Towards typed-tactics in Coq:
the what, the why, and the how

Beta Ziliani
e CONICET / FAMAF - UNC —

Joint work with Jan-Oliver Kaiser, Yann Régis-Gianas, Robbert Krebbers, with
contribs from Béatrice Carré, Jacques-Pascal Deplaix, Thomas Refis.

WHAT is a tactic? #1: The Old Times

e Astepinthe elimination / introduction rules of the calculus:

intro x: x:P+-Q
FP->Q
e A program decomposing a goal into smaller subgoals:
apply lemma: - P - Q lemma:P->Q->R ﬁlgg:renr;
- R

e A program to solve problems of a specific domain:

omega:. x>0->x+y>0

WHAT is a tactic?

#2 Ltac: A New View

eapply (tac_ wp pure
[apply _
| try fast_done
| apply _
| wp_expr_simpl_subst;
try wp_value _head]

(Snippet from the lris project)

e A composition of tactics (Itac):

(fill K &));

*

(* PureExec *)

(* The pure condition for PureExec *)
(* IntoLaters *)

(* new goal *)

v

WHAT is a tactic? #2 Ltac (cont.)

e A (pretty weird) functional program manipulating terms and goals (constr):

Ltac of _expr e := lazymatch e with
| heap_lang.Var ?x => constr:(Var x)
| heap_lang.App ?e1 ?e2 =>
let e1 := of _exprelinlete2:=of expre2in constr:(App el e2)

| _=> match goal with

| H: Closed [] e |- _ => constr:(@ClosedExpr e H)

end
end.

(Snippet from the lris project)

v

WHAT is a tactic? #3 Ltac2: A Better Ltac

(Here Pim stands and sells Ltac2)

Problems with Ltac

e |It's not a proper language:

It misses datatypes (e.g., no list for tactics),

Have no real typing (e.g., gets confused about constr and Itac in places it shouldn't),
What is not provided can’t be coded (e.g., very limited support for goal reordering),
No proper error handling (e.g. just fail).

O O O O

e Ltac2 improves the situation (!).

But there is one thing they still miss: precise types in Gallina!

WHY typed tactics? (ltac)

ARE THESE THE

eapply (tac_wp _pure
[apply _
| try fast_done
| apply _
| wp_expr_simpl_subst;
try wp_value _head]

_(fill K e));

(Snippet from the Iris project)

L PumEsees
T

RIGHT NVMBER OF
SVBGOALS?

he pure condition for PureExec *)
* IntoLaters *)
* new goal *)

-~ ARE WE SHAPING

THE NEW 60AL
AS EXPECTED?

(
(

ARE WE MISSING

WHY typed tactics? W 4 case?

Ltac of_expr e := lazymatch e with ARE THESE THE
| heap_lang.Var ?x => Conw/ RIGHT ARGUMENTS?
| heap_lang.App ?e1 ?e2 =
let eVf= of _expr el inlete2 := of expre2in constr:(App el e2)
| _=>mgtich goal with
:Closed []e |- _=> constr.(@CIosedEpr ACE WE
RETVRNING THE
RIGHT THING?

(Snippet frgm the Iris project)

THE RIGHT TYPE?

A typo... a late-night change... Ser LTac DeBvs.

M'l ¥

Hypothesis

Types can help us obtain robust,
maintainable tactics!

Typed tactics in Mtac2 (ltac)

THESE ARE THE

‘A e2 @ <-M.evar _: RIGHT NVMBER OF

TT.apply (tac_wp_pure _ A’ (filKe)e2 @ - — SvBGoALs
<**> TT.by’ T.apply_ “—* PureExec *)
<**>TT.use (T.try fast_done) (* The pure condition for PureExec *)
<**>TT.by’ T.apply_ (* IntoLaters *)

<**> (‘e’ <- M.evar _; (* new goal *)

_ -— WE ARE SHAPING
wp_expr_simpl_subst e’ THE GOAL AS
<**>TT.try wp_value_head) EXPECTED

Morally, <**>:(A->B * goals)-> (A * goals) -> (B * goals)

WE ARE

Typed tactics in Mtac2 (constr) / ETURIG THE

RIGHT THING
Definition of _expr e : heap_lang.expr — gtactic expr := mfix1 go e :=
mtry
match e with

THESE ARE THE
RIGHT ARGVMENTS

| heap fAng.Var x => T.rgt (Varx)
| heap_lang.App e1 e2 =>
el <t goel;e2<-goe2; T.ret (App el e2) e eantr miss A
end < CASE
with StugkTerm =>
H <- Tiselect (Closed [] e); T.ret (@ClosedExpr e H)

end.
| EVERY CASE CASES OM

THE RIGHT TYPE

Mtac

A language for typed
meta-programming (constr)

Typed meta-programs in Mtac (constr)

Definition of _expr e : heap_lang.expr — M expr := mfix1 go e :=
mtry

match e with Meta-effects in
| heap_lang.Var x => ret (Var x)
| heap_lang.App e1 e2 => the monad M
el <-goel; e2<-goe2; ret (App el e2)
end

with StuckTerm =>
raise (WrongTerm e)
end.

HOW we do meta-programming in Mtac

e Describe the "effects" in an inductive type M:

Inductive M : Type — Prop :=

|ret:A—>MA

| bind: MA—-A—-MB)—>MB

| mtry : M A — (Exception - MA) - M A

| raise : Exception - M A

| mfix1: (Vx:AAMBx))—>(VxX:AMBXx))— Vx:A M (B Xx)
| ...

e Execute themin an interpreter.
o lItinherits 3, 6, \, { reductions from Coq.

The win of Mtac

e The typechecker catches errors at an early stage.

e A full-fledged functional language, with Coq's own stdlib, notation
mechanism, etc.

e Undoubtedly better than Ltac's "constr:" [1].

[1] https://gmalecha.github.io/reflections/2016/04/18/experimenting-with-mtac/

Mtac’

Redesign of Mtac with support for tactic
development (ltac)

Mtac2: Mtac + support for tactics (ltac and more)

Mtac +

—_—

A new proof environment MProof.
New language constructs: hypotheses, constrs, abs_let, ...
A first-class representation for goals within Cog.

(At the moment) two tactic types to describe two levels of correctness.
(Some) integration from-and-to Ltac.

28

Ul

Use cases

1) First 6 files of Software Foundations

a) To answer the question: do we have enough primitives to build tactics?
b) Basic tactics: intros, destruct, intro patterns, apply, simpl, unfold, assert, generalize.
c) Imported tactics from Ltac: inversion, induction, rewrite.

2) Several important tactics of Iris
a) To answer the question: how can we juice out types for tactics?

Some challenges we faced

1) What is a good representation for goals?
2) Whatis a good representation for tactics?

3) How to avoid issues with universes?

)

What is a goal? (very partial answer)

e A goalis a meta-variable, but in Coq we just say is a term of some type:

Inductive goal :=
| Goal : forall {A}, A -> goal.

e However, different subgoals may have different contexts (demo).

Problem

How to compose tactics so that
each work on the goal's specific
context

Solution: make goals carry their own context!

The Goal

A Hypothesis

What is agoal? (partial yet sufficient answer)

Inductive goal :=
| Goal : forall {A}, A -> goal
| AHyp : forall {A}, (A -> goal) -> goal.

Theorem tl_length_pred : forall I: list nat, [m: G ?x | AHyp (fun n=> AHyp (fun | => G ?y))]
pred (length |) = length (il).
MProof.

destructn 0 &> [m: idtac | intros n |] &> reflexivity.
Qed.

What is a tactic? (untyped ltac fragment)

Considering a tactic as:

e A program decomposing a goal into smaller subgoals (apply).

Partial answer: a tactic takes a goal and returns a list of goals (in the M
monad):

Definition tactic := goal -> M (list goal).

This is in essence the type of standard tactics (apply, intros, etc).

What is a tactic? (untyped ltac fragment)

e A composition of tactics (; operator in Ltac).

Class Seq (A : Type) =
&> : tactic -> A -> tactic.

Instance seq_one : Seq tactic := ...

Instance seq_list : Seq (list tactic) := ...

What is a tactic? (constr fragment)

Now consider:
e A functional program manipulating terms.
A tactic takes a goal and returns a value and a list of goals (in the M monad):

Definition gtactic (A: Type) := goal -> M (A * list goal).

Unveiling the examples

Definition of _expr e : heap_lang.expr — gtactic expr := mfix1 go e :=
mtry
match e with
| heap_lang.Var x => T.lﬁ(Var X)
| heap_lang.App e1 e2 =>
el <-goel;e2<-goe2; T.ret (App el e2)
end
with StuckTerm =>
H <- T.select (Closed [] e); T.ret (@ClosedExpr e H)

end. Dy

~ T.reta:=ret(a,l|])

SELECTS A HYPOTHESIS FROM THE GOAL

Unveiling the examples

"N e2 ¢ <-M.evar _;
TT.apply (tac_ wp pure A" (filKe')e2¢)

<**>TT.by’ T.apply_ (* PureExec *)

<**>TT.use (T.try fast_done) (* The pure condition for PureExec *)
<**>TT.by’ T.apply_ (* IntoLaters *)

<**> (‘e’ <- M.evar _; (* new goal *)

wp_expr_simpl_subst e’
<**>TT.try wp_value head)

Really, <**>:M (A->B *list goal) -> M (A * list goal) -> M (B * list goal)

Composition of tactics: combinatorial explosion!

intros &> T.select nat
apply x &> T.select nat

(@ <**> D) &> [m: t1 | t2]

A universe of problems

Meta-programming for Cq

A universe of solutions

1) Universe polymorphism (UP).

2) Copy list and prod from std-lib.

o Avoid interference of Mtac universes with user’s.
o Make them UP? Please?

3) Avoid fixating universes at type M.

Universes in Mtac SOME UNIVERSES

ONLY APPEAR (N ONE

. . _ . = CONSTRUCTOR, BVT
e The inductive type M with universeamaetations: THEY MUST ALL BE

wm

Inductive M@{a b ¢ - Type@{a} — Prop :=
|ret: V A: Type@{b}, A—> MA
| bind : V (A : Type@{c}) (B : Type@{d}),
MA—-(A—->MB)—> MB
| mtry : V A Type@{a},
MA — (unit—-MA)—>MA —
| raise : V A: Type@{a}, unit - M A

MNECESSARY, YET
RESTRICTIVE

inwhichb<=a,c<=a,d<=a

Universes in Mtac2

e The inductive type M is just a type holder:

Inductive M@{a} : Type@{a} — Prop := OPAQVE DEFINITION

| MkM : V A: Type@{a}, M A. /

Definition ret : Vv A: Type@{c}, A —>M A. ... Qed.

Definition bind : V (A: Type@{d})(B: Type@{e}), MA—- (A— MB) —> MB. ...
Qed.

None of the universes are restricted!

What’s missing in the picture? (Honest slide)

e Performance.

e Seriously, performance.
o Getting much better playing with some cool ideas, but far from ideal.
o Compilation?

e A serious study of universes (no idea how!).

e Reduce and GC universes: reflexivity has 520 universes!

o Annotate universes is just too painful!

o Not areal problem in the cases we studied, but it feels wrong.

Types in tactics allow us to build maintainable tactics.

Mtac2 provides a simple and integrated model for typed tactics.
Tested in a real dev: Iris.
Three challenges ahead: composition, performance and universes.

Infinite possibilities for extensions.

