
Abhishek Anand - CORNELL 
Simon Boulier & Nicolas Tabareau - INRIA NANTES 

Matthieu Sozeau - INRIA PARIS

CERTIFIED META-PROGRAMMING
WITH TEMPLATE COQ

CSEC Kick-off
Santiago, Chile
March 7th 2018

Certified Meta-Programming in Coq

TEMPLATECOQ

Initially developed by G. Malecha

Quoting and unquoting of terms and declarations

๏ Quote Definition quoted_t : Ast.t := t.

๏ Make Definition denoted_t := quoted_t.

Ideally “faithful” representation of COQ terms

Differences: Strings for global_reference and lists
instead of arrays. But see native integers and
arrays…

2

Certified Meta-Programming in Coq

Ast.v (term) &
template-demo.v

3

Demo

Certified Meta-Programming in Coq

The TEMPLATECOQ Monad
๏ Similar to METACOQ’s monad (shallow vs deep terms)

๏ Allows crawling the environment and modifying it,
calling the type checker etc…

๏ WIP OCAML version on the extracted version for building
plugins.

๏ Could be used to justify METACOQ programs and run
them without oracles, on bare metal.

๏ But first need to formalize the unification algorithm
(Ziliani & Sozeau) to actually build interesting tactics
(part of CSEC program)

4

Certified Meta-Programming in Coq

Demo

5

Ast.v (TemplateMonad) &
template-demo.v

Certified Meta-Programming in Coq

Application: CERTICOQ

GALLINA → CLIGHT

compile : Ast.term -> Compcert.Csyntax

Theorem (forward simulation)

 ∀ t v : Ast.term, closed t →  
 t ~>_wcbv v →  
 ∃ v’, compile t ~>_C v’ ∧ v ~ v’

Erases proofs, type labels, types, parameters of
constructors, and lambdas of match branches, then CPS,
closure conversion, shrink reduction… binding to a GC.

6

Certified Meta-Programming in Coq

Application: CERTICOQ
Extraction-Based Path

1.Extract compile and bind it to COMPCERT

2.Reifier in ML from COQ’s constr to TEMPLATECOQ’s
extracted Coq_term

3.Voilà! “CertiCoq Compile foobar” 
(Extraction in the TCB).

Bootstraping à la CAKEML in the future.

7

Certified Meta-Programming in Coq

CIC’s Typing Judgments
To improve the theorem, need a spec of reduction in CIC

Current focus on the specification of CIC as
implemented in COQ:

๏ Inductive specifications of typing, conversion and
reduction on Ast.term

๏ Strict positivity and guard condition (C. Mangin).

๏ No modules yet: PMP, Derek Dreyer, Joshua Yanovski
and I have a “plan” (involving ω-universes…)

8

Demo: Typing.v

Certified Meta-Programming in Coq

A Certified Typechecker?

๏ Requires to formally specify the actual implementation
of COQ’s type inference and its correspondence with the
formal semantics defined as a typing judgment.

๏ WIP: A (partial) typechecker and conversion test for
Ast.term (based on fuel, totality needs SN).
Comments / contributions welcome!

๏ Disclaimer: no positivity condition, no guardedness
checking yet.

๏ Extract it or CertiCoq Compile it to get a verified type
checker for COQ in ML or as a certified binary.

๏ Template Check foo.

9

Certified Meta-Programming in Coq

Certified Translations

Definitional translations from TT to TT, e.g. forcing,
weaning, parametricity, syntactical models (Boulier et al,
CPP’16), exceptional type theory (Pédrot & Tabareau,
ESOP’18)

Two parametricity translations:

1.Standard binary parametricy by S. Boulier, using de
Bruijn and calling type inference

2.Uniform Propositions by A. Anand’s and G. Morrisett
(talk this afternoon), switching to a named
representation.

Such translations can also be plugged on top of CERTICOQ,
e.g. to optimize before compilation

10

Certified Meta-Programming in Coq

Write your plugins in COQ!

Certify them in COQ!

Run them natively using a certified
compiler!

http://template-coq.github.io/template-coq

11

Conclusion

