1 \text{ else } c'_1 \sim c_2 \{Q\}
\]

[c-branch]
Proof system

- Most rules are direct adaptations of traditional HL rules

\[\vdash \{ P \} \text{skip} \sim \text{skip} \{ P \} \quad (\vdash \{ P \} \text{skip} \{ P \}) \]

\[\vdash \{ P \} c_1 \sim c_2 \{ Q' \} \quad \vdash \{ Q' \} c_1' \sim c_2' \{ Q \} \]

\[\vdash \{ P \} c_1; c_1' \sim c_2; c_2' \{ Q \} \quad (\vdash \{ P \} c \{ Q' \} \quad \vdash \{ Q' \} c' \{ Q \}) \quad (\vdash \{ P \} c; c' \{ Q \}) \]

- Requires programs to execute lockstep

\[\vdash \{ l \land G_{1(1)} \} c_1 \sim c_2 \{ l \} \quad \models (l \implies G_{1(1)} = G_{2(2)}) \]

\[\vdash \{ l \} \text{while } G_1 \text{ do } c_1 \sim \text{while } G_2 \text{ do } c_2 \{ l \land \neg G_{1(1)} \} \quad \text{[while]} \]

- (The classic fragment) only relates programs that are structurally equal. But the logic can be extended with “one-sided” rules, e.g.

\[\vdash \{ P \land G_{(1)} \} c_1 \sim c_2 \{ Q \} \quad \vdash \{ P \land \neg G_{(1)} \} c_1' \sim c_2 \{ Q \} \]

\[\vdash \{ P \} \text{if } G \text{ then } c_1 \text{ else } c_1' \sim c_2 \{ Q \} \quad \text{[c-branch]} \]
From the logic to probability claims
From the logic to probability claims

\[
\frac{\Pr[c_1(s_1) : A]}{\Pr[c_2(s_2) : B]} \quad \text{[Pr-Eq]}
\]
From the logic to probability claims

\[\models \{P\} c_1 \sim c_2 \{Q\} \]

\[\text{Pr}[c_1(s_1) : A] = \text{Pr}[c_2(s_2) : B] \]

[Pr-Eq]
From the logic to probability claims

\[
\begin{align*}
\models \{P\} c_1 \sim c_2 \{Q\} & \quad Q \implies (A \iff B) \\
\Pr[c_1(s_1) : A] &= \Pr[c_2(s_2) : B] \\
\end{align*}
\]

[Pr-Eq]
From the logic to probability claims

\[
\begin{align*}
\text{Pr}\left[c_1(s_1) : A \right] &= \text{Pr}\left[c_2(s_2) : B \right] \\
\text{Pr-Eq} &
\end{align*}
\]
From the logic to probability claims

\[
\begin{align*}
\frac{s_1 P s_2 \models \{P\} c_1 \sim c_2 \{Q\} \quad Q \implies (A(1) \iff B(2))}{\Pr[c_1(s_1) : A] = \Pr[c_2(s_2) : B]} & \text{[Pr-Eq]} \\
\frac{\Pr[c_1(s_1) : A] \leq \Pr[c_2(s_2) : B]} & \text{[Pr-Le]}
\end{align*}
\]
From the logic to probability claims

\[
\begin{align*}
\frac{s_1 \ P \ s_2 \quad \models \ {\{P\} \ c_1 \sim c_2 \ \{Q\} \quad Q \implies (A^{(1)} \iff B^{(2)})}}{\Pr[c_1(s_1) : A] = \Pr[c_2(s_2) : B]} & \quad [\text{Pr-Eq}] \\
\frac{s_1 \ P \ s_2 \quad \models \ {\{P\} \ c_1 \sim c_2 \ \{Q\} \quad Q \implies (A^{(1)} \implies B^{(2)})}}{\Pr[c_1(s_1) : A] \leq \Pr[c_2(s_2) : B]} & \quad [\text{Pr-Le}]
\end{align*}
\]
Wrapping up
Conclusion
Conclusion

Successful application of machine-checked proofs to the field of cryptography
Conclusion

Successful application of machine-checked proofs to the field of cryptography

- Formal semantics of probabilistic language
- A probabilistic relational Hoare logic
- Mechanised program transformations
- Formalization of emblematic schemes: OAEP, ElGamal, FDH, etc.
Conclusion

Successful application of machine-checked proofs to the field of cryptography

- Formal semantics of probabilistic language
- A probabilistic relational Hoare logic
- Mechanised program transformations
- Formalization of emblematic schemes: OAEP, ElGamal, FDH, etc.

Key Insight:

View cryptographic proofs as a problem of (relational) probabilistic program verification
Successful application of machine-checked proofs to the field of cryptography

- Formal semantics of probabilistic language
- A probabilistic relational Hoare logic
- Mechanised program transformations
- Formalization of emblematic schemes: OAEP, ElGamal, FDH, etc.

Key Insight:
View cryptographic proofs as a problem of (relational) probabilistic program verification

Thanks!
Backup Slides
Language semantics

\[
\begin{align*}
\llbracket \text{skip} \rrbracket m &= \text{unit } m \\
\llbracket c; c' \rrbracket m &= \text{bind } (\llbracket c \rrbracket m) \llbracket c' \rrbracket \\
\llbracket x \leftarrow e \rrbracket m &= \text{unit } (m \{\{e\} m / x\}) \\
\llbracket x \triangleleft d \rrbracket m &= \text{bind } (\llbracket d \rrbracket D E m) (\lambda v. \text{unit } (m \{v / x\})) \\
\llbracket \text{assert } e \rrbracket m &= \text{if } (\llbracket e \rrbracket E m = \text{true}) \text{ then } (\text{unit } m) \text{ else } \mu_0 \\
\llbracket \text{if } e \text{ then } c_1 \text{ else } c_2 \rrbracket m &= \text{if } (\llbracket e \rrbracket E m = \text{true}) \text{ then } (\llbracket c_1 \rrbracket m) \text{ else } (\llbracket c_2 \rrbracket m) \\
\llbracket \text{while } e \text{ do } c \rrbracket m &= \lambda f. \text{ lub } (\lambda n. (\llbracket \text{while } e \text{ do } c \rrbracket n m)(f)) \\
\text{where} & \quad \llbracket \text{while } e \text{ do } c \rrbracket_0 = \text{assert } \neg e \\
& \quad \llbracket \text{while } e \text{ do } c \rrbracket_{n+1} = \text{if } e \text{ then } c; \llbracket \text{while } e \text{ do } c \rrbracket_n
\end{align*}
\]
The measure monad (ALEA library)

\[D(A) \triangleq (A \to [0, 1]) \to [0, 1] \]

\[\mu(f) = \text{"expected value of } f \text{ wrt } \mu\]

\[
\begin{align*}
\text{unit} & : A \to D(A) \\
& \overset{\text{def}}{=} \lambda x. \lambda f. f(x) \\
\text{bind} & : D(A) \to (A \to D(B)) \to D(B) \\
& \overset{\text{def}}{=} \lambda \mu. \lambda M. \lambda f. \mu(\lambda x. M(x)(f)).
\end{align*}
\]

Example

\[
\begin{align*}
[b_1 \overset{\$}{\leftarrow} \{ t, f \}; b_2 \overset{\$}{\leftarrow} \{ t, f \}] s &= \lambda f. \frac{1}{4} f(s[b_1, b_2/t, t]) + \frac{1}{4} f(s[b_1, b_2/t, f]) \\
& \hspace{1cm} + \frac{1}{4} f(s[b_1, b_2/f, t]) + \frac{1}{4} f(s[b_1, b_2/f, f])
\end{align*}
\]
Lifting relations to distributions via couplings
Lifting relations to distributions via couplings

\[(\mu_1, \mu_2) \models Q^\# \triangleq \exists \mu \in \mathcal{D}(S \times S) . \begin{cases} \pi_1(\mu) = \mu_1 \land \pi_2(\mu) = \mu_2, \\
\Pr_{\mu}[\neg Q] = 0 \end{cases} \]

* See *Logical, Metric, and Algorithmic Characterisations of Probabilistic Bisimulation*, Deng & Du.
Proof system (two-sided rules)

\[
\begin{align*}
\vdash \{P\} \text{ skip} & \sim \text{ skip } \{P\} \quad \text{[skip]} \\
\vdash \{P\} c_1 \sim c_2 \ \{Q\} & \vdash \{Q\} c_1' \sim c_2' \ \{Q\} \quad \text{[seq]} \\
\vdash \{\text{true}\} \text{ abort} & \sim \text{ abort } \{Q\} \quad \text{[abort]} \\
\vdash \{Q[x_1/A(1), y_2/B(2)]\} \ x := A \sim y := B \ \{Q\} & \quad \text{[assign]} \\
\vdash \{Q \implies P'\} \quad \vdash \{P'\} c_1 \sim c_2 \ \{Q\} & \vdash \{Q' \implies Q\} \quad \text{[cons]} \\
\vdash \{P \implies G_{1(1)} = G_{2(2)}\} \quad \vdash \{P \land G_{1(1)}\} c_1 \sim c_2 \ \{Q\} & \vdash \{P \land \neg G_{1(1)}\} c'_1 \sim c'_2 \ \{Q\} \quad \text{[if]} \\
\vdash \{I \land G_{1(1)}\} c_1 \sim c_2 \ \{I\} \quad \vdash \{I \implies G_{1(1)} = G_{2(2)}\} \quad \text{[while]} \\
\vdash \{P^{-1}\} c_2 \sim c_1 \ \{Q^{-1}\} \quad \vdash \{P\} c_1 \sim c_2 \ \{Q\} \quad \vdash \{P'\} c_2 \sim c_3 \ \{Q'\} \quad \text{[comp]} \\
\vdash \{\mu_1 \triangleright \lambda \nu \cdot \eta_{s_1[x_1/\nu]}\} \mathcal{L}(Q) (\mu_2 \triangleright \lambda \nu \cdot \eta_{s_2[x_2/\nu]}) \quad \vdash \{P\} x_1 := \mu_1 \sim x_2 := \mu_2 \ \{Q\} \quad \text{[rand]} \\
\end{align*}
\]
Proof system (one-sided rules)

\[
\vdash \{\text{false}\} c_1 \leadsto c_2 \{Q\} \quad [\text{contr}]
\]

\[
\vdash \{Q[x_{(1)}/A_{(1)}]\} x := A \leadsto \text{skip} \{Q\} \quad [\text{d-assgn}]
\]

\[
\vdash \{P \land G_{(1)}\} c_1 \leadsto c_2 \{Q\} \quad \vdash \{P \land \neg G_{(1)}\} c'_1 \leadsto c_2 \{Q\} \\
\vdash \{P\} \text{if } G \text{ then } c_1 \text{ else } c'_1 \leadsto c_2 \{Q\} \quad [\text{c-branch}]
\]

\[
\vdash \{P \land \neg G_{(1)}\} \text{while } G \text{ do } c \leadsto \text{skip} \{P \land \neg G_{(1)}\} \quad [\text{d-while}]
\]