THE LEGACY OF ‘

VLADIMIR VOEVODSKY — \CMl’
.
fes

HOMOTOPY TYPES & RESIZING RULES

A FRESH LOOK AT
THE IMPREDICATIVE SORT OF CIC

NICOLAS TABAREAU

Road Map

In this talk, | will recall two notions introduced by V.V.
in 2006 in “A very short note on homotopy A-calculus”.

|. Homotopy types in type theory

2. Universe resizing rules

| will then explain how those two notions allow
for a fresh look at the impredicative universe of CIC.

.&zu'a,— A Fresh Look at the Impredicative Sort of CIC

First, what is Type Theory about !

CogHoTT, a brand-new proof assistant based on Homotopy Type Theory

The denotational semantics trinity

Category theory
Objects

Morphisms

Logic Programming

Formulas Types

Proofs Programs

The denotational semantics trinity

Category theory

Objects

Morphisms

Curry-Howard Correspondance

Logic Programming

Formulas Types

Proofs Programs

CogHoTT, a brand-new proof assistant based on Homotopy Type Theory

The simply typed A-calculus

variable ARz A

[, . AP B

- x.P A= B
[P A= B AFQ A

abstraction

application
AR PO B
weakening =B
[, . AF P '.B
: [,z Ay AF- P B
contraction
[,z A+ Ple,y «— 2] :B
[,z Ay .:B,AFP:C
exchange

[,y B,z A AFP:C

CogHoTT, a brand-new proof assistant based on Homotopy Type Theory

Intuitionistic minimal logic

, N
axiom AL A
. A+ B
= I
[+ A= B
[A= B ANl = A
= E
MAF B
weakenin = B
J r, A- B

r A, A+ B

contraction

r, AR B
r, A, B,AF C
exchange r, B, AAF C

CogHoTT, a brand-new proof assistant based on Homotopy Type Theory

Intuitionistic minimal logic

axiom

AF A
L A+ B
[A= B
[+ A= B A A
AR B
[B
L A+ B

r A, AF B

[, AF
., A, B A

B
C

I, B, AALR

C

Other correspondances

Cut elimination & B-reduction

CogHoTT, a brand-new proof assistant based on Homotopy Type Theory

~

T) Type Theory of Coqg T)

Lifting the Curry-Howard correspondance to
dependent types = more complex

formulas

[Tn:nat.> m:nat.Id (m,n + I)

Vhn:nat.Im:natm=n + |

CogHoTT, a brand-new proof assistant based on Homotopy Type Theory

T) Type Theory of Coqg p

Lifting the Curry-Howard correspondance to
dependent types = more complex

formulas

PROD /SIGMA
I''x: AF B type

I'=11/Yx: A.B type

CogHoTT, a brand-new proof assistant based on Homotopy Type Theory

IJ Type Theory of Coqg IJ

Lifting the Curry-Howard correspondance to
dependent types = more complex

formulas

PROD /SIGMA
I''x: AF B type

I'=11/Yx: A.B type

Type checking & Correctness checking

CogHoTT, a brand-new proof assistant based on Homotopy Type Theory

Type Theory and Logic

Types Logic

A proposition

a:A proof

B(x) predicate

b(x) : B(x) conditional proof
0,1 1, T

A+B AV B

A X B ANB

A— B A= B

Z(x:A) B(x) EIx:AB(x)
[T(x:a) B(x) V:aB(x)
Id 4 equality =

Type Theory and Logic

Types Logic

A proposition

a:A proof

B(x) predicate

b(x) : B(x) conditional proof
0,1 1, T

A+B AV B

A X B ANB

A— B A= B

Z(x:A) B(x) EIJC:AB(X)
[T(x:a) B(x) V:aB(x)
Id 4 equality =

How 1s equality
modeled 7

Equality in Type Theory

Equality is described using Martin-Lof Identity Type.
refl : [[(a =4 a)

a:A

Path induction: Given a family

C:]](x=ay) —U

x,y:A

and a function

c: [] Clx, x,refly),

x:A
there is a function
f+ 11 11 cxyp)
(xy:A) (p:x=ay)

such that
fx, x,refly) :==c(x).

CogHoTT, a brand-new proof assistant based on Homotopy Type Theory

Equality in Type Theory

Equality is described using Martin-Lof Identity Type.
refl : [[(a =4 a)

a:A
Leibniz principle of “Indiscernability of ldenticals™

Path induction: Given a family

C:]](x=ay) —U

x,y:A

and a function

c: [] Clx, x,refly),

x:A
there is a function

f+ 11 11 cxwp)

(x,y:A) (p:x=ay)

such that
fx, x,refly) :==c(x).

CogHoTT, a brand-new proof assistant based on Homotopy Type Theory

Equality in Type Theory

A formulation using the type system:

ID ID-INTRO
I'ET type I'FA B:T I'=t:T
I'HIdr A B type I'Freflp t:Idrtt
ID-ELiM (J)

I'-4:Idrtu I''x:T,e:Idrt x = P type I'p: P{t/x,reflr t/e}
I'EJxzepip: P{lu/x,i/e}

CogHoTT, a brand-new proof assistant based on Homotopy Type Theory

Type and Set Theory

Types Sets

A set

a: A element

B(x) family of sets
b(x): B(x) family of elements
0,1 ©,{0}

A+ B disjoint union

A X B set of pairs
A—B set of functions
Y (x:ayB(x) disjoint sum
[I(x:a) B(x product

Id 4 {(x,x)|x€ A}

Problem with ldentity Type

The following definitions should coincides with equality.

Functional Extensionality:
(f~8) = q (f(x) = g(x)).
Univalence:

(A~B):= Y isequiv(f)

f:A—B

(y (fogwidB))x(y (hofwidA)>

:B—A h:B— A

where isequiv(f) :

.&I/u'a,- CogHoTT, a brand-new proof assistant based on Homotopy Type Theory

Type and Homotopy [heory

Types Homotopy

A space

a:A point

B(x) fibration
b(x):B(x) section

0,1 D, %

A+ B coproduct

A X B product space
A — B function space

D (x:A) B(x) total space
[T(x:a) B(x) space of sections

ld4 path space A!

00-groupoids and equality

type T is a space

CogHoTT, a brand-new proof assistant based on Homotopy Type Theory

00-groupoids and equality

type T is a space

\4

programs :

2T are proofs of equality
points p:a=b
are paths

.&zz/a,_ CogHoTT, a brand-new proof assistant based on Homotopy Type Theory

00-groupoids and equality

type T_if a space Path operations:
id ra=Ta
p- :b=T1a

qop :a-=TC

Homotopies:
left-id :id o p =a=b p

programs : right-id : poid == p
T are proofs of equality - 6 (q 0 p) Zasd
boints p:a=b assoc (Foq)op

are paths

I&I/u'a/— CogHoTT, a brand-new proof assistant based on Homotopy Type Theory

A Hierarchy of Types

A Fresh Look at the Impredicative Sort of CIC

A Hierarchy of Types

One of the main contribution of V.V.in type theory
is the notion of levels of homotopy of types.

I&I/z/a/- A Fresh Look at the Impredicative Sort of CIC

A Hierarchy of Types

Types are classified by the complexity of their
equality/identity type.

Simplest (singleton) types are called contractible:

sContr(A):=) |] (a=1x).
(a:A) (x:A)

A Fresh Look at the Impredicative Sort of CIC

A Hierarchy of Types

Types are classified by the complexity of their
equality/identity type.

Proposition have a contractible equality:

sProp(P) := | | (x =).

x,y:P

A Fresh Look at the Impredicative Sort of CIC

A Hierarchy of Types

Types are classified by the complexity of their
equality/identity type.

Then, n-Types are defined inductively:

Define the predicate is-n-type : Y — U for n > —2 by recursion as follows:

isContr(X) T)
H(x,y:X) iS-n’_type(x =y]/) if n = 1’1/ 4.

is-n-type(X) 1= {

.&Z’u'a/— A Fresh Look at the Impredicative Sort of CIC

A Hierarchy of Types

This defines the following hierarchy:

|-Type h-groupoids

A Fresh Look at the Impredicative Sort of CIC

Extensional principles

The following definitions should coincides with equality.

Functional Extensionality:
(f~8) =]} (f(x) = g(x)).
Univalence:

(A~B):= Y isequiv(f)

f:A—B

where isequiv(f) :

(X (fogr~ids)) x (X (hof~ida))

:B—A h:B— A

I&I/z/a/- Equivalences for Free!

Extensional principles

It’s time for white board.

.hu’a/- Equivalences for Free!

A Hierarchy of Universes

A Fresh Look at the Impredicative Sort of CIC

A Hierarchy of Universes

To avoid paradox a la Russell, we need to
introduce a hierarchy of universes in type theory.

—U; 1 Ui

.&I/u'a/- A Fresh Look at the Impredicative Sort of CIC

A Hierarchy of Universes

This is a sufficient condition to ensure consistency,
but it is often a bit overkilled and one would like
to relax it.

.&I/u'a/- A Fresh Look at the Impredicative Sort of CIC

A Hierarchy of Universes

Syntactically, the management of the hierarchy can
be improved by universe polymorphism which
allows to use the same definition at different levels.

A Fresh Look at the Impredicative Sort of CIC

A Hierarchy of Universes

V.V. has proposed a semantic way to relax the
hierarchy, based on so-called resizing rules.

.&zu’a/- A Fresh Look at the Impredicative Sort of CIC

Resizing Rules

Resizing rule for equivalent types.

U:Univ ©T'HFXq:U T'Fis:weqgXi Xy
F"XQIU

(RR5)

(from V.V.’s talk at Bergen, 2011)

.&zu’a/- A Fresh Look at the Impredicative Sort of CIC

Resizing Rules

In a classical setting, every mere proposition is
equivalent to either True or False.

True and False can be typed in the lowest universe.

A Fresh Look at the Impredicative Sort of CIC

Resizing Rules

Resizing rule for mere propositions.

'+ s :2saprop X
I'-X:UU

RR1

.hu’a/- A Fresh Look at the Impredicative Sort of CIC

Resizing Rules

Resizing rule for mere propositions.

'+ s :2saprop X
I'-X:UU

RR1

This is corresponds to the impredicativity of Prop

.&zu’a,- A Fresh Look at the Impredicative Sort of CIC

A Fresh Look at Prop

A Fresh Look at the Impredicative Sort of CIC

A Fresh Look at Prop

This suggests that Prop should be interpreted
as a universe of mere propositions.

.&zu’a/- A Fresh Look at the Impredicative Sort of CIC

A Fresh Look at Prop

This suggests that Prop should be interpreted
as a universe of mere propositions.

Problem: In Cogq,
L =AY

is in Prop for all type A

A Fresh Look at the Impredicative Sort of CIC

A Fresh Look at Prop

Problem: In Cogq,

L =AY

is in Prop for all type A

This means that the current Prop is implicitly
assuming that every type is an h-set !

A Fresh Look at the Impredicative Sort of CIC

A Fresh Look at Prop

One possible way out
(as done in the HoTT Coq library):

Treat Prop as a taboo and not use it.

A Fresh Look at the Impredicative Sort of CIC

A Fresh Look at Prop

But maybe we can do better and fix it !

A Fresh Look at the Impredicative Sort of CIC

A Fresh Look at Prop

But maybe we can do better and fix it !

The rest of this talk is joint work with
Gaetan Gilbert and Matthieu Sozeau.

Gaetan is implementing this feature, to be
integrated hopefully in a future version Cogq.

I&I/z&'a,- A Fresh Look at the Impredicative Sort of CIC

Prop under the Knife of HoTT

When an inductive type is defined in Prop, it
can be eliminated only when building a Prop.

A Fresh Look at the Impredicative Sort of CIC

Prop under the Knife of HoTT

When an inductive type is defined in Prop, it
can be eliminated only when building a Prop.

This corresponds to the fact that propositional
truncation can be eliminated

(A= B) = (l|A]| = B)
only when B is a mere proposition.

.&zu’a/- A Fresh Look at the Impredicative Sort of CIC

Prop under the Knife of HoTT

First motto:

“Defining an inductive type in Prop corresponds

to using propositional truncation”

A Fresh Look at the Impredicative Sort of CIC

Prop under the Knife of HoTT

First motto:

“Defining an inductive type in Prop corresponds
to using propositional truncation”

That is, morally, every type in Prop is squashed.

I&Z’z/a/— A Fresh Look at the Impredicative Sort of CIC

VWhen Props produce lypes

In CIC, there is the so-called singleton elimination:

“A singleton definition has only one constructor
and all the arguments of this constructor have
type Prop.”

A Fresh Look at the Impredicative Sort of CIC

VWhen Props produce lypes

In CIC, there is the so-called singleton elimination:

“A singleton definition has only one constructor
and all the arguments of this constructor have
type Prop.”

This covers for instance conjunction or the
accessibility predicate but also equality !

.&zu’a/- A Fresh Look at the Impredicative Sort of CIC

VWhen Props produce lypes

With this new insight, singleton elimination can be
seen as a syntactic condition on P:Prop which
ensures that

Pll= P

A Fresh Look at the Impredicative Sort of CIC

Problem

Allowing squashed equality to be unsquashed
is implicitly assuming that every type is an h-set

UIP hard-coded

A Fresh Look at the Impredicative Sort of CIC

Problem

The problem is that it doesn’t take into account
the number of occurrences of

parameters/arguments in the return type.

A Fresh Look at the Impredicative Sort of CIC

When Props produce Types (ll)

Inductive eq (A:Type) (x:A): A —-> Prop
:= eq refl : eqg A xX X.

a variable that occurs twice must be in h-sets.

.&zu’a/- A Fresh Look at the Impredicative Sort of CIC

When Props produce Types (ll)

Inductive eq (A:Type) (x:A): A —-> Prop

eq refl : eqg A
X OCCUrs twice

a variable that occurs twice must be in h-sets.

.&I/u'a/- A Fresh Look at the Impredicative Sort of CIC

When Props produce Types (ll)

What about functions occurring in the return type ?

Vect (A : Prop) : nat —-> Prop :=
nil : Vect A 0
| cons : A -> forall n : nat,
Vect A n —-> Vect A (S n)

.&I/u'a/- A Fresh Look at the Impredicative Sort of CIC

When Props produce Types (ll)

What about functions occurring in the return type ?

Vect (A : Prop) : nat —-> Prop :=
nil : Vect A O
| cons : A -> forall n : nat,

Vect A n —-> Vect A (S:nﬂ

S must be injective

A Fresh Look at the Impredicative Sort of CIC

What about multiple
constructors !

Inductive le : nat -> nat -> Prop :=
le_O:foralln:nat, O<=n
| le_S:forallnm:nat,m<=n->Sm<=Sn

.&I/u'a/- A Fresh Look at the Impredicative Sort of CIC

VVhat about multiple
constructors !

Inductive le : nat -> nat -> Prop :=
le_O: foralln: na,t,(O <= n]
| le_S:forallnm :nat, m<=n ->(S m<=S n]

the return types of different
constructors must be orthogonal

A Fresh Look at the Impredicative Sort of CIC

VVhat about multiple
constructors !

Inductive le : nat -> nat -> Prop :=
le_O: foralln: na,t,(O <= n]
| le_S : forall n m : nat, \? <=1 ->(S m<=39S n]

/

Sums don't preserve mere propositions in general, but they do for disjoint sums.

v/

the return types of different

constructors must be orthogonal

l&z'u'a/— A Fresh Look at the Impredicative Sort of CIC

Remark
Definitions Matter

Inductive le’ (n: nat) : nat -> Prop :=
len:n<=n
| le_S:forallm:nat,n<=m->n<=Sm

I&I/z/a/- A Fresh Look at the Impredicative Sort of CIC

Remark
Definitions Matter

Inductive le’ (n : nat) : nat -> Prop :=
le_n :[n <= n}
| 1le_S: forall

. nat, n<=m->[n <=3 m)

/

the criterion does not work for

this (equivalent) definition

A Fresh Look at the Impredicative Sort of CIC

When a Prop is h-Prop

|. every argument that does not appear
in the return type must be in Prop

2. every argument/parameters that appears
more than once in the return type must be h-Set

3. every argument that appears exactly once is OK

4. the return types of different constructors
must be orthogonal

l&z'u'a/— A Fresh Look at the Impredicative Sort of CIC

When a Prop is -1-Type

|. every argument that does not appear
in the return type must be in -1-Type

2. every argument/parameters that appears
more than once in the return type must be 0-Type

3. every argument that appears exactly once is OK

4. the return types of different constructors
must be orthogonal

l&z'u'a/— A Fresh Look at the Impredicative Sort of CIC

Going to Higher Level

This characterisation generalises to n-types

|. every argument that does not appear
in the return type must be in n-Type

2. every argument/parameters that appears
more than once in the return type must be (n+1)-Type

3. every argument that appears exactly once is OK

4. the return types of different constructors
must be orthogonal

.&zu’a/- A Fresh Look at the Impredicative Sort of CIC

Going to Higher Level

This characterisation generalises to n-types

|. every argument that does not appear
in the return type must be in n-Type

2. every argument/parameters that appears
more than once in the return type must be (n+1)-Type

3. every argument that appears exactly once is OK

Remark

This characterisation is very similar to what
Jesper Cockx et al. use to do pattern-matching
without K in Agda.

A Fresh Look at the Impredicative Sort of CIC

Remark

This characterisation is very similar to what
Jesper Cockx et al. use to do pattern-matching
without K in Agda.

We have extended it in February with Jesper,
| can talk about it offline.

I&I/z&'a,- A Fresh Look at the Impredicative Sort of CIC

WWhat is this
Impredicative Universe !

The least we get is a new version of Cogq:
- compatible with UIP
- compatible with univalence

- admitting the axiom :
forall (P:Prop) (Xy:P),x=y

.&zu’a,- A Fresh Look at the Impredicative Sort of CIC

We Want More !

.&z’z‘,a/‘ A Fresh Look at the Impredicative Sort of CIC

We Want More !

Replace the admissible axiom with a

definitional equality:

forall (P:Prop) Xy :P),x=y

I&I/z/a/- A Fresh Look at the Impredicative Sort of CIC

Problem

Congruence with pattern-matching and
fixpoints requires to apply inversion lemma
even to neutral terms ... and this potentially
infinitely many times.

A Fresh Look at the Impredicative Sort of CIC

Problem

Congruence with pattern-matching and
fixpoints requires to apply inversion lemma
even to neutral terms ... and this potentially
infinitely many times.

A naive implementation gives rise
to an undecidable type checker !

A Fresh Look at the Impredicative Sort of CIC

Acc is not an SProp

Perfectly valid mere proposition,
but with infinite unfolding ...

Inductive Acc (A : Type) (R: A ->A ->Prop) (x:A):Prop :=
Acc_intro: (forally: A,Ryx->AccRy) >AccRx

A Fresh Look at the Impredicative Sort of CIC

Acc is not an SProp

Perfectly valid mere proposition,
but with infinite unfolding ...

Inductive Acc (A : Type) (R: A ->A ->Prop) (x:A):Prop :=
Acc_intro: (forally: A,Ryx->AccRy) >AccRx

Definition Acc_inv: Acc Rx->forall y:A, Ry x->Acc Ry.

A Fresh Look at the Impredicative Sort of CIC

Acc is not an SProp

Perfectly valid mere proposition,
but with infinite unfolding ...

Inductive Acc (A : Type) (R: A ->A ->Prop) (x:A):Prop :=
Acc_intro: (forally: A,Ryx->AccRy) >AccRx

Definition Acc_inv: Acc Rx->forall y:A, Ry x->Acc Ry.

a = Acc_intro x (Acc_inv a) = Acc_intro x (Acc_inv ...)

I&I/z&'a,- A Fresh Look at the Impredicative Sort of CIC

Acc is not an SProp

It is not possible to guess how many times an
inhabitant of Acc R x has to be unfolded.

.bt'z/a,-

A Fresh Look at the Impredicative Sort of CIC

Termination-unfolding criterion

We need to enforce termination of
inversion through a syntactic check
similar to the guard condition for fixpoints.

That is, recursive arguments of a constructor
must have as indices strict sub terms of the
indices of the return type.

A Fresh Look at the Impredicative Sort of CIC

Examples

Inductive le : nat -> nat -> Prop :=
le_O:foralln:nat, O<=n
| le_S:forallnm:nat, m<=n->Sm<=Sn

.&I/u'a/- A Fresh Look at the Impredicative Sort of CIC

Examples

Inductive le : nat -> nat -> Prop :=
le_O:forall n:nat, O <=n

| le_S:forallnm: na,t,<= n -> <= SN

m is a strict subterm of Sm

A Fresh Look at the Impredicative Sort of CIC

Examples

Inductive le : nat -> nat -> Prop :=
le_O:forall n:nat, O <=n

| le_S:forallnm: na,t,<= n -> <= S1n

m is a strict subterm of Sm

A Fresh Look at the Impredicative Sort of CIC

Examples

Inductive Acc (A :Type) (R: A->A->Prop) (Xx:A)
. Prop :=
Acc_intro: (forally: A, Ryx->AccRy) ->AccR X

I&I/z/a/- A Fresh Look at the Impredicative Sort of CIC

Examples

Inductive Acc (A :Type) (R: A->A->Prop) (Xx:A)
. Prop :=
Acc_intro : (forally : A, Ry x -> Acc F » > Acc

Yy is not related to X

A Fresh Look at the Impredicative Sort of CIC

Examples

Inductive Acc (A :Type) (R: A->A->Prop) (Xx:A)
. Prop :=
Acc_intro : (forally : A, Ry x -> Acc F » > Acc

Yy is not related to X

A Fresh Look at the Impredicative Sort of CIC

Remark

This syntactic characterisation of mere propositions
is incomplete as for instance singleton types are not

accepted.

This is somehow a good point because allowing
singleton types in a definitional proof-irrelevant
universe implies UIP (Peter L.L.).

.&zu’a/- A Fresh Look at the Impredicative Sort of CIC

The Big Picture

.&z’z‘,a/‘ A Fresh Look at the Impredicative Sort of CIC

The Big Picture

~

SProp

forall (P:Prop) (Xy:P),xXx=y
_

N
Impredicative

J

Prop

Impredicative

forall (P:Prop) (Xy:P),x=y

J

_

Type

Predicative

IIIZszzZL——

A Fresh Look at the Impredicative Sort of CIC

Getting High(er) ?

fff r N N
(")
SProp
_ W,
oSet
. _J
1-SType
N\ y
n-SType
U y
oco-SType
_ J

.&I/u'a/- A Fresh Look at the Impredicative Sort of CIC

V.V. has already sketched this in 2006!

Uo.o Uio Us.o Us.o
l l l

Ui > Ua g > Us g

l l

Us 2 » Us o

l

Us 3

A very short note on homotopy A-calculus
Vladimir Voevodsky, 2006

.&zu’a/- A Fresh Look at the Impredicative Sort of CIC

Demo

.&LW A Fresh Look at the Impredicative Sort of CIC

Doggy bag

|. Prop can be turned into a syntactic approximation
of mere propositions

2. To get definitional proof-irrelevance, we also need
to restrict recursive types with a guard condition

3. This should be (hopefully) available soon in Cog

4. It may be extended to deal with a // hierarchy of
universes that encodes for homotopy levels.

I&L’u'a,- A Fresh Look at the Impredicative Sort of CIC

