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CIC: « Constructions dans un monde qui bouge »

CIC, the Calculus of Inductive Constructions.

CIC, a very fancy intuitionistic logical system.
Not just higher-order logic, not just first-order logic
First class notion of computation and crazy inductive types

CIC, a very powerful functional programming language.
Finest types to describe your programs
No clear phase separation between runtime and compile time

The Pinnacle of the Curry-Howard correspondence
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An Effective Object

One implementation to rule them all...

Many big developments using it for computer-checked proofs.
Mathematics: Four colour theorem, Feit-Thompson, Unimath...
Computer Science: CompCert, VST, RustBelt...
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The CIC Tribe

Actually not quite one single theory.

Several flags tweaking the kernel:
Impredicative Set
Type-in-type
Indices Matter
Cumulative inductive types
...

The Many Calculi of Inductive Constructions.
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In the Axiom Jungle

Excluded-middle

Operator iota

Constructive indefinite description
in propositional context

Constructive definite descr.
in propositional context

Relational choice axiom Predicate extensionality

(if Set impredicative)
(Diaconescu)

Propositional degeneracy

Propositional extensionality

(needs Prop-impredicativity)
(Berardi)

Not excluded-middle

Decidability of equality on any A

Axiom K on A

Uniqueness of reflexivity proofs for equality on A

Uniqueness of equality proofs on A

Invariance by substitution of reflexivity proofs for equality on A

Functional extensionality

Injectivity of equality on Sigma-types on A

Proof-irrelevance

Operator epsilon

Constructive
indefinite description

Functional choice axiom

Constructive
definite description

Axiom of unique choice

LIBERTÉ - ÉGALIT
É -

 EX
TENSIONALITÉ≃

« A mathematician is a device for turning 
toruses into equalities (up to homotopy). »

A crazy amount of axioms used in the wild!

The claĄical set-theory pole:
Excluded middle, UIP, choice

The Extensional pole:
Funext, Propext, Bisim-is-eq

The univalent pole:
Univalence, what else?

The εχoτιc pole:
Anti-classical axioms (???)

Varying degrees of compatibility.
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Reality Check

Theorem 0
Axioms Suck.

Proof.
They break computation (and thus canonicity).
They are hard to justify.
They might be incompatible with one another.

□
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Look ma, no Axioms

Alternative route to axioms: implement a new type theory.

Examples: Cubical, F*...

Pro
Computational by construction (hopefully)
Tailored for a specific theory

Con
Requires a new proof of soundness (... cough... right, F*? cough...)

Implementation task may be daunting (including bugs)
Yet-another-language: say farewell to libraries, tools, community...
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Summary of the Problem

Different users have different needs.

« From each according to his ability, to each according to his needs. »

(Excessive) Fragmentation of proof assistants is harmful.

« Divide et impera. »

Are we thus doomed?
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Teasing

In this talk, I’d like to advocate for a third way.

One implementation to rule them all...

One backend implementation to rule them all!

via

Syntactic Models
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From Hell

Semantics of type theory have a fame of being horribly complex.

I won’t lie: they are. But part of this fame is due to its usual models.

Roughly three families of models:
The set-theoretical model and its variants
Several realizability models
A gazillion of categorical models

Let’s review them quickly!
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The Set-Theoretical Model

Because Sets are a (crappy) type theory.

Interpret everything as sets and expect ⊢CIC M : A ⇒ ⊢ZFC [M] ∈ [A].

[Πx : A.B] ≡

f ∈ [A] →ZFC
∪

x ∈ [A]

[B](x)

∣∣∣∣∣∣ ∀x ∈ [A]. f(x) ∈ [B](x)


Pro

Well-known and trusted target
Imports ZFC properties.

Con
Forego syntax, computation and decidability
Imports ZFC properties.
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The Realizability Models

Construct programs that respect properties.

Terms M ⇝ programs [M] (variable languages as a target)

Types A ⇝ meta-theoretical predicates [[A]]

⊢CIC M : A ⇒ [M] ∈ [[A]]

[[Πx : A.B]] ≡ {f ∈ Λ | ∀x ∈ [[A]]. eval(f, x) ∈ [[B]](x)}

Pro
Some preservation of syntax and computability

Con
Usually crazily undecidable
Meta-theory can be arbitrary crap, including ZFC
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The Categorical Models

Abstract (nonsense) description of type theory.

Rephrase the rules of CIC in a categorical way.

Pro
Very abstract and subsumes both previous examples
Somewhat “easier” to show some structure is a model of TT

Con
Same limitations as the previous examples
Mostly useless to actually construct a model
Yet another syntax, usually arcane and ill-fitted
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What’s The Matter

Assuming we pick a specific model, what do we do with it?

Hopefully it has a more refined content!

In particular, you can show that an axiom hold in this model.

For instance, in Set:
[Prop ] ≡ {∅, {∅}}

so in there you can inhabit e.g.

prop_ext : Π(A B : Prop). (A ↔ B) → A = B

em : Π(A : Prop).A + ¬A
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Stepping Back

What is a model?
Takes syntax as input.
Interprets it into some low-level language.
Must preserve the meaning of the source.
Refines the behaviour of under-specified structures.

Luckily we’re computer scientists in here.

« Oh yes, we call that a compiler... »

(Thanks, Curry-Howard!)
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Curry-Howard Orthodoxy

Let’s look at what Curry-Howard provides in simpler settings.

Program Translations ⇔ Logical Interpretations

On the programming side, enrich the language by program translation.
Monadic style à la Haskell
Compilation of higher-level constructs down to assembly

On the logic side, extend expressivity through proof interpretation.
Double-negation ⇒ classical logic (callcc)
Friedman’s trick ⇒ Markov’s rule (exceptions)
Forcing ⇒ ¬CH (global monotonous cell)
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Double-negation ⇒ classical logic (callcc)
Friedman’s trick ⇒ Markov’s rule (exceptions)
Forcing ⇒ ¬CH (global monotonous cell)
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Syntactic Models

Let us do the same thing with CIC: build syntactic models.

We take the following act of faith for granted.

CIC is.
Not caring for its soundness, implementation, whatever. It just is.

Do everything by interpreting the new theories relatively to this foundation!

Suppress technical and cognitive burden by lowering impedance mismatch.
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Syntactic Models II

Step 0: Fix a theory T as close as possible* to CIC, ideally CIC ⊆ T .

Step 1: Define [·] on the syntax of T and derive [[·]] from it s.t.

⊢T M : A implies ⊢CIC [M ] : [[A]]

Step 2: Flip views and actually pose

⊢T M : A ∆
= ⊢CIC [M ] : [[A]]

Step 3: Expand T by going down to the CIC assembly language,
implementing new terms given by the [·] translation.
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« CIC, the LLVM of Type Theory »
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Syntactic Models III

Obviously, that’s subtle.
The translation [·] must preserve typing (not easy)
In particular, it must preserve conversion (even worse)

Yet, a lot of nice consequences.
Does not require non-type-theoretical foundations (monism)
Can be implemented in Coq (software monism)
Easy to show (relative) consistency, look at [[False]]
Inherit properties from CIC: computationality, decidability...
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In Practice: Aknowledge the Existing

In Coq, first require the plugin implementing the desired model.
Require Import ExtendCoq.

Soundness means that any Coq proof can be translated automatically.
ExtendCoq Translate cool_theorem.

Assuming cool_theorem : T, this command:
defines cool_theorem• : [[T ]]

register the fact that [cool_theorem ] := cool_theorem•

Thus any later use of cool_theorem in a translated term will be
automatically turned into cool_theorem•.
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In Practice: Enlarge Your Theory

The interest of this approach lies in the following command.
ExtendCoq Definition new : N.

This opens a goal [[N]] you have to prove.

When the proof is finished:
1 an axiom new : N is added;
2 a term new• : [[N]] is defined with the proof;
3 the translation [[new]] := new• is registered.
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In Practice: Dirty Tricks

In general, [[N]] is some kind of mildly unreadable type that is crazy enough
so that it has more inhabitants than N.

forall
(A : Type)
(B : nat → Type),
(A →

{ n : nat & B n }) →
{ n : nat &

A → B n }

forall
(A : El Type°)
(B : nat° → El Type°),
(El A →

sigT° (TypeVal nat° nat#) (fun n : nat° => B n)) →
sigT° (TypeVal nat° nat#)

(fun n : nat° => Prod° (El A) (fun _ : El A => B n))

With a bit of practice, you can usually make sense of it though.
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Back to Marketing

On-the-fly compilation of the extended theory to Coq!

No more axioms!

Your type-theoretic desires made true!

Before After
« Holy Celestial Teapot! » « Stock photos do not experience existential dread. »

*Text and pictures not contractually binding.
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A Few Examples

In the remainder of the talk, I’ll describe two simple examples.
Mostly pedagogical
Not really interesting in practice
Still funny to mess with CIC
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Ex 1. Intensional Types, a.k.a. Dynamically Typed CIC

P.-M. Pédrot (MPI-SWS) Proof Assistants for Free 06/03/2018 26 / 38



Intensional Types

The intensional types translation extends type theory with

flip : □→ □
flip_equiv : Π(A : □). flip A ∼= A
flip_neq : Π(A : □). flip A ̸= A

This breaks amongst other things univalence...
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The Intensional Types Implementation
Intuitively:

Translate A : □ into [A ] : □× B
Translate M : A into [M ] : [A ].π1

[[A]] ≡ [A ].π1
[□ ] ≡ (□× B, true)
[Πx : A.B ] ≡ (Πx : [[A]]. [[B]], true)
[x ] ≡ x
[M N ] ≡ [M ] [N ]
[λx : A.M ] ≡ λx : [[A]]. [M ]

Types contain a boolean not used for their inhabitants!

Soundness
If x⃗ : Γ ⊢ M : A then x⃗ : [[Γ]] ⊢ [M ] : [[A]].
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Extending the Intensional Types
Let’s define the new operations obtained through the translation.

[flip ] : [[□→ □]]
[flip ] : □× B → □× B
[flip ] ≡ λ(A, b). (A, negb b)

[flip_equiv ] : [[ΠA : □. flip A ∼= A]]
[flip_equiv ] ≡ . . .

[flip_neq ] : [[ΠA : □. flip A ̸= A]]
[flip_neq ] : ΠA : □× B. [flip ] A ̸= A
[flip_equiv ] ≡ . . .

[[flip A]] ≡ [[A]]

And isomorphism only depends on [[A]]

But (intensional) equality observes the boolean...
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Basilisk for Realz
This one example is not very interesting.

You can do much better: a real mix of Python and Coq!

Assuming the target theory features induction-recursion
Represent (source) types by their code
This gives a real type-quote function in the source theory

type_rect : Π(P : □→ □).
P □→
(Π(A : □) (B : A → □).P A → (Πx : A.P (B x)) →

P (Πx : A.B)) →
P N →
. . . →

Π(A : □).P A

Coq is compatible with dynamic types!!!
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Ex 2. The reader translation, a.k.a. Baby Forcing
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The Reader Translation
The reader translation extends type theory with

R : □
read : R
into : □→ R → □

enterA : A → Πr : R. into A r

satisfying a few expected definitional equations.

The into function has unfoldings on type formers:

into (Πx : A.B) r ≡ Πx : A. into B r
into □ r ≡ □
. . .

and it is somewhat redundant:

enter□ A r ≡ into A r
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The Reader Implementation

Assuming r : R, intuitively:
Translate A : □ into [A ]r : □
Translate M : A into [M ]r : [A ]r

[□ ]r ≡ □
[Πx : A.B ]r ≡ Πx : (Πs : R. [A ]s). [B ]r
[x ]r ≡ x r
[M N ]r ≡ [M ]r (λs : R. [N ]s)
[λx : A.M ]r ≡ λx : (Πs : R. [A ]s). [M ]r

All variables are thunked w.r.t. R!

Soundness
If x⃗ : Γ ⊢ M : A then r : R, x⃗ : (Πs : R. [Γ]s) ⊢ [M ]r : [A ]r.
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Extending the Reader
One can easily define the new operations through the translation.

[R ]r : [□ ]r
[R ]r : □
[R ]r ≡ R

[read ]r : [R ]r
[read ]r : R
[read ]r ≡ r

[into ]r : [□→ R → □ ]r
[into ]r : (R → □) → (R → R) → □
[into ]r ≡ λ(A : R → □)(φ : R → R).A (φ r)

[enterA ]r : [A → Πs : R. into A s ]r
[enterA ]r : (Πs : R.A s) → Π(φ : R → R).A (φ r)
[enterA ]r ≡ λ(x : Πs : R.A s)(φ : R → R). x (φ r)
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Utter Lies

The reader translation suffers from one serious limitation!

I won’t describe it here. Come back on Thursday!

Spoiler: this is an effect, and that plays bad with dependent elimination.

I cleverly did not describe the translation on the inductive fragment.
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More generally

Syntactic models were introduced by M. Hoffmann...

There have been quite a few around since.

Model Source* Implements
Parametricity no Prop Parametricity

Type-intensionality no Prop Dynamic typing
Reader BTT Proof-relevant Axiom
Forcing BTT step indexing, nominal reasoning, ...
Weaning BTT many effects

Exceptional no sing. elim. exceptions (inconsistent)
Exceptional (interm.) no sing. elim. Markov’s rule
Param. Exceptional no Prop IP, ...

Extraction CIC ???
Iso-Parametricity ??? Automatic transfer of properties
Intuitionistic CPS only Prop ???

Dialectica no Prop Weak MP, ...
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The Ugly

To be fair, syntactic models have a few limitations.
Pretty hard to come up with such models
Vanilla CIC doesn’t seem ideal as a target
Implementation issues
For now still rather simple extensions
Certain complex models seem out of reach (notably univalence)

Still, I argue that they are damn cool.
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Scribitur ad narrandum, non ad probandum

Thanks for your attention.
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