
Language-based Cryptographic Proofs in Coq  
or 

Coq for Probabilistic Programs

FEDERICO OLMEDO 
UNIVERSITY OF CHILE

ICSEC KICK-OFF WORKSHOP  
SANTIAGO, CHILE  —  MARCH 2018



Motivation

2



Rigor crisis in the cryptographic community

3

In our opinion, many proofs in cryptography have become 
essentially unverifiable. Our field may be approaching a crisis 
of rigor. 

 Bellare & Rogaway (2006)

Do we have a problem with cryptographic proofs? 
Yes, we do. The problem is that as a community, we generate 
more proofs than we carefully verify (and as a consequence 
some of our published proofs are incorrect). 

 Halevi (2005)

Why certified cryptographic proofs?



4

The case of OAEP encryption scheme 

1994

Since 

1994 

Introduction and security proof

Worldwide industrial standard

PKCS#1 v2

IEEE P1363

ISO 18033-2

The rigor crisis of the cryptographic community



4

The case of OAEP encryption scheme 

1994

Since 

1994 

2001

Introduction and security proof

Worldwide industrial standard

Security proof is flawed

There appears to be a non-trivial gap in the OAEP 
security proof [and] this gap cannot be filled. 

Shoup (2001)

PKCS#1 v2

IEEE P1363

And 7 years later…

ISO 18033-2

The rigor crisis of the cryptographic community



5

The case of BONEH-FRANKLIN encryption scheme

2001

Since 

2001 

Introduction and security proof

Used as subcomponent of several cryptographic protocols

The rigor crisis of the cryptographic community



5

The case of BONEH-FRANKLIN encryption scheme

2001

Since 

2001 

2005

Introduction and security proof

Used as subcomponent of several cryptographic protocols

Security proof is flawed

This is just another example in which a well-known and widely 
used construction turns out to have an unnoticed flawed 
security reduction. 

Galindo (2005)

The rigor crisis of the cryptographic community



6

http://certicrypt.gforge.inria.fr/

CertiCrypt:  
Framework for constructing certified cryptographic proofs in Coq

http://certicrypt.gforge.inria.fr/


6

http://certicrypt.gforge.inria.fr/

CertiCrypt:  
Framework for constructing certified cryptographic proofs in Coq

30.000 lines 
4-6 years 
6 people

Substantial effort

http://certicrypt.gforge.inria.fr/


6

http://certicrypt.gforge.inria.fr/

CertiCrypt:  
Framework for constructing certified cryptographic proofs in Coq

30.000 lines 
4-6 years 
6 people

Substantial effort High impact

Formalization of several encryption 
schemes, digital signatures, hash 
functions, zero-knowledge protocols, etc  
12 publications 

http://certicrypt.gforge.inria.fr/


Basics about CertiCrypt

7



8

What is a secure cryptographic scheme?



8

What is a secure cryptographic scheme?

A cryptographic scheme is secure if an efficient 
adversary can break it only with negligible probability 



8

What is a secure cryptographic scheme?

A cryptographic scheme is secure if an efficient 
adversary can break it only with negligible probability 



8

What is a secure cryptographic scheme?

Cryptographic schemes must be probabilistic (Goldwasser & Micali, ’82) 

A cryptographic scheme is secure if an efficient 
adversary can break it only with negligible probability 



8

What is a secure cryptographic scheme?

Cryptographic schemes must be probabilistic (Goldwasser & Micali, ’82) 

A cryptographic scheme is secure if an efficient 
adversary can break it only with negligible probability 



8

What is a secure cryptographic scheme?

Cryptographic schemes must be probabilistic (Goldwasser & Micali, ’82) 

Adversaries should run in probabilistic polynomial time (PPT)

A cryptographic scheme is secure if an efficient 
adversary can break it only with negligible probability 



8

What is a secure cryptographic scheme?

Cryptographic schemes must be probabilistic (Goldwasser & Micali, ’82) 

Adversaries should run in probabilistic polynomial time (PPT)

A cryptographic scheme is secure if an efficient 
adversary can break it only with negligible probability 



8

What is a secure cryptographic scheme?

Cryptographic schemes must be probabilistic (Goldwasser & Micali, ’82) 

Adversaries should run in probabilistic polynomial time (PPT)

There exists a standard security notion for each kind of cryptographic scheme

A cryptographic scheme is secure if an efficient 
adversary can break it only with negligible probability 



8

What is a secure cryptographic scheme?

Cryptographic schemes must be probabilistic (Goldwasser & Micali, ’82) 

Attack game

. . .A . . .

Adversaries should run in probabilistic polynomial time (PPT)

There exists a standard security notion for each kind of cryptographic scheme

A cryptographic scheme is secure if an efficient 
adversary can break it only with negligible probability 



8

What is a secure cryptographic scheme?

Cryptographic schemes must be probabilistic (Goldwasser & Micali, ’82) 

Attack game

. . .A . . .

Adversaries should run in probabilistic polynomial time (PPT)

There exists a standard security notion for each kind of cryptographic scheme

Pr

�
A breaks
the scheme

�
 ✏

A cryptographic scheme is secure if an efficient 
adversary can break it only with negligible probability 



9

How do security proof proceed?

By stepwise transformation of the attack game, 
towards a “simpler” game 

Attack game Final game

. . .A . . .
. . .A . . .. . .A . . .

G0 G1 Gn

. . .



9

How do security proof proceed?

By stepwise transformation of the attack game, 
towards a “simpler” game 

Attack game Final game

. . .A . . .
. . .A . . .. . .A . . .

G0 G1 Gn

. . .

PrG0 [E0] f1
�
PrG1 [E1]

�


Probability of 
breaking the scheme



9

How do security proof proceed?

By stepwise transformation of the attack game, 
towards a “simpler” game 

Attack game Final game

. . .A . . .
. . .A . . .. . .A . . .

G0 G1 Gn

. . .

PrG0 [E0] f1
�
PrG1 [E1]

�
fn

�
PrGn [En]

�
  . . .

Probability of 
breaking the scheme



9

How do security proof proceed?

By stepwise transformation of the attack game, 
towards a “simpler” game 

Attack game Final game

. . .A . . .
. . .A . . .. . .A . . .

G0 G1 Gn

. . .

PrG0 [E0] f1
�
PrG1 [E1]

�
fn

�
PrGn [En]

�
  . . .

PrG0 [E0]  f
�
PrGn [En]

�
 ✏

Probability of 
breaking the scheme



10

How do security proof proceed?

By stepwise transformation of the attack game, 
towards a “simpler” game 

Attack game Final game

. . .A . . .
. . .A . . .. . .A . . .

G0 G1 Gn

. . .

PrG0 [E0] f1
�
PrG1 [E1]

�
fn

�
PrGn [En]

�
  . . .

PrG0 [E0]  f
�
PrGn [En]

�
 ✏

How do we 
represent games?

Probability of 
breaking the scheme



11

How do security proof proceed?

By stepwise transformation of the attack game, 
towards a “simpler” game 

Attack game Final game

. . .A . . .
. . .A . . .. . .A . . .

G0 G1 Gn

. . .

PrG0 [E0] f1
�
PrG1 [E1]

�
fn

�
PrGn [En]

�
  . . .

PrG0 [E0]  f
�
PrGn [En]

�
 ✏

How do we relate the probabilities of 
events between consecutive games?

Probability of 
breaking the scheme



12

Language-based cryptographic proofs



12

Games

Language-based cryptographic proofs

(probabilistic) programs⟹



12

Games

Language-based cryptographic proofs

(probabilistic) programs

Game transformations

Generic adversary

Probability space

⟹

⟹

⟹

⟹

Probability of event ⟹



12

Games

Language-based cryptographic proofs

(probabilistic) programs

Game transformations

Generic adversary

Probability space program denotation

⟹

⟹

⟹

⟹

Probability of event ⟹



12

Games

Language-based cryptographic proofs

(probabilistic) programs

Game transformations

Generic adversary

Probability space program denotation

⟹

⟹

⟹

⟹

Probability of event probability of postcondition⟹



12

Games

Language-based cryptographic proofs

(probabilistic) programs

Game transformations program transformations

Generic adversary

Probability space program denotation

⟹

⟹

⟹

⟹

Probability of event probability of postcondition⟹



12

Games

Language-based cryptographic proofs

(probabilistic) programs

Game transformations program transformations

Generic adversary unspecified procedure

Probability space program denotation

⟹

⟹

⟹

⟹

Probability of event probability of postcondition⟹



13

The probabilistic language

A language-based approach

Security definitions, assumptions and games are formalized using a
probabilistic programming language

pWhile: a probabilistic programming language

C ::= skip nop
| C; C sequence
| V  E assignment
| V $ DE random sampling
| if E then C else C conditional
| while E do C while loop
| V  P(E , . . . , E) procedure call

x $ d : sample the value of x according to distribution d

The language of expressions (E) and distribution expressions
(DE) admits user-defined extensions

11/44



13

The probabilistic language

A language-based approach

Security definitions, assumptions and games are formalized using a
probabilistic programming language

pWhile: a probabilistic programming language

C ::= skip nop
| C; C sequence
| V  E assignment
| V $ DE random sampling
| if E then C else C conditional
| while E do C while loop
| V  P(E , . . . , E) procedure call

x $ d : sample the value of x according to distribution d

The language of expressions (E) and distribution expressions
(DE) admits user-defined extensions

11/44

JcK : S! D(S)



13

The probabilistic language

A language-based approach

Security definitions, assumptions and games are formalized using a
probabilistic programming language

pWhile: a probabilistic programming language

C ::= skip nop
| C; C sequence
| V  E assignment
| V $ DE random sampling
| if E then C else C conditional
| while E do C while loop
| V  P(E , . . . , E) procedure call

x $ d : sample the value of x according to distribution d

The language of expressions (E) and distribution expressions
(DE) admits user-defined extensions

11/44

JcK : 8(k :N). Sk ! D(Sk)

security parameter



fv(E) ✓ O {I} c1 ⇠ c2 {O} s1 =I s2
Prc1(s1)[E] = Prc2(s2)[E]

14

How do we relate the probability of program?



fv(E) ✓ O {I} c1 ⇠ c2 {O} s1 =I s2
Prc1(s1)[E] = Prc2(s2)[E]

14

How do we relate the probability of program?

We need to prove claims of the form

Prc1(s1)[E1]  f
�
Prc2(s2)[E2]

�



fv(E) ✓ O {I} c1 ⇠ c2 {O} s1 =I s2
Prc1(s1)[E] = Prc2(s2)[E]

14

How do we relate the probability of program?

But usually, it suffices proving claims of the form

Prc1(s1)[E] = Prc2(s2)[E]

We need to prove claims of the form

Prc1(s1)[E1]  f
�
Prc2(s2)[E2]

�



fv(E) ✓ O {I} c1 ⇠ c2 {O} s1 =I s2
Prc1(s1)[E] = Prc2(s2)[E]

14

How do we relate the probability of program?

But usually, it suffices proving claims of the form

for which we can rely on observational equivalence between programs:

Prc1(s1)[E] = Prc2(s2)[E]

We need to prove claims of the form

Prc1(s1)[E1]  f
�
Prc2(s2)[E2]

�



fv(E) ✓ O {I} c1 ⇠ c2 {O} s1 =I s2
Prc1(s1)[E] = Prc2(s2)[E]

14

How do we relate the probability of program?

But usually, it suffices proving claims of the form

for which we can rely on observational equivalence between programs:

Input set of variables

Prc1(s1)[E] = Prc2(s2)[E]

We need to prove claims of the form

Prc1(s1)[E1]  f
�
Prc2(s2)[E2]

�



fv(E) ✓ O {I} c1 ⇠ c2 {O} s1 =I s2
Prc1(s1)[E] = Prc2(s2)[E]

14

How do we relate the probability of program?

But usually, it suffices proving claims of the form

for which we can rely on observational equivalence between programs:

Input set of variables Output set of variables

Prc1(s1)[E] = Prc2(s2)[E]

We need to prove claims of the form

Prc1(s1)[E1]  f
�
Prc2(s2)[E2]

�



fv(E) ✓ O {I} c1 ⇠ c2 {O} s1 =I s2
Prc1(s1)[E] = Prc2(s2)[E]

14

How do we relate the probability of program?

But usually, it suffices proving claims of the form

for which we can rely on observational equivalence between programs:

Input set of variables Output set of variables

Prc1(s1)[E] = Prc2(s2)[E]

We need to prove claims of the form

Prc1(s1)[E1]  f
�
Prc2(s2)[E2]

�



fv(E) ✓ O {I} c1 ⇠ c2 {O} s1 =I s2
Prc1(s1)[E] = Prc2(s2)[E]

14

How do we relate the probability of program?

But usually, it suffices proving claims of the form

for which we can rely on observational equivalence between programs:

Input set of variables Output set of variables

Prc1(s1)[E] = Prc2(s2)[E]

We need to prove claims of the form

Prc1(s1)[E1]  f
�
Prc2(s2)[E2]

�



fv(E) ✓ O {I} c1 ⇠ c2 {O} s1 =I s2
Prc1(s1)[E] = Prc2(s2)[E]

14

How do we relate the probability of program?

But usually, it suffices proving claims of the form

for which we can rely on observational equivalence between programs:

Input set of variables Output set of variables

Prc1(s1)[E] = Prc2(s2)[E]

We need to prove claims of the form

Prc1(s1)[E1]  f
�
Prc2(s2)[E2]

�



15

Proving observational equivalence 

CertiCrypt provides several mechanised program transformations 
for establishing observational equivalence

T (c1, c2, I, O) = (c 01, c 02, I 0, O0) {I 0} c 01 ⇠ c 02 {O0}
{I} c1 ⇠ c2 {O}



15

Proving observational equivalence 

CertiCrypt provides several mechanised program transformations 
for establishing observational equivalence

PROGRAM TRANSFORMATION:   

T (c1, c2, I, O) = (c 01, c 02, I 0, O0) {I 0} c 01 ⇠ c 02 {O0}
{I} c1 ⇠ c2 {O}

T (c1, c2, I, O) = (c 01, c 02, I 0, O0)



15

Proving observational equivalence 

CertiCrypt provides several mechanised program transformations 
for establishing observational equivalence

PROGRAM TRANSFORMATION:   

SOUNDNESS RESULT: T (c1, c2, I, O) = (c 01, c 02, I 0, O0) {I 0} c 01 ⇠ c 02 {O0}
{I} c1 ⇠ c2 {O}

T (c1, c2, I, O) = (c 01, c 02, I 0, O0)



15

Proving observational equivalence 

CertiCrypt provides several mechanised program transformations 
for establishing observational equivalence

PROGRAM TRANSFORMATION:   

SOUNDNESS RESULT: T (c1, c2, I, O) = (c 01, c 02, I 0, O0) {I 0} c 01 ⇠ c 02 {O0}
{I} c1 ⇠ c2 {O}

T (c1, c2, I, O) = (c 01, c 02, I 0, O0)



15

Proving observational equivalence 

CertiCrypt provides several mechanised program transformations 
for establishing observational equivalence

PROGRAM TRANSFORMATION:   

SOUNDNESS RESULT: T (c1, c2, I, O) = (c 01, c 02, I 0, O0) {I 0} c 01 ⇠ c 02 {O0}
{I} c1 ⇠ c2 {O}

T (c1, c2, I, O) = (c 01, c 02, I 0, O0)



15

Proving observational equivalence 

CertiCrypt provides several mechanised program transformations 
for establishing observational equivalence

PROGRAM TRANSFORMATION:   

SOUNDNESS RESULT: T (c1, c2, I, O) = (c 01, c 02, I 0, O0) {I 0} c 01 ⇠ c 02 {O0}
{I} c1 ⇠ c2 {O}

T (c1, c2, I, O) = (c 01, c 02, I 0, O0)



15

Proving observational equivalence 

CertiCrypt provides several mechanised program transformations 
for establishing observational equivalence

PROGRAM TRANSFORMATION:   

SOUNDNESS RESULT: T (c1, c2, I, O) = (c 01, c 02, I 0, O0) {I 0} c 01 ⇠ c 02 {O0}
{I} c1 ⇠ c2 {O}

T (c1, c2, I, O) = (c 01, c 02, I 0, O0)

SOME INSTANCES: Deadcode elimination 

Constant propagation 

Procedure call inlining 

Common prefix/suffix elimination



16

Proving observational equivalence 

CertiCrypt provides an (incomplete) tactic for proving self-equivalence

Does                            hold?{I} c ⇠ c {O}



16

Proving observational equivalence 

CertiCrypt provides an (incomplete) tactic for proving self-equivalence

Does                            hold?{I} c ⇠ c {O}

{I 0} c ⇠ c {O}Analyse dependencies to compute I’ such that 



16

Proving observational equivalence 

CertiCrypt provides an (incomplete) tactic for proving self-equivalence

Does                            hold?{I} c ⇠ c {O}

{I 0} c ⇠ c {O}Analyse dependencies to compute I’ such that 

Check that I 0 ✓ I



17

Security proof of ElGamal encryption scheme

≃d

≃d

Game ElGamal2 :
x $← Zq; y $← Zq ;
(m0, m1)← A(gx);
z $← Zq; ζ ← gz;
b′ ← A′(gx, gy , ζ);
b $← {0, 1};
d← b = b′

≃d

(4)

(5)

Game ElGamal :
(x, α)← KG();
(m0, m1)← A(α);
b $← {0, 1};
(β, ζ)← Enc(α, mb);
b′ ← A′(α, β, ζ);
d← b = b′

(1)

≃d

Game ElGamal0 :
x $← Zq; y $← Zq ;
(m0, m1)← A(gx);
b $← {0, 1};
ζ ← gxy ×mb;
b′ ← A′(gx, gy , ζ);
d← b = b′

(2)

Game ElGamal1 :
x $← Zq; y $← Zq ;
(m0, m1)← A(gx);
b $← {0, 1};
z $← Zq; ζ ← gz ×mb;
b′ ← A′(gx, gy , ζ);
d← b = b′

Lemma B PPT : PPT B.
Proof. PPT tac. Qed.

Lemma B wf : WFAdv B.
Proof. ... Qed.

Game DDH1 :
x $← Zq ;
y $← Zq ;
z $← Zq ;
d← B(gx, gy, gz)

inline l KG.
inline l Enc.
ep.
deadcode.
swap.
eqobs in.

inline r B.
ep.
deadcode.
eqobs in.

inline r B.
ep.
deadcode.
swap.
eqobs in.

swap.
eqobs hd 4.
eqobs tl 2.
apply mult pad.

Adversary B(α, β, γ) :
(m0, m1)← A(α);
b $← {0, 1};
b′ ← A′(α, β, γ ×mb);
return b = b′

Game DDH0 :
x $← Zq ;
y $← Zq;
d← B(gx, gy, gxy)

Figure 1. Code-based proof of ElGamal semantic security

lows [31]; all games are defined in Fig. 1. Given a cyclic group of
order q, and a generator g, we define:1

• Key generation: KG() def
= x $← Zq; return (x, gx)

• Encryption: Enc(α, m) def
= y $← Zq; return (gy, αy ×m)

ElGamal is IND-CPA secure under the Decisional Diffie-Hellman
(DDH) assumption, which states that it is hard to distinguish be-
tween triples of the form (gx, gy, gxy) and (gx, gy, gz) where x,
y, z are uniformly sampled in Zq. In our setting, DDH is formu-
lated precisely by stating that for any polynomial-time and well-
formed adversary B, |PrDDH0 [d] − PrDDH1 [d]| is negligible in the
security parameter. Figure 1 presents a high level view of the proof:
the square boxes represent games, whereas the rounded boxes rep-
resent proof sketches of the transitions between games; the tactics
that appear in these boxes hopefully have self-explanatory names,
but are explained in more detail in Section 5. The rounded grey
boxes represent proof sketches of side conditions that guarantee
that the DDH assumption is correctly applied. The proof proceeds
by constructing an adversary B against DDH such that the distri-
bution of b = b′ (i.e. d) after running the IND-CPA game ElGamal
is exactly the same as the distribution of d after running DDH0.
Furthermore we show that the probability of d being true in DDH1

is 1
2 for the same adversary B. The proof is summarized by the

following equations:

|PrElGamal[b = b′]− 1
2 | = |PrElGamal0 [d]− 1

2 | (1)
= |PrDDH0 [d]− 1

2 | (2)
= |PrDDH0 [d]− PrElGamal2 [d]| (3)
= |PrDDH0 [d]− PrElGamal1 [d]| (4)
= |PrDDH0 [d]− PrDDH1 [d]| (5)

1 The security parameter, implicit in this presentation, determines this cyclic
group by indexing a family of groups where the DDH problem is believed
intractable.

Equation (1) is justified because ElGamal and ElGamal0 induce the
same distribution on d (ElGamal ≃d ElGamal0). To prove this, we
inline the calls to KG and Enc, and then perform expression prop-
agation and dead code elimination (ep, deadcode). At this point
we are left with two almost identical games, except the sampling
of y is done later in one game than in the other. The tactic swap
is used to hoist instructions whenever is possible in order to obtain
a common prefix, and allows us to hoist the sampling of y to the
right place. We conclude by applying eqobs in that decides ob-
servational equivalence of a program with itself. Equations (2) and
(5) are obtained similarly, while (3) holds because b′ is independent
from the sampling of b in ElGamal2. Finally, to prove equation (4)
we begin by removing the common part of the two games with
the exception of the instruction z $← Zq (eqobs hd, eqobs tl).
We then apply an algebraic property of cyclic groups (mult pad):
when multiplying a uniformly distributed element of the group by
another element, the result is uniformly distributed. This allows to
prove that z $← Zq ; ζ ← gz ×mb and z $← Zq; ζ ← gz induce
the same distribution on ζ.

The proof concludes by applying the DDH assumption. We
prove that the adversary B is strict probabilistic polynomial-time
and well-formed (under the assumption that A and A′ are so). The
proof of the former condition is automated in CertiCrypt.

2.2 The PRP/PRF switching lemma

In cryptographic proofs, particularly those dealing with blockci-
phers, it is often convenient to replace a pseudo-random permuta-
tion (PRP) by a pseudo-random function (PRF). The PRP/PRF
switching lemma establishes that such a replacement does not
change significantly the advantage of an effective adversary. In
a code-based setting, the Switching Lemma states that

|PrGPRP [d]− PrGPRF [d]| ≤
q(q − 1)

2η+1

3



18

Security proof of ElGamal encryption scheme

≃d

≃d

Game ElGamal2 :
x $← Zq; y $← Zq ;
(m0, m1)← A(gx);
z $← Zq; ζ ← gz;
b′ ← A′(gx, gy , ζ);
b $← {0, 1};
d← b = b′

≃d

(4)

(5)

Game ElGamal :
(x, α)← KG();
(m0, m1)← A(α);
b $← {0, 1};
(β, ζ)← Enc(α, mb);
b′ ← A′(α, β, ζ);
d← b = b′

(1)

≃d

Game ElGamal0 :
x $← Zq; y $← Zq ;
(m0, m1)← A(gx);
b $← {0, 1};
ζ ← gxy ×mb;
b′ ← A′(gx, gy , ζ);
d← b = b′

(2)

Game ElGamal1 :
x $← Zq; y $← Zq ;
(m0, m1)← A(gx);
b $← {0, 1};
z $← Zq; ζ ← gz ×mb;
b′ ← A′(gx, gy , ζ);
d← b = b′

Lemma B PPT : PPT B.
Proof. PPT tac. Qed.

Lemma B wf : WFAdv B.
Proof. ... Qed.

Game DDH1 :
x $← Zq ;
y $← Zq ;
z $← Zq ;
d← B(gx, gy, gz)

inline l KG.
inline l Enc.
ep.
deadcode.
swap.
eqobs in.

inline r B.
ep.
deadcode.
eqobs in.

inline r B.
ep.
deadcode.
swap.
eqobs in.

swap.
eqobs hd 4.
eqobs tl 2.
apply mult pad.

Adversary B(α, β, γ) :
(m0, m1)← A(α);
b $← {0, 1};
b′ ← A′(α, β, γ ×mb);
return b = b′

Game DDH0 :
x $← Zq ;
y $← Zq;
d← B(gx, gy, gxy)

Figure 1. Code-based proof of ElGamal semantic security

lows [31]; all games are defined in Fig. 1. Given a cyclic group of
order q, and a generator g, we define:1

• Key generation: KG() def
= x $← Zq; return (x, gx)

• Encryption: Enc(α, m) def
= y $← Zq; return (gy, αy ×m)

ElGamal is IND-CPA secure under the Decisional Diffie-Hellman
(DDH) assumption, which states that it is hard to distinguish be-
tween triples of the form (gx, gy, gxy) and (gx, gy, gz) where x,
y, z are uniformly sampled in Zq. In our setting, DDH is formu-
lated precisely by stating that for any polynomial-time and well-
formed adversary B, |PrDDH0 [d] − PrDDH1 [d]| is negligible in the
security parameter. Figure 1 presents a high level view of the proof:
the square boxes represent games, whereas the rounded boxes rep-
resent proof sketches of the transitions between games; the tactics
that appear in these boxes hopefully have self-explanatory names,
but are explained in more detail in Section 5. The rounded grey
boxes represent proof sketches of side conditions that guarantee
that the DDH assumption is correctly applied. The proof proceeds
by constructing an adversary B against DDH such that the distri-
bution of b = b′ (i.e. d) after running the IND-CPA game ElGamal
is exactly the same as the distribution of d after running DDH0.
Furthermore we show that the probability of d being true in DDH1

is 1
2 for the same adversary B. The proof is summarized by the

following equations:

|PrElGamal[b = b′]− 1
2 | = |PrElGamal0 [d]− 1

2 | (1)
= |PrDDH0 [d]− 1

2 | (2)
= |PrDDH0 [d]− PrElGamal2 [d]| (3)
= |PrDDH0 [d]− PrElGamal1 [d]| (4)
= |PrDDH0 [d]− PrDDH1 [d]| (5)

1 The security parameter, implicit in this presentation, determines this cyclic
group by indexing a family of groups where the DDH problem is believed
intractable.

Equation (1) is justified because ElGamal and ElGamal0 induce the
same distribution on d (ElGamal ≃d ElGamal0). To prove this, we
inline the calls to KG and Enc, and then perform expression prop-
agation and dead code elimination (ep, deadcode). At this point
we are left with two almost identical games, except the sampling
of y is done later in one game than in the other. The tactic swap
is used to hoist instructions whenever is possible in order to obtain
a common prefix, and allows us to hoist the sampling of y to the
right place. We conclude by applying eqobs in that decides ob-
servational equivalence of a program with itself. Equations (2) and
(5) are obtained similarly, while (3) holds because b′ is independent
from the sampling of b in ElGamal2. Finally, to prove equation (4)
we begin by removing the common part of the two games with
the exception of the instruction z $← Zq (eqobs hd, eqobs tl).
We then apply an algebraic property of cyclic groups (mult pad):
when multiplying a uniformly distributed element of the group by
another element, the result is uniformly distributed. This allows to
prove that z $← Zq ; ζ ← gz ×mb and z $← Zq; ζ ← gz induce
the same distribution on ζ.

The proof concludes by applying the DDH assumption. We
prove that the adversary B is strict probabilistic polynomial-time
and well-formed (under the assumption that A and A′ are so). The
proof of the former condition is automated in CertiCrypt.

2.2 The PRP/PRF switching lemma

In cryptographic proofs, particularly those dealing with blockci-
phers, it is often convenient to replace a pseudo-random permuta-
tion (PRP) by a pseudo-random function (PRF). The PRP/PRF
switching lemma establishes that such a replacement does not
change significantly the advantage of an effective adversary. In
a code-based setting, the Switching Lemma states that

|PrGPRP [d]− PrGPRF [d]| ≤
q(q − 1)

2η+1

3



19

Observational equivalence is not enough



19

Observational equivalence is not enough

???

{x} if (x=0) then y x else y 1 ⇠ if (x=0) then y 0 else y 1 {x, y}



19

Observational equivalence is not enough

Establishing observational equivalence may require additional 
contextual information

???

{x} if (x=0) then y x else y 1 ⇠ if (x=0) then y 0 else y 1 {x, y}



19

Observational equivalence is not enough

Establishing observational equivalence may require additional 
contextual information

Cryptographic proofs may involve weaker relationships between 
consecutive games, e.g.

???

{x} if (x=0) then y x else y 1 ⇠ if (x=0) then y 0 else y 1 {x, y}

Prc1(s1)[E1]  Prc2(s2)[E2]



20

Relational Hoare logic



20

Relational Hoare logic

 Standard Hoare Logic (HL)

{P} c {Q}



20

Relational Hoare logic

 Standard Hoare Logic (HL)

{P} c {Q}

 c

 P(s)

 Q(s’)

s

s’



20

Relational Hoare logic

 Standard Hoare Logic (HL)  Relational Hoare Logic (RHL)

{P} c {Q} {P} c1 ⇠ c2 {Q}

 c

 P(s)

 Q(s’)

s

s’



20

Relational Hoare logic

 Standard Hoare Logic (HL)  Relational Hoare Logic (RHL)

{P} c {Q} {P} c1 ⇠ c2 {Q}

 c  c1  c2

 P(s)

 Q(s’)

s

s’

 P

 Q

s1 s2

s’1 s’2



20

Relational Hoare logic

 Standard Hoare Logic (HL)  Relational Hoare Logic (RHL)

{P} c {Q} {P} c1 ⇠ c2 {Q}

 c  c1  c2

 P(s)

 Q(s’)

s

s’

 P

 Q

s1 s2

s’1 s’2

probabilistic programs



20

Relational Hoare logic

 Standard Hoare Logic (HL)  Relational Hoare Logic (RHL)

{P} c {Q} {P} c1 ⇠ c2 {Q}

 c  c1  c2

 P(s)

 Q(s’)

s

s’

 P

 Q

s1 s2

"1 "2

probabilistic programs

distributions over states



20

Relational Hoare logic

 Standard Hoare Logic (HL)  Relational Hoare Logic (RHL)

{P} c {Q} {P} c1 ⇠ c2 {Q}

 c  c1  c2

 P(s)

 Q(s’)

s

s’

 P

 Q

s1 s2

"1 "2

probabilistic programs

distributions over states

Lifting of Q to the 
space of distributions 

 ♯



21

Relational Hoare logic — Judgment examples

  |= {y h1i+1 = x h2i} z := y+1 ⇠ z := x {z h1i = z h2i}



21

Relational Hoare logic — Judgment examples

  |= {y h1i+1 = x h2i} z := y+1 ⇠ z := x {z h1i = z h2i}



21

Relational Hoare logic — Judgment examples

  |= {y h1i+1 = x h2i} z := y+1 ⇠ z := x {z h1i = z h2i}



21

Relational Hoare logic — Judgment examples

  |= {bh1i = bh2i} if b then x := 0else x := 1 ⇠
if b then x := 1

else x := 0 {x h1i = 1� x h2i}

  |= {y h1i+1 = x h2i} z := y+1 ⇠ z := x {z h1i = z h2i}



21

Relational Hoare logic — Judgment examples

  |= {bh1i = bh2i} if b then x := 0else x := 1 ⇠
if b then x := 1

else x := 0 {x h1i = 1� x h2i}

  |= {y h1i+1 = x h2i} z := y+1 ⇠ z := x {z h1i = z h2i}



21

Relational Hoare logic — Judgment examples

  |= {bh1i = bh2i} if b then x := 0else x := 1 ⇠
if b then x := 1

else x := 0 {x h1i = 1� x h2i}

  |= {y h1i+1 = x h2i} z := y+1 ⇠ z := x {z h1i = z h2i}



22

Proof system



22

Proof system

Most rules are direct adaptations of traditional HL rules



22

Proof system

Most rules are direct adaptations of traditional HL rules

(` {P} skip {P})



22

Proof system

Most rules are direct adaptations of traditional HL rules

` {P} skip ⇠ skip {P} (` {P} skip {P})



22

Proof system

Most rules are direct adaptations of traditional HL rules

` {P} skip ⇠ skip {P}

�` {P} c {Q0} ` {Q0} c 0 {Q}
` {P} c ; c 0 {Q}

�
(` {P} skip {P})



22

Proof system

Most rules are direct adaptations of traditional HL rules

` {P} c1 ⇠ c2 {Q0} ` {Q0} c 01 ⇠ c 02 {Q}
` {P} c1; c 01 ⇠ c2; c 02 {Q}

` {P} skip ⇠ skip {P}

�` {P} c {Q0} ` {Q0} c 0 {Q}
` {P} c ; c 0 {Q}

�
(` {P} skip {P})



22

Proof system

Most rules are direct adaptations of traditional HL rules

` {P} c1 ⇠ c2 {Q0} ` {Q0} c 01 ⇠ c 02 {Q}
` {P} c1; c 01 ⇠ c2; c 02 {Q}

` {P} skip ⇠ skip {P}

�` {P} c {Q0} ` {Q0} c 0 {Q}
` {P} c ; c 0 {Q}

�
(` {P} skip {P})

Requires programs to execute lockstep



22

Proof system

Most rules are direct adaptations of traditional HL rules

` {P} c1 ⇠ c2 {Q0} ` {Q0} c 01 ⇠ c 02 {Q}
` {P} c1; c 01 ⇠ c2; c 02 {Q}

` {P} skip ⇠ skip {P}

�` {P} c {Q0} ` {Q0} c 0 {Q}
` {P} c ; c 0 {Q}

�
(` {P} skip {P})

Requires programs to execute lockstep

` {P} skip ⇠ skip {P} [skip] ` {Q[xh1i/Ah1i, yh2i/Bh2i]} x := A ⇠ y

:= B {Q} [assgn]

` {true} abort ⇠ abort {Q} [abort]
` {P} c1 ⇠ c2 {Q 0} ` {Q 0} c 01 ⇠ c

0
2 {Q}

` {P} c1; c 01 ⇠ c2; c 02 {Q} [seq]

|= (P =) P

0) ` {P 0} c1 ⇠ c2 {Q 0} |= (Q 0 =) Q)

` {P} c1 ⇠ c2 {Q} [cons]

|= (P =) G1h1i = G2h2i)
` {P ^ G1h1i} c1 ⇠ c2 {Q} ` {P ^ ¬G1h1i} c 01 ⇠ c

0
2 {Q}

` {P} if G1 then c1 else c

0
1 ⇠ if G2 then c2 else c

0
2 {Q} [if]

` {I ^ G1h1i} c1 ⇠ c2 {I} |= (I =) G1h1i = G2h2i)

` {I} while G1 do c1 ⇠ while G2 do c2 {I ^ ¬G1h1i}
[while]

` {P�1} c2 ⇠ c1 {Q�1}
` {P} c1 ⇠ c2 {Q} [inv]

` {P} c1 ⇠ c2 {Q} ` {P 0} c2 ⇠ c3 {Q 0}
` {P � P 0} c1 ⇠ c3 {Q � Q 0} [comp]



22

Proof system

Most rules are direct adaptations of traditional HL rules

` {P} c1 ⇠ c2 {Q0} ` {Q0} c 01 ⇠ c 02 {Q}
` {P} c1; c 01 ⇠ c2; c 02 {Q}

` {P} skip ⇠ skip {P}

�` {P} c {Q0} ` {Q0} c 0 {Q}
` {P} c ; c 0 {Q}

�
(` {P} skip {P})

(The classic fragment) only relates programs that are structurally equal.

Requires programs to execute lockstep

` {P} skip ⇠ skip {P} [skip] ` {Q[xh1i/Ah1i, yh2i/Bh2i]} x := A ⇠ y

:= B {Q} [assgn]

` {true} abort ⇠ abort {Q} [abort]
` {P} c1 ⇠ c2 {Q 0} ` {Q 0} c 01 ⇠ c

0
2 {Q}

` {P} c1; c 01 ⇠ c2; c 02 {Q} [seq]

|= (P =) P

0) ` {P 0} c1 ⇠ c2 {Q 0} |= (Q 0 =) Q)

` {P} c1 ⇠ c2 {Q} [cons]

|= (P =) G1h1i = G2h2i)
` {P ^ G1h1i} c1 ⇠ c2 {Q} ` {P ^ ¬G1h1i} c 01 ⇠ c

0
2 {Q}

` {P} if G1 then c1 else c

0
1 ⇠ if G2 then c2 else c

0
2 {Q} [if]

` {I ^ G1h1i} c1 ⇠ c2 {I} |= (I =) G1h1i = G2h2i)

` {I} while G1 do c1 ⇠ while G2 do c2 {I ^ ¬G1h1i}
[while]

` {P�1} c2 ⇠ c1 {Q�1}
` {P} c1 ⇠ c2 {Q} [inv]

` {P} c1 ⇠ c2 {Q} ` {P 0} c2 ⇠ c3 {Q 0}
` {P � P 0} c1 ⇠ c3 {Q � Q 0} [comp]



22

Proof system

Most rules are direct adaptations of traditional HL rules

` {P} c1 ⇠ c2 {Q0} ` {Q0} c 01 ⇠ c 02 {Q}
` {P} c1; c 01 ⇠ c2; c 02 {Q}

` {P} skip ⇠ skip {P}

�` {P} c {Q0} ` {Q0} c 0 {Q}
` {P} c ; c 0 {Q}

�
(` {P} skip {P})

(The classic fragment) only relates programs that are structurally equal.

Requires programs to execute lockstep

` {P} skip ⇠ skip {P} [skip] ` {Q[xh1i/Ah1i, yh2i/Bh2i]} x := A ⇠ y

:= B {Q} [assgn]

` {true} abort ⇠ abort {Q} [abort]
` {P} c1 ⇠ c2 {Q 0} ` {Q 0} c 01 ⇠ c

0
2 {Q}

` {P} c1; c 01 ⇠ c2; c 02 {Q} [seq]

|= (P =) P

0) ` {P 0} c1 ⇠ c2 {Q 0} |= (Q 0 =) Q)

` {P} c1 ⇠ c2 {Q} [cons]

|= (P =) G1h1i = G2h2i)
` {P ^ G1h1i} c1 ⇠ c2 {Q} ` {P ^ ¬G1h1i} c 01 ⇠ c

0
2 {Q}

` {P} if G1 then c1 else c

0
1 ⇠ if G2 then c2 else c

0
2 {Q} [if]

` {I ^ G1h1i} c1 ⇠ c2 {I} |= (I =) G1h1i = G2h2i)

` {I} while G1 do c1 ⇠ while G2 do c2 {I ^ ¬G1h1i}
[while]

` {P�1} c2 ⇠ c1 {Q�1}
` {P} c1 ⇠ c2 {Q} [inv]

` {P} c1 ⇠ c2 {Q} ` {P 0} c2 ⇠ c3 {Q 0}
` {P � P 0} c1 ⇠ c3 {Q � Q 0} [comp]

But the logic can be extended with “one-sided” rules, e.g.



22

Proof system

Most rules are direct adaptations of traditional HL rules

` {P} c1 ⇠ c2 {Q0} ` {Q0} c 01 ⇠ c 02 {Q}
` {P} c1; c 01 ⇠ c2; c 02 {Q}

` {P} skip ⇠ skip {P}

�` {P} c {Q0} ` {Q0} c 0 {Q}
` {P} c ; c 0 {Q}

�
(` {P} skip {P})

(The classic fragment) only relates programs that are structurally equal.

Requires programs to execute lockstep

` {P} skip ⇠ skip {P} [skip] ` {Q[xh1i/Ah1i, yh2i/Bh2i]} x := A ⇠ y

:= B {Q} [assgn]

` {true} abort ⇠ abort {Q} [abort]
` {P} c1 ⇠ c2 {Q 0} ` {Q 0} c 01 ⇠ c

0
2 {Q}

` {P} c1; c 01 ⇠ c2; c 02 {Q} [seq]

|= (P =) P

0) ` {P 0} c1 ⇠ c2 {Q 0} |= (Q 0 =) Q)

` {P} c1 ⇠ c2 {Q} [cons]

|= (P =) G1h1i = G2h2i)
` {P ^ G1h1i} c1 ⇠ c2 {Q} ` {P ^ ¬G1h1i} c 01 ⇠ c

0
2 {Q}

` {P} if G1 then c1 else c

0
1 ⇠ if G2 then c2 else c

0
2 {Q} [if]

` {I ^ G1h1i} c1 ⇠ c2 {I} |= (I =) G1h1i = G2h2i)

` {I} while G1 do c1 ⇠ while G2 do c2 {I ^ ¬G1h1i}
[while]

` {P�1} c2 ⇠ c1 {Q�1}
` {P} c1 ⇠ c2 {Q} [inv]

` {P} c1 ⇠ c2 {Q} ` {P 0} c2 ⇠ c3 {Q 0}
` {P � P 0} c1 ⇠ c3 {Q � Q 0} [comp]

` {false} c1 ⇠ c2 {Q} [contr]

` {Q[xh1i/Ah1i]} x := A ⇠ skip {Q} [d-assgn]

` {P ^ Gh1i} c1 ⇠ c2 {Q} ` {P ^ ¬Gh1i} c 01 ⇠ c2 {Q}
` {P} if G then c1 else c

0
1 ⇠ c2 {Q} [c-branch]

` {P ^ ¬G h1i} while G do c ⇠ skip {P ^ ¬G h1i}
[d-while]

But the logic can be extended with “one-sided” rules, e.g.



22

Proof system

Most rules are direct adaptations of traditional HL rules

` {P} c1 ⇠ c2 {Q0} ` {Q0} c 01 ⇠ c 02 {Q}
` {P} c1; c 01 ⇠ c2; c 02 {Q}

` {P} skip ⇠ skip {P}

�` {P} c {Q0} ` {Q0} c 0 {Q}
` {P} c ; c 0 {Q}

�
(` {P} skip {P})

(The classic fragment) only relates programs that are structurally equal.

Requires programs to execute lockstep

` {P} skip ⇠ skip {P} [skip] ` {Q[xh1i/Ah1i, yh2i/Bh2i]} x := A ⇠ y

:= B {Q} [assgn]

` {true} abort ⇠ abort {Q} [abort]
` {P} c1 ⇠ c2 {Q 0} ` {Q 0} c 01 ⇠ c

0
2 {Q}

` {P} c1; c 01 ⇠ c2; c 02 {Q} [seq]

|= (P =) P

0) ` {P 0} c1 ⇠ c2 {Q 0} |= (Q 0 =) Q)

` {P} c1 ⇠ c2 {Q} [cons]

|= (P =) G1h1i = G2h2i)
` {P ^ G1h1i} c1 ⇠ c2 {Q} ` {P ^ ¬G1h1i} c 01 ⇠ c

0
2 {Q}

` {P} if G1 then c1 else c

0
1 ⇠ if G2 then c2 else c

0
2 {Q} [if]

` {I ^ G1h1i} c1 ⇠ c2 {I} |= (I =) G1h1i = G2h2i)

` {I} while G1 do c1 ⇠ while G2 do c2 {I ^ ¬G1h1i}
[while]

` {P�1} c2 ⇠ c1 {Q�1}
` {P} c1 ⇠ c2 {Q} [inv]

` {P} c1 ⇠ c2 {Q} ` {P 0} c2 ⇠ c3 {Q 0}
` {P � P 0} c1 ⇠ c3 {Q � Q 0} [comp]

` {false} c1 ⇠ c2 {Q} [contr]

` {Q[xh1i/Ah1i]} x := A ⇠ skip {Q} [d-assgn]

` {P ^ Gh1i} c1 ⇠ c2 {Q} ` {P ^ ¬Gh1i} c 01 ⇠ c2 {Q}
` {P} if G then c1 else c

0
1 ⇠ c2 {Q} [c-branch]

` {P ^ ¬G h1i} while G do c ⇠ skip {P ^ ¬G h1i}
[d-while]

But the logic can be extended with “one-sided” rules, e.g.



23

From the logic to probability claims



23

From the logic to probability claims

s1 P s2 |= {P} c1 ⇠ c2 {Q} Q =) (Ah1i()Bh2i)

Pr[c1(s1) : A] = Pr[c2(s2) : B]
[Pr-Eq]



23

From the logic to probability claims

s1 P s2 |= {P} c1 ⇠ c2 {Q} Q =) (Ah1i()Bh2i)

Pr[c1(s1) : A] = Pr[c2(s2) : B]
[Pr-Eq]



23

From the logic to probability claims

s1 P s2 |= {P} c1 ⇠ c2 {Q} Q =) (Ah1i()Bh2i)

Pr[c1(s1) : A] = Pr[c2(s2) : B]
[Pr-Eq]



23

From the logic to probability claims

s1 P s2 |= {P} c1 ⇠ c2 {Q} Q =) (Ah1i()Bh2i)

Pr[c1(s1) : A] = Pr[c2(s2) : B]
[Pr-Eq]



23

From the logic to probability claims

s1 P s2 |= {P} c1 ⇠ c2 {Q} Q =) (Ah1i()Bh2i)

Pr[c1(s1) : A] = Pr[c2(s2) : B]
[Pr-Eq]

s1 P s2 |= {P} c1 ⇠ c2 {Q} Q =) (Ah1i=)Bh2i)

Pr[c1(s1) : A]  Pr[c2(s2) : B]
[Pr-Le]



23

From the logic to probability claims

s1 P s2 |= {P} c1 ⇠ c2 {Q} Q =) (Ah1i()Bh2i)

Pr[c1(s1) : A] = Pr[c2(s2) : B]
[Pr-Eq]

s1 P s2 |= {P} c1 ⇠ c2 {Q} Q =) (Ah1i=)Bh2i)

Pr[c1(s1) : A]  Pr[c2(s2) : B]
[Pr-Le]



Wrapping up

24



25

Conclusion



25

Successful application of machine-checked proofs to the 
field of cryptography

Conclusion



25

Successful application of machine-checked proofs to the 
field of cryptography

Conclusion

Formal semantics of probabilistic language 
A probabilistic relational Hoare logic 
Mechanised program transformations 
Formalization of emblematic schemes: OAEP, ElGammal, FDH, etc. 



25

Successful application of machine-checked proofs to the 
field of cryptography

View cryptographic proofs as a problem of (relational) probabilistic 
program verification

Conclusion

KEY INSIGHT:  

Formal semantics of probabilistic language 
A probabilistic relational Hoare logic 
Mechanised program transformations 
Formalization of emblematic schemes: OAEP, ElGammal, FDH, etc. 



25

Successful application of machine-checked proofs to the 
field of cryptography

View cryptographic proofs as a problem of (relational) probabilistic 
program verification

Conclusion

KEY INSIGHT:  

Thanks!

Formal semantics of probabilistic language 
A probabilistic relational Hoare logic 
Mechanised program transformations 
Formalization of emblematic schemes: OAEP, ElGammal, FDH, etc. 



26

Backup Slides



27

Language semantics

2.2. The pWhile Language

Although procedures are single-exit, we often write programs using explicit return expres-
sions for the sake of readability. Declarations are subject to well-formedness and well-
typedness conditions; these conditions are enforced using the underlying dependent type
system of Coq.

The semantics of programs is defined in two steps. First, we give an interpretation !T "
to all object types T—these are types that are declared in CertiCrypt programs—and we
define the set M of program states or memories as the set of mappings from variables to
values. Then, the semantics of an expression e of type T , a distribution expression d of
type T , and a command c, respectively, are given by functions of the following types:

!e"E : M→ !T " !d"DE : M→ D(!T ") !c"E : M→ D(M)

Informally, the semantics of an expression e maps a memory to a value in !T ", the semantics
of a distribution expression d maps a memory to a distribution over !T ", and the semantics
of a command c in an environment E maps an initial memory to a distribution over final
memories. We often omit the environment of a program when it is irrelevant (e.g. when the
program contains no procedure call) or can be inferred from the context. The semantics
of programs complies with the expected equations; see Figure 2.1.

!skip" m = unit m

!c; c′" m = bind (!c" m) !c′"

!x← e" m = unit (m {!e"E m/x})
!x $← d" m = bind (!d"DE m) (λv. unit (m {v/x}))
!assert e" m = if (!e"E m = true) then (unit m) else µ0

!if e then c1 else c2" m = if (!e"E m = true) then (!c1" m) else (!c2" m)

!while e do c" m = λf. lub (λn. (![while e do c]n"m)(f))

where
[while e do c]0 = assert ¬e
[while e do c]n+1 = if e then c; [while e do c]n

Figure 2.1: Semantics of pWhile programs.

By specializing the definition of probability Pr [µ : P ] (see Equation (2.1)) to programs,
we have that the probability of an event P in a program c run on an initial memory m is
given by

Pr [c(m) : P ] = (!c"m)(1P ).

In particular, if c is assertion-free and samples only from proper probability distributions,
Pr [c(m) : true] denotes the termination probability of c in the initial memory m. Moreover,
we say that a program c is lossless iff Pr [c(m) : true] = 1 for any initial memory m.

15



28

The measure monad (ALEA library)

D(A) , (A! [0, 1])! [0, 1]

µ(f ) = ”expected value of f wrt µ”

Jb1 $ {t, f }; b2 $ {t, f }K s = �f . 1
4 f (s[b1, b2/t, t]) + 1

4 f (s[b1, b2/t, f ])
1
4 f (s[b1, b2/f , t]) + 1

4 f (s[b1, b2/f , f ])

Chapter 2. CertiCrypt Overview

Monotonicity: f ≤ g =⇒ µ(f) ≤ µ(g);

Compatibility with inverse: µ(1− f) ≤ 1− µ(f), where 1 is the constant function 1;

Homogeneity of degree 1: µ(k · f) = k · µ(f) for any k ∈ [0, 1];

Additivity: f ≤ 1− g =⇒ µ(f + g) = µ(f) + µ(g);

Continuity: µ(lub F ) ≤ lub (µ ◦F ) for any monotonic sequence F : N→
(A→ [0, 1]).

Observe that we do not require the mass µ(1) of a distribution µ to be 1; therefore our
definition corresponds to probability sub-distributions. This provides an elegant means of
giving semantics to runtime assertions and programs that do not terminate with probability
1. In particular, we let µ0 be the null sub-distribution.

Intuitively, one must view a distribution µ over a set A as an operator mapping a
unit-valued random variable (i.e. a function in A→ [0, 1]) to its expected value. When A
is a discrete, this translates into

µ(f) =
∑

a∈A
µ(a) · f(a),

where µ(a) denotes the probability density function of µ at a. For instance, the Bernoulli
distribution over B with success probability p is represented as λf. p · f(true) + (1 −
p) · f(false), while the distribution over N that assigns probability (1/2)i to number i is
represented as λf.

∑

i∈N(1/2)
i · f(i).

The probability that distribution µ ∈ D(A) assigns to an event P ⊆ A can be computed
by measuring its characteristic function 1P , i.e.

Pr [µ : P ] = µ(1P ). (2.1)

For the sake of notation compactness, we will usually use µ(P ) to denote the probability
µ(1P ). In particular, when P = {a} is a singleton, the probability µ(1{a}) will be denoted
as µ(a).

Distributions can be given the structure of a monad; this monadic view eliminates
the need for cluttered definitions and proofs involving summations, and allows to give a
continuation-passing style semantics to probabilistic programs. Formally, we define the
unit and bind operators as follows:

unit : A→ D(A)
def

= λx. λf. f(x)

bind : D(A)→ (A→ D(B))→ D(B)
def

= λµ. λM. λf. µ(λx. M(x)(f)).

For a value a ∈ A, the expression unit a denotes the Dirac measure on a, which assigns
probability 1 to a and 0 to all other values in A (in the continuous case, unit a is the
degenerate probability distribution that has all its mass concentrated at a). The bind

12

Example



29

Lifting relations to distributions via couplings



29

Lifting relations to distributions via couplings

coupling between μ1 and μ2 

Q Q]
relation over 
program states

relation over *distributions* 
on program states

LIFTING

(µ1, µ2) |= Q] , 9µ 2 D(S⇥S).
�
⇡1(µ) = µ1 ^ ⇡2(µ) = µ2, and

Prµ[¬Q] = 0

* See Logical, Metric, and Algorithmic Characterisations of Probabilistic Bisimulation, Deng & Du.



30

Proof system (two-sided rules)

` {P} skip ⇠ skip {P} [skip] ` {Q[xh1i/Ah1i, yh2i/Bh2i]} x := A ⇠ y

:= B {Q} [assgn]

` {true} abort ⇠ abort {Q} [abort]
` {P} c1 ⇠ c2 {Q 0} ` {Q 0} c 01 ⇠ c

0
2 {Q}

` {P} c1; c 01 ⇠ c2; c 02 {Q} [seq]

|= (P =) P

0) ` {P 0} c1 ⇠ c2 {Q 0} |= (Q 0 =) Q)

` {P} c1 ⇠ c2 {Q} [cons]

|= (P =) G1h1i = G2h2i)
` {P ^ G1h1i} c1 ⇠ c2 {Q} ` {P ^ ¬G1h1i} c 01 ⇠ c

0
2 {Q}

` {P} if G1 then c1 else c

0
1 ⇠ if G2 then c2 else c

0
2 {Q} [if]

` {I ^ G1h1i} c1 ⇠ c2 {I} |= (I =) G1h1i = G2h2i)

` {I} while G1 do c1 ⇠ while G2 do c2 {I ^ ¬G1h1i}
[while]

` {P�1} c2 ⇠ c1 {Q�1}
` {P} c1 ⇠ c2 {Q} [inv]

` {P} c1 ⇠ c2 {Q} ` {P 0} c2 ⇠ c3 {Q 0}
` {P � P 0} c1 ⇠ c3 {Q � Q 0} [comp]

s1 P s2 , (µ1 I �v • ⌘
s1[x1/v ]) L(Q) (µ2 I �v • ⌘

s2[x2/v ])

` {P} x1
$:= µ1 ⇠ x2

$:= µ2 {Q}
[rand]



31

Proof system (one-sided rules)

` {false} c1 ⇠ c2 {Q} [contr]

` {Q[xh1i/Ah1i]} x := A ⇠ skip {Q} [d-assgn]

` {P ^ Gh1i} c1 ⇠ c2 {Q} ` {P ^ ¬Gh1i} c 01 ⇠ c2 {Q}
` {P} if G then c1 else c

0
1 ⇠ c2 {Q} [c-branch]

` {P ^ ¬G h1i} while G do c ⇠ skip {P ^ ¬G h1i}
[d-while]


