
Towards typed-tactics in Coq:
the what, the why, and the how

Beta Ziliani
CONICET / FAMAF - UNC

Joint work with Jan-Oliver Kaiser, Yann Régis-Gianas, Robbert Krebbers, with
contribs from Béatrice Carré, Jacques-Pascal Deplaix, Thomas Refis.

WHAT is a tactic? #1: The Old Times
● A step in the elimination / introduction rules of the calculus:

 intro x: x:P ⊢ Q
 ⊢ P -> Q

● A program decomposing a goal into smaller subgoals:

 apply lemma: ⊢ P ⊢ Q lemma : P -> Q -> R
 ⊢ R

● A program to solve problems of a specific domain:

 omega: x > 0 -> x + y > 0

All written
in OCaml

WHAT is a tactic? #2 Ltac: A New View
● A composition of tactics (ltac):

 eapply (tac_wp_pure _ _ _ _ (fill K e’));
 [apply _ (* PureExec *)
 | try fast_done (* The pure condition for PureExec *)
 | apply _ (* IntoLaters *)
 | wp_expr_simpl_subst; (* new goal *)
 try wp_value_head]

(Snippet from the Iris project)

● A (pretty weird) functional program manipulating terms and goals (constr):

 Ltac of_expr e := lazymatch e with
 | heap_lang.Var ?x => constr:(Var x)
 | heap_lang.App ?e1 ?e2 =>
 let e1 := of_expr e1 in let e2 := of_expr e2 in constr:(App e1 e2)
 | _ => match goal with
 | H : Closed [] e |- _ => constr:(@ClosedExpr e H)
 end
 end.
(Snippet from the Iris project)

WHAT is a tactic? #2 Ltac (cont.)

WHAT is a tactic? #3 Ltac2: A Better Ltac

(Here Pim stands and sells Ltac2)

Problems with Ltac
● It's not a proper language:

○ It misses datatypes (e.g., no list for tactics),
○ Have no real typing (e.g., gets confused about constr and ltac in places it shouldn’t),
○ What is not provided can’t be coded (e.g., very limited support for goal reordering),
○ No proper error handling (e.g. just fail).

● Ltac2 improves the situation (!).

But there is one thing they still miss: precise types in Gallina!

WHY typed tactics? (ltac)
eapply (tac_wp_pure _ _ _ _ (fill K e’));
 [apply _ (* PureExec *)
 | try fast_done (* The pure condition for PureExec *)
 | apply _ (* IntoLaters *)
 | wp_expr_simpl_subst; (* new goal *)
 try wp_value_head]

(Snippet from the Iris project)

Are we shaping

the new goal

as expected?

Are these the

right number of

subgoals?

WHY typed tactics? (constr)
 Ltac of_expr e := lazymatch e with
 | heap_lang.Var ?x => constr:(Var x)
 | heap_lang.App ?e1 ?e2 =>
 let e1 := of_expr e1 in let e2 := of_expr e2 in constr:(App e1 e2)
 | _ => match goal with
 | H : Closed [] e |- _ => constr:(@ClosedExpr e H)
 end
 end.
(Snippet from the Iris project)

Are we

returning the

right thing?

Are we missing

a case?

Are these the

right arguments?

Every case cases on

the right type?

A typo… a late-night change... Set Ltac Debug.

Hypothesis

Types can help us obtain robust,
maintainable tactics!

Typed tactics in Mtac2 (ltac)
`∆’ e2 φ <- M.evar _;
TT.apply (tac_wp_pure _ ∆’ _ _ (fill K e’) e2 φ _)
 <**> TT.by’ T.apply_ (* PureExec *)
 <**> TT.use (T.try fast_done) (* The pure condition for PureExec *)
 <**> TT.by’ T.apply_ (* IntoLaters *)
 <**> (`e’ <- M.evar _; (* new goal *)

 wp_expr_simpl_subst e’
 <**> TT.try wp_value_head)

Morally, <**> : (A -> B * goals) -> (A * goals) -> (B * goals)

we are shaping

the goal as

expected

these are the

right number of

subgoals

Typed tactics in Mtac2 (constr)
 Definition of_expr e : heap_lang.expr → gtactic expr := mfix1 go e :=
 mtry
 match e with
 | heap_lang.Var x => T.ret (Var x)
 | heap_lang.App e1 e2 =>
 e1 <- go e1; e2 <- go e2; T.ret (App e1 e2)
 end
 with StuckTerm =>
 H <- T.select (Closed [] e); T.ret (@ClosedExpr e H)
 end.

we can't miss a

case

these are the

right arguments

Every case cases on

the right type

we are

returning the

right thing

Mtac

A language for typed
meta-programming (constr)

Typed meta-programs in Mtac (constr)
 Definition of_expr e : heap_lang.expr → M expr := mfix1 go e :=
 mtry
 match e with
 | heap_lang.Var x => ret (Var x)
 | heap_lang.App e1 e2 =>
 e1 <- go e1; e2 <- go e2; ret (App e1 e2)
 end
 with StuckTerm =>
 raise (WrongTerm e)
 end.

Meta-effects in
the monad M

HOW we do meta-programming in Mtac
● Describe the "effects" in an inductive type M:

Inductive M : Type → Prop :=
| ret : A → M A
| bind : M A → (A → M B) → M B
| mtry : M A → (Exception → M A) → M A
| raise : Exception → M A
| mfix1 : ((∀x : A. M (B x)) → (∀x : A. M (B x)))→ ∀x : A. M (B x)
| ...

● Execute them in an interpreter.
○ It inherits β, δ, ι, ζ reductions from Coq.

The win of Mtac
● The typechecker catches errors at an early stage.
● A full-fledged functional language, with Coq's own stdlib, notation

mechanism, etc.
● Undoubtedly better than Ltac's "constr:" [1].

[1] https://gmalecha.github.io/reflections/2016/04/18/experimenting-with-mtac/

Mtac2

Redesign of Mtac with support for tactic
development (ltac)

Mtac2: Mtac + support for tactics (ltac and more)
Mtac +

1) A new proof environment MProof.
2) New language constructs: hypotheses, constrs, abs_let, ...
3) A first-class representation for goals within Coq.
4) (At the moment) two tactic types to describe two levels of correctness.
5) (Some) integration from-and-to Ltac.

Use cases
1) First 6 files of Software Foundations

a) To answer the question: do we have enough primitives to build tactics?
b) Basic tactics: intros, destruct, intro patterns, apply, simpl, unfold, assert, generalize.
c) Imported tactics from Ltac: inversion, induction, rewrite.

2) Several important tactics of Iris
a) To answer the question: how can we juice out types for tactics?

Some challenges we faced
1) What is a good representation for goals?

2) What is a good representation for tactics?

3) How to avoid issues with universes?

What is a goal? (very partial answer)
● A goal is a meta-variable, but in Coq we just say is a term of some type:

Inductive goal :=
| Goal : forall {A}, A -> goal.

● However, different subgoals may have different contexts (demo).

Problem

How to compose tactics so that
each work on the goal’s specific

context

Solution: make goals carry their own context!

The Goal

A Hypothesis

What is a goal? (partial yet sufficient answer)
Inductive goal :=
| Goal : forall {A}, A -> goal
| AHyp : forall {A}, (A -> goal) -> goal.

Theorem tl_length_pred : forall l: list nat,
 pred (length l) = length (tl l).
MProof.
 destructn 0 &> [m: idtac | intros n l] &> reflexivity.
Qed.

[m: G ?x | AHyp (fun n=> AHyp (fun l => G ?y))]

What is a tactic? (untyped ltac fragment)
Considering a tactic as:

● A program decomposing a goal into smaller subgoals (apply).

Partial answer: a tactic takes a goal and returns a list of goals (in the M
monad):

 Definition tactic := goal -> M (list goal).

This is in essence the type of standard tactics (apply, intros, etc).

What is a tactic? (untyped ltac fragment)
● A composition of tactics (; operator in Ltac).

Class Seq (A : Type) :=
 &> : tactic -> A -> tactic.

Instance seq_one : Seq tactic := …

Instance seq_list : Seq (list tactic) := ...

What is a tactic? (constr fragment)
Now consider:

● A functional program manipulating terms.

A tactic takes a goal and returns a value and a list of goals (in the M monad):

 Definition gtactic (A: Type) := goal -> M (A * list goal).

Unveiling the examples
 Definition of_expr e : heap_lang.expr → gtactic expr := mfix1 go e :=
 mtry
 match e with
 | heap_lang.Var x => T.ret (Var x)
 | heap_lang.App e1 e2 =>
 e1 <- go e1; e2 <- go e2; T.ret (App e1 e2)
 end
 with StuckTerm =>
 H <- T.select (Closed [] e); T.ret (@ClosedExpr e H)
 end.

T.ret a := ret (a, [])

Selects a hypothesis from the goal

Unveiling the examples
`∆’ e2 φ <- M.evar _;
TT.apply (tac_wp_pure _ ∆’ _ _ (fill K e’) e2 φ _)
 <**> TT.by’ T.apply_ (* PureExec *)
 <**> TT.use (T.try fast_done) (* The pure condition for PureExec *)
 <**> TT.by’ T.apply_ (* IntoLaters *)
 <**> (`e’ <- M.evar _; (* new goal *)

 wp_expr_simpl_subst e’
 <**> TT.try wp_value_head)

Really, <**> : M (A -> B * list goal) -> M (A * list goal) -> M (B * list goal)

Composition of tactics: combinatorial explosion!
intros &> T.select nat

apply x &> T.select nat

(a <**> b) &> [m: t1 | t2]

Meta-programming for Coq in Coq

A universe of problems

1) Universe polymorphism (UP).

2) Copy list and prod from std-lib.

○ Avoid interference of Mtac universes with user’s.

○ Make them UP? Please?

3) Avoid fixating universes at type M.

A universe of solutions

Universes in Mtac
● The inductive type M with universe annotations:

Inductive M@{a b c d} : Type@{a} → Prop :=
 | ret : ∀ A : Type@{b}, A → M A
 | bind : ∀ (A : Type@{c}) (B : Type@{d}),
 M A → (A → M B) → M B
 | mtry : ∀ A : Type@{a},
 M A → (unit → M A) → M A
 | raise : ∀ A : Type@{a}, unit → M A

in which b <= a , c <= a , d <= a

Some universes

only appear in one

constructor, but

they must all be

in M

Necessary, yet

restrictive

Universes in Mtac2
● The inductive type M is just a type holder:

Inductive M@{a} : Type@{a} → Prop :=
 | mkM : ∀ A: Type@{a}, M A.

Definition ret : ∀ A: Type@{c}, A →M A. … Qed.

Definition bind : ∀(A: Type@{d})(B: Type@{e}), M A → (A → M B) → M B. ...
Qed.

None of the universes are restricted!

Opaque definition

What’s missing in the picture? (Honest slide)
● Performance.

● Seriously, performance.

○ Getting much better playing with some cool ideas, but far from ideal.

○ Compilation?

● A serious study of universes (no idea how!).

● Reduce and GC universes: reflexivity has 520 universes!

○ Annotate universes is just too painful!

○ Not a real problem in the cases we studied, but it feels wrong.

 Conclusions

● Types in tactics allow us to build maintainable tactics.

● Mtac2 provides a simple and integrated model for typed tactics.

● Tested in a real dev: Iris.

● Three challenges ahead: composition, performance and universes.

● Infinite possibilities for extensions.

