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Road Map

In this talk, I will recall two notions introduced by V.V.
in 2006 in “A very short note on homotopy λ-calculus”.

1. Homotopy types in type theory

2. Universe resizing rules

I will then explain how those two notions allow 
for a fresh look at the impredicative universe of CIC. 
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First, what is Type Theory about ?
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






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
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The denotational semantics trinity
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Curry 1958: le �-calcul simplement typé

Variable
x :A ⇤ x :A

Abstraction
�, x :A ⇤ P :B

� ⇤ �x.P :A⇥ B

Application
� ⇤ P :A⇥ B ⇥ ⇤ Q :A

�,⇥ ⇤ PQ :B

Affaiblissement � ⇤ P :B
�, x :A ⇤ P :B

Contraction
�, x :A, y :A ⇤ P :B

�, z :A ⇤ P [x, y � z] :B

Permutation
�, x :A, y :B,⇥ ⇤ P :C

�, y :B, x :A,⇥ ⇤ P :C

5

variable

abstraction

application

weakening

contraction

exchange

The simply typed λ-calculus
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Curry-Howard (1) .Logique minimale intuitioniste

Variable
x :A ⇤ x :A

Abstraction
�, x :A ⇤ P :B

� ⇤ �x.P :A⇥ B

Application
� ⇤ P :A⇥ B ⇥ ⇤ Q :A

�,⇥ ⇤ PQ :B

Affaiblissement � ⇤ P :B
�, x :A ⇤ P :B

Contraction
�, x :A, y :A ⇤ P :B

�, z :A ⇤ P [x, y � z] :B

Permutation
�, x :A, y :B,⇥ ⇤ P :C

�, y :B, x :A,⇥ ⇤ P :C

7

axiom

⇒ I

⇒ E

weakening

contraction

exchange

Intuitionistic minimal logic



CoqHoTT, a brand-new proof assistant based on Homotopy Type Theory 6

Curry-Howard (1) .Logique minimale intuitioniste

Variable
x :A ⇤ x :A

Abstraction
�, x :A ⇤ P :B

� ⇤ �x.P :A⇥ B

Application
� ⇤ P :A⇥ B ⇥ ⇤ Q :A

�,⇥ ⇤ PQ :B

Affaiblissement � ⇤ P :B
�, x :A ⇤ P :B

Contraction
�, x :A, y :A ⇤ P :B

�, z :A ⇤ P [x, y � z] :B

Permutation
�, x :A, y :B,⇥ ⇤ P :C

�, y :B, x :A,⇥ ⇤ P :C

7

axiom

⇒ I

⇒ E

weakening

contraction

exchange

Intuitionistic minimal logic

Cu
rr
y

Ho
wa
rd



CoqHoTT, a brand-new proof assistant based on Homotopy Type Theory 7

Cut elimination ⇔ β-reduction

Other correspondances
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Lifting the Curry-Howard correspondance to 
dependent types ⇒ more complex 

formulas

∏ n : nat. ∑ m : nat. Id (m, n + 1)

∀ n : nat. ∃ m : nat. m = n + 1
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Lifting the Curry-Howard correspondance to 
dependent types ⇒ more complex 

formulas

A mechanized model of Type Theory based on groupoids 5

Empty

· `

Decl

� ` T type x 62 �

�, x : T `

Var

� ` (x : T ) 2 �

� ` x : T

Prod/Sigma

�, x : A ` B type

� ` ⇧/⌃x : A.B type

Pair

� ` t : A � ` u : B{t/x}
� ` (t, u)x:A.B : ⌃x : A.B

Proj1

� ` t : ⌃x : A.B

� ` ⇡1t : A

Proj2

� ` t : ⌃x : A.B

� ` ⇡2t : B{⇡1t/x}

Conv

� ` t : A � ` B type A = B

� ` t : B

Lam

�, x : A ` t : B

� ` �x : A.t : ⇧x : A.B

App

� ` t : ⇧x : A.B � ` t0 : A

� ` t t0 : B{t0/x}

Id

� ` T type � ` A,B : T

� ` IdT A B type

Id-Intro

� ` t : T

� ` reflT t : IdT t t

Id-Elim (J)

� ` i : IdT t u �, x : T, e : IdT t x ` P type � ` p : P{t/x, reflT t/e}
� ` J�x e.P i p : P{u/x, i/e}

Fig. 1: Typing judgments for our extended MLTT

Classes and projections. The formalization makes heavy use of type classes
and sigma types, both defined internally as parameterized records. We also have
modified the representation of record projections, making them primitive to allow
a more economical representation, leaving out the parameters of the record type
they are applied to. This change, which is justified by bidirectional presentations
of type theory, makes typechecking exponentially faster in the case of nested
structures (see [15] for a detailed explanation of this phenomenon).

One peculiarity of Coq’s class system we use is the ability to nest classes.
We use the A of B :> A notation in a type class definition Class B as an
abbreviation for defining A of B as an instance of A.

Polymorphic Universes. To typecheck our formalization, we also need a
stronger universe system than what vanilla Coq o↵ers. Indeed, if we are to
give a uniform (shallow) translation of type theory in type theory, we have to
define a translation of the type universe (a groupoid) as a term of the calculus
and equip type constructors like ⇧ and ⌃ with JtypeK structures as well. As
JtypeK itself contains a Type, the following situation occurs when we define the
translation of, e.g. sums: we should have J⌃ U T typeK = J⌃K JUK JT K : JtypeK.
To ensure consistency of the interpretations of types inside JUK, JT K and the
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and sigma types, both defined internally as parameterized records. We also have
modified the representation of record projections, making them primitive to allow
a more economical representation, leaving out the parameters of the record type
they are applied to. This change, which is justified by bidirectional presentations
of type theory, makes typechecking exponentially faster in the case of nested
structures (see [15] for a detailed explanation of this phenomenon).

One peculiarity of Coq’s class system we use is the ability to nest classes.
We use the A of B :> A notation in a type class definition Class B as an
abbreviation for defining A of B as an instance of A.

Polymorphic Universes. To typecheck our formalization, we also need a
stronger universe system than what vanilla Coq o↵ers. Indeed, if we are to
give a uniform (shallow) translation of type theory in type theory, we have to
define a translation of the type universe (a groupoid) as a term of the calculus
and equip type constructors like ⇧ and ⌃ with JtypeK structures as well. As
JtypeK itself contains a Type, the following situation occurs when we define the
translation of, e.g. sums: we should have J⌃ U T typeK = J⌃K JUK JT K : JtypeK.
To ensure consistency of the interpretations of types inside JUK, JT K and the

Type checking ⟺ Correctness checking
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Of course, these simplifications could as well be taken as evidence that the new methods will
not, ultimately, prove to be really constructive. However, we emphasize again that the reader
does not have to care, or worry, about constructivity in order to read this book. The point is
that in all of the above examples, the version of the theory we give has independent advantages,
whether or not LEM and AC are assumed to be available. Constructivity, if attained, will be an
added bonus.

Given this discussion of adding new principles such as univalence, higher inductive types,
AC, and LEM, one may wonder whether the resulting system remains consistent. (One of the
original virtues of type theory, relative to set theory, was that it can be seen to be consistent
by proof-theoretic means). As with any foundational system, consistency is a relative ques-
tion: “consistent with respect to what?” The short answer is that all of the constructions and
axioms considered in this book have a model in the category of Kan complexes, due to Voevod-
sky [KLV12] (see [LS13b] for higher inductive types). Thus, they are known to be consistent
relative to ZFC (with as many inaccessible cardinals as we need nested univalent universes).
Giving a more traditionally type-theoretic account of this consistency is work in progress (see,
e.g., [LH12, BCH13]).

We summarize the different points of view of the type-theoretic operations in Table 1.

Types Logic Sets Homotopy

A proposition set space
a : A proof element point
B(x) predicate family of sets fibration
b(x) : B(x) conditional proof family of elements section
0, 1 ?,> ∆, {∆} ∆, ⇤
A + B A _ B disjoint union coproduct
A ⇥ B A ^ B set of pairs product space
A ! B A ) B set of functions function space
Â(x:A) B(x) 9x:AB(x) disjoint sum total space
’(x:A) B(x) 8x:AB(x) product space of sections
IdA equality = { (x, x) | x 2 A } path space AI

Table 1: Comparing points of view on type-theoretic operations

Open problems

For those interested in contributing to this new branch of mathematics, it may be encouraging to
know that there are many interesting open questions.

Perhaps the most pressing of them is the “constructivity” of the Univalence Axiom, posed
by Voevodsky in [Voe12]. The basic system of type theory follows the structure of Gentzen’s
natural deduction. Logical connectives are defined by their introduction rules, and have elimi-
nation rules justified by computation rules. Following this pattern, and using Tait’s computabil-
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How is equality 
modeled ?
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however, it is convenient to also use the standard equality symbol for this; thus “a = b” will also
be a notation for the type IdA(a, b) corresponding to the proposition that a equals b. For clarity,
we may also write “a =A b” to specify the type A. If we have an element of a =A b, we may say
that a and b are equal, or sometimes propositionally equal if we want to emphasize that this is
different from the judgmental equality a ⌘ b discussed in §1.1.

Just as we remarked in §1.11 that the propositions-as-types versions of “or” and “there exists”
can include more information than just the fact that the proposition is true, nothing prevents
the type a = b from also including more information. Indeed, this is the cornerstone of the
homotopical interpretation, where we regard witnesses of a = b as paths or equivalences between
a and b in the space A. Just as there can be more than one path between two points of a space,
there can be more than one witness that two objects are equal. Put differently, we may regard
a = b as the type of identifications of a and b, and there may be many different ways in which a
and b can be identified. We will return to the interpretation in Chapter 2; for now we focus on
the basic rules for the identity type.

Given a type A : U and two elements a, b : A, we can form the type a =A b : U in the same
universe. The basic way to construct an element of a = b is to know that a and b are the same.
Thus, we have a dependent function

refl : ’
a:A

(a =A a)

called reflexivity, which says that every element of A is equal to itself (in a specified way). We
regard refla as being the constant path at the point a

In particular, this means that if a and b are judgmentally equal, a ⌘ b, then we also have an
element refla : a =A b. This is well-typed because a ⌘ b means that also the type a =A b is
judgmentally equal to a =A a, which is the type of refla.

The induction principle for the identity types is one of the most subtle parts of type theory,
and crucial to the homotopy interpretation. We begin by considering an important consequence
of it, the principle that “equals may be substituted for equals,” as expressed by the following:

Indiscernability of identicals: For every family

C : A ! U

there is a function
f : ’

(x,y:A)
’

(p:x=Ay)
C(x) ! C(y)

such that
f (x, x, reflx) :⌘ idC(x).

This says that every family of types C respects equality, in the sense that applying C to equal
elements of A also results in a function between the resulting types. The displayed equality
states that the function associated to reflexivity is the identity function (and we shall see that, in
general, the function f (x, y, p) : C(x) ! C(y) is always an equivalence of types).

Indiscernability of identicals can be regarded as a recursion principle for the identity type,
analogous to those given for booleans and natural numbers above. It gives a mapping property
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of x =A y with respect to certain other reflexive, binary relations on A, namely those of the form
C(x) ! C(y) for some unary predicate C(x). We could also formulate a more general recursion
principle with respect to reflexive relations of the more general form C(x, y). However, in order
to fully characterize the identity type, we must generalize it to an induction principle, which not
only considers maps out of x =A y but also families over it. Put differently, we consider not only
allowing equals to be substituted for equals, but also taking into account the evidence p for the
equality.

1.12.1 Path induction

The induction principle for the identity type is called path induction in view of the homotopical
interpretation to be explained in the introduction to Chapter 2. It can be seen as stating that the
family of identity types is freely generated by the elements of the form reflx : x = x.

Path induction: Given a family
C : ’

x,y:A
(x =A y) ! U

and a function
c : ’

x:A
C(x, x, reflx),

there is a function
f : ’

(x,y:A)
’

(p:x=Ay)
C(x, y, p)

such that
f (x, x, reflx) :⌘ c(x).

To understand this principle, consider first the simpler case when C does not depend on p.
Then we have C : A ! A ! U , which we may regard as a predicate depending on two elements
of A. We are interested in knowing when the proposition C(x, y) holds for some pair of elements
x, y : A. In this case, the hypothesis of path induction says that we know C(x, x) holds for all
x : A, i.e. that if we evaluate C at the pair x, x, we get a true proposition — so C is a reflexive
relation. The conclusion then tells us that C(x, y) holds whenever x = y. This is exactly the more
general recursion principle for reflexive relations mentioned above.

The general, inductive form of the rule allows C to also depend on the witness p : x = y to the
identity between x and y. In the premise, we not only replace x, y by x, x, but also simultaneously
replace p by reflexivity: to prove a property for all elements x, y and paths p : x = y between
them, it suffices to consider all the cases where the elements are x, x and the path is reflx : x = x.
If we were viewing types just as sets, it would be unclear what this buys us, but since there may
be many different identifications p : x = y between x and y, it makes sense to keep track of them
in considering families over the type x =A y. In Chapter 2 we will see that this is very important
to the homotopy interpretation.

If we package up path induction into a single function, it takes the form:

ind=A : ’
(C:’(x,y:A)(x=Ay)!U )

⇣
’(x:A)C(x, x, reflx)

⌘
! ’

(x,y:A)
’

(p:x=Ay)
C(x, y, p)

Equality is described using Martin-Löf Identity Type.
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of x =A y with respect to certain other reflexive, binary relations on A, namely those of the form
C(x) ! C(y) for some unary predicate C(x). We could also formulate a more general recursion
principle with respect to reflexive relations of the more general form C(x, y). However, in order
to fully characterize the identity type, we must generalize it to an induction principle, which not
only considers maps out of x =A y but also families over it. Put differently, we consider not only
allowing equals to be substituted for equals, but also taking into account the evidence p for the
equality.

1.12.1 Path induction

The induction principle for the identity type is called path induction in view of the homotopical
interpretation to be explained in the introduction to Chapter 2. It can be seen as stating that the
family of identity types is freely generated by the elements of the form reflx : x = x.

Path induction: Given a family
C : ’

x,y:A
(x =A y) ! U

and a function
c : ’

x:A
C(x, x, reflx),

there is a function
f : ’

(x,y:A)
’

(p:x=Ay)
C(x, y, p)

such that
f (x, x, reflx) :⌘ c(x).

To understand this principle, consider first the simpler case when C does not depend on p.
Then we have C : A ! A ! U , which we may regard as a predicate depending on two elements
of A. We are interested in knowing when the proposition C(x, y) holds for some pair of elements
x, y : A. In this case, the hypothesis of path induction says that we know C(x, x) holds for all
x : A, i.e. that if we evaluate C at the pair x, x, we get a true proposition — so C is a reflexive
relation. The conclusion then tells us that C(x, y) holds whenever x = y. This is exactly the more
general recursion principle for reflexive relations mentioned above.

The general, inductive form of the rule allows C to also depend on the witness p : x = y to the
identity between x and y. In the premise, we not only replace x, y by x, x, but also simultaneously
replace p by reflexivity: to prove a property for all elements x, y and paths p : x = y between
them, it suffices to consider all the cases where the elements are x, x and the path is reflx : x = x.
If we were viewing types just as sets, it would be unclear what this buys us, but since there may
be many different identifications p : x = y between x and y, it makes sense to keep track of them
in considering families over the type x =A y. In Chapter 2 we will see that this is very important
to the homotopy interpretation.

If we package up path induction into a single function, it takes the form:

ind=A : ’
(C:’(x,y:A)(x=Ay)!U )

⇣
’(x:A)C(x, x, reflx)

⌘
! ’

(x,y:A)
’

(p:x=Ay)
C(x, y, p)

Leibniz principle of “Indiscernability of Identicals”

Equality is described using Martin-Löf Identity Type.
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A mechanized model of Type Theory based on groupoids 5

Empty

· `

Decl

� ` T type x 62 �

�, x : T `

Var

� ` (x : T ) 2 �

� ` x : T

Prod/Sigma

�, x : A ` B type

� ` ⇧/⌃x : A.B type

Pair

� ` t : A � ` u : B{t/x}
� ` (t, u)x:A.B : ⌃x : A.B

Proj1

� ` t : ⌃x : A.B

� ` ⇡1t : A

Proj2

� ` t : ⌃x : A.B

� ` ⇡2t : B{⇡1t/x}

Conv

� ` t : A � ` B type A = B

� ` t : B

Lam

�, x : A ` t : B

� ` �x : A.t : ⇧x : A.B

App

� ` t : ⇧x : A.B � ` t0 : A

� ` t t0 : B{t0/x}

Id

� ` T type � ` A,B : T

� ` IdT A B type

Id-Intro

� ` t : T

� ` reflT t : IdT t t

Id-Elim (J)

� ` i : IdT t u �, x : T, e : IdT t x ` P type � ` p : P{t/x, reflT t/e}
� ` J�x e.P i p : P{u/x, i/e}

Fig. 1: Typing judgments for our extended MLTT

Classes and projections. The formalization makes heavy use of type classes
and sigma types, both defined internally as parameterized records. We also have
modified the representation of record projections, making them primitive to allow
a more economical representation, leaving out the parameters of the record type
they are applied to. This change, which is justified by bidirectional presentations
of type theory, makes typechecking exponentially faster in the case of nested
structures (see [15] for a detailed explanation of this phenomenon).

One peculiarity of Coq’s class system we use is the ability to nest classes.
We use the A of B :> A notation in a type class definition Class B as an
abbreviation for defining A of B as an instance of A.

Polymorphic Universes. To typecheck our formalization, we also need a
stronger universe system than what vanilla Coq o↵ers. Indeed, if we are to
give a uniform (shallow) translation of type theory in type theory, we have to
define a translation of the type universe (a groupoid) as a term of the calculus
and equip type constructors like ⇧ and ⌃ with JtypeK structures as well. As
JtypeK itself contains a Type, the following situation occurs when we define the
translation of, e.g. sums: we should have J⌃ U T typeK = J⌃K JUK JT K : JtypeK.
To ensure consistency of the interpretations of types inside JUK, JT K and the

A formulation using the type system:
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Of course, these simplifications could as well be taken as evidence that the new methods will
not, ultimately, prove to be really constructive. However, we emphasize again that the reader
does not have to care, or worry, about constructivity in order to read this book. The point is
that in all of the above examples, the version of the theory we give has independent advantages,
whether or not LEM and AC are assumed to be available. Constructivity, if attained, will be an
added bonus.

Given this discussion of adding new principles such as univalence, higher inductive types,
AC, and LEM, one may wonder whether the resulting system remains consistent. (One of the
original virtues of type theory, relative to set theory, was that it can be seen to be consistent
by proof-theoretic means). As with any foundational system, consistency is a relative ques-
tion: “consistent with respect to what?” The short answer is that all of the constructions and
axioms considered in this book have a model in the category of Kan complexes, due to Voevod-
sky [KLV12] (see [LS13b] for higher inductive types). Thus, they are known to be consistent
relative to ZFC (with as many inaccessible cardinals as we need nested univalent universes).
Giving a more traditionally type-theoretic account of this consistency is work in progress (see,
e.g., [LH12, BCH13]).

We summarize the different points of view of the type-theoretic operations in Table 1.

Types Logic Sets Homotopy

A proposition set space
a : A proof element point
B(x) predicate family of sets fibration
b(x) : B(x) conditional proof family of elements section
0, 1 ?,> ∆, {∆} ∆, ⇤
A + B A _ B disjoint union coproduct
A ⇥ B A ^ B set of pairs product space
A ! B A ) B set of functions function space
Â(x:A) B(x) 9x:AB(x) disjoint sum total space
’(x:A) B(x) 8x:AB(x) product space of sections
IdA equality = { (x, x) | x 2 A } path space AI

Table 1: Comparing points of view on type-theoretic operations

Open problems

For those interested in contributing to this new branch of mathematics, it may be encouraging to
know that there are many interesting open questions.

Perhaps the most pressing of them is the “constructivity” of the Univalence Axiom, posed
by Voevodsky in [Voe12]. The basic system of type theory follows the structure of Gentzen’s
natural deduction. Logical connectives are defined by their introduction rules, and have elimi-
nation rules justified by computation rules. Following this pattern, and using Tait’s computabil-
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2.4 Homotopies and equivalences

So far, we have seen how the identity type x =A y can be regarded as a type of identifications,
paths, or equivalences between two elements x and y of a type A. Now we investigate the appro-
priate notions of “identification” or “sameness” between functions and between types. In §§2.9
and 2.10, we will see that homotopy type theory allows us to identify these with instances of the
identity type, but before we can do that we need to understand them in their own right.

Traditionally, we regard two functions as the same if they take equal values on all inputs.
Under the propositions-as-types interpretation, this suggests that two functions f and g (per-
haps dependently typed) should be the same if the type ’(x:A)( f (x) = g(x)) is inhabited. Un-
der the homotopical interpretation, this dependent function type consists of continuous paths or
functorial equivalences, and thus may be regarded as the type of homotopies or of natural isomor-
phisms.We will adopt the topological terminology for this.

Definition 2.4.1. Let f , g : ’(x:A) P(x) be two sections of a type family P : A ! U . A homotopy
from f to g is a dependent function of type

( f ⇠ g) :⌘ ’
x:A

( f (x) = g(x)).

Note that a homotopy is not the same as an identification ( f = g). However, in §2.9 we will
introduce an axiom making homotopies and identifications “equivalent”.

The following proofs are left to the reader.

Lemma 2.4.2. Homotopy is an equivalence relation on each function type A ! B. That is, we have
elements of the types

’
f :A!B

( f ⇠ f )

’
f ,g:A!B

( f ⇠ g) ! (g ⇠ f )

’
f ,g,h:A!B

( f ⇠ g) ! (g ⇠ h) ! ( f ⇠ h).

The first level of the continuity/naturality of homotopies can be expressed as follows:

Lemma 2.4.3. Suppose H : f ⇠ g is a homotopy between functions f , g : A ! B and let p : x =A y.
Then we have

H(x) ⇧ g(p) = f (p) ⇧ H(y).

We may also draw this as a commutative diagram:

f (x)
f (p)

H(x)

f (y)

H(y)

g(x)
g(p)

g(y)
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Example 2.4.9. For any p : x =A y and P : A ! U , the function

transportP(p, –) : P(x) ! P(y)

has a quasi-inverse given by transportP(p�1, –); this follows from Lemma 2.3.9.

In general, we will only use the word isomorphism (and similar words such as bijection) in the
special case when the types A and B “behave like sets” (see §3.1). In this case, the type (2.4.5) is
unproblematic. We will reserve the word equivalence for an improved notion isequiv( f ) with the
following properties:

(i) For each f : A ! B there is a function qinv( f ) ! isequiv( f ).
(ii) Similarly, for each f we have isequiv( f ) ! qinv( f ); thus the two are logically equivalent

(see §1.11).
(iii) For any two inhabitants e1, e2 : isequiv( f ) we have e1 = e2.

In Chapter 4 we will see that there are many different definitions of isequiv( f ) which satisfy these
three properties, but that all of them are equivalent. For now, to convince the reader that such
things exist, we mention only the easiest such definition:

isequiv( f ) :⌘
⇣

Â
g:B!A

( f � g ⇠ idB)
⌘
⇥

⇣
Â

h:B!A
(h � f ⇠ idA)

⌘
. (2.4.10)

We can show (i) and (ii) for this definition now. A function qinv( f ) ! isequiv( f ) is easy to define
by taking (g, a, b) to (g, a, g, b). In the other direction, given (g, a, h, b), let g be the composite
homotopy

g
b
⇠ h � f � g a

⇠ h

and let b0 : g � f ⇠ idA be obtained from g and b. Then (g, a, b0) : qinv( f ).
Property (iii) for this definition is not too hard to prove either, but it requires identifying the

identity types of cartesian products and dependent pair types, which we will discuss in §§2.6
and 2.7. Thus, we postpone it as well; see §4.3. At this point, the main thing to take away is
that there is a well-behaved type which we can pronounce as “ f is an equivalence”, and that we
can prove f to be an equivalence by exhibiting a quasi-inverse to it. In practice, this is the most
common way to prove that a function is an equivalence.

In accord with the proof-relevant philosophy, an equivalence from A to B is defined to be a
function f : A ! B together with an inhabitant of isequiv( f ), i.e. a proof that it is an equivalence.
We write (A ' B) for the type of equivalences from A to B, i.e. the type

(A ' B) :⌘ Â
f :A!B

isequiv( f ). (2.4.11)

Property (iii) above will ensure that if two equivalences are equal as functions (that is, the under-
lying elements of A ! B are equal), then they are also equal as equivalences (see §2.7). Thus, we
often abuse notation by denoting an equivalence by the same letter as its underlying function.

We conclude by observing:

Lemma 2.4.12. Type equivalence is an equivalence relation on U . More specifically:
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The following definitions should coincides with equality.

Functional Extensionality:

Univalence:

where
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Of course, these simplifications could as well be taken as evidence that the new methods will
not, ultimately, prove to be really constructive. However, we emphasize again that the reader
does not have to care, or worry, about constructivity in order to read this book. The point is
that in all of the above examples, the version of the theory we give has independent advantages,
whether or not LEM and AC are assumed to be available. Constructivity, if attained, will be an
added bonus.

Given this discussion of adding new principles such as univalence, higher inductive types,
AC, and LEM, one may wonder whether the resulting system remains consistent. (One of the
original virtues of type theory, relative to set theory, was that it can be seen to be consistent
by proof-theoretic means). As with any foundational system, consistency is a relative ques-
tion: “consistent with respect to what?” The short answer is that all of the constructions and
axioms considered in this book have a model in the category of Kan complexes, due to Voevod-
sky [KLV12] (see [LS13b] for higher inductive types). Thus, they are known to be consistent
relative to ZFC (with as many inaccessible cardinals as we need nested univalent universes).
Giving a more traditionally type-theoretic account of this consistency is work in progress (see,
e.g., [LH12, BCH13]).

We summarize the different points of view of the type-theoretic operations in Table 1.

Types Logic Sets Homotopy

A proposition set space
a : A proof element point
B(x) predicate family of sets fibration
b(x) : B(x) conditional proof family of elements section
0, 1 ?,> ∆, {∆} ∆, ⇤
A + B A _ B disjoint union coproduct
A ⇥ B A ^ B set of pairs product space
A ! B A ) B set of functions function space
Â(x:A) B(x) 9x:AB(x) disjoint sum total space
’(x:A) B(x) 8x:AB(x) product space of sections
IdA equality = { (x, x) | x 2 A } path space AI

Table 1: Comparing points of view on type-theoretic operations

Open problems

For those interested in contributing to this new branch of mathematics, it may be encouraging to
know that there are many interesting open questions.

Perhaps the most pressing of them is the “constructivity” of the Univalence Axiom, posed
by Voevodsky in [Voe12]. The basic system of type theory follows the structure of Gentzen’s
natural deduction. Logical connectives are defined by their introduction rules, and have elimi-
nation rules justified by computation rules. Following this pattern, and using Tait’s computabil-
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type T is a space

programs 
a:T are 
points 

proofs of equality  
p : a = b 
are paths 

Path operations:
id : a =T a

p-1 : b =T a

q o p : a =T c

Homotopies:
left-id : id o p =a=b p

right-id : p o id =a=b p

assoc :
r o (q o p) =a=d 
(r o q) o p
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A Hierarchy of Types

One of the main contribution of  V.V. in type theory 
is the notion of levels of homotopy of types.
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Types are classified by the complexity of their 
equality/identity type.
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contractible. Another equivalent definition of contractibility, which is also sometimes convenient,
is the following.

Definition 3.11.1. A type A is contractible, or a singleton, if there is a : A, called the center of
contraction, such that a = x for all x : A. We denote the specified path a = x by contrx.

In other words, the type isContr(A) is defined to be

isContr(A) :⌘ Â
(a:A)

’
(x:A)

(a = x).

Note that under the usual propositions-as-types reading, we can pronounce isContr(A) as “A
contains exactly one element”, or more precisely “A contains an element, and every element of
A is equal to that element”.

Remark 3.11.2. We can also pronounce isContr(A) more topologically as “there is a point a : A
such that for all x : A there exists a path from a to x”. Note that to a classical ear, this sounds like
a definition of connectedness rather than contractibility. The point is that the meaning of “there ex-
ists” in this sentence is a continuous/natural one. A more correct way to express connectedness
would be Â(a:A) ’(x:A)ka = xk; see Lemma 7.5.11.

Lemma 3.11.3. For a type A, the following are logically equivalent.

(i) A is contractible in the sense of Definition 3.11.1.
(ii) A is a mere proposition, and there is a point a : A.

(iii) A is equivalent to 1.

Proof. If A is contractible, then it certainly has a point a : A (the center of contraction), while for
any x, y : A we have x = a = y; thus A is a mere proposition. Conversely, if we have a : A
and A is a mere proposition, then for any x : A we have x = a; thus A is contractible. And we
showed (ii))(iii) in Lemma 3.3.2, while the converse follows since 1 easily has property (ii).

Lemma 3.11.4. For any type A, the type isContr(A) is a mere proposition.

Proof. Suppose given c, c0 : isContr(A). We may assume c ⌘ (a, p) and c0 ⌘ (a0, p0) for a, a0 : A
and p : ’(x:A)(a = x) and p0 : ’(x:A)(a0 = x). By the characterization of paths in S-types, to
show c = c0 it suffices to exhibit q : a = a0 such that q⇤(p) = p0.

We choose q :⌘ p(a0). For the other equality, by function extensionality we must show that
(q⇤(p))(x) = p0(x) for any x : A. For this, it will suffice to show that for any x, y : A and u : x = y
we have u = p(x)�1 ⇧ p(y), since then we would have (q⇤(p))(x) = p(a0)�1 ⇧ p(x) = p0(x). But
now we can invoke path induction to assume that x ⌘ y and u ⌘ reflx. In this case our goal is to
show that reflx = p(x)�1 ⇧ p(x), which is just the inversion law for paths.

Corollary 3.11.5. If A is contractible, then so is isContr(A).

Proof. By Lemma 3.11.4 and Lemma 3.11.3(ii).

Like mere propositions, contractible types are preserved by many type constructors. For
instance, we have:

Simplest (singleton) types are called contractible:

A Hierarchy of Types
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Note that since we are still doing mathematics in type theory, this is a definition in type
theory, which means it is a type — or, rather, a type family. Specifically, for any P : U , the type
isProp(P) is defined to be

isProp(P) :⌘ ’
x,y:P

(x = y).

Thus, to assert that “P is a mere proposition” means to exhibit an inhabitant of isProp(P), which
is a dependent function connecting any two elements of P by a path. The continuity/naturality
of this function implies that not only are any two elements of P equal, but P contains no higher
homotopy either.

Lemma 3.3.2. If P is a mere proposition and x0 : P, then P ' 1.

Proof. Define f : P ! 1 by f (x) :⌘ ?, and g : 1 ! P by g(u) :⌘ x0. The claim follows from the
next lemma, and the observation that 1 is a mere proposition by Theorem 2.8.1.

Lemma 3.3.3. If P and Q are mere propositions such that P ! Q and Q ! P, then P ' Q.

Proof. Suppose given f : P ! Q and g : Q ! P. Then for any x : P, we have g( f (x)) = x since P
is a mere proposition. Similarly, for any y : Q we have f (g(y)) = y since Q is a mere proposition;
thus f and g are quasi-inverses.

That is, as promised in §1.11, if two mere propositions are logically equivalent, then they are
equivalent.

In homotopy theory, a space that is homotopy equivalent to 1 is said to be contractible. Thus,
any mere proposition which is inhabited is contractible (see also §3.11). On the other hand, the
uninhabited type 0 is also (vacuously) a mere proposition. In classical mathematics, at least,
these are the only two possibilities.

Mere propositions are also called subterminal objects (if thinking categorically), subsingletons
(if thinking set-theoretically), or h-propositions. The discussion in §3.1 suggests we should also
call them (�1)-types; we will return to this in Chapter 7. The adjective “mere” emphasizes that
although any type may be regarded as a proposition (which we prove by giving an inhabitant of
it), a type that is a mere proposition cannot usefully be regarded as any more than a proposition:
there is no additional information contained in a witness of its truth.

Note that a type A is a set if and only if for all x, y : A, the identity type x =A y is a mere
proposition. On the other hand, by copying and simplifying the proof of Lemma 3.1.8, we have:

Lemma 3.3.4. Every mere proposition is a set.

Proof. Suppose f : isProp(A); thus for all x, y : A we have f (x, y) : x = y. Fix x : A and define
g(y) :⌘ f (x, y). Then for any y, z : A and p : y = z we have apdg(p) : p⇤(g(y)) = g(z). Hence
by Lemma 2.11.2, we have g(y) ⇧ p = g(z), which is to say that p = g(y)�1 ⇧ g(z). Thus, for any
p, q : x = y, we have p = g(x)�1 ⇧ g(y) = q.

In particular, this implies:

Lemma 3.3.5. For any type A, the types isProp(A) and isSet(A) are mere propositions.

Types are classified by the complexity of their 
equality/identity type.

A Hierarchy of Types
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Chapter 7

Homotopy n-types

One of the basic notions of homotopy theory is that of a homotopy n-type: a space containing no
interesting homotopy above dimension n. For instance, a homotopy 0-type is essentially a set,
containing no nontrivial paths, while a homotopy 1-type may contain nontrivial paths, but no
nontrivial paths between paths. Homotopy n-types are also called n-truncated spaces. We have
mentioned this notion already in §3.1; our first goal in this chapter is to give it a precise definition
in homotopy type theory.

A dual notion to truncatedness is connectedness: a space is n-connected if it has no interest-
ing homotopy in dimensions n and below. For instance, a space is 0-connected (also called just
“connected”) if it has only one connected component, and 1-connected (also called “simply con-
nected”) if it also has no nontrivial loops (though it may have nontrivial higher loops between
loops).

The duality between truncatedness and connectedness is most easily seen by extending both
notions to maps. We call a map n-truncated or n-connected if all its fibers are so. Then n-connected
and n-truncated maps form the two classes of maps in an orthogonal factorization system, i.e. every
map factors uniquely as an n-connected map followed by an n-truncated one.

In the case n = �1, the n-truncated maps are the embeddings and the n-connected maps
are the surjections, as defined in §4.6. Thus, the n-connected factorization system is a massive
generalization of the standard image factorization of a function between sets into a surjection
followed by an injection. At the end of this chapter, we sketch briefly an even more general
theory: any type-theoretic modality gives rise to an analogous factorization system.

7.1 Definition of n-types

As mentioned in §§3.1 and 3.11, it turns out to be convenient to define n-types starting two levels
below zero, with the (�1)-types being the mere propositions and the (�2)-types the contractible
ones.

Definition 7.1.1. Define the predicate is-n-type : U ! U for n � �2 by recursion as follows:

is-n-type(X) :⌘

(
isContr(X) if n = �2,

’(x,y:X) is-n0-type(x =X y) if n = n0 + 1.

Then, n-Types are defined inductively:

Types are classified by the complexity of their 
equality/identity type.

A Hierarchy of Types
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This defines the following hierarchy:

Level of Type Homotopy Type Theory

(-2)-Type unit / contactible type

(-1)-Type h-propositions

0-Type h-sets

1-Type h-groupoids

… …

Type ∞-groupoids

A Hierarchy of Types
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2.4 Homotopies and equivalences

So far, we have seen how the identity type x =A y can be regarded as a type of identifications,
paths, or equivalences between two elements x and y of a type A. Now we investigate the appro-
priate notions of “identification” or “sameness” between functions and between types. In §§2.9
and 2.10, we will see that homotopy type theory allows us to identify these with instances of the
identity type, but before we can do that we need to understand them in their own right.

Traditionally, we regard two functions as the same if they take equal values on all inputs.
Under the propositions-as-types interpretation, this suggests that two functions f and g (per-
haps dependently typed) should be the same if the type ’(x:A)( f (x) = g(x)) is inhabited. Un-
der the homotopical interpretation, this dependent function type consists of continuous paths or
functorial equivalences, and thus may be regarded as the type of homotopies or of natural isomor-
phisms.We will adopt the topological terminology for this.

Definition 2.4.1. Let f , g : ’(x:A) P(x) be two sections of a type family P : A ! U . A homotopy
from f to g is a dependent function of type

( f ⇠ g) :⌘ ’
x:A

( f (x) = g(x)).

Note that a homotopy is not the same as an identification ( f = g). However, in §2.9 we will
introduce an axiom making homotopies and identifications “equivalent”.

The following proofs are left to the reader.

Lemma 2.4.2. Homotopy is an equivalence relation on each function type A ! B. That is, we have
elements of the types

’
f :A!B

( f ⇠ f )

’
f ,g:A!B

( f ⇠ g) ! (g ⇠ f )

’
f ,g,h:A!B

( f ⇠ g) ! (g ⇠ h) ! ( f ⇠ h).

The first level of the continuity/naturality of homotopies can be expressed as follows:

Lemma 2.4.3. Suppose H : f ⇠ g is a homotopy between functions f , g : A ! B and let p : x =A y.
Then we have

H(x) ⇧ g(p) = f (p) ⇧ H(y).

We may also draw this as a commutative diagram:

f (x)
f (p)

H(x)

f (y)

H(y)

g(x)
g(p)

g(y)
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Example 2.4.9. For any p : x =A y and P : A ! U , the function

transportP(p, –) : P(x) ! P(y)

has a quasi-inverse given by transportP(p�1, –); this follows from Lemma 2.3.9.

In general, we will only use the word isomorphism (and similar words such as bijection) in the
special case when the types A and B “behave like sets” (see §3.1). In this case, the type (2.4.5) is
unproblematic. We will reserve the word equivalence for an improved notion isequiv( f ) with the
following properties:

(i) For each f : A ! B there is a function qinv( f ) ! isequiv( f ).
(ii) Similarly, for each f we have isequiv( f ) ! qinv( f ); thus the two are logically equivalent

(see §1.11).
(iii) For any two inhabitants e1, e2 : isequiv( f ) we have e1 = e2.

In Chapter 4 we will see that there are many different definitions of isequiv( f ) which satisfy these
three properties, but that all of them are equivalent. For now, to convince the reader that such
things exist, we mention only the easiest such definition:

isequiv( f ) :⌘
⇣

Â
g:B!A

( f � g ⇠ idB)
⌘
⇥

⇣
Â

h:B!A
(h � f ⇠ idA)

⌘
. (2.4.10)

We can show (i) and (ii) for this definition now. A function qinv( f ) ! isequiv( f ) is easy to define
by taking (g, a, b) to (g, a, g, b). In the other direction, given (g, a, h, b), let g be the composite
homotopy

g
b
⇠ h � f � g a

⇠ h

and let b0 : g � f ⇠ idA be obtained from g and b. Then (g, a, b0) : qinv( f ).
Property (iii) for this definition is not too hard to prove either, but it requires identifying the

identity types of cartesian products and dependent pair types, which we will discuss in §§2.6
and 2.7. Thus, we postpone it as well; see §4.3. At this point, the main thing to take away is
that there is a well-behaved type which we can pronounce as “ f is an equivalence”, and that we
can prove f to be an equivalence by exhibiting a quasi-inverse to it. In practice, this is the most
common way to prove that a function is an equivalence.

In accord with the proof-relevant philosophy, an equivalence from A to B is defined to be a
function f : A ! B together with an inhabitant of isequiv( f ), i.e. a proof that it is an equivalence.
We write (A ' B) for the type of equivalences from A to B, i.e. the type

(A ' B) :⌘ Â
f :A!B

isequiv( f ). (2.4.11)

Property (iii) above will ensure that if two equivalences are equal as functions (that is, the under-
lying elements of A ! B are equal), then they are also equal as equivalences (see §2.7). Thus, we
often abuse notation by denoting an equivalence by the same letter as its underlying function.

We conclude by observing:

Lemma 2.4.12. Type equivalence is an equivalence relation on U . More specifically:
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that there is a well-behaved type which we can pronounce as “ f is an equivalence”, and that we
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Property (iii) above will ensure that if two equivalences are equal as functions (that is, the under-
lying elements of A ! B are equal), then they are also equal as equivalences (see §2.7). Thus, we
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The following definitions should coincides with equality.

Functional Extensionality:

Univalence:

where
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It’s time for white board.
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A Hierarchy of Universes

To avoid paradox à la Russell, we need to
introduce a hierarchy of universes in type theory.

A very short note on homotopy λ-calculus

Vladimir Voevodsky

September 27, 2006

The homotopy λ-calculus is a hypothetical (at the moment) type system. To some extent one may
say that Hλ is an attempt to bridge the gap between the ”classical” type systems such as the ones
of PVS or HOL Light and polymorphic type systems such as the one of Coq. The main problem
with the polymorphic type systems lies in the properties of the equality types. As soon as we have
a universe U of which Prop is a member we are in trouble. In the Boolean case, Prop has an
automorphism of order 2 (the negation) and it is clear that this automorphism should correspond
to a member of Eq(U ; Prop, Prop). However, as far as I understand there is no way to produce
such a member in, say, Coq. A related problem looks as follows. Suppose T, T ′ : U are two type
expressions and there exists an isomorphism T → T ′ (the later notion of course requires the notion
of equality for members of T and T ′). Clearly, any proposition which is true for T should be true for
T ′ i.e. for all functions P : U → Prop one should have P (T ) = P (T ′). Again as far as I understand
this can not be proved in Coq no matter what notion of equality for members of T and T ′ we use.

Here is the general picture as I understand it at the moment. Let us consider the type system TS
which is generated by the sequents

⊢ Ui : Ui+1

(for i = − 1, 0, 1, . . .) and the rules:

1.
Γ ⊢ T : Ui

Γ ⊢ T : Ui+1

Γ ⊢ T : Ui

Γ ⊢ T : Type

2. The usual dependent
∏

-rules (inside each Un)

3. The usual dependent
∑

-rules with strong elimination (inside each Un)1

The system Hλ is supposed to be an extension of TS. In Hλ, U− 1 becomes the empty type ∅ and
U0 becomes Prop. The natural numbers are defined (see (1) below) in terms of U1.

Let CC be the contexts category of TS. By a model of TS with values in a category D, I mean a
functor CC → D which ”preserves the relevant structures”. The main observation is that there is a
canonical model M of TS with values in the usual homotopy category H provided that we consider
homotopy types based on a sufficiently large universe of sets. To define this model one starts with
a not-so-canonical model N of TS with values in the category of spaces (actually simplicial sets,
but I will speak of spaces since they provide a more familiar model for homotopy types) and then
sets M to be the composition of N with the projection Spc → H. The main properties of N are
are follows.

1We may also consider systems TSX where X is any ”recursive” partially ordered set such that Ux is defined for
any x ∈ X and the rules are modified accordingly. If X is just a finite set with the trivial ordering then it seems that
TSX will be just the usual typed λ-calculus with products generated by n primitive types. The first system with real
dependencies is TSX where X = {0, 1} with the usual ordering.

1
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This is a sufficient condition to ensure consistency, 
but it is often a bit overkilled and one would like 
to relax it. 

A Hierarchy of Universes
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Syntactically, the management of the hierarchy can 
be improved by universe polymorphism which 

allows to use the same definition at different levels.

A Hierarchy of Universes
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V.V. has proposed a semantic way to relax the
hierarchy, based on so-called resizing rules.

A Hierarchy of Universes
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Resizing Rules

Resizing rule for equivalent types.

Here are few more examples of resizing rules which are validated by the
well-ordered sets model and are expected to be validated by the modified
univalent model:

(RR0)
U : Univ � ` X1 : U � ` is : idX1X2

� ` X2 : U

(RR4)
U : Univ � ` X : U

� ` (⌃X 0:U ishinh ( idX X 0)) : U

(RR5)
U : Univ � ` X1 : U � ` is : weq X1X2

� ` X2 : U

25

(from V.V. ’s talk at Bergen, 2011 )
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Resizing Rules

In a classical setting, every mere proposition is 
equivalent to either True or False.

True and False can be typed in the lowest universe.
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Resizing Rules

Resizing rule for mere propositions.

This can be achieved through the following resizing rules:

RR1
� ` is : isapropX

� ` X : UU

RR2
U : Univ

` (hProp U) : UU

While these rules do not make the types of propositions in di↵erent
universes to be definitionally equal they allow one to consider only the
type [hProp UU] in all constructions.

10
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Resizing Rules

Resizing rule for mere propositions.

This can be achieved through the following resizing rules:

RR1
� ` is : isapropX

� ` X : UU

RR2
U : Univ

` (hProp U) : UU

While these rules do not make the types of propositions in di↵erent
universes to be definitionally equal they allow one to consider only the
type [hProp UU] in all constructions.

10

This is corresponds to the impredicativity of Prop
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A Fresh Look at Prop
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A Fresh Look at Prop

This suggests that Prop should be interpreted 
as a universe of mere propositions.
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as a universe of mere propositions.

Problem: In Coq,           

 
is in Prop for all type A

x =A y
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A Fresh Look at Prop

Problem: In Coq,           

 
is in Prop for all type A

x =A y

This means that the current Prop is implicitly 
assuming that every type is an h-set ! 
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A Fresh Look at Prop

One possible way out 
(as done in the HoTT Coq library):

    Treat Prop as a taboo and not use it.
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A Fresh Look at Prop

But maybe we can do better and fix it ?
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A Fresh Look at Prop

But maybe we can do better and fix it ?

The rest of this talk is joint work with 
Gaetan Gilbert and Matthieu Sozeau.

Gaetan is implementing this feature, to be 
integrated hopefully in a future version Coq.
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Prop under the Knife of HoTT

When an inductive type is defined in Prop, it 
can be eliminated only when building a Prop.
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Prop under the Knife of HoTT

When an inductive type is defined in Prop, it 
can be eliminated only when building a Prop.

(A ! B) ! (||A|| ! B)

This corresponds to the fact that propositional 
truncation can be eliminated

only when B is a mere proposition.
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Prop under the Knife of HoTT

First motto:

“Defining an inductive type in Prop corresponds         
  to using propositional truncation”
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Prop under the Knife of HoTT

First motto:

“Defining an inductive type in Prop corresponds         
  to using propositional truncation”

That is, morally, every type in Prop is squashed.
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When Props produce Types

In CIC, there is the so-called singleton elimination:

“A singleton definition has only one constructor 
and all the arguments of this constructor have 
type Prop.”
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When Props produce Types

In CIC, there is the so-called singleton elimination:

“A singleton definition has only one constructor 
and all the arguments of this constructor have 
type Prop.”

This covers for instance conjunction or the 
accessibility predicate but also equality !
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With this new insight, singleton elimination can be 
seen as a syntactic condition on P:Prop which 
ensures that 

||P || ⇠= P

When Props produce Types
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Problem

Allowing squashed equality to be unsquashed 
is implicitly assuming that every type is an h-set

UIP hard-coded
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The problem is that it doesn’t take into account 
the number of occurrences of 

parameters/arguments in the return type.

Problem
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When Props produce Types (II)

Inductive eq (A:Type)(x:A): A -> Prop 
:= eq_refl : eq A x x.

a variable that occurs twice must be in h-sets.
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When Props produce Types (II)

Inductive eq (A:Type)(x:A): A -> Prop 
:= eq_refl : eq A x x.

x occurs twice

a variable that occurs twice must be in h-sets.
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Vect (A : Prop) : nat -> Prop := 
  nil  : Vect A 0   
| cons : A -> forall n : nat,  

Vect A n -> Vect A (S n)

What about functions occurring in the return type ?

When Props produce Types (II)
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Vect (A : Prop) : nat -> Prop := 
  nil  : Vect A 0   
| cons : A -> forall n : nat,  

Vect A n -> Vect A (S n)

S must be injective

What about functions occurring in the return type ?

When Props produce Types (II)



A Fresh Look at the Impredicative Sort of CIC 45

What about multiple 
constructors ?

Inductive le : nat -> nat -> Prop := 
    le_O : forall n : nat, 0 <= n  
|  le_S : forall n m : nat, m <= n -> S m <= S n 
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constructors ?
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|  le_S : forall n m : nat, m <= n -> S m <= S n 

the return types of different
constructors must be orthogonal
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What about multiple 
constructors ?

Inductive le : nat -> nat -> Prop := 
    le_O : forall n : nat, 0 <= n  
|  le_S : forall n m : nat, m <= n -> S m <= S n 

the return types of different
constructors must be orthogonal

Sums don't preserve mere propositions in general, but they do for disjoint sums.
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Remark
Definitions Matter

Inductive le’ (n : nat) : nat -> Prop := 
    le_n : n <= n  
|   le_S : forall m : nat, n <= m -> n <= S m 
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Remark
Definitions Matter

Inductive le’ (n : nat) : nat -> Prop := 
    le_n : n <= n  
|   le_S : forall m : nat, n <= m -> n <= S m 

the criterion does not work for
this (equivalent) definition
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When a Prop is h-Prop

1. every argument that does not appear  
  in the return type must be in Prop

2. every argument/parameters that appears  
  more than once in the return type must be h-Set

3. every argument that appears exactly once is OK

4. the return types of different constructors  
  must be orthogonal
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When a Prop is -1-Type

1. every argument that does not appear  
  in the return type must be in -1-Type

2. every argument/parameters that appears  
  more than once in the return type must be 0-Type

3. every argument that appears exactly once is OK

4. the return types of different constructors  
  must be orthogonal
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Going to Higher Level

This characterisation generalises to n-types

1. every argument that does not appear  
  in the return type must be in n-Type

2. every argument/parameters that appears  
  more than once in the return type must be (n+1)-Type

3. every argument that appears exactly once is OK

4. the return types of different constructors  
  must be orthogonal
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This characterisation generalises to n-types

only for mere proposition

Going to Higher Level

1. every argument that does not appear  
  in the return type must be in n-Type

2. every argument/parameters that appears  
  more than once in the return type must be (n+1)-Type

3. every argument that appears exactly once is OK

4. the return types of different constructors  
  must be orthogonal
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Remark

This characterisation is very similar to what
Jesper Cockx et al. use to do pattern-matching 
without K in Agda.



A Fresh Look at the Impredicative Sort of CIC 51

Remark

This characterisation is very similar to what
Jesper Cockx et al. use to do pattern-matching 
without K in Agda.

We have extended it in February with Jesper, 
I can talk about it offline.
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What is this 
Impredicative Universe ?

The least we get is a new version of Coq:

- compatible with UIP

- compatible with univalence

- admitting the axiom :

forall (P:Prop) (x y : P), x = y  
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We Want More !



A Fresh Look at the Impredicative Sort of CIC 53

We Want More !

Replace the admissible axiom with a 

definitional equality:

forall (P:Prop) (x y : P), x ≡ y  
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Problem

Congruence with pattern-matching and 
fixpoints requires to apply inversion lemma
even to neutral terms … and this potentially
infinitely many times.
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Problem

A naive implementation gives rise 
to an undecidable type checker !

Congruence with pattern-matching and 
fixpoints requires to apply inversion lemma
even to neutral terms … and this potentially
infinitely many times.
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Acc is not an SProp

Perfectly valid mere proposition,  
but with infinite unfolding …

Inductive Acc (A : Type) (R : A -> A -> Prop) (x : A) : Prop := 
    Acc_intro : (forall y : A, R y x -> Acc R y) -> Acc R x 
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Acc is not an SProp

Perfectly valid mere proposition,  
but with infinite unfolding …

Inductive Acc (A : Type) (R : A -> A -> Prop) (x : A) : Prop := 
    Acc_intro : (forall y : A, R y x -> Acc R y) -> Acc R x 

Definition Acc_inv : Acc R x -> forall y:A, R y x -> Acc R y.
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Acc is not an SProp

Perfectly valid mere proposition,  
but with infinite unfolding …

Inductive Acc (A : Type) (R : A -> A -> Prop) (x : A) : Prop := 
    Acc_intro : (forall y : A, R y x -> Acc R y) -> Acc R x 

Definition Acc_inv : Acc R x -> forall y:A, R y x -> Acc R y.

 a ≡ Acc_intro x (Acc_inv a) ≡ Acc_intro x (Acc_inv …)
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It is not possible to guess how many times an 
inhabitant of Acc R x has to be unfolded. 

Acc is not an SProp
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Termination-unfolding criterion 

We need to enforce termination of 
inversion through a syntactic check 
similar to the guard condition for fixpoints.

That is, recursive arguments of a constructor 
must have as indices strict sub terms of the 
indices of the return type.
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Examples

Inductive le : nat -> nat -> Prop := 
    le_O : forall n : nat, 0 <= n  
|  le_S : forall n m : nat, m <= n -> S m <= S n 
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Examples

Inductive le : nat -> nat -> Prop := 
    le_O : forall n : nat, 0 <= n  
|  le_S : forall n m : nat, m <= n -> S m <= S n 

m is a strict subterm of S m
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Examples

Inductive le : nat -> nat -> Prop := 
    le_O : forall n : nat, 0 <= n  
|  le_S : forall n m : nat, m <= n -> S m <= S n 

m is a strict subterm of S m
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Examples

Inductive Acc (A : Type) (R : A -> A -> Prop) (x : A)  
                           : Prop := 
    Acc_intro : (forall y : A, R y x -> Acc R y) -> Acc R x 
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Examples

y is not related to x

Inductive Acc (A : Type) (R : A -> A -> Prop) (x : A)  
                           : Prop := 
    Acc_intro : (forall y : A, R y x -> Acc R y) -> Acc R x 
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Examples

y is not related to x

Inductive Acc (A : Type) (R : A -> A -> Prop) (x : A)  
                           : Prop := 
    Acc_intro : (forall y : A, R y x -> Acc R y) -> Acc R x 
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Remark

This syntactic characterisation of mere propositions  
is incomplete as for instance singleton types are not
accepted. 

This is somehow a good point because allowing 
singleton types in a definitional proof-irrelevant 
universe implies UIP (Peter L.L.). 
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The Big Picture
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SProp

forall (P:Prop) (x y : P), x ≡ y  

forall (P:Prop) (x y : P), x = y  
Prop

Type

Impredicative

Predicative

Impredicative

The Big Picture
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Getting High(er) ?

SProp

SSet

1-SType

n-SType
…

n-SType1

…



A Fresh Look at the Impredicative Sort of CIC 64

V.V. has already sketched this in 2006!

these functors there are representable ones i.e. we have the homotopy type Rep(T ) which
maps to T → Un. For F : T → Un set

rep(F ) = Contr(
∑

t : T.F (T )).

One verifies that on the level of models rep(F ) ̸= ∅ iff F is representable. Set

Rep(T ) =
∑

F : T → Un.rep(F ).

then the model of Rep(T ) is the space of representable functors on T . By abuse of notation
I will write F (t) : Un instead of the formal (πF )(t) for F : Rep(T ) and t : T .

Define the equality types. For T : Un and T1, t2 : T one sets:

Eq(T ; t1, t2) =
∏

F : Rep(T ).F (t1) → F (t2)

where I write F (t) for F : Rep(T ) instead of the correct but long (πF )(t).

Theorem 1 There is a homotopy equivalence

M(Eq(T ; t1, t2)) = P (M(T );M(t1),M(t2)).

Once the equality types (path spaces) are defined many other constructions familiar on the model
level can be formulated on the level of the type system. The first thing to define is the level
”filtration” on type expressions or, equivalently on the types Un. The model of Un has a natural
filtration by subspaces Un,k, k = 0, . . . , n where Un,k is (the nerve of) the k-groupoid of (k − 1)-
groupoids in the universe Un. In particular Un,1 is the (nerve of) the usual groupoid of sets in Un

and their isomorphisms. We define a (−1)-groupoid as a set where any two elements are equal
i.e. one of the two sets ∅ and pt. Hence for any n ≥ 0 the model of Un,0 is the two point set
{0, 1} = {true, false}.

U0,0 U1,0 U2,0 U3,0 . . .
⏐⏐$

⏐⏐$
⏐⏐$

U1,1 −−−→ U2,1 −−−→ U3,1 −−−→ . . .
⏐⏐$

⏐⏐$

U2,2 −−−→ U3,2 −−−→ . . .
⏐⏐$

U3,3 −−−→ . . .

All the arrows are inclusions with the image being a disjoint union of some of the connected
components of the target and the usual arguments a-la Russell’s paradox imply that except for the
ones marked as equalities the arrows are proper inclusions e.g. U2,1 (which is responsible for sets
in U2) is strictly larger than U1,1 (which is responsible for sets in U1) etc.

4

A very short note on homotopy λ-calculus 
Vladimir Voevodsky, 2006  



A Fresh Look at the Impredicative Sort of CIC 65

Demo
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Doggy bag

1. Prop can be turned into a syntactic approximation  
  of mere propositions

2. To get definitional proof-irrelevance, we also need  
  to restrict recursive types with a guard condition

3. This should be (hopefully) available soon in Coq

4. It may be extended to deal with a // hierarchy of  
  universes that encodes for homotopy levels. 


