Language-based Cryptographic Proofs in Coq

or
Coq for Probabilistic Programs

FEDERICO OLMEDO
UNIVERSITY OF CHILE

|ICSEC KICK-OFF WORKSHOP
SANTIAGO, CHILE — MARCH 2018

Motivation

Why certified cryptographic proofs?
Rigor crisis in the cryptographic community

In our opinion, many proofs in cryptography have become
essentially unverifiable. Our field may be approaching a crisis
of rigor.

Bellare & Rogaway (2006)

Do we have a problem with cryptographic proofs?
Yes, we do. The problem is that as a community, we generate
more proofs than we carefully verify (and as a consequence

some of our published proofs are incorrect).
Halevi (2005)

The rigor crisis of the cryptographic community

The case of OAEP encryption scheme

Introduction and security proof

Worldwide industrial standard

PKCS#1 v2
IEEE P1363

ISO 18033-2
Standard

The rigor crisis of the cryptographic community

The case of OAEP encryption scheme

Introduction and security proof

Worldwide industrial standard

PKCS#1 v2
IEEE P1363

ISO 18033-2
Standard

Security proof is flawed And 7 years later...

i i e I S

There appears to be a non-trivial gap in the OAEP
security proof [and] this gap cannot be filled.

Shoup (2001)

e e e e e e e e -

The rigor crisis of the cryptographic community

The case of BONEH-FRANKLIN encryption scheme

Introduction and security proof

Used as subcomponent of several cryptographic protocols

The rigor crisis of the cryptographic community

The case of BONEH-FRANKLIN encryption scheme

Introduction and security proof

Used as subcomponent of several cryptographic protocols

Security proof is flawed

This is just another example in which a well-known and widely
used construction turns out to have an unnoticed flawed

security reduction.
F Galindo (2005)

CertiCrypt:
Framework for constructing certified cryptographic proofs in Coq

http://certicrypt.gforge.inria.fr/

http://certicrypt.gforge.inria.fr/

CertiCrypt:

Framework for constructing certified cryptographic proofs in Coq

http://certicrypt.gforge.inria.fr/

Substantial effort

= 30.000 lines
= 4-6years
® 6 people

http://certicrypt.gforge.inria.fr/

CertiCrypt:
Framework for constructing certified cryptographic proofs in Coq

http://certicrypt.gforge.inria.fr/

Substantial effort High impact
= 30.000 lines = Formalization of several encryption
s 4-6 years schemes, digital signatures, hash

functions, zero-knowledge protocols, etc
® 6 people o
= 12 publications

http://certicrypt.gforge.inria.fr/

Basics about CertiCrypt

What is a secure cryptographic scheme?

What is a secure cryptographic scheme?

A cryptographic scheme is secure if an efficient
adversary can break it only with negligible probability

What is a secure cryptographic scheme?

A cryptographic scheme is secure if an efficient
adversary can break it only with negligible probability

What is a secure cryptographic scheme?

A cryptographic scheme is secure if an efficient
adversary can break it only with negligible probability

=» Cryptographic schemes must be probabilistic (Goldwasser & Micali, '82)

What is a secure cryptographic scheme?

A cryptographic scheme is secure if an efficient
adversary can break it only with negligible probability

=» Cryptographic schemes must be probabilistic (Goldwasser & Micali, '82)

What is a secure cryptographic scheme?

A cryptographic scheme is secure if an efficient
adversary can break it only with negligible probability

=» Cryptographic schemes must be probabilistic (Goldwasser & Micali, '82)

=p Adversaries should run in probabilistic polynomial time (PPT)

What is a secure cryptographic scheme?

A cryptographic scheme is secure if an efficient
adversary can break it only with negligible probability

=» Cryptographic schemes must be probabilistic (Goldwasser & Micali, '82)

=p Adversaries should run in probabilistic polynomial time (PPT)

What is a secure cryptographic scheme?

A cryptographic scheme is secure if an efficient
adversary can break it only with negligible probability

=» Cryptographic schemes must be probabilistic (Goldwasser & Micali, '82)
=) Adversaries should run in probabilistic polynomial time (PPT)

=) There exists a standard security notion for each kind of cryptographic scheme

What is a secure cryptographic scheme?

A cryptographic scheme is secure if an efficient
adversary can break it only with negligible probability

=» Cryptographic schemes must be probabilistic (Goldwasser & Micali, '82)
=) Adversaries should run in probabilistic polynomial time (PPT)

=) There exists a standard security notion for each kind of cryptographic scheme

Attack game

What is a secure cryptographic scheme?

A cryptographic scheme is secure if an efficient
adversary can break it only with negligible probability

=» Cryptographic schemes must be probabilistic (Goldwasser & Micali, '82)
=) Adversaries should run in probabilistic polynomial time (PPT)

=) There exists a standard security notion for each kind of cryptographic scheme

the scheme

o [A breaks

Attack game

How do security proof proceed?

By stepwise transformation of the attack game,
towards a “simpler” game

Attack game

Go G1 G,

A —— e —

How do security proof proceed?

By stepwise transformation of the attack game,
towards a “simpler” game

Attack game Final game

Go G G

Probability of
breaking the scheme

How do security proof proceed?

By stepwise transformation of the attack game,
towards a “simpler” game

Attack game Final game
Go Gy G,
A — _ s ... —
A AL
Prg, [Eo] < f (PrGl [El]) < T < f (Pan[En])

Probability of
breaking the scheme

How do security proof proceed?

By stepwise transformation of the attack game,
towards a “simpler” game

Attack game Final game
Go Gy G,
A — _ s ... —
A AL
Prg, [Eo] < f (PrG1 [El]) < T < f (Pan[En])

Probability of
breaking the scheme

How do security proot proceed?

How do we
represent games?

Go G

10

How do security proot proceed?

PrGO[EO] < fl (Prgl[El]) < - < fn (Pan[En])

How do we relate the probabilities of

events between consecutive games?

11

Language-based cryptographic proofs

12

Language-based cryptographic proofs

Games — (probabilistic) programs

12

Language-based cryptographic proofs

Games

Probability space
Probability of event
Game transformations

Generic adversary

AR

(probabilistic) programs

12

Language-based cryptographic proofs

Games

Probability space
Probability of event
Game transformations

Generic adversary

AR

(probabilistic) programs

program denotation

12

Language-based cryptographic proofs

Games

Probability space
Probability of event
Game transformations

Generic adversary

AR

(probabilistic) programs
program denotation

probability of postcondition

12

Language-based cryptographic proofs

Games

Probability space
Probability of event
Game transformations

Generic adversary

AR

(probabilistic) programs
program denotation
probability of postcondition

program transformations

12

Language-based cryptographic proofs

Games

Probability space
Probability of event
Game transformations

Generic adversary

AR

(probabilistic) programs
program denotation
probability of postcondition
program transformations

unspecified procedure

12

The probabilistic language

skip

C; C

V&

YV & DE

if £ then C else C
while £ do C
V+—PE,....E)

nop
sequence
assignment
random sampling
conditional

while loop
procedure call

13

The probabilistic language

C == skip
C; C

| ZR
YV & DE

] -

nop
sequence
assignment
random sampling

if &€ then C else C conditional

while £ do C while loop
V+—PE,...,E) procedure call

S — D(S)

13

The probabilistic language

C == skip nop
C; C sequence
| ZR assignment
YV & DE random sampling
if £ then C else C conditional
while £ do C while loop
V+—PE,...,E) procedure call

lc] : Y(k:N). Sk — D(Sy)

security parameter

13

How do we relate the probability of program?

14

How do we relate the probability of program?

We need to prove claims of the form

Pre,(s) [E1] < f(Pre,(s) [EQ])

14

How do we relate the probability of program?

We need to prove claims of the form

Pre,snlE1l < f(Preysy[E2])

But usually, it suffices proving claims of the form

PrCl(Sl)[E] — PrC2(S2)[E]

14

How do we relate the probability of program?

We need to prove claims of the form

Pre,snlE1l < f(Preysy[E2])

But usually, it suffices proving claims of the form

PrCl(Sl)[E] — PrC2(S2)[E]

for which we can rely on observational equivalence between programs:

{1y a ~ {0}

14

How do we relate the probability of program?

We need to prove claims of the form

Pre,(s) [E1] < f(Pre,(s) [EQ])

But usually, it suffices proving claims of the form

PrCl(Sl)[E] — PrC2(S2)[E]

for which we can rely on observational equivalence between programs:

Input set of variables

{1y a ~ {0}

14

How do we relate the probability of program?

We need to prove claims of the form

Pre,(s) [E1] < f(Pre,(s) [EQ])

But usually, it suffices proving claims of the form

PrCl(Sl)[E] — PrC2(S2)[E]

for which we can rely on observational equivalence between programs:

Input set of variables Output set of variables

{1y a ~ {0}

14

How do we relate the probability of program?
We need to prove claims of the form

Pre,(s) [E1] < f(Pre,(s) [EQ])

But usually, it suffices proving claims of the form

PrCl(Sl)[E] — PrC2(S2)[E]

for which we can rely on observational equivalence between programs:

Input set of variables Output set of variables

I} a ~ {0}
Prcl(sl)[E] — PrCQ(SQ)[E]

14

How do we relate the probability of program?
We need to prove claims of the form

Pre,(s) [E1] < f(Pre,(s) [EQ])

But usually, it suffices proving claims of the form

PrCl(Sl)[E] — PrC2(S2)[E]

for which we can rely on observational equivalence between programs:

Input set of variables Output set of variables

fV(E) C O {/} c1T ~ (O {O}
Prcl(sl)[E] — PrCQ(SQ)[E]

14

How do we relate the probability of program?
We need to prove claims of the form

Pre,(s) [E1] < f(Pre,(s) [EQ])

But usually, it suffices proving claims of the form

PrCl(Sl)[E] — PrC2(S2)[E]

for which we can rely on observational equivalence between programs:

Input set of variables Output set of variables

fV(E) C O {/} Ci ~ O {O} 51 =1 S
PrCl(Sl)[E] — PrC2(52)[E]

14

Proving observational equivalence

CertiCrypt provides several mechanised program transformations
for establishing observational equivalence

15

Proving observational equivalence

CertiCrypt provides several mechanised program transformations
for establishing observational equivalence

PROGRAM TRANSFORMATION: T(c1,,1,0)=(c;, e, 1", 0"

15

Proving observational equivalence

CertiCrypt provides several mechanised program transformations
for establishing observational equivalence

PROGRAM TRANSFORMATION: T(c1,,1,0)=(c;, e, 1", 0"

SOUNDNESS RESULT:

15

Proving observational equivalence

CertiCrypt provides several mechanised program transformations
for establishing observational equivalence

PROGRAM TRANSFORMATION: T(c1,,1,0)=(c;, e, 1", 0"

SOUNDNESS RESULT:
{/} 1 ~ O {O}

15

Proving observational equivalence

CertiCrypt provides several mechanised program transformations
for establishing observational equivalence

PROGRAM TRANSFORMATION: T(c1,,1,0)=(c;, e, 1", 0"

SOUNDNESS RESULT: T(c1,c,1,0) = (ct,c5, 1,0

{It aa ~ {0}

15

Proving observational equivalence

CertiCrypt provides several mechanised program transformations
for establishing observational equivalence

PROGRAM TRANSFORMATION: T(c1,,1,0)=(c;, e, 1", 0"

SOUNDNESS RESULT: T(c1, ¢, 1,0) = (¢, 6, I',O) {I'} ¢ ~ & {O'}

{It aa ~ {0}

15

Proving observational equivalence

CertiCrypt provides several mechanised program transformations
for establishing observational equivalence

PROGRAM TRANSFORMATION: T(c1,,1,0)=(c;, e, 1", 0"

SOUNDNESS RESULT: T(c1, ¢, 1,0) = (¢, 6, I',O) {I'} ¢ ~ & {O'}

{It aa ~ {0}

SOME INSTANCES: o Deadcode elimination
o Constant propagation
o Procedure call inlining

o Common prefix/suffix elimination

15

Proving observational equivalence

CertiCrypt provides an (incomplete) tactic for proving self-equivalence

Does {/} ¢ ~ ¢ {O} hold?

16

Proving observational equivalence

CertiCrypt provides an (incomplete) tactic for proving self-equivalence

Does {/} ¢ ~ ¢ {O} hold?

= Analyse dependencies to compute I’ such that {/'} ¢ ~ ¢ {O}

16

Proving observational equivalence

CertiCrypt provides an (incomplete) tactic for proving self-equivalence

Does {/} ¢ ~ ¢ {O} hold?

= Analyse dependencies to compute I’ such that {/'} ¢ ~ ¢ {O}
s Checkthat /' C/

16

Security proof of EIGamal encryption scheme

(D
-

inline_1 KG.
inline_1 Enc.
ep.

deadcode.
swap.

\gqobs_ln. Y

Game ElGamal :
(z,) «— KG();
(mo,m1) «— A();

b & {0,1};

(8,¢) < Enc(a, myp);
v — A'(a, 3,();
d—b=1"V

-~

Game ElGamalg :

2)

inline_r B.
ep.

deadcode.
eqobs_in.

& Lgs y & ZLy;
(mo, m1) — A(g");
b & {0, 1}

¢ — g*¥ X mp;

b — A'(g9%, 9Y,Q);
d—b=10

Game ElGamals :
x & Zg; y & ZLyg;
(mo, m1) < A(g9”);
z & Zg; ¢ g7

b — A (g%, 9", Q);

b& {0,1};
d—b=1V
=d

Game ElGamal; :

x & Lq; y & Ly,
(mo,m1) < A(g”);

b & {0,1};

2 & Lg; C — g% X my;
b — A'(g%, 9", Q);
d—b=1V

_________ T T
Game DDHj : Adversary B(a, 8,7) : Game DDHj : :
x & Lg; (mo,m1) «— A(a); x & Lg;

y & Lqg; b & {0,1}; y & ZLg;
d «— B(g9”,9Y,9"Y) o — A, B,y X mp); z & Lg;
return b = b’ d — B(g",g¥,9%)

Lemma B_PPT : PPT B. Lemma B_wf : WFAdv B.
Proof. PPT_tac. Qed. Proof. ... Qed.

4)

swap.
eqobs_hd 4.
eqobs_tl 2.

apply mult_pad.

(5)
/inline_r B:\
ep.
deadcode.
swap.

\gqobs_ln. D

17

Game ElGamals :
r & Ly, y & Ly
(mo, m1) — A(g”);
z & Lg; ¢ — g%

b" — A'(g%, g¥,¢);
b & {0,1};

Security proof of EIGamal encryption scheme

d—b=1" fswap.
~ eqobs_hd 4.
—~d = eqobs_tl 2.
Game ElGamal; : _apply mult_pad.

x & Ly y & Ly;
(mo, m1) < A(g%);

b & {0,1};

z & Zq; C < g% X my;
b' — A'(g9”,9Y,C);
d—b=1"

18

Observational equivalence is not enough

19

Observational equivalence is not enough

777

{x} if (x=0) then y<—x else y<~1 ~ if (x=0) then y<0 else y<-1 {x,y}

19

Observational equivalence is not enough

B Establishing observational equivalence may require additional
contextual information

777

{x} if (x=0) then y<—x else y<-1 ~ if (x=0) then y<-0 else y<-1 {x,y}

19

Observational equivalence is not enough

B Establishing observational equivalence may require additional
contextual information

777

{x} if (x=0) then y<—x else y<-1 ~ if (x=0) then y<-0 else y<-1 {x,y}

m Cryptographic proofs may involve weaker relationships between
consecutive games, e.g.

PrCl(Sl) [El] < PrCz(Sz) [EQ]

19

Relational Hoare logic

20

Relational Hoare logic

Standard Hoare Logic (HL)

1P}y ci1Qj

20

Relational Hoare logic

Standard Hoare Logic (HL)

1P}y ci1Qj

s P(s)

s’ Q(s')

20

Relational Hoare logic

Standard Hoare Logic (HL)

1P}y ci1Qj

s P(s)

s’ Q(s')

Relational Hoare Logic (RHL)

1P}

Y

1Q}

20

Relational Hoare logic

Standard Hoare Logic (HL)

1P}y ci1Qj

s P(s)

s’ Q(s')

Relational Hoare Logic (RHL)

{P}ci~{Q}

S1€—— P—>s)

20

Relational Hoare logic

Standard Hoare Logic (HL)

1P}y ci1Qj

s P(s)

s’ Q(s')

Relational Hoare Logic (RHL)

probabilistic programs

{P}ci~{Q}

S1€—— P—>s)

20

Relational Hoare logic

Standard Hoare Logic (HL)

1P}y ci1Qj

s P(s)

s’ Q(s')

Relational Hoare Logic (RHL)

probabilistic programs

{P}ci~{Q}

S1€—— P—>s)

1 €6——Q —— u>

20

Relational Hoare logic I

Standard Hoare Logic (HL) Relational Hoare Logic (RHL)
1P} c{Q} (PYc, ~ o {Q)
s P(s) S1€—— P —>s)

of Q to the

space of distributions

/ , 1
s’ Q(s') f1€6—Q —> uo

20

Relational Hoare logic — Judgment examples

& Z=y+1 ~ z=x

21

Relational Hoare logic — Judgment examples

B =E{y+l=x2} z=y+1 ~ z:=x

21

Relational Hoare logic — Judgment examples

B E{yo+l=x2} z=y+1 ~ z:=x {zq) =z}

21

Relational Hoare logic — Judgment examples

B E{yo+l=x2} z=y+1 ~ z:=x {zq) =z}

- if b then x =0 N if bthen x =1
else x =1 else x =0

21

Relational Hoare logic — Judgment examples

B E{yo+l=x2} z=y+1 ~ z:=x {zq) =z}

if b then x :=0 if bthen x =1
B = 1ba) = by elsex =1 " ’ else;lx =0

21

Relational Hoare logic — Judgment examples

B E{yo+l=x2} z=y+1 ~ z:=x {zq) =z}

if bth =0 if bth =1
B = by = b2} i else:;((:: 1~ i elseél;::: 0 xm =1-x@}

21

Proof system

22

Proof system

B Most rules are direct adaptations of traditional HL rules

22

Proof system

B Most rules are direct adaptations of traditional HL rules

(F{P} skip {F})

22

Proof system

B Most rules are direct adaptations of traditional HL rules

- {P} skip ~ skip {P} (F {P} skip {P})

22

Proof system

B Most rules are direct adaptations of traditional HL rules
- {P} skip ~ skip {P} (- {P} skip {P})

- {P} c{Q}

-{Q} {Q)

= {P} c;

c'{Q}

22

Proof system

B Most rules are direct adaptations of traditional HL rules

~{P} skip ~ skip { P} (- {P} skip {P})
F{P}ta~a{Q} F{Q}c~ca{Q} - {P}c{Q} H{Q}{Q}
F{P}ci;ci ~ 5 {Q} - {P} c; ' {Q}

22

Proof system

B Most rules are direct adaptations of traditional HL rules

~{P} skip ~ skip { P} (- {P} skip {P})
F{P}ta~a{Q} F{Q}c~ca{Q} - {P}c{Q} H{Q}{Q}
F{P}ci;ci ~ 5 {Q} - {P} c; ' {Q}

B Requires programs to execute lockstep

22

Proof system

B Most rules are direct adaptations of traditional HL rules

- {P} skip ~ skip {P} (- {P} skip {P})
F{Pta~a{Q} F{Q}aq~ca{Q} F{P}c{@} H{Q}{Q)
F{P}ci;ci ~ 5 {Q} - {P} c; ' {Q}
B Requires programs to execute lockstep
|—{//\G1<1>}C1NC2 {/} |: (/:>G1<1> = G2<2>) .
[while]

~{/} while Gy do ¢; ~ while Godo ¢ {/ A =Gyqy}

22

Proof system

B Most rules are direct adaptations of traditional HL rules

~{P} skip ~ skip { P} (- {P} skip {P})
F{P}ta~a{Q} F{Q}c~ca{Q} - {P}c{Q} H{Q}{Q}
F{P}ci;ci ~ 5 {Q} - {P} c; ' {Q}

B Requires programs to execute lockstep

|—{//\G1<1>}C1NC2 {/} |: (/:>G1<1> = G2<2>)
= {/} while Gy do ¢; ~ while Gpdo & {/ A =Gyqy}

[while]

B (The classic fragment) only relates programs that are structurally equal.

Proof system

B Most rules are direct adaptations of traditional HL rules

~ {P} skip ~ skip {P} (- {P} skip {P})
F{P}ta~a{Q} F{Q}c~ca{Q} F{P}c{@} F{Q}{Q}
F{P}ci;ci ~ 5 {Q} - {P}c: c {Q}

B Requires programs to execute lockstep

|—{//\G1<1>}C1NC2 {/} |: (/:>G1<1> = G2<2>)
= {/} while Gy do ¢; ~ while Gpdo & {/ A =Gyqy}

[while]

B (The classic fragment) only relates programs that are structurally equal.

But the logic can be extended with “one-sided” rules, e.g.

Proof system

B Most rules are direct adaptations of traditional HL rules

~ {P} skip ~ skip {P} (- {P} skip {P})
F{P}ta~a{Q} F{Q}c~ca{Q} F{P}c{@} F{Q}{Q}
F{P}ci;ci ~ 5 {Q} - {P}c: c {Q}

B Requires programs to execute lockstep

|—{//\G1<1>}C1NC2 {/} |: (/:>G1<1> = G2<2>)
= {/} while Gy do ¢; ~ while Gpdo & {/ A =Gyqy}

[while]

B (The classic fragment) only relates programs that are structurally equal.

But the logic can be extended with “one-sided” rules, e.g.

-b h
- {P} if G then c¢; else ¢; ~ ¢ {Q} [c-branch]

Proof system

B Most rules are direct adaptations of traditional HL rules

~ {P} skip ~ skip {P} (- {P} skip {P})
F{P}ta~a{Q} F{Q}c~ca{Q} F{P}c{@} F{Q}{Q}
F{P}ci;ci ~ 5 {Q} - {P}c: c {Q}

B Requires programs to execute lockstep

|—{//\G1<1>}C1NC2 {/} |: (/:>G1<1> = G2<2>)
= {/} while Gy do ¢; ~ while Gpdo & {/ A =Gyqy}

[while]

B (The classic fragment) only relates programs that are structurally equal.

But the logic can be extended with “one-sided” rules, e.g.

I—{P/\ G<1>}C1NC2 {Q} I—{P/\—lG<1>}C£NC2{Q}
- {P} if G then ¢; else ¢; ~ & {Q}

[c-branch]

From the logic to probability claims

23

From the logic to probability claims

Pr[cl(sl) . A] = Pr[C2(52) . B]

[Pr-Eq]

23

From the logic to probability claims

={P}a~ca{Q}

Pr[cl(sl) . A] = Pr[C2(52) . B]

[Pr-Eq]

23

From the logic to probability claims

={P}ca~c{Q} Q = (Ay<—=B

(2))

Pr[ci(s1) : A] = Pr[ca(sy) : B]

[Pr-Eq]

23

From the logic to probability claims

s1 Ps; ={P}c ~c{Q} Q = (Ay<—=B

(2))

Pr[cl(sl) : A] = Pr[C2(52) : B]

[Pr-Eq]

23

From the logic to probability claims

s1 Ps; ={P}c ~c{Q} Q = (Ay<—=B

(2))

Pr[cl(sl) . A] = Pr[C2(52) . B]

Pr[cl(sl) : A] S Pr[C2(52) : B]

[Pr-Eq]

[Pr-Le]

23

From the logic to probability claims

s1 Ps; ={P}c ~c{Q} Q = (Ay<—=B

(2))

Pr[cl(sl) : A] = Pr[C2(52) : B]

s1 P s, ={P}ca ~ o {Q} Q = (An)=—8B

(2))

Pr[cl(sl) : A] S Pr[C2(52) : B]

[Pr-Eq]

[Pr-Le]

23

Wrapping up

24

Conclusion

25

Conclusion

Successful application of machine-checked proofs to the
field of cryptography

25

Conclusion

Successful application of machine-checked proofs to the
field of cryptography

Formal semantics of probabilistic language

A probabilistic relational Hoare logic

Mechanised program transformations

Formalization of emblematic schemes: OAEP, ElGammal, FDH, etc.

25

Conclusion I

Successful application of machine-checked proofs to the
field of cryptography

Formal semantics of probabilistic language

A probabilistic relational Hoare logic

Mechanised program transformations

Formalization of emblematic schemes: OAEP, ElGammal, FDH, etc.

KEY INSIGHT:

View cryptographic proofs as a problem of (relational) probabilistic

program verification

25

Conclusion I

Successful application of machine-checked proofs to the
field of cryptography

Formal semantics of probabilistic language

A probabilistic relational Hoare logic

Mechanised program transformations

Formalization of emblematic schemes: OAEP, ElGammal, FDH, etc.

KEY INSIGHT:

View cryptographic proofs as a problem of (relational) probabilistic

program verification

Thanks!

25

Backup Slides

26

Language semantics

[assert e] m

[while e do ¢] m

where

unit m

bind ([¢] m) []

unit (m {[le]s m/x})

bind ([[d]pe m) (Av. unit (m{v/z}))

if ([e]e m = true) then (unit m) else ug

[if e then ¢y else 3] m = if ([e]e m = true) then ([c1] m) else ([c2] m)

Af. lub (An. ([[while e do c],] m)(f))

\while e do ¢|g = assert —e
\while e do ¢, ; = if e then ¢; [while e do ¢],

27

The measure monad (ALEA library)

Example

DA £ (A—0,1]) — [0, 1]

u(f) = "expected value of f wrt u”

unit : A — D(A)
Tz M. f(x)

bind : D(A) — (A — D(B)) — D(B)
= A AM.f. p(hx. M(2)(f)).

[b1 < {t, f}; bo & {t, f}]s = Af. 1 f(s[b1, ba/t,t]) + % f(s[br, ba/t, f])

2 f(slb1, bo/f, t]) + 3 f(s[br, b2/, f])

28

Lifting relations to distributions via couplings

29

Lifting relations to distributions via couplings

. Q Q" . o
relation over relation over *distributions*
program states on program states

{m(u) = u1 A To(p) = p2, and
Pr,[-Q] =0

(L1, 2) E QY = 3u € D(SxS).

coupling between p4 and p;

* See Logical, Metric, and Algorithmic Characterisations of Probabilistic Bisimulation, Deng & Du.

29

Proof system (two-sided rules)

[skip] [assgn]

- {P} skip ~ skip {P} - {Q[X<1>/A<1>,y<2>/8<2>]} x =A~y:=B{Q}

F{Pla~a{d} H{Q}aq~q{Q}
F{Praiq~aiq{d;

[abort] [seq]

- {true} abort ~ abort {Q}

=(P=PFP) FH{Pla~a{l} F(Q@=Q)
'_{P}C]_NC2{Q}

[cons]

|: ('D:> G1<1> = G2<2>)
F{PANGpnta~a{QF F{PA-Gu}aq~c{Q}
- {P} if Gj then c; else c{ ~ if G, then ¢, else Cé {Q} [lf]

|—{//\G1<1>}C1NC2 {/}):(/:>G1<1> :G2<2>)
= {/} while Gy do ¢; ~ while Gpdo & {/ A =Gyqy}

[while]

|—{P_1} Co ~ (C1 {Q_l} [jnV] |—{P} C1 NCQ{Q} |—{Pl} C2NC3{Q/}
|—{P}C1NC2{Q} '_{POP’}ClNC3{QOQ’}

[comp]

s1 Ps = (ﬂl > Ave 7751[X1/v]) /:’(Q) (:u2 > Av e 7752[X2/V])
= {P} x| = Ui ~ Xo == 42 {Q}

[rand]

30

Proof system (one-sided rules)

[contr]

- {false} c1 ~ &2 {Q}

- {Q[X<1>/A<1>]} X = A ~ skip {Q} [d-aSSgn]

|—{P/\ G<1>}C1NC2 {Q} |_{P/\—IG<1>}C{NC2{Q}
- {P} if G then c¢; else ¢; ~ & {Q}

[c-branch]

= {PA=Gg}while G do c ~ skip {P A Gy} [d-while]

31

