THE LEGACY OF ‘

VLADIMIR VOEVODSKY — \CMl’
.
fes

HOMOTOPY TYPES & RESIZING RULES

A FRESH LOOK AT
THE IMPREDICATIVE SORT OF CIC

NICOLAS TABAREAU



Road Map

In this talk, | will recall two notions introduced by V.V.
in 2006 in “A very short note on homotopy A-calculus”.

|. Homotopy types in type theory

2. Universe resizing rules

| will then explain how those two notions allow
for a fresh look at the impredicative universe of CIC.
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First, what is Type Theory about !

CogHoTT, a brand-new proof assistant based on Homotopy Type Theory



The denotational semantics trinity

Category theory
Objects

Morphisms

Logic Programming

Formulas Types

Proofs Programs
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CogHoTT, a brand-new proof assistant based on Homotopy Type Theory



The simply typed A-calculus

variable ARz A

[, . AP B

- x.P A= B
[P A= B AFQ A

abstraction

application
AR PO B
weakening =B
[, . AF P '.B
: [,z Ay AF- P B
contraction
[,z A+ Ple,y «— 2] :B
[,z Ay .:B,AFP:C
exchange

[,y B,z A AFP:C

CogHoTT, a brand-new proof assistant based on Homotopy Type Theory



Intuitionistic minimal logic

, N
axiom AL A
. A+ B
= I
[+ A= B
[ A= B ANl = A
= E
MAF B
weakenin = B
J r, A- B

r A, A+ B

contraction

r, AR B
r, A, B,AF C
exchange r, B, AAF C
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Intuitionistic minimal logic
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Other correspondances

Cut elimination & B-reduction

CogHoTT, a brand-new proof assistant based on Homotopy Type Theory



~

T) Type Theory of Coqg T)

Lifting the Curry-Howard correspondance to
dependent types = more complex

formulas

[Tn:nat.> m:nat.Id (m,n + I)

Vhn:nat.Im:natm=n + |

CogHoTT, a brand-new proof assistant based on Homotopy Type Theory



T) Type Theory of Coqg p

Lifting the Curry-Howard correspondance to
dependent types = more complex

formulas

PROD /SIGMA
I''x: AF B type

I'=11/Yx: A.B type

CogHoTT, a brand-new proof assistant based on Homotopy Type Theory



IJ Type Theory of Coqg IJ

Lifting the Curry-Howard correspondance to
dependent types = more complex

formulas

PROD /SIGMA
I''x: AF B type

I'=11/Yx: A.B type

Type checking & Correctness checking

CogHoTT, a brand-new proof assistant based on Homotopy Type Theory



Type Theory and Logic

Types Logic

A proposition

a:A proof

B(x) predicate

b(x) : B(x) conditional proof
0,1 1, T

A+B AV B

A X B ANB

A— B A= B

Z(x:A) B(x) EIx:AB(x)
[T(x:a) B(x) V:aB(x)
Id 4 equality =




Type Theory and Logic

Types Logic

A proposition

a:A proof

B(x) predicate

b(x) : B(x) conditional proof
0,1 1, T

A+B AV B

A X B ANB

A— B A= B

Z(x:A) B(x) EIJC:AB(X)
[T(x:a) B(x) V:aB(x)
Id 4 equality =

How 1s equality
modeled 7




Equality in Type Theory

Equality is described using Martin-Lof Identity Type.
refl : [ [ (a =4 a)

a:A

Path induction: Given a family

C:]](x=ay) —U

x,y:A

and a function

c: [ ] Clx, x,refly),

x:A
there is a function
f+ 11 11 cxyp)
(xy:A) (p:x=ay)

such that
fx, x,refly) :==c(x).

CogHoTT, a brand-new proof assistant based on Homotopy Type Theory



Equality in Type Theory

Equality is described using Martin-Lof Identity Type.
refl : [ [ (a =4 a)

a:A
Leibniz principle of “Indiscernability of ldenticals™

Path induction: Given a family

C:]](x=ay) —U

x,y:A

and a function

c: [ ] Clx, x,refly),

x:A
there is a function

f+ 11 11 cxwp)

(x,y:A) (p:x=ay)

such that
fx, x,refly) :==c(x).

CogHoTT, a brand-new proof assistant based on Homotopy Type Theory



Equality in Type Theory

A formulation using the type system:

ID ID-INTRO
I'ET type I'FA B:T I'=t:T
I'HIdr A B type I'Freflp t:Idrtt
ID-ELiM (J)

I'-4:Idrtu I''x:T,e:Idrt x = P type I'p: P{t/x,reflr t/e}
I'EJxzepip: P{lu/x,i/e}

CogHoTT, a brand-new proof assistant based on Homotopy Type Theory



Type and Set Theory

Types Sets

A set

a: A element

B(x) family of sets
b(x): B(x)  family of elements
0,1 ©,{0}

A+ B disjoint union

A X B set of pairs
A—B set of functions
Y (x:ayB(x)  disjoint sum
[I(x:a) B(x product

Id 4 {(x,x)|x€ A}




Problem with ldentity Type

The following definitions should coincides with equality.

Functional Extensionality:
(f~8) = q (f(x) = g(x)).
Univalence:

(A~B):= Y isequiv(f)

f:A—B

( y (fogwidB))x( y (hofwidA)>

:B—A h:B— A

where isequiv(f) :
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Type and Homotopy [ heory

Types Homotopy

A space

a:A point

B(x) fibration
b(x):B(x)  section

0,1 D, %

A+ B coproduct

A X B product space
A — B function space

D (x:A) B(x)  total space
[T(x:a) B(x)  space of sections

ld4 path space A!




00-groupoids and equality

type T is a space

CogHoTT, a brand-new proof assistant based on Homotopy Type Theory



00-groupoids and equality

type T is a space

\4

programs :

2T are proofs of equality
points p:a=b
are paths

.&zz/a,_ CogHoTT, a brand-new proof assistant based on Homotopy Type Theory




00-groupoids and equality

type T_if a space Path operations:
id ra=Ta
p- :b=T1a

qop :a-=TC

Homotopies:
left-id :id o p =a=b p

programs : right-id : poid == p
T are proofs of equality - 6 (q 0 p) Zasd
boints p:a=b assoc (Foq)op

are paths

I&I/u'a/— CogHoTT, a brand-new proof assistant based on Homotopy Type Theory




A Hierarchy of Types

A Fresh Look at the Impredicative Sort of CIC



A Hierarchy of Types

One of the main contribution of V.V.in type theory
is the notion of levels of homotopy of types.
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A Hierarchy of Types

Types are classified by the complexity of their
equality/identity type.

Simplest (singleton) types are called contractible:

sContr(A):= )  |] (a=1x).
(a:A) (x:A)

A Fresh Look at the Impredicative Sort of CIC



A Hierarchy of Types

Types are classified by the complexity of their
equality/identity type.

Proposition have a contractible equality:

sProp(P) := | | (x = ).

x,y:P

A Fresh Look at the Impredicative Sort of CIC



A Hierarchy of Types

Types are classified by the complexity of their
equality/identity type.

Then, n-Types are defined inductively:

Define the predicate is-n-type : Y — U for n > —2 by recursion as follows:

isContr(X) T )
H(x,y:X) iS-n’_type(x =y ]/) if n = 1’1/ 4.

is-n-type(X) 1= {
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A Hierarchy of Types

This defines the following hierarchy:

|-Type h-groupoids

A Fresh Look at the Impredicative Sort of CIC



Extensional principles

The following definitions should coincides with equality.

Functional Extensionality:
(f~8) = ]} (f(x) = g(x)).
Univalence:

(A~B):= Y isequiv(f)

f:A—B

where isequiv(f) :

(X (fogr~ids)) x ( X (hof~ida))

:B—A h:B— A

I&I/z/a/- Equivalences for Free!




Extensional principles

It’s time for white board.

.hu’a/- Equivalences for Free!




A Hierarchy of Universes
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A Hierarchy of Universes

To avoid paradox a la Russell, we need to
introduce a hierarchy of universes in type theory.

—U; 1 Ui

.&I/u'a/- A Fresh Look at the Impredicative Sort of CIC




A Hierarchy of Universes

This is a sufficient condition to ensure consistency,
but it is often a bit overkilled and one would like
to relax it.
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A Hierarchy of Universes

Syntactically, the management of the hierarchy can
be improved by universe polymorphism which
allows to use the same definition at different levels.

A Fresh Look at the Impredicative Sort of CIC



A Hierarchy of Universes

V.V. has proposed a semantic way to relax the
hierarchy, based on so-called resizing rules.
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Resizing Rules

Resizing rule for equivalent types.

U:Univ ©T'HFXq:U T'Fis:weqgXi Xy
F"XQIU

(RR5)

(from V.V.’s talk at Bergen, 2011 )
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Resizing Rules

In a classical setting, every mere proposition is
equivalent to either True or False.

True and False can be typed in the lowest universe.

A Fresh Look at the Impredicative Sort of CIC



Resizing Rules

Resizing rule for mere propositions.

'+ s :2saprop X
I'-X:UU

RR1
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Resizing Rules

Resizing rule for mere propositions.

'+ s :2saprop X
I'-X:UU

RR1

This is corresponds to the impredicativity of Prop
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A Fresh Look at Prop
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A Fresh Look at Prop

This suggests that Prop should be interpreted
as a universe of mere propositions.
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A Fresh Look at Prop

This suggests that Prop should be interpreted
as a universe of mere propositions.

Problem: In Cogq,
L =AY

is in Prop for all type A
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A Fresh Look at Prop

Problem: In Cogq,

L =AY

is in Prop for all type A

This means that the current Prop is implicitly
assuming that every type is an h-set !

A Fresh Look at the Impredicative Sort of CIC



A Fresh Look at Prop

One possible way out
(as done in the HoTT Coq library):

Treat Prop as a taboo and not use it.

A Fresh Look at the Impredicative Sort of CIC



A Fresh Look at Prop

But maybe we can do better and fix it !
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A Fresh Look at Prop

But maybe we can do better and fix it !

The rest of this talk is joint work with
Gaetan Gilbert and Matthieu Sozeau.

Gaetan is implementing this feature, to be
integrated hopefully in a future version Cogq.

I&I/z&'a,- A Fresh Look at the Impredicative Sort of CIC




Prop under the Knife of HoTT

When an inductive type is defined in Prop, it
can be eliminated only when building a Prop.

A Fresh Look at the Impredicative Sort of CIC



Prop under the Knife of HoTT

When an inductive type is defined in Prop, it
can be eliminated only when building a Prop.

This corresponds to the fact that propositional
truncation can be eliminated

(A= B) = (l|A]| = B)
only when B is a mere proposition.
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Prop under the Knife of HoTT

First motto:

“Defining an inductive type in Prop corresponds

to using propositional truncation”
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Prop under the Knife of HoTT

First motto:

“Defining an inductive type in Prop corresponds
to using propositional truncation”

That is, morally, every type in Prop is squashed.
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VWhen Props produce lypes

In CIC, there is the so-called singleton elimination:

“A singleton definition has only one constructor
and all the arguments of this constructor have
type Prop.”
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VWhen Props produce lypes

In CIC, there is the so-called singleton elimination:

“A singleton definition has only one constructor
and all the arguments of this constructor have
type Prop.”

This covers for instance conjunction or the
accessibility predicate but also equality !
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VWhen Props produce lypes

With this new insight, singleton elimination can be
seen as a syntactic condition on P:Prop which
ensures that

Pll= P

A Fresh Look at the Impredicative Sort of CIC



Problem

Allowing squashed equality to be unsquashed
is implicitly assuming that every type is an h-set

UIP hard-coded

A Fresh Look at the Impredicative Sort of CIC



Problem

The problem is that it doesn’t take into account
the number of occurrences of

parameters/arguments in the return type.

A Fresh Look at the Impredicative Sort of CIC



When Props produce Types (ll)

Inductive eq (A:Type) (x:A): A —-> Prop
:= eq refl : eqg A xX X.

a variable that occurs twice must be in h-sets.
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When Props produce Types (ll)

Inductive eq (A:Type) (x:A): A —-> Prop

eq refl : eqg A
X OCCUrs twice

a variable that occurs twice must be in h-sets.
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When Props produce Types (ll)

What about functions occurring in the return type ?

Vect (A : Prop) : nat —-> Prop :=
nil : Vect A 0
| cons : A -> forall n : nat,
Vect A n —-> Vect A (S n)

.&I/u'a/- A Fresh Look at the Impredicative Sort of CIC




When Props produce Types (ll)

What about functions occurring in the return type ?

Vect (A : Prop) : nat —-> Prop :=
nil : Vect A O
| cons : A -> forall n : nat,

Vect A n —-> Vect A (S:nﬂ

S must be injective

A Fresh Look at the Impredicative Sort of CIC



What about multiple
constructors !

Inductive le : nat -> nat -> Prop :=
le_O:foralln:nat, O<=n
| le_S:forallnm:nat,m<=n->Sm<=Sn
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VVhat about multiple
constructors !

Inductive le : nat -> nat -> Prop :=
le_O: foralln: na,t,(O <= n]
| le_S:forallnm :nat, m<=n ->(S m<=S n]

the return types of different
constructors must be orthogonal
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VVhat about multiple
constructors !

Inductive le : nat -> nat -> Prop :=
le_O: foralln: na,t,(O <= n]
| le_S : forall n m : nat, \? <=1 ->(S m<=39S n]

/

Sums don't preserve mere propositions in general, but they do for disjoint sums.

v/

the return types of different

constructors must be orthogonal
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Remark
Definitions Matter

Inductive le’ (n: nat) : nat -> Prop :=
len:n<=n
| le_S:forallm:nat,n<=m->n<=Sm
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Remark
Definitions Matter

Inductive le’ (n : nat) : nat -> Prop :=
le_n :[n <= n}
| 1le_S: forall

. nat, n<=m->[n <=3 m)

/

the criterion does not work for

this (equivalent) definition

A Fresh Look at the Impredicative Sort of CIC



When a Prop is h-Prop

|. every argument that does not appear
in the return type must be in Prop

2. every argument/parameters that appears
more than once in the return type must be h-Set

3. every argument that appears exactly once is OK

4. the return types of different constructors
must be orthogonal
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When a Prop is -1-Type

|. every argument that does not appear
in the return type must be in -1-Type

2. every argument/parameters that appears
more than once in the return type must be 0-Type

3. every argument that appears exactly once is OK

4. the return types of different constructors
must be orthogonal
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Going to Higher Level

This characterisation generalises to n-types

|. every argument that does not appear
in the return type must be in n-Type

2. every argument/parameters that appears
more than once in the return type must be (n+1)-Type

3. every argument that appears exactly once is OK

4. the return types of different constructors
must be orthogonal
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Going to Higher Level

This characterisation generalises to n-types

|. every argument that does not appear
in the return type must be in n-Type

2. every argument/parameters that appears
more than once in the return type must be (n+1)-Type

3. every argument that appears exactly once is OK




Remark

This characterisation is very similar to what
Jesper Cockx et al. use to do pattern-matching
without K in Agda.
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Remark

This characterisation is very similar to what
Jesper Cockx et al. use to do pattern-matching
without K in Agda.

We have extended it in February with Jesper,
| can talk about it offline.
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WWhat is this
Impredicative Universe !

The least we get is a new version of Cogq:
- compatible with UIP
- compatible with univalence

- admitting the axiom :
forall (P:Prop) (Xy:P),x=y
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We Want More !
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We Want More !

Replace the admissible axiom with a

definitional equality:

forall (P:Prop) Xy :P),x=y
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Problem

Congruence with pattern-matching and
fixpoints requires to apply inversion lemma
even to neutral terms ... and this potentially
infinitely many times.
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Problem

Congruence with pattern-matching and
fixpoints requires to apply inversion lemma
even to neutral terms ... and this potentially
infinitely many times.

A naive implementation gives rise
to an undecidable type checker !
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Acc is not an SProp

Perfectly valid mere proposition,
but with infinite unfolding ...

Inductive Acc (A : Type) (R: A ->A ->Prop) (x:A):Prop :=
Acc_intro: (forally: A,Ryx->AccRy) >AccRx
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Acc is not an SProp

Perfectly valid mere proposition,
but with infinite unfolding ...

Inductive Acc (A : Type) (R: A ->A ->Prop) (x:A):Prop :=
Acc_intro: (forally: A,Ryx->AccRy) >AccRx

Definition Acc_inv: Acc Rx->forall y:A, Ry x->Acc Ry.
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Acc is not an SProp

Perfectly valid mere proposition,
but with infinite unfolding ...

Inductive Acc (A : Type) (R: A ->A ->Prop) (x:A):Prop :=
Acc_intro: (forally: A,Ryx->AccRy) >AccRx

Definition Acc_inv: Acc Rx->forall y:A, Ry x->Acc Ry.

a = Acc_intro x (Acc_inv a) = Acc_intro x (Acc_inv ...)
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Acc is not an SProp

It is not possible to guess how many times an
inhabitant of Acc R x has to be unfolded.

.bt'z/a,-
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Termination-unfolding criterion

We need to enforce termination of
inversion through a syntactic check
similar to the guard condition for fixpoints.

That is, recursive arguments of a constructor
must have as indices strict sub terms of the
indices of the return type.
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Examples

Inductive le : nat -> nat -> Prop :=
le_O:foralln:nat, O<=n
| le_S:forallnm:nat, m<=n->Sm<=Sn
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Examples

Inductive le : nat -> nat -> Prop :=
le_O:forall n:nat, O <=n

| le_S:forallnm: na,t,<= n -> <= SN

m is a strict subterm of Sm
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Examples

Inductive le : nat -> nat -> Prop :=
le_O:forall n:nat, O <=n

| le_S:forallnm: na,t,<= n -> <= S1n

m is a strict subterm of Sm
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Examples

Inductive Acc (A :Type) (R: A->A->Prop) (Xx:A)
. Prop :=
Acc_intro: (forally: A, Ryx->AccRy) ->AccR X
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Examples

Inductive Acc (A :Type) (R: A->A->Prop) (Xx:A)
. Prop :=
Acc_intro : (forally : A, Ry x -> Acc F » > Acc

Yy is not related to X
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Examples

Inductive Acc (A :Type) (R: A->A->Prop) (Xx:A)
. Prop :=
Acc_intro : (forally : A, Ry x -> Acc F » > Acc

Yy is not related to X
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Remark

This syntactic characterisation of mere propositions
is incomplete as for instance singleton types are not

accepted.

This is somehow a good point because allowing
singleton types in a definitional proof-irrelevant
universe implies UIP (Peter L.L.).
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The Big Picture
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The Big Picture

~

SProp

forall (P:Prop) (Xy:P),xXx=y
\_

N
Impredicative

J

Prop

Impredicative

forall (P:Prop) (Xy:P),x=y

J

\_

Type

Predicative

IIIZszzZL——

A Fresh Look at the Impredicative Sort of CIC




Getting High(er) ?

fff r N N
(" )
SProp
\_ W,
oSet
. _J
1-SType
N\ y
n-SType
U y
oco-SType
\_ J
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V.V. has already sketched this in 2006!

Uo.o Uio Us.o Us.o
l l l

Ui > Ua g > Us g

l l

Us 2 » Us o

l

Us 3

A very short note on homotopy A-calculus
Vladimir Voevodsky, 2006
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Demo
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Doggy bag

|. Prop can be turned into a syntactic approximation
of mere propositions

2. To get definitional proof-irrelevance, we also need
to restrict recursive types with a guard condition

3. This should be (hopefully) available soon in Cog

4. It may be extended to deal with a // hierarchy of
universes that encodes for homotopy levels.
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