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Gradual Typing
The Basics

Static vs Dynamic Type Checking

early error detection 
enforce abstractions 
checked documentation 
efficiency

flexible programming idioms 
rapid prototyping 
no spurious errors 
simplicity

Java, Scala, C#/…,  
ML, Haskell, Go, Rust, etc.

Python, JavaScript, Racket, 
Clojure, PHP, Smalltalk, etc.

Long-standing divide in programming languages

static dynamic

why should we have to choose? 

can’t we have both?



Static and Dynamic Checking
many recent languages try to have both

C# 4.0
Dart

ActionScript
TypeScript

Hack
Typed Racket

Typed Clojure

Scala Perl 6

very different flavor & guarantees…

Static and Dynamic Checking
many different theories too!

hybrid typing
soft typing

quasi-static typing
gradual typing

optional typing
RTTI

multi-language  
programs

manifest contracts

very different flavor & guarantees…

Gradual Typing

• Combine both checking disciplines in a single language 

• Programmer controls which discipline is used where 

• Supports seamless evolution between static/dynamic 

• Pay-as-you-go: static regions can be safely optimized

[Siek & Taha, 2006]
Fully Static & Fully Dynamic

def f(x) = x + 2
def h(g) = g(1)
h(f)

def f(x) = x + 2
def h(g) = g(true)
h(f)

def f(x:int) = x + 2
def h(g:int!int) = g(1)
h(f)

def f(x:int) = x + 2
def h(g:int!int) = g(true)
h(f)

true + 23
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Gradual as superset of static and dynamic

runtime error

static error



Sound Interoperability

def f(x:int) = x + 2
def h(g) = g(1)
h(f)
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def f(x:int) = x + 2
def h(g) = g(true)
h(f)

at the boundary

f(true)

Partially-typed programs

protect assumptions made in static code

runtime error

Inside Gradual Typing

def f(x) = x + 2
def h(g) = g(true)
h(f)

def f(x:?) = x + 2
def h(g:?) = g(true)
h(f)

unknown type ?

=

Inside Gradual Typing

type equality

T = T

T ~ ? ? ~ T

T ~ T

type consistency

S → T ~ S’ → T’
S ~ S’  T ~ T’not transitive!

int ~ ?    ? ~ bool

int ≁ bool
def f(x:int) = x + 2
f(true) static error

static semantics: consistency

<int⇐?>true + 2

Inside Gradual Typing
dynamic semantics: casts

def f(x:?) = x + 2

f(5)

f(true)

def f(x:?) = <int⇐?>x + 2

<int⇐?>5 + 2 5 + 2 7

runtime error

check that it’s an int



def f(x:int) = x + 2
def h(g) = g(true)
h(f)

def f(x:int) = x + 2
def h(g:?) = (<?!?⇐?>g)(<?⇐bool>true)
h(<?⇐int!int>f)

runtime error

(<?!?⇐?><?⇐int!int>f)(<?⇐bool>true)

(<?!?⇐int!int>f)(<?⇐bool>true)
fun(x:?){<?⇐int>f(<int⇐?>x)}(<?⇐bool>true)

<?⇐int>f(<int⇐?><?⇐bool>true)

<?⇐int>f(<int⇐bool>true)

body is safe!
can be compiled efficiently

check it is a functiontagged value

Properties of Gradual Languages
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equivalence for static terms

embedding of dynamic terms

[Siek & Taha, 2006]

type safety admits runtime type errors

conservative extension

expressive

The End
?

Gradual Typing
Refined



What do you mean “Gradual”?

Refined Criteria for Gradual Typingú
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Abstract
Siek and Taha [2006] coined the term gradual typing to describe a theory for integrating static
and dynamic typing within a single language that 1) puts the programmer in control of which
regions of code are statically or dynamically typed and 2) enables the gradual evolution of code
between the two typing disciplines. Since 2006, the term gradual typing has become quite popular
but its meaning has become diluted to encompass anything related to the integration of static
and dynamic typing. This dilution is partly the fault of the original paper, which provided an
incomplete formal characterization of what it means to be gradually typed. In this paper we
draw a crisp line in the sand that includes a new formal property, named the gradual guarantee,
that relates the behavior of programs that di�er only with respect to their type annotations. We
argue that the gradual guarantee provides important guidance for designers of gradually typed
languages. We survey the gradual typing literature, critiquing designs in light of the gradual
guarantee. We also report on a mechanized proof that the gradual guarantee holds for the
Gradually Typed Lambda Calculus.
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Digital Object Identifier 10.4230/LIPIcs.SNAPL.2015.274

1 Introduction

Statically and dynamically typed languages have complementary strengths. Static typing
guarantees the absence of type errors, facilitates the generation of e�cient code, and provides
machine-checked documentation. On the other hand, dynamic typing enables rapid prototyp-
ing, flexible programming idioms, and fast adaptation to changing requirements. The theory
of gradual typing provides both of these typing disciplines within a single language, puts the
programmer in control of which discipline is used for each region of code, provides seamless
interoperability, and enables the convenient evolution of code between the two disciplines.
Gradual typing touches both the static type system and the dynamic semantics of a language.
The key innovation in the static type system is the consistency relation on types, which
allows implicit casts to and from the unknown type, here written ı, while still catching static
type errors [5, 50, 27].1 The dynamic semantics for gradual typing is based on the semantics

ú
This work was partially supported by NSF grant 1360694.

1
The consistency relation is also known as compatibility.

© Jeremy Siek, Michael Vitousek, Matteo Cimini, John Tang Boyland;

licensed under Creative Commons License CC-BY

1st Summit on Advances in Programming Languages (SNAPL’15).

Eds.: Thomas Ball, Rastislav Bodík, Shriram Krishnamurthi, Benjamin S. Lerner, and Greg Morrisett; pp. 274–293

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

“its meaning has become diluted 
to encompass anything related to 

the integration […]”

[Siek et al., 2015]

Gradual Typing, refined
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it’s all about precision

some gradual types convey more information than others

Gradual Typing
best-effort static checking  

backed by dynamic checking

Int ! Int v ?Int ! ? v? ! ?v

[Siek et al., 2015]

Precision
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type precision extends to term precision

(�y : ?.y) ((�x : ?.x) 42)

(�y : Int.y) ((�x : ?.x) 42)

v

(�y : Int.y) ((�x : Int.x) 42)

v

no explicit checks
evolution is completely driven by type annotations

Properties of Gradual Languages (ctd)
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losing precision

[Siek et al, 2015]

2) preserves reduction

adding type information can only  
introduce new static/dynamic errors

1) preserves typing

Gradual Guarantee



Gradual Typing
Extended

Beyond Simple Gradual Typing

• Subtyping (structural, nominal, objects) 

• Parametric polymorphism 

• Type inference and gradual types 

• Union and recursive types 

• etc.
[Siek&Taha’07, Ina&Igarashi’11]

[Ahmed et al 08/11/17, Igarashi’17]
[Siek&Vachharajani’08, Garcia&Cimini’15]

[Siek&Tobin-Hochstadt’16]

Gradual Typing  
=  

reconciling static and dynamic typing
combining type disciplines of different strength

Parametricity Effects Dependencies

RefinementsTypestates
Security

Communication

Simple types

“Uni-typed”

Subtyping Ownership

Advanced Gradual Types

• Gradual effects 

• Gradual refinement types 

• Gradual security types

[ICFP’14, OOPSLA’15, JFP’16]

[POPL’17]

[TOPLAS in progress]

let’s look at some examples



Gradual Effects

[ICFP’14, OOPSLA’15, JFP’16]

Effects

in, out, err
alloc, read, write
raise[T]

effect privileges

…

effectful operations
println, File.read(), …
new, x[i], x[i]=y, …
throw e
…

performing an effectful operation  
requires the corresponding privilege

I/O
memory
exceptions

effect domains

…

[Marino & Millstein, 2009]

Effect Systems
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def f(x: Int): Int @{} =
  println(“hola”)
  x + 1

def f(x: Int): Int @{io} =
  println(“hola”)
  x + 1

static error

// Int   Int
{}

// Int   Int
{io}

T1   T2
ɸ set of latent effects

def f(x: Int): Int =
  println(“hola”)
  x + 1

dynamic check: 
has print privilege?

def run(callback: Int    Int) =
  v = …
  callback(v)

{}

restrict current context 
to no privileges

run(f)

def f(x: Int): Int @{¿} =
 has(print); println(“hola”)
  x + 1

run(fun(x:Int){ restrict {} f(x) })

has/restrict play the role of “effect casts”

“untyped” ≡ has unknown effect ¿

Gradual Effects

runtime error



Gradual Refinement Types

[POPL’17]

Refinement Types
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type Nat = {ν:Int | ν ≥ 0}

def fib(x: Nat): Nat

def isNat(x: Int): Bool

def bar(x: Int): String  
  if isNat(x)
  then fib(x)
  else fib(-x)

static error
static error

{ν: Bool | ⏉ }{ν: Bool | ν=true ⇒ x ≥ 0}{ν: Bool | ν=true ⇔ x ≥ 0}

Gradual Refinement Types
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type Nat = {ν:Int | ν ≥ 0}

def fib(x: Nat): Nat

def isNat(x: Int): Bool

def bar(x: Int): String  
  if isNat(x)
  then fib(x)
  else fib(-x)

{ν: Bool | ?}

+ dynamic check
+ dynamic check

{ν: Bool | ν = true ⇒ x ≥ 0 ∧ ?}

Gradual Refinement Types
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type Nat = {ν:Int | ν ≥ 0}

def fib(x: Nat): Nat

def isNat(x: Int): Bool

def bar(x: Int): String  
  if isNat(x)
  then fib(-x)
  else fib(x)

{ν: Bool | ?}

+ dynamic check

{ν: Bool | ν = true ⇒ x ≥ 0 ∧ ?}

static error



Gradual Security Types

[TOPLAS in progress]

Security Typing

private salary 
goes to public channel

H

L

α α 

static error

L

L

Gradual Security Typing

H

L

? ?

+ dynamic check  
(runtime error)

?

?

Security Types & Free Theorems

let foo :                          =  
  fun f => … f x y … 

…

theorem 
result does not leak 2nd argument

can assume theorem is not violated



Gradual Security Typing, with Theorems

if pub < priv

if pub < priv
?

mix’ 1 2

mix pub priv
’

mix 1 2LL

LL

H the types tell
the theorems!

static error

runtime error

runtime error

Properties of Gradual Languages
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equivalence for static terms

embedding of dynamic terms

losing precision preserves typing

type safety

losing precision preserves reduction

fully-precise

fully-imprecise

Ranges of Precision
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gradual effects

gradual refinements

fully 
precise

fully 
imprecise

gradual security                         
(IntH v Int?)

A
{ io,alloc }������! B v A

{ io,? }����! B v A
{ ? }��! B

{ Int | 0 < ⌫ < 10 } v { Int | 0 < ⌫ ^ ? } v { Int | ? }

Gradual Typing

• More than static & dynamic typing 

• Precision-driven type checking 

• Applicable to wide range of typing disciplines 

• Important to be clear about the guarantees

high cost
renegotiation of foundations 

ingenious “tricks” 
ad hoc justifications
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How to Design
Gradual Languages?

42
eg. equality, subtyping, containment, implication, etc.

gradual language cast calculus
translation

TYPE 
SYSTEM’

RUNTIME 
SEMANTICS

TYPE 
SYSTEM

where does it 
come from?

is it unique?
is it “right”?

how to deal with 
imprecision?

can’t we define runtime 
semantics directly?

… gradual 
guarantee?

what’s the connection to the 
static language?

RUNTIME 
SEMANTICS

what are the 
“right” definitions? 
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AGTAbstracting Gradual Typing

[POPL’16]

Designing Gradual Languages
without the guesswork!
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static type system
& type safety proof

syntax & interpretation 
of gradual types

AGT

gradual language

n1 + n2 �! n3

(�x : T.t)v �! t[v/x]
if true then t2 else t3 �! t2

if false then t2 else t3 �! t3

. . .

TYPE 
SYSTEM

RUNTIME 
SEMANTICS

GType P(Type)

↵

�

by construction

systematic, 
not automatic
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AGT

syntax & interpretation 
of gradual types

GType P(Type)

↵

�

Syntax of Gradual Types
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eT ::= Int | Bool | eT ! eT | ?

T ::= Int | Bool | T ! T

static types

gradual types

Type

GType

“represents”

?

Int

Int ! ? Int ! Int
Int ! Bool

Int ! Int ! Int
Int ! Bool ! Int

Int

any static type!

eT ::= Int | Bool | eT ! eT | ?

“represents”

Int ! . . .

�(Int) = { Int }
�(Bool) = {Bool }

�( eT1 ! eT2) = {T1 ! T2 | T1 2 �( eT1), T2 2 �( eT2) }
�(?) = Type

Concretization

48

� : GType ! P(Type)

�(Int ! ?) = { Int ! T | T 2 Type }
e.g.



Type Precision
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eT1
eT2v

✓

�( eT1) �( eT2)
x

x

x

x
x

x
x

x

directly induced by concretization

Int ! Int v ?Int ! ? v? ! ?v

I - Static Semantics

AGT

Consistency
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fT1 ⇠ fT2

x
x

x x
x

�( eT1)

x x

x
x

�( eT2)

=
=

=

coincides with [Siek & Taha, 2006]

lifting equality

existential lifting
captures plausibility

not transitive!

Consistent Subtyping
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x
x

x x
x

�( eT1)

x x

x
x

�( eT2)

fT1 . fT2

<:

<:
<:

<:

coincides with [Siek & Taha, 2007]

lifting subtyping
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x x

x x
x

x x

x
x

�

x
x
x

x

x
x

x

x
x

x
x

x

x
x x

x
xx

�

↵

eT

Galois connection
(sound & optimal)eT1

e
<
: eT2

T1 <
:

T2

Consistent Join Soundness and Optimality

• can break conservative extension (both ways) 

• can break safety (stuck) 

• can obtain “forgetful semantics” [Greenberg]  
(inadequate for type-based reasoning)
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GType P(Type)

↵

�

why does it matter?

Lifting equate

(Tif)
� ` t1 : T1 � ` t2 : T2 � ` t3 : T3 T1 = Bool

� ` if t1 then t2 else t3 : equate(T2, T3)

equate : Type⇥Type * Type
equate(T, T ) = T
equate(T1, T2) undefined otherwise

eT1 u eT2 = ↵(�( eT1) \ �( eT2))

‡equate( eT1, eT2) = eT1 u eT2

meet on 
gradual types

“It was interesting to see how it justifies using meet 
for conditional expressions… 

before that I had always thought that 
I was making an arbitrary choice 

to prefer meet over join.” 
- J. Siek

Designing Gradual Languages

• Galois connection
• defining    is the central design decision

•    is uniquely determined by    (“just” find it!) 

• given the Galois connection, lifting the statics is direct

• Galois connection also central in the dynamics

56

GType P(Type)

↵

�

↵ �

�



• Galois connection
• defining    is the central design decision

•    is uniquely determined by    (“just” find it!) 

• given the Galois connection, lifting the statics is direct

• Galois connection also central in the dynamics

Designing Gradual Languages
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GType P(Type)

↵

�

let’s see some examples

↵ �

�

Defining Gradual Types
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� 2 PrivSet
read,write, alloc 2 Priv

⌅ 2 CPrivSet
read,write, alloc, ? 2 CPriv

� : CPrivSet ! P(PrivSet)

�({ read }) = { { read } }
�({ read, ? }) = { { read } [ � | � 2 PrivSet }

[ICFP’14, JFP’16]

{¿} ⫇ {}

naturally induces the definition of  
consistent containment

def f(x: Int): Int = …

def run(callback: Int    Int) = …
{} run(f)

Defining Gradual Types
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is not always trivial!

can pick contradiction

purely syntactic
(precision)

admits contextual contradiction

[POPL’17]

�(p ^ ?) = { p ^ q | SAT(p) =) SAT(p ^ q) }

�(p ^ ?) = { p ^ q | q 2 Formula }

�(p ^ ?) = { q | { q } |= p }

�(p ^ ?) = { q | { q } |= p and local(q) }

note: any definition would yield a “valid” gradual language

ep ::= p | p ^ ?

e
T ::= {⌫ : B | ep} | x : eT ! e

T

Designing Gradual Languages
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GType P(Type)

↵

�

• Galois connection
• defining    is the central design decision

•    is uniquely determined by    (“just” find it!) 

• given the Galois connection, lifting the statics is direct

• Galois connection also central in the dynamics

↵ �

�



II - Dynamic Semantics

AGT

Type Safety as Proof Reduction
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` t : T ` t0 : T

t 7�! t0

D D0=)
relies on transitivity 

of type relations

P (T1, T2)

P (T2, T3)

P (T1, T3)

Reminder

Evidence
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↵ ↵

h eT 0
1, eT 0

2i

holds… 
but why?

fT1 . fT2

x x

x x
x

x x

x
x

� �

<:

<:

<:

<:

local justification
(sound & optimal)

, "

hInt ! Bool, Int ! Booli ` ? ! Bool . Int ! ?

generalization of the 
Threesome middle type

[Siek & Wadler, 2010]

Reduction: Combining Evidence
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D0

` et0 : eT 0

‹P ( eT1, eT3)

=)?D

` et : eT

"23 ` ‹P ( eT2, eT3)

"12 ` ‹P ( eT1, eT2)

refutation
(“cast error”)

"13 ` ‹P ( eT1, eT3)

"12

"23

"13 = "12 �P "23

. . .

typing derivations  
with evidence

"13 = "12 �P "23

consistent transitivity



Example

⊢ (λ x:?. x + 1) false

⊢ false : Bool x:? ⊢ x + 1 : Int

x:? ⊢ x : ? x:? ⊢ 1 : Int
<Int> ⊢ ? ~ Int

<Bool> ⊢ Bool ~ ?⊢ (λ x:?. x + 1) : ? → Int

: Int

=)? ⊢ false + 1 : Int

⊢ false : Bool ⊢ 1 : Int
??? ⊢ Bool ~ Int

<Int> ⊢ ? ~ Int

<Bool> ⊢ Bool ~ ?

<Bool> ◦ <Int> ⊢ Bool ~ Int
undefined

⇒ runtime error

Consistent Transitivity
"13 = "12 �P "23h eT1, eT21i �P h eT22, eT3i

x x

x
x

x

x x

x
x

x
x

x
x

x

x x

x
x

h eT 0
1, eT 0

3i

↵

↵2({hT1, T3i 2 �2( eT1, eT3) | 9T2 2 �( eT21) \ �( eT22). P (T1, T2) ^ P (T2, T3)})

undefined if empty↵
refutation / “cast error”

��

Recent Developments & Perspectives

• Dynamics driven by type safety argument 
• can involve more operators (eg. dependencies [POPL’17]) 

• ensures type safety (+ gradual guarantee) 

• type soundness ≠ type safety 
• eg. parametricity, noninterference 

• security typing with references:  
needs a more precise GC for dynamics than for statics 

• tension with gradual guarantee

67

programming 
flexibility

semantic property 
enforcement

Conclusions

AGT



Gradual Typing

• Precision-driven type checking 

• Applicable to wide range of typing disciplines 

• Needs solid foundations  

• Full of open challenges, very active area

check recent and upcoming 
POPL, PLDI, ICFP, OOPSLA, ECOOP, etc.

70

need not be mostly
guesswork & intuition focus on key issues

streamline what can be

AGT
GType P(Type)

↵

�

optimizations

semantic
properties

richer types
Galois connection(s)

algorithmic definitions
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