What is new in Eos 0.2?

1. Introductions:

An introduction represents static crosscutting. The syntax of an
introduction in Eos is as follows:

introduce in TypePattern

{

// Members to be introduced.

;

We decided to use a different syntax from Aspect] for two reasons:

1) This syntax is more readable. Aspect] syntax for introduction is
conflicting with the syntax of a code type member implementing an
interface type member, so it is not clear by just looking at the code
whether a given type member is implementing an interface type
member or introducing an type member into other type. We have
decided to make it more explicit by saying explicitly introduce following
elements in the types that match the TypePattern.

2. Code members being introduced to a given set of types can now be
grouped into a block thus eliminating the duplication of TypePattern.

An introduction can introduce the following type of members to a class
or an aspect. An introduction may not introduce any new members in
an interface.

Constant

Field

Method
Property

Event

Indexer
Operator
Constructor
Destructor
Internal classes



In addition to the language constructs above introductions can also
introduce the following crosscutting members into another aspects.

Named pointcut
Advice

role

action

2. Around Advices:

Around advices can advice execution, field get, field set, and instance
constructor execution/object initialization join points. An around advice
may not advice an exception handler join point. Syntax of an around
advice is as follows:

Return Type around(Formal Parameters) : Pointcut { Body }

It is a compile time error to advice a join point with a non-void return
type with an around advice returning void. It is a run-time error
(System.InvalidCastException) to return null or objects in the around
advice that may not be casted to the return type of the join point.

Join Points Return Type

Method execution Return type of the method.
Field Set Type of the field

Field Get Void

Constructor execution Void

3. New join points:

Exception handlers: When exception handling code (catch clauses)
executes in a program. The argument of the catch clause (the
exception being caught) is considered as the argument available at the
join point and it can be accessed inside the advice using
thisJoinPoint.getArgs(). No value is returned from a exception handler
join point, so its return type is considered to be void. The expression
thisJoinPont.getReturnValue() thus returns "null" for this join point.

Constructor execution: When an instance constructor actually
executes after the chained base (:base(..)) and this constructors
(:this(..)). The object being constructed is the currently executing




object, and so may be accessed with the expression
thisJoinPoint.getThis(). No value is returned from a instance
constructor execution join point, so its return type is considered to be
void. The expression thisJoinPont.getReturnValue() thus returns "null"
for this join point.

Type constructor execution: When the type constructor for a class
executes. No value is returned from a type constructor execution join
point, so its return type is considered to be void. The expression
thisJoinPont.getReturnValue() thus returns "null" for this join point.

Property get execution: When the get accessor for a property
executes. The value returned from this join point is of the same type
as the property.

Property set execution: When the set accessor for a property
executes. The value returned from this join point is considered to be
void. The variable bound to “value” is considered as the argument
available at the join point and it can be accessed inside the advice
using thisJoinPoint.getArgs().

4. New pointcut designators:

handler(type pattern): Selects exception handler join points where
the type of the exception being caught matches the type pattern.

initialization(constructor pattern): Selects constructor execution
join points, where the signature of the join points matches the
constructor pattern.

staticinitialization(type pattern): Selects the type constructor of
each type whose signature matches type pattern.

within(type pattern): Selects join points that are defined in the type
that matches type pattern.

withincode(method pattern): Selects join points that are defined in
all methods whose signature matches the method pattern.



