
Compositional Reasoning About Aspect Interference
(Full version with proofs)

Ismael Figueroa1,3 Tom Schrijvers2 Nicolas Tabareau3 Éric Tanter1
1PLEIAD Lab, Computer Science Dept (DCC)—University of Chile, Chile

2Dept. of Applied Mathematics and Computer Science—Ghent University, Belgium
3ASCOLA Group—INRIA, France

ifiguero@dcc.uchile.cl, tom.schrijvers@ugent.be, nicolas.tabareau@inria.fr, etanter@dcc.uchile.cl

Abstract
Oliveira and colleagues recently developed a powerful model to
reason about mixin-based composition of effectful components
and their interference, exploiting a wide variety of techniques such
as equational reasoning, parametricity, and algebraic laws about
monadic effects. This work addresses the issue of reasoning about
interference with effectful aspects in the presence of unrestricted
quantification through pointcuts. While global reasoning is re-
quired, we show that it is possible to reason in a compositional
manner, which is key for the scalability of the approach in the face
of large and evolving systems. We establish a general equivalence
theorem that is based on a few conditions that can be established,
reused, and adapted separately as the system evolves. Interestingly,
one of these conditions, local harmlessness, can be proven by a
translation to the mixin setting, making it possible to directly ex-
ploit previously established results about certain kinds of harmless
extensions.

1. Introduction
Aspect-oriented programming promotes separation of concerns at
the textual level, but semantic interactions between components of
an aspect-oriented program are challenging to predict and control.
Consequently, the general issue of interference has received a lot
of attention in the AOP literature and related areas, such as feature-
oriented programming [23]. A wide range of techniques have been
studied, such as program analyses [25], type-and-effect systems [6,
7], model checking [15, 18] and equational reasoning [21, 22].

Oliveira et al. developed MRI, which stands for Modular Rea-
soning about Interference, a purely functional model of incre-
mental programming with effects [22]. Effects are made explicit
through the use of monads. MRI enables both modular reasoning
and reasoning about non-interference of effects using a range of
reasoning techniques like equational reasoning and parametricity.
MRI has been used to express two theorems about harmless mix-
ins. The central notion is that a mixin is harmless if the advised pro-
gram is equivalent to the unadvised program, provided we ignore
the effects introduced by the mixin. In MRI, harmlessness can be
defined with respect to any computational effect, as long as an as-

Published as Technical Report TR/DCC-2013-8, October 2013, University of Chile.

sociated projection function exists to ignore the introduced effects.
MRI therefore subsumes Dantas and Walker’s notion of harmless
advice, which is specific to I/O effects [7].

While originally formulated as “EffectiveAdvice” [21] with a
suggested connection to aspect-oriented programming, MRI does
not address quantification; advices are mixins which are applied
explicitly. The lack of quantification greatly simplifies modular rea-
soning, because it is enough to study a single module/function and
a mixin in isolation. In addition, MRI only focuses on step-wise
applications of mixins, in which the composition of a base compo-
nent with a mixin can then be treated as a new base component for
a subsequent mixin application. In contrast, in the pointcut/advice
model of AOP, several aspects live in an aspect environment and
are all woven at each join point.

This work addresses the challenge of reasoning about aspect in-
terference in the presence of quantification. It has been argued that
unrestricted quantification hampers modular reasoning, thereby re-
quiring a form of global reasoning [17]. Recovering modular rea-
soning can be achieved by restricting quantification, for instance
following the Open Modules approach [1]. Yet, as we demonstrate
in this paper, while unrestricted quantification hampers modular
reasoning, it is amenable to compositional reasoning: global harm-
lessness results can be obtained through the composition of smaller
proofs. This compositionality makes it possible to evolve an aspect-
oriented system and reuse previously-established results.

The contribution of this paper is to develop a framework for es-
tablishing harmlessness results about aspect-oriented systems in a
compositional manner. Like MRI, we develop a purely functional
model with monadic effects, using Haskell as a convenient source
language for System Fω and elaborating the model as a Haskell li-
brary1. We formulate a general behavioral equivalence theorem be-
tween a given aspect-oriented system run with respect to two dif-
ferent aspect environments, modulo projection of additional side-
effects. This general theorem is proven assuming four sufficient
conditions that have to be established separately. When an aspect-
oriented system evolves, only some of these conditions may need
to be re-established in order to preserve the general theorem.

In Section 2, we illustrate the challenges of reasoning about as-
pect interference with quantification. Section 3 briefly introduces
the necessary background on monads and reasoning, and describes
a general model of monadic AOP. Section 4 exposes the main theo-
rem of compositional reasoning, discussing and illustrating each
of the sufficient conditions. Section 5 presents a concrete mini-
mal implementation of monadic AOP, which is used in Section 6
to study the local harmlessness condition in details. This section
shows how we can exploit the formal results of MRI [22] in our

1 http://pleiad.cl/research/cri

ifiguero@dcc.uchile.cl
tom.schrijvers@ugent.be
nicolas.tabareau@inria.fr
etanter@dcc.uchile.cl
http://pleiad.cl/research/cri


setting. Section 7 discusses related work and Section 8 concludes.
Several proofs are included in the paper; others are presented in
Appendix ??.

2. Reasoning about Aspect Interference
To illustrate the challenges of reasoning about aspect interference,
we introduce a simple base program (written in an imaginary ML-
like language) defined in terms of some known functions f and g .

prog x y =
let r1 = f x in
let r2 = g y in
r1 + r2

In the following, we present different changes to a system com-
posed of this program and some aspects, and consider questions
related to semantic equivalence. We define aspects as a pointcut/ad-
vice pair, and use run to execute programs with certain aspects.

Adding aspects We first add an aspect to the existing system. For
instance, to log all calls to f we define a new system:

s1 = run [(call f , log)] prog

with a typical implementation of the logging advice:

log proceed x =
print "Entering function ..."
proceed x

Is the behavior of s1 equivalent to the original program? Strictly
speaking, they are not equivalent if we consider the output gener-
ated by print . However, we observe that the return value of the sys-
tem is left unchanged, and that if we ignore the printed output, both
systems are equivalent. This corresponds to the notion of harmless-
ness established in MRI [22]. In the general case, establishing that
applying the logging aspect is harmless requires to reason globally
about the aspect and the composed system.

Some questions arise when we see, intuitively, that the logging
advice is harmless for every function on which it may be applied.
This property of logging when seen as a mixin is formalized and
proven in MRI, but can we use this knowledge when the advice is
applied to a system via quantification?

Widening quantification We now widen the quantification of the
logging aspect, modifying the pointcut to match additional join
points. For instance, if we now want to log calls to g , it suffices
to define a combined pointcut:

s2 = run [(call f ∨ call g , log)] prog

Intuitively, this change is also harmless. But how to prove it
formally? Do we need to reason globally about the system from
scratch? or can we reuse some facts from the proof that logging f
in the system is harmless?

Evolving the base program We now evolve the base program by
replacing the use of f with that of another function h:

prog ′ x y =
let r1 = h x in
let r2 = g y in
r1 + r2

s3 = run [(call f ∨ call g , log)] prog ′

A first observation is that call f will never match. We must
change references to f also in the aspect environment:

s4 = run [(call h ∨ call g , log)] prog ′

Changing f for h will most assuredly modify the semantics of
the base program, and consequently of the system. This is expected

when the base program is evolving. However, we may want to
know if the logging aspect is still harmless in this new system. The
question is: what amount of reasoning do we need to perform? Do
we need to prove again that logging is harmless with respect to the
whole system, or can we reason compositionally and only verify
that the advice is harmless with respect to h?

Widening quantification, revisited Let us now consider a memo-
ization aspect, with the following advice definition:

memo proceed x =
if (member x table) then table [x ]

else let r = proceed x in
insert (table, x , r)
r

The advice maintains a reference to a lookup table of precomputed
values, indexed by argument x . If the result bound to x is already
in the table, it is immediately returned. Otherwise the value is
computed, stored in the table for future references, and returned.

It is intuitively clear that adding memoization on calls to f is
harmless. In fact, if we manually apply memo as a mixin on top of
f , then we even know formally that it is harmless [22].

Now, if we follow the quantification widening scenario from
above—which was harmless with the logging advice—is the harm-
lessness of memoization preserved?

s5 = run [(call f ∨ call g ,memo)] prog

The answer to the question actually depends on the context in
which the advice is applied. In a context where f and g actually
are the same function, or one of both is never applied, then harm-
lessness is preserved. But if f and g are different functions that are
both applied, the behavior of the composed system is drastically
affected because the same lookup table is used to store results from
both functions!

Compositional reasoning The examples presented above illus-
trate that, in presence of quantification, it is generally not enough
to establish local properties for aspects, but it is also required to
reason about the context in which those aspects are applied. There-
fore, the modular reasoning techniques developed in the case of
MRI are not directly applicable in a setting with quantification, be-
cause some form of global reasoning is generally required.

But global reasoning need not be monolithic. The contribution
of this work is to provide a formal framework to establish global
equivalence properties in a compositional manner. Compositional
reasoning facilitates the task of formally establishing properties
about aspect-oriented programs. In practice, while it is possible to
apply monolithic global reasoning to tiny systems like the ones con-
sidered in this section, this approach hardly scales to larger systems.
Furthermore, compositional reasoning accomodates software evo-
lution: it makes it possible to reuse previously-established results
that are stable under the considered change scenarios.

3. Monads, Reasoning, and Monadic AOP
The compositional reasoning framework proposed in this work is
formulated in a monadic setting. We first briefly review monads
and monadic reasoning, and then describe a monadic formulation
of AOP, which serves as the foundation for the formal development
in the following sections.

3.1 Monads and Monadic Reasoning in a Nutshell
Monads are a denotational approach to modeling and reasoning
about computational effects in pure functional languages [20, 28],
and are widely used in Haskell. A monad is defined by a type con-
structor m and functions bind (>>= in Haskell) and return . At the



class Monad where
return :: a → m a
(>>=) :: m a → (a → m b)→ m b

class MonadTrans t where
lift :: m a → t m a

-- State
ST :: ST s m a
runST :: ST s m a → s → m (a, s)
πS :: s → ST s m a → m a

class Monad m ⇒ SM m | m → s where
get :: m s
put :: s → m ()

-- Writer
WT ::WT w m a
runWT ::WT w m a → m (a,w)
πW ::WT w m a → m a

class (Monoid w ,Monad m)⇒
WM w m | m → w where

tell :: w → m ()

Figure 1. Monads and monad transformer types used in this paper.

type level a monad is a regular type constructor, although conceptu-
ally we distinguish a value of type a from a computation in monad
m of type m a . Those computations produce values of the given
type and may perform side effects, such as a mutable state and er-
ror handling. Additionally, monads provide a uniform interface for
computational effects, as specified in the Monad type class (Fig-
ure 1). The return function promotes a value of type a into a com-
putation of type m a . Computations are composed sequentially
using the >>= operator. The concrete definitions of return and >>=
depend on the computational effect being implemented.

Monad transformers A monad transformer is a type constructor
that allows to construct a monad stack that combines several ef-
fects [19]. The MonadTrans type class (Figure 1) defines an inter-
face for monad transformers. The purpose of the lift operation is to
promote a computation from an inner layer of the monad stack, of
type m a , into a computation in the monad defined by the complete
stack, with type t m a . Each specific transformer t must declare
how to make t m an instance of the Monad class.

Monadic programming in Haskell Monadic programming in
Haskell is provided by the standard Monad Transformers Library
(known as mtl ), which defines a set of monad transformers that
can be flexibly composed together. Throughout this paper we will
use the state (ST) and writer (WT) monad transformers. In Figure 1
we summarize the types of their constructors (ST,WT), evaluation
functions (runST, runWT), and projection functions (πS , πW ).
The projection functions remove the corresponding effect from the
monad stack (here, by discarding the threaded state or writer).

Polymorphism in the monad stack In addition to the particular
monad transformers, the mtl defines a set of type classes associated
to particular effects. This allows to constrain a monad stack such
that it presents a particular effect, while being polymorphic in the
actual shape of the stack. Figure 1 shows the SM and WM classes
that abstract the state and writer effects. The get operation retrieves
the current value, which can be updated using put . Similarly, the
tell operation appends a value w to its output. Note that the ST and
WT transformers are the canonical instances of these type classes,
and that the evaluation functions provide the initial values for these
computations.

Equational reasoning and observational equivalence Equa-
tional reasoning is the process of transforming a program by re-
placing expressions in a manner similar to high-school algebra.
Expression e1 can be replaced by e2 only if the two are equiva-
lent. Observational equivalence, denoted as ≡ in the paper, is an
equivalence relation between expressions that holds whenever two
expressions are observationally equivalent. That is, e1 ≡ e2 iff
for every program context C, both C[e1] and C[e2] yield the same
value, or both diverge. For example, consider the η-reduction rule
from the λ-calculus, which states that λx → f x ≡ f . Also,
Haskell provides the do notation as syntactic sugar for >>=, hence
do {x ← f ; g x } ≡ f >>= λx → g x .

Monad laws Monad laws are crucial for equational reasoning
in a monadic setting [28]. A proper monad is one that obeys the
following three laws:

return x >>= f ≡ f x -- left identity
p >>= return ≡ p -- right identity
(p >>= f )>>= h ≡ p >>= λx → (f x >>= h) -- associativity

The first two laws, left and right identity, state that return
neither changes the value nor performs any computational effect.
The associativity law states that only the order of computations is
relevant in a >>= expression. In the same way, monad transformers
need to satisfy the following laws:

lift ◦ return ≡ return -- identity preservation

lift (m >>= f ) ≡ lift m >>= (lift ◦ f ) -- comp. preservation

Note that Haskell does not enforce that declared instances of the
Monad or MonadTrans classes actually respect these laws. This
has to be proven separately for each considerd instance.

3.2 Monadic AOP
Our approach to compositional reasoning relies on a monadic for-
mulation of AOP, but is independent from the concrete implemen-
tation of an aspectual computation monad transformer. Previous
work by Tabareau et al. [26] develops a full-fledged polymorphic
transformer. In Section 5, we describe a simple monomorphic im-
plementation of the model, which we use to develop local reasoning
about interference using the techniques of MRI [22].

In this section, we define an aspectual computation monad
transformer denoted AT in an abstract manner, by prescribing its
interface and properties. The theorem of compositional reasoning
in Section 4 is established based on this abstract specification only.

Join point model We consider a join point model in which
join points are function applications. In existing AOP languages,
there are many ways by which pointcuts select advised entities:
for instance, by name (e.g. method names in AspectJ [16], func-
tion names in AspectML [8]), by reference equality (e.g. As-
pectScheme [12], AspectScript [27]), by their type (e.g. AspectJ,
AOHaskell [26]), using a mechanism to explicitly attach tags or
types to join points (e.g. Ptolemy [24], JPIs [4]), etc.

Here, we abstract over these concrete design choices by intro-
ducing an abstract join point type, on which pointcuts predicate:

data Jp m a b
type Pc m a b = Jp m a b → Bool

The type variables respectively denote the underlying monad stack,
and the argument and return types of the applied function. The con-
crete representation of Jp can hold more information (e.g. contex-
tual information, tags) or less, if some information is not meant to
be used in pointcuts.

A denotational model cannot assume implicit generation of join
points, so we require the presence of an open application operator
# that takes a function of type a → AT m b and returns a function



of the same type whose application produces a join point (this effect
is encapsulated in the AT monad transformer):

(#) :: (a → AT m b)→ (a → AT m b)

An open application is realized explicitly using #: f # 2 is
the same as f 2 except that the application generates a join point
that is subject to aspect weaving. Note that, in general, there is no
reason to assume a single manner to generate join points, so there
can indeed be a family of operators #i , which are interpreted by
the aspect weaver as needed. Finally, one can view a partial open
application f #i as an open function, whose application produces
join points.

An advice is a function that executes in place of a join point
matched by a pointcut. The first argument of the advice, typically
called proceed , is a function which represents the original compu-
tation at the matched join point. An aspect simply pairs a pointcut
with an advice.

type Advice m a b = (a → m b)→ (a → m b)
type Aspect m a b = (Pc m a b,Advice m a b)

Aspect environment The aspects to be deployed in a given aspec-
tual computation are specified in a list of aspects called an aspect
environment:

type AEnv m

Supporting polymorphic aspects implies that the aspect environ-
ment should be an heterogeneous list. Preserving type safety of as-
pect weaving then requires some care, as discussed elsewhere [26].
In order to avoid accidental complexity, we do not consider this
issue in this paper.

Aspectual computation Given a concrete AT transformer, we re-
quire a function that evaluates an AT computation given an aspect
environment:

runAT :: Monad m ⇒ AEnv (AT m)→ AT m a → m a

Abstracting open applications Similarly to the SM and WM type
classes, we introduce a type class to define an abstract interface for
performing open applications:

class Monad m ⇒ AM m where

#i :: (Int → m Int)→ (Int → m Int)

instance Monad m ⇒ AM (AT m) where ...

The only operation of this class is #i , and we require that any
monad AT m be an instance of this class. Note that AM allows a
form of type-based reasoning about open applications: any function
of type ∀m.D m ⇒ a → m b, where D is a class constraint
that does not entail AM, cannot perform any open applications (and
hence cannot emit join points).

3.3 Necessary Properties of AT

To be a correct model, the AT transformer needs to satisfy a number
of properties. First, it has to satisfy the monad transformer laws, and
when applied to any monad m , the monad laws must be satisfied as
well.

Moreover, for all aspect environments aenv , the function
runAT aenv must be a monad morphism.

Definition 1. A monad morphism h is a function of type

h :: ∀a.M1 a → M2 a

that transforms computations in one monad M1 into computations
in another monad M2. The function satisfies two laws:

h ◦ return ≡ return

h (m >>= f ) ≡ h m >>= h ◦ f (∀m, f )

log ::WM String m ⇒ Advice m a b
log proceed x = do

tell "Entering function ..."
proceed x

memo :: (Ord a, SM (Map a b) m)⇒ Advice m a b
memo proceed x = do

table ← get
if member x table then return (table ! x )

else do y ← proceed x
table ′ ← get
put (insert x y table ′)
return y

Figure 2. Logging and memoization advice in monadic style.

For runAT, the first monad is AT m and the second monad is
just m . Moreover, the two monad morphism laws have an intuitive
meaning in this setting: the first law expresses that weaving has no
impact on pure computations, and the second law expresses that
weaving is compositional.2

In the same spirit, we also require that a third law holds for
runAT aenv :3

runAT aenv ◦ lift ≡ id

This law expresses that runAT aenv is a left inverse of lift . In
words, weaving an effectful computation that does not involve open
applications has no impact.

These laws have to be established whenever a concrete AT trans-
former is implemented. We will come back to this when presenting
a simple AT transformer in Section 5.

3.4 Running Example in Monadic Style
Section 2 used pseudo-code to describe a base program and aspects.
In Haskell, the base program is defined in monadic style using the
do notation as follows:

prog x y = do r1 ← f #i x

r2 ← g #j y
return (r1 + r2)

The program can be run as an aspectual computation in the AT
transformer with a logging aspect on open applications of f as
follows:

runAT [(fPc, log)] (prog 5 12)

The pointcut fPc is left undefined at this stage, since in this ab-
stract model we do not prescribe a specific way to denote functions.
The definitions of the log and memo advices in monadic style is
given in Figure 2. Their types reflect their side effects.

4. Compositional Reasoning, Formally
This section formalizes our approach to compositional reasoning
about aspect interference. This approach revolves around the fol-
lowing general theorem, which provides a framework for the rea-
soning. The theorem considers an AOP system that is run with re-
spect to a particular aspect environment aenv . The theorem states

2 If AT supports dynamic deployment of aspects (as in [26]), weaving
cannot be compositional. We can nevertheless prove the monad morphism
laws for the static fragment, and deal with dynamic deployment on a case-
by-case basis.
3 This law actually subsumes the first monad morphism law, as return ≡
lift ◦ return .



that, under four sufficient conditions, the system preserves its ob-
servable behavior under an alternative aspect environment aenv ′

that may introduce additional effects. With the four conditions it
provides a step-by-step guide to proving non-interference.

A key property of the theorem is that it supports compositional
reasoning. Compositionality is achieved because the theorem splits
the system into two parts, an open function f #i and a context
c, whose conditions are independent, can be proven separately,
and can be reused in different compositions. Moreover, the system
can easily be decomposed into all the individual open functions
(rather than just two parts) by repeated application of the theorem.
In fact, the third condition below, which relates to the context, is an
instance of the theorem and thus explicitly invites this systematic
decomposition.

Theorem 1. Given an expression:

system :: ∀m.C m ⇒ A→ AT m B

Here A and B are some types, and m is a type variable constrained
by some type class constraints C that at least require m to be an
instance of Monad .

We assume that system is given in terms of the following de-
composition:

system ≡ c (f #i)

where c, f and i are arbitrary values of the following types (with
Cf entailed by C ; again A′ and B ′ are some types):

c :: ∀m.C m ⇒ (A′ → AT m B ′)→ A→ AT m B
f :: ∀m.Cf m ⇒ A′ → AT m B ′

Also, we are given two aspect environments aenv and aenv ′ of
types:

aenv :: ∀m.D m ⇒ AEnv (AT m)
aenv ′ :: ∀m.D m ⇒ AEnv (AT (T m))

where T is some instance of MonadTrans and D is a type class
constraint that at least requires m to be an intance of Monad .

The given projection function:

π :: ∀m a.Monad m ⇒ T m a → m a

is a left-inverse of lift that removes the additional T effect from the
monad stack T m .

If the four conditions on c and f given below hold, then we have
that:

runAT aenv system
≡

π (runAT aenv ′ system)

The four conditions on c and f are:

1. Compositional weaving

∀env .runAT env (c (f #i))

≡
runAT env c (lift ◦ runAT env ◦ (f #i))

2. Compositional projection

π ◦ runAT aenv ′ ◦ c (lift ◦ lift ◦ π ◦ runAT aenv ′ ◦ (f #i))

≡
π ◦ runAT aenv ′ ◦ c (lift ◦ runAT aenv ′ ◦ (f #i))

3. Contextual harmlessness

runAT aenv ◦ c ◦ (λg → lift ◦ g)

≡
π ◦ runAT aenv ′ ◦ c ◦ (λg → lift ◦ lift ◦ g)

4. Local harmlessness

runAT aenv ◦ (f #i)

≡
π ◦ runAT aenv ′ ◦ (f #i)

Proof. The proof proceeds by straightforward equational reason-
ing:

runAT aenv system
≡ {-system decomposition -}

runAT aenv (c (f #i))
≡ {-compositional weaving -}

runAT aenv ◦ c (lift ◦ runAT aenv ◦ f #i)
≡ {-local harmlessness -}

runAT aenv ◦ c (lift ◦ π ◦ runAT aenv ′ ◦ f #i)
≡ {-contextual harmlessness -}
π (runAT aenv ′ ◦ c (lift ◦ lift ◦ π ◦ runAT aenv ′ ◦ f #i))
≡ {-compositional projection -}
π (runAT aenv ′ ◦ c (lift ◦ runAT aenv ′ ◦ f #i)
≡ {-compositional weaving -}
π (runAT aenv ′ (c (f #i)))
≡ {-system decomposition -}
π (runAT aenv ′ system)

We now explain and illustrate how the theorem can be used.

4.1 System Decomposition
The starting point is to view the system as the composition of a
particular function f and a context c. For instance, we can write
our running example as c1 (f1 #i) where

f1 = f
c1 = λf x y → do r1 ← f x

r2 ← g #j y
return (r1 + r2)

Here the context c1 is just system abstracted over f #i . Note that
the same system can be decomposed in many different ways, in
order to focus on different open functions.

4.2 Compositional Weaving
The first condition states that weaving the composite system is
equivalent to weaving the context c and the function f separately
and then composing them.

While the compositional weaving condition is formulated in
terms of the specific c and f , it comes almost for free from the
three laws that runAT env satisfies (recall Section 3.3).

To see why, let us consider the essential ways in which c can
use f . There are two permitted ways:

1. c does nothing with f , and thus whether f is woven or not is
inconsequential.

2. c invokes f (once or more), which means embedding it in its
larger computation (once or more) with >>=, which is where
the second law comes in. Note that the second law can be used
repeatedly to tackle a larger computation sequence m>>=f1>>=
... >>= fn .

However, there is also one way in which the condition can be
violated:



3. The context c is itself weaving the open function with a custom
aspect environment. One such example is:

c = λf → lift ◦ runAT [ ] ◦ f

where c weaves the function with an empty aspect environment,
irrespective of the aspect environment used to weave c itself.

This illegal use of f can be avoided by introducing a measure
of parametricity. Instead of using the fixed monad transformer AT

and its fixed function #i in c and f , we make c and f parametric in
the particular type and function definition. This parameterization is
conveniently achieved by imposing the AM constraint on the monad
stack instead of applying the AT transformer. It prevents c from
invoking the weaving function runAT locally on f because runAT
only works for AT m ′ and not for all possible m that instantiate
AM.

We summarize our technique for establishing compositional
weaving in the following conjecture.

Conjecture 1. Provided that f and c have the following polymor-
phic types:

c :: ∀m.(C m,AM m)⇒ (A′ → m B ′)→ A→ m B
f :: ∀m.(Cf m,AM m)⇒ A′ → m B ′

the condition of compositional weaving holds.

We believe that this conjecture can be proven with logical rela-
tions, which is a rather technically challenging task that is out of
scope of this paper.

4.3 Compositional Projection
The second condition expresses that composing the projected con-
text c and projected function f is equivalent to projecting the com-
position.

This condition has a similar shape as that for compositional
weaving. Hence, in the case that the projection function π is a
monad morphism, then the same solution as for compositional
weaving applies. For instance, the projection πW of the writer ef-
fect (used in the logging advice) is well-known (and easily verified)
to be a monad morphism. This means that, if the system abstracts
over the implementation of the writer effect with the type class con-
straint WM, then its projection is indeed compositional.

However, it is a very strong requirement for the projection
function to be a monad morphism. For instance, the projection πS

of the state effect is not a monad morphism:

πS 0 (get >>= λx → put (x + 1)>> get) ≡ return 1

πS 0 (get >>= λx → put (x + 1))>> πS 0 get ≡ return 0

This explains why we must be careful when adding the memo
advice of Figure 2, which has a memo table as its state, to our
running example. If the pointcut of this advice matches both the
function f on the one hand and the function g in the context c
on the other hand, then the two uses of the advice may interfere
through the shared state. For instance, the result for f 3 may be
stored in the table and later wrongly used as if it were the result
for g 3. This problem is not discovered when we consider the
impact of memo on c and f separately. On the contrary, memo
is contextually and locally harmless, but globally harmful. We only
discover this problem because compositional projection does not
hold. This illustrates why compositional projection is a crucial
condition.

In some cases, the use of memo in a larger system is never-
theless harmless. As we cannot take the monad morphism route to
establishing this, we need to resort to alternative techniques.

• If the woven function runAT aenv ′ ◦ (f #i) does not use the
projected effect, then projection is indeed compositional. This

is for instance the case when memo does not advise f . We can
formally captures this as:

∃h, lift ◦ h ≡ runAT aenv ′ ◦ (f #i)

Let us now reason about the relevant part of the left-hand side
of the condition:

lift ◦ lift ◦ π ◦ runAT aenv ′ ◦ (f #i)
≡ {-assumption -}

lift ◦ lift ◦ π ◦ lift ◦ h
≡ {-π is left inverse of lift -}

lift ◦ lift ◦ h
≡ {-assumption -}

lift ◦ runAT aenv ′ ◦ (f #i)

If we plug this conclusion into the left-hand side of the compo-
sitional projection condition, we obtain its right-hand side. In
other words, the condition follows from the assumption.

• The dual assumption from the above is that the context c does
not use the projected effect. This is for instance the case when
memo advises f but not c. Unfortunately, this case is not
as straightforward. While c does not directly interfere with
the effect, it may indirectly create interference by invoking f
repeatedly and those invocations may interfere with one another
through their shared effect. This requires reasoning about the
compatibility of an advised f with itself. For instance, in the
case of memo it is perfectly fine for multiple invocations of
f to share the memo table; in fact, that is exactly the point
of memoization. A counterexample is an advice that monitors
whether a function is invoked at most n number of times, where
n is the first input its called with, and raises an error when that
limit is exceeded. This advice is perfectly fine for a function
in isolation that takes n (recursive) calls, but when there are
multiple separate invocations, then the error may be triggered
inadvertently.

Note that we can safely memoize both f and g in our example,
if separate tables are used. This amounts to using two instances of
memo that each act on a different ST layer in the monad stack. In
this setup, the state of the components is isolated from each other.
Hence, this scenario involves the two classes of compositional
projection discussed above.

4.4 Contextual Harmlessness
The third condition expresses that as far as the context c is con-
cerned, the aspect environments aenv and aenv ′ are indistinguish-
able. There are various ways in which aenv and aenv ′ can be re-
lated for this to be true, for example:

• Unused aspects (pc, a), where the pointcut pc does not match
any join point in c, can be freely added or removed.

• Two aspects (pc1, a1) and (pc2, a2) can be reordered if they
either do not match on the same applications in c or their
advices commute (a1 ◦ a2 ≡ a2 ◦ a1).

• The pointcut of an aspect can be replaced by one that matches
the same join points in c.

• The advice of an aspect can be replaced by one that behaves in
the same way with respect to c.

• Multiple aspects can be replaced simultaneously by another set
of aspects that together behave in the same way on c, redis-
tributing the work among themselves, e.g. splitting a predicate
into two disjoint ones.

Note that the contextual harmlessness condition is a variant
of the general theorem itself, but on a smaller system that only



consists of the context c. Hence, it can be proven by recursively
decomposing the context and invoking the general theorem on the
two parts. This insight is essential to scale up our approach from a
two-function system to arbitrarily complex systems.

For instance, in the running example we can build a simpler
system from c1, namely c1 (lift ◦ h), where h :: C m ⇒ A′ →
m B ′ is universally quantified. This form is smaller than the
original system because it features fewer open applications; h’s
type is constrained to not feature any. The resulting system has the
form:

system ′ = λx y → do r1 ← lift (h x )

r2 ← g #j y
return (r1 + r2)

which can be decomposed as system ′ = c2 (f2 #j ):

f2 = g
c2 = λg x y → do r1 ← lift (h x )

r2 ← g y
return (r1 + r2)

Here we can consider the harmlessness of the extended environ-
ment aenv ′ separately for g and c2. Note that since c2 does not con-
tain any more open applications, contextual harmlessness is trivally
established for it.

4.5 Local Harmlessness
The fourth condition requires the harmlessness of the extended
aspect environment aenv ′ with respect to a single function seen
in isolation. In our recursively decomposed example, this means
we can study the impact of aenv ′ on f and g individually.

We do not go into detail here, but devote Section 6 to adapting
the techniques of MRI for proving this condition in our setting.
These techniques involve both regular proofs based on equational
reasoning over the actual implementations of function and advice,
as well as the more lightweight parametricity-based techniques that
only need to consider the types.

5. A Simple Monadic AOP Model
In order to illustrate concrete applications of compositional reason-
ing about aspect interference, we now describe a simple monomor-
phic monadic model of pointcut/advice AOP in Haskell. The model
is a simplification of the monadic embedding of aspects of Tabareau
et al. [26]. The main differences are that this model:

1. does not support polymorphic aspects; only functions of type
Int → m Int , for some monad m , are open to advice.

2. only has pure pointcuts, i.e. pointcuts that cannot use monadic
effects.

3. uses an abstract syntax tree of computations that expose func-
tion applications as join points and turn it into a monad trans-
former.

4. does not support dynamic aspect deployment; AT computations
are evaluated under a fixed aspect environment.

5. uses a more general model of tagged open weaving to specify
quantification.

Section 8 discusses potential extensions to the model.

5.1 An Embedding of Open Applications
We implement AT as a monad transformer that captures open
function applications in a syntatic form.4 The interpreter function

4 Our AT implementation is a close cousin of a free monad.

instance Monad m ⇒ Monad (AT m) where
return = AT ◦ return ◦ Return
m >>= f = AT (unAT m >>= λr → case r of

Return x → unAT (f x )
OpenApp t g x k →

return (OpenApp t g x (λy → k y >>= f )))

instance MonadTrans AT where
lift ma = AT (ma >>= λa → (return ◦ Return) a)

Figure 3. AT instances for the Monad and MonadTrans type
classes.

runAT interpretes the open applications by weaving them with the
aspect environment.

Join point model Join points represent open function application.
In order not to deal with function equality or type comparisons as
in [26], we rely on tagged applications: pointcuts match join points
based on tag equality (pcTag). Here, tags are just integers:

type Tag = Int
data Jp m a b = Jp Tag

pcTag t (Jp t ′) = t ≡ t ′

Note that in this simple instantiation of monadic AOP, join
points only embed the tag of an open application, and neither the
applied function nor the argument.

Defining the monad transformer The AT transformer extends a
given monad m with the ability to expose some open function ap-
plications. A computation AT m a is denoted by an alternating
sequence of computations in the monad m and exposed open func-
tion applications starting with the former.

data AT m a = AT {unAT :: m (ResultAT m a)}
data ResultAT m a

= Return a
| OpenApp Tag -- tag

(Int → AT m Int) -- function
Int -- argument
(Int → AT m a) -- continuation

TheResultAT value indicates what comes next after an m com-
putation. Either the computation is done, which is denoted by the
Return constructor, or an open function application comes next,
denoted by the OpenApp constructor. In particular, OpenApp t g x k
denotes the open application of g to x with tag t , followed by the
continuation k that proceeds the computation with the result of the
open application. Figure 3 shows the instances for the Monad and
MonadTrans type classes. Observe that for open applications,>>=
extends the corresponding continuation k with operation f .

Open Applications Function openApp creates the denotation of
tagged open applications:

openApp t f x = AT (return (OpenApp t f x return))

Because return is the left and right identity of >>=, we use it as
the continuation that proceeds with the result of the open applica-
tion. Hence, in isolation, open applications provide a semantics-
preserving connection point for composition through >>=. Using
openApp, AT can be declared as an instance of the AM type class:

instance Monad m ⇒ AM (AT m) where
f #t x = openApp t f x



5.2 Running AT Computations
We define the runAT interpreter function which evaluates an AT
computation:

runAT aenv m = unAT m >>= go where
go (Return r) = return r
go (OpenApp t f x k) =
unAT (weave f aenv (Jp t)>>=
λwoven_f → woven_f x >>= k)>>= go

This function is defined in terms of the locally-defined go function.
In case of Return r values, it simply unwraps and returns value
r . When it encounters an open application, it creates a join point
Jp t and uses the weaver to apply the matching aspects deployed
in aenv . This yields the woven_f function which is applied to
argument x . The result of the application is given to continuation
k , whose resulting computation is evaluated recursively using go.

5.3 Aspect Weaving
The weaver is defined recursively on the aspect environment as
follows.

weave :: Monad m ⇒ (Int → m Int)→ AEnv m →
Jp m Int Int → m (Int → m Int)

weave f [ ] = return f
weave f ((pc, adv) : asps) jp =

weave (if pc jp then (adv f ) else f ) asps jp

For each aspect it applies the pointcut to the join point. Then
it continues weaving on the rest of the aspect environment using
either (adv f ) if the pointcut matches, or f otherwise.

5.4 Properties of AT

To exploit the general result of the previous section, we need to
establish that AT is a proper aspectual monad transformer that
satisfies the necessary properties described in Section 3.

Lemma 1 (Monad laws for AT). AT fulfills the monad transformer
laws. In addition, for any monad m , AT m fulfills the monad laws.

Lemma 2 (runAT monad morphism). For any aspect environment
aenv , runAT aenv is a monad morphism. Furthermore, it is also
a left inverse of lift .

The proofs proceed by straightforward co-induction and equa-
tional reasoning on the shape of the monadic composition, and are
available in Appendix ??. Crucially, the proofs rely on the monad
and monad transformer laws for AT.

Given the importance of the compositionality of weaving
(which corresponds to the second law of monad morphisms), we
show its proof in Figure 4. This law is fundamental for the formal-
ization of Section 4, as well as for the theorem of the following
section. The proof consists of folding and unfolding the definitions
of runAT, its internally-defined function go, and the >>= opera-
tion of AT; it also uses the monad laws on m , and the identity
unAT ◦ AT ≡ AT ◦ unAT ≡ id . A crucial step is the application
of the co-induction hypothesis, which allows to start folding the
definitions until its final form.

6. Local Harmlessness
In Section 4, we have shown how the first three conditions of
Theorem 1 can be met. This section develops local harmlessness
results using the monadic AOP model of Section 5. We now discuss
how local harmlessness of the updated aspect environment aenv ′

with respect to the initial environment aenv can be established in
this setting. Concretely, we must prove that:

runAT aenv ◦ (f #i) ≡ π ◦ runAT aenv ′ ◦ (f #i)

runAT aenv (m >>=AT f )
≡ {-unfold >>=AT -}
runAT aenv (AT (unAT m >>=m λr → case r of

Return x → unAT (f x)
OpenApp t x g k → returnm (

OpenApp t x g (λy → k y >>=AT f ))))

≡ {-unfold runAT and unAT ◦ AT ≡ id -}
(unAT m >>=m λr → case r of

Return x → unAT (f x)

OpenApp t x g k → returnm

(OpenApp t x g (λy → k y >>=AT f ))) >>=m go

≡ {-associativity of >>=m + distributing go over case -}
unAT m >>=m λr → case r of

Return x → unAT (f x) >>=m go

OpenApp t x g k → returnm

(OpenApp t x g (λy → k y >>=AT f )) >>=m go

≡ {-folding runAT + unAT ◦ AT ≡ id + left identity + go -}
unAT m >>=m λr → case r of
Return x → runAT aenv (f x)

OpenApp t x g k → unAT (AT (returnm

(OpenApp t x g (λy → k y >>=AT f )))) >>=m go
≡ {-left identity of m + folding runAT -}
unAT m >>=m λr → case r of

Return x → return x >>=m runAT aenv ◦ f
OpenApp t x g k → runAT aenv

(AT (returnm (OpenApp t x g (λy → k y >>=AT f ))))

≡ {-folding >>=AT -}
unAT m >>=m λr → case r of

Return x → return x >>=m runAT aenv ◦ f
OpenApp t x g k → runAT aenv

((AT (returnm (OpenApp t x g k) >>=AT f )))

≡ {-co-induction hypothesis -}
unAT m >>=m λr → case r of

Return x → return x >>=m runAT aenv ◦ f
OpenApp t x g k → runAT aenv

(AT (returnm (OpenApp t x g k)))

>>=m runAT aenv ◦ f
≡ {-factoring runAT aenv ◦ f from the case branches -}
unAT m >>=m λr → (case r of

Return x → return x
OpenApp t x g k → runAT aenv

(AT (returnm (OpenApp t x g k))))

>>=m runAT aenv ◦ f
≡ {-associativity of m -}
(unAT m >>=m λr → case r of

Return x → return x
OpenApp t x g k → runAT aenv

(AT (returnm (OpenApp t x g k))))

>>=m runAT aenv ◦ f
≡ {-unfolding of runAT + unAT ◦ AT ≡ id -}
(unAT m >>=m λr → case r of
Return x → return x
OpenApp t x g k → returnm

(OpenApp t x g k >>=m go)) >>=m runAT aenv ◦ f
≡ {-folding go -}
(unAT m >>=m go) >>=m runAT aenv ◦ f
≡ {-folding runAT -}
runAT aenv m >>=m runAT aenv ◦ f

Figure 4. Proof of the second monad morphism law for runAT.

We observe that the problem of reasoning about aspect interference
for an isolated function woven by aspects is directly analogous to



the work of MRI in the model of mixins. Therefore, we can benefit
from the established results of MRI in at least two ways:

• Translate AOP programs into the setting of MRI; establish the
required program equivalence in this setting, and interpret this
result back into the AOP model. This approach allows us to
reuse directly all the theorems proven in the MRI model.

• Lift the reasoning techniques developed in MRI to the AOP
setting, to establish similar harmlessness results. This path is
potentially more general and avoids a translation to MRI, but it
does entail the need to re-establish all theorems proven in the
MRI model in the AOP model.5

Here, we adopt the first approach, leaving the second one as a
possible line of future work.

AOP-MRI translation We present a commutative correspon-
dence diagram that gives a high-level overview of the chosen tech-
nique. In this diagram, the local harmlessness condition of Theo-
rem 1 is represented by path (d). Instead of proving this directly,
the goal is to obtain (d) by the composition of paths (a), (b) and (c).

fMRI + mix π(fMRI + mix ′)

fAOP + aenv π(fAOP + aenv ′)

(a) w

(b)
≡

(c)w

(d)
≡

Starting from an AOP system composed by function fAOP and
aspect environment aenv , step (a) involves finding a function fMRI

and a mixin mix , such that their composition is equivalent to this
initial system. In the same way, step (c) requires to find a mixin
mix ′ equivalent to aspect environment aenv ′. Given this, we can
reuse the reasoning techniques and established results of MRI to
determine the equivalence of step (b) between fMRI composed with
mix and the projection of fMRI composed with mix ′.

A drawback of this approach is that it is not known how to
perform steps (a) and (c) in a general manner, because there are
AOP programs that cannot be expressed using mixins, as illustrated
later. Still, we can prove that a connection exists for a wide family
of functions and aspect environments (Theorem 2 below).

We now briefly summarize the MRI model and prove a theorem
connecting MRI to AOP. Then, using the Fibonacci function as
a concrete example, we show how to prove that the logging and
memoization aspects from Figure 2 are locally harmless.

6.1 Background: the MRI Framework
MRI models inheritance by the composition of mixins through
open recursion. This inheritance model is defined as [22]:

type Open s = s → s

new :: Open s → s
new a = fix (λf → a f )

(⊕) :: Open s → Open s → Open s
a1 ⊕ a2 = λsuper → a1 (a2 super)

The type Open s represents an open component of type s . new
is a fixpoint combinator that closes, or instantiates, an open com-
ponent that is potentially extended. Finally, the ⊕ operator defines
component composition. The following diagram (taken from [22])
illustrates the inheritance model:

5 Tabareau et al. [26] adapt the use of parametricity to enforce non-
interference of pointcuts, advice and base programs to the AOP model, but
formal results have not been established.

ZU064-05-FPR paper 20 August 2012 10:2

MRI: Modular Reasoning about Interference in Incremental Programming 5

type Open s= s→ s
new ::Open s→ s
new a= let this= a this in this
zero ::Open s
zero= id
(⊕) ::Open s→ Open s→ Open s

a1⊕a2 = λ super→ a1 (a2 super) super

Fig. 1. Basic inheritance model.

Inheritance Model Schematically, our denotational model of inheritance represents the
composition of components with open recursion as follows:

p = new (a1
super
!!⊕ a2

super

""⊕ ...

super
##⊕ an

super
$$

⊕ base)

this

%%

The open base component provides base behavior similar to a base class, and the other
mixin components a1,. . . ,an provide behavior extensions, similar to AOP advice or Scala’s
mixins. The inheritance operator ⊕ extends one component with another; extensions are
applied from right to left. Finally, the new operator closes an open component; using OOP
terminology, this operator instantiates an object p of the class a1⊕ a2⊕ ...⊕ an⊕ base.
The arrows in the diagram showwhat happens to the references during composition. The
⊕ operator instantiates the super reference of the extending component with the extended
component. In contrast, the new operator instantiates the self-reference (this) of the base
component to the entire composition.
The basis of the implementation is shown in Figure 1. The type Open s is a synonym

for a function of type s→ s representing an open component of type s. The parameter s of
this function is the self-reference and the return value is the resulting closed module. The
inheritance operator⊕ defines component composition. Composition is associative, and it
has the zero component as left and right unit, forming a monoid.2

f ⊕ zero ≡ f ≡ zero⊕ f
(f ⊕ g)⊕ h ≡ f ⊕ (g⊕ h)

The function new is a fixpoint combinator used for closing, or instantiating, an open and
potentially extended component.
There are several othermodels of inheritance. Cook (1989) exploresmany other variants.

We believe that similar results to those in this paper can be obtained for these other models.
We adopt the model of inheritance in Figure 1 because it is simple yet expressive enough

to tackle the reasoning issues at the heart of this paper. In this model, which is polymorphic

2 Open s is the monoid of endofunctions with identity and function composition; ≡ means
denotational equivalence throughout the article.

To create a component⊕ instantiates super references for every
extended component, and new instantiates the self-reference this .

MRI formally captures the notion of harmlessness that has been
used in this paper. Given a mixin mix and base component bse ,
then mix is harmless if:
π (new (mix ⊕ bse)) ≡ runI ◦ new bse

for some projection π. Here runI is the projection of the identity
monad, which has no computational effect.

MRI provides two harmless mixin theorems [22]. Using these
theorems it is formally proven that logging is harmless for any
arbitrary function. It is also proven that memoization is harmless
when applied to the Fibonacci function. In the examples of next
section we detail the specific techniques used in these proofs.

6.2 Connecting MRI to AOP
There is a direct connection between an advice and a mixin, as
witnessed by the types of these entities: both type synonyms
Advice m a b and Open (a → m b) denote the same type
(a → m b) → (a → m b). This reveals that any MRI mixin can
be used as an advice. However the converse is not generally true if
an advice performs open applications. For instance an aspect could
trigger infinite regression by matching join points emitted on its
own advice. However, if an advice uses a type class constraint that
does not entail AM (which means that it cannot perform any open
application), this cannot happen.

To connect a base function fAOP with an open recursive equiv-
alent function, we need a stronger constraint. Namely, we ask that
fAOP is equivalent to the fixpoint of an open recursion fMRI (that
does not make use of open application) in the following way:

fAOP ≡ fix (λf → fMRI (f #t))

Putting these together, we can state a general theorem that relates
MRI to AOP and eases considerably the establishment of steps (a)
and (c) of the correspondence diagram.

Theorem 2. Given functions

fMRI :: ∀m.C m ⇒ (A→ m B)→ (A→ m B)
adv i :: ∀m.Di m ⇒ (A→ m B)→ (A→ m B)

where C and Di are type class constraints that entail Monad but
not AM, and given an aspect environment

aenv = [(pc1, adv1), ..., (pcn , advn)]

we have that

runAT aenv ◦ fAOP #t ≡ new (adv ′
k ⊕ ...⊕ adv ′

1 ⊕ fMRI )

where fAOP is such that

fAOP ≡ fix (λf → fMRI (f #t))

and [adv ′
1, ..., adv ′

k ] is the list of all advices in aenv that are
used with a pointcut that matches #t applications (e.g. when the
pointcut is pcTag t).

Proof. The proof proceeds by equational reasoning:



runAT aenv ◦ fAOP #t

≡ {-definition of fAOP -}
runAT aenv ◦ fix (λf → fMRI (f #t)) #t

≡ {-unfolding of the fixpoint -}
runAT aenv ◦ fMRI (fAOP #t) #t

≡ {-compositionality of weaving -}
runAT aenv ◦ fMRI (runAT aenv ◦ fAOP #t) #t

≡ {-co-induction hypothesis -}
runAT aenv ◦ fMRI (new (adv ′

k ⊕ ...⊕ adv ′
1 ⊕ fMRI )) #

t

≡ {-weaving -}
adv ′

k ◦ ... ◦ adv ′
1

◦ fMRI (new (adv ′
k ⊕ ...⊕ adv ′

1 ⊕ fMRI ))
≡ {-definition of ⊕ -}

adv ′
k ⊕ ...⊕ adv ′

1

⊕ fMRI (new (adv ′
k ⊕ ...⊕ adv ′

1 ⊕ fMRI ))
≡ {-folding the new fixpoint -}

new (adv ′
k ⊕ ...⊕ adv ′

1 ⊕ fMRI )

The same proof can be made for any model of AOP as described
in Section 3; one just has to accommodate the proof according to
the concrete way (in particular the ordering) in which aspects are
woven.

Example that cannot use Theorem 2 We now present an aspect-
oriented implementation of the Fibonacci function that cannot be
translated into MRI by Theorem 2. In this example, taken from [1],
the function is split into a base case that simply returns 1, and
an advice that handles the recursive calls. The composed function
plainFib combines the base program and advice to provide the
regular unoptimized version of Fibonacci.

plainFib n = runAT [(pcTag t ,fibAdv)] (fibBase #t n)

fibBase = return 1

fibAdv proceed n =
if (n 6 2) then proceed n

else do f1 ← fibBase #t (n − 1)
f2 ← fibBase #t (n − 2)
return (f1 + f2)

We cannot apply Theorem 2 because of the type of fibAdv .
Since fibAdv performs open applications of fibBase , its type nec-
essarily contains a type class constraint that entails AM; thus vio-
lating the initial condition of Theorem 2. In fact, it does not seem
possible to define fibAdv using mixins, because the full aspect en-
vironment is woven upon each open application, whereas mixins
can only execute the next component using super .

Applying the theorem We now present an example, using the
Fibonacci function as a concrete value for f , on how to follow the
steps of the correspondence diagram to prove the harmlessness of
the logging and memoization advices of Figure 2. We consider the
starting environment aenv to be empty; and illustrate the case of
adding each aspect individually. Figure 5 presents the Fibonacci
function in the AOP and MRI models, along with their plain, logged
and memoized versions.

6.3 Harmlessness of Logging
The local harmlessness of log applied to fibAOP corresponds to the
following lemma:

Lemma 3. plainFibAOP ≡ πW ◦ logFibAOP

Proof. Following the commutative correspondence diagram, by
composition of Lemmas 4, 5 and 6.

Step (a) We must translate plainFibAOP into MRI. We choose
plainFibMRI as its translation, hence we must prove the following:

Lemma 4. plainFibAOP ≡ plainFibMRI

The proof is direct consequence of Theorem 2, using the equality

fibAOP ≡ fix (λf → fibMRI (f #t))

that can be proven by equational reasoning and induction on the
integer argument.

Step (b) For the second step we need to prove:

Lemma 5. plainFibMRI ≡ πW ◦ logFibMRI

Here we benefit from the results of MRI. In MRI the local
harmlessness of logging is proven for any arbitrary component, like
fibMRI ; hence it holds for this particular case [22].

In fact the general harmlessness of logging is an application of
the harmless mixin theorem of MRI [22]. This theorem is proven
using: (i) parametricity to ensure that the base component cannot
access the effects used by the mixin; (ii) a mixin combinator to
guarantee that super is called exactly once, and that the arguments
and return values are not modified; and (iii) the algebraic laws
for monadic effects. Consequently, any mixin that satisfies this
theorem is also harmless for functions that satisfy Theorem 2.

Step (c) Finally, we prove the equivalence between logFibAOP

and logFibMRI :

Lemma 6. πW ◦ logFibAOP ≡ πW ◦ logFibMRI

Again, this is a direct consequence of Theorem 2.

6.4 Harmlessness of Memoization
Proving the harmlessness of memoization involves the same steps
as that of logging. In this case we greatly benefit from the estab-
lished results of MRI, because proving step (b) is rather complex.

The issue is that, conversely to logging, memoization is not
harmless in general; hence this property must be proven for each
particular function. The main difficulty of such a proof is to show
that the function maintains an invariant on the memoization table:
namely, that the stored values actually correspond to the results of
the original function. In [22] this is proven for fibMRI , developing
a long equational reasoning proof—the Coq proof assistant is used
to manage the complexity of the proof.

It is in complex situations like this that the interest of following
the steps of the AOP-MRI correspondence diagram is justified. In
addition, we can benefit from new results about harmlessness of
specific mixins.

7. Related Work
There is a large body of work on modular reasoning and interfer-
ence. Here, we only discuss the most directly related work; an ex-
tensive and recent review of the area, which also covers reasoning
techniques in functional, object-oriented, and feature-oriented pro-
gramming can be found in [22].

We have extensively related to the work on EffectiveAdvice [21]
and its successor, MRI [22]. The present work was motivated by the
desire to bring the reasoning power of MRI to aspect-oriented pro-
gramming with quantification. The monadic embedding of aspects
in Haskell developed recently [26] is a practical programming sys-
tem that extends EffectiveAdvice with quantification, but it does
not describe how to do formal reasoning. Compared to the sim-
ple monadic AOP system presented in this paper, it supports poly-
morphic aspects while preserving type soundness thanks to anti-
unification, and supports dynamic deployment of aspects. Scaling
up this work to that more complete model of AOP is future work.



fibAOP :: AM m ⇒ Int → m Int
fibAOP n = case n of
0→ return 1
1→ return 1

→ do y ← fibAOP #t (n − 1)

x ← fibAOP #t (n − 2)
return (x + y)

plainFibAOP :: Monad m ⇒ Int → m Int

plainFibAOP = runAT [ ] ◦ fibAOP #t

logFibAOP :: Monad m ⇒ Int →WT String m Int

logFibAOP = runAT [(pcTag t , log ′)] ◦ fibAOP #t

memoFibAOP :: Monad m ⇒ Int → ST (Map Int Int) m Int

memoFibAOP = runAT [(pcTag t ,memo)] ◦ fibAOP #t

fibMRI :: Monad m ⇒ Open (Int → m Int)
fibMRI this n = case n of

0→ return 1
1→ return 1
→ do y ← this (n − 1)

x ← this (n − 2)
return (x + y)

plainFibMRI :: Monad m ⇒ Int → m Int
plainFibMRI = new fibMRI

logFibMRI :: Monad m ⇒ Int →WT String m Int
logFibMRI = new ◦ (log ⊕ fibMRI )

memoFibMRI :: Monad m ⇒ Int → ST (Map Int Int) m Int
memoFibMRI = new (memo ⊕ fibMRI )

Figure 5. Fibonacci function. Left: in the simple pointcut/advice model of Section 5. Right: in the MRI setting (taken from [22])

Kiczales and Mezini argue that strictly modular reasoning about
programs written in the presence of quantification is not feasible,
and introduce a notion of aspect-aware interfaces that rely on a
global reasoning step to infer precise dependencies [17]. Aspect-
aware interfaces have not been used to perform formal reasoning.

Aldrich introduced the concept of Open Modules [1] to allow
modular reasoning on aspects. Technically, modularity is obtained
by using a special module sealing operator that hides internal join
points from external advices. While formally establishing modu-
lar reasoning results, the approach has strong limitations when it
comes to dealing with realistic aspects because the model does not
support effects. Also, proving the equivalence of two modules relies
on “global” reasoning with unrestricted quantification; our frame-
work could be used to enhance that part of the reasoning.

There is a vast literature on interference analysis in the setting
of AOP. Starting from his pioneering work on superposition for dis-
tributed systems [14], Katz has later refined it to give a classifica-
tion of aspects [15]. He distinguishes between spectative superposi-
tion (that amounts to harmlessness), regulative superposition (that
can modify which actions occur, but cannot change the computa-
tion performed by an individual action) and invasive superposition
(that can change anything).

Inspired by these categories, Djoko Djoko et al. [10] have re-
cently proposed to capture observer, aborter and confiner aspects
directly in the language under consideration. Namely for each cat-
egory, they define a specific aspect language with the property that
any aspect written in that language belongs to the category.

Rinard et al. [25] present a classification for different kinds of
interference, using program analyses for automatic classification.
No proofs are given that the analyses are actually correct.

Dantas and Walker define an object calculus extended with
harmless advices [7]. In their work, harmless advice is advice that
can only change the termination of a program and perform I/O op-
erations. Harmlessness is guaranteed using a type-and-effect sys-
tem related to information flow type systems that prevent informa-
tion flow from advice to base component using protection domains.
Their notion of harmlessness is a particular instance of the more
general notion studied in MRI and in this work.

Douence et al. [11] present a formal approach to establish that
two stateful aspects commute, and in that sense do not interfere.
Their work, specific to stateful effect, is also based on equational
reasoning, but the language under consideration is only partially
defined and no theorem is stated.

A well-known situation of non-interference has been captured
by Clifton and Leavens as observers [5]. They have later proposed

an extension of AspectJ with annotations to control two forms of
interference on control and heap effects [6]. The correctness of
annotations is also checked using a type-and-effect system.

Translucid contracts use grey box specifications and structural
refinements in verification to enforce control-flow properties [3].
Using the interference combinators of MRI, similar properties can
be enforced at the level of types [22].

Krishnamurthi et al. present a technique for modular model
checking of aspects [18]. Given a set of properties to satisfy and
a fixed set of pointcuts, they generate sufficient conditions on the
pointcuts themselves to enable modular verification.

Recently, Disenfeld and Katz define a compositional model
checking method for events and aspects specification using tem-
poral logic on event detection [9]. The technique is used to detect
interference in systems where aspects may be activated during the
execution of other aspects.

8. Conclusions and Future Work
In the pointcut/advice model of aspect-oriented programming, un-
restricted quantification through pointcuts forces global reasoning.
We show that such global reasoning can be compositional. Compo-
sitionality is crucial for formal reasoning to scale up to large sys-
tems; equivalence proofs are hard to develop, so they should be
partially reused as much as possible when a system evolves. We
develop a framework for compositional reasoning about interfer-
ence, using monads to express and reason about effects in a pure
functional setting.

We introduce a general equivalence theorem that relies on four
sufficient conditions—namely compositional weaving, composi-
tional projection of effects, contextual and local harmlessness—
that can be proven and reused independently. We demonstrate how
the framework can be used to reason about a variety of scenarios
related to the evolution of aspect-oriented programs.

A promising line of future and ongoing research is to study
means to strengthen compositional reasoning to achieve modular
reasoning under certain scenarios. A first approach is to use para-
metricity. For instance, Tabareau et al. [26] use parametricity to
define non-interfering pointcuts and advices, following the tech-
niques of MRI [22]. Additionally, Tabareau et al. provide protected
pointcuts as a mechanism to recover modular reasoning. However,
the approach is not yet formalized.

Because, ultimately, unrestricted quantification is incompatible
with modular reasoning, it is appealing to combine the coarse-
grained modular reasoning provided by Open Modules [1] with



our compositional reasoning techniques for reasoning about equiv-
alence of modules.

Finally, the model of AOP presented in this paper is very sim-
plified compared to that of [26]; hence an additional challenge is to
scale the expressiveness of the model while preserving the results
established in this paper.

Acknowledgments. This work was supported by the INRIA Asso-
ciated Team REAL and FONDECYT Project 1110051.

References
[1] J. Aldrich. Open modules: Modular reasoning about advice. In

A. P. Black, editor, Proceedings of the 19th European Conference
on Object-Oriented Programming (ECOOP 2005), number 3586 in
Lecture Notes in Computer Science, pages 144–168, Glasgow, UK,
July 2005. Springer-Verlag.

[2] Proceedings of the 9th ACM International Conference on Aspect-
Oriented Software Development (AOSD 2010), Rennes and Saint
Malo, France, Mar. 2010. ACM Press.

[3] M. Bagherzadeh, H. Rajan, G. T. Leavens, and S. Mooney. Translu-
cid contracts: Expressive specification and modular verification for
aspect-oriented interfaces. In Proceedings of the 10th ACM Interna-
tional Conference on Aspect-Oriented Software Development (AOSD
2011), Porto de Galinhas, Brazil, Mar. 2011. ACM Press.

[4] E. Bodden, É. Tanter, and M. Inostroza. Join point interfaces for safe
and flexible decoupling of aspects. ACM Transactions on Software
Engineering and Methodology, 2013. To appear.

[5] C. Clifton and G. T. Leavens. Observers and assistants: A proposal for
modular aspect-oriented reasoning. In In FOAL Workshop, 2002.

[6] C. Clifton, G. T. Leavens, and J. Noble. MAO: Ownership and effects
for more effective reasoning about aspects. pages 451–475.

[7] D. S. Dantas and D. Walker. Harmless advice. In Proceedings
of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2006), pages 383–396, Charleston,
South Carolina, USA, Jan. 2006. ACM Press.

[8] D. S. Dantas, D. Walker, G. Washburn, and S. Weirich. AspectML: A
polymorphic aspect-oriented functional programming language. ACM
Transactions on Programming Languages and Systems, 30(3):Article
No. 14, May 2008.

[9] C. Disenfeld and S. Katz. Specification and verification of event de-
tectors and responses. In Proceedings of the 12th annual interna-
tional conference on Aspect-oriented software development, AOSD
’13, pages 121–132, New York, NY, USA, 2013. ACM.

[10] S. Djoko Djoko, R. Douence, and P. Fradet. Aspects preserving
properties. Science of Computer Programming, 77(3):393 – 422, 2012.

[11] R. Douence, P. Fradet, and M. Südholt. Composition, reuse and in-
teraction analysis of stateful aspects. In K. Lieberherr, editor, Pro-
ceedings of the 3rd ACM International Conference on Aspect-Oriented
Software Development (AOSD 2004), pages 141–150, Lancaster, UK,
Mar. 2004. ACM Press.

[12] C. Dutchyn, D. B. Tucker, and S. Krishnamurthi. Semantics and
scoping of aspects in higher-order languages. Science of Computer
Programming, 63(3):207–239, Dec. 2006.

[13] I. Figueroa, T. Schrijvers, N. Tabareau, and É. Tanter. Compositional
reasoning about aspect interference – extended with supplementary
material. Technical Report TR/DCC-2013-8, Computer Science De-
partment, University of Chile, Oct. 2013.

[14] S. Katz. A superimposition control construct for distributed systems.
ACM Trans. Program. Lang. Syst., 15(2):337–356, Apr. 1993.

[15] S. Katz. Aspect categories and classes of temporal properties. In
A. Rashid and M. Aksit, editors, Transactions on Aspect-Oriented
Software Development I, volume 3880 of Lecture Notes in Computer
Science, pages 106–134. Springer Berlin Heidelberg, 2006.

[16] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Gris-
wold. An overview of AspectJ. In J. L. Knudsen, editor, Proceedings
of the 15th European Conference on Object-Oriented Programming

(ECOOP 2001), number 2072 in Lecture Notes in Computer Science,
pages 327–353, Budapest, Hungary, June 2001. Springer-Verlag.

[17] G. Kiczales and M. Mezini. Aspect-oriented programming and mod-
ular reasoning. In Proceedings of the 27th international conference
on Software engineering (ICSE 2005), pages 49–58, St. Louis, MO,
USA, 2005. ACM Press.

[18] S. Krishnamurthi, K. Fisler, and M. Greenberg. Verifying aspect ad-
vice modularly. In Proceedings of the 12th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering (FSE-12),
pages 137–146, 2004.

[19] S. Liang, P. Hudak, and M. Jones. Monad transformers and modular
interpreters. In Proceedings of the 22nd ACM Symposium on Prin-
ciples of Programming Languages (POPL 95), pages 333–343, San
Francisco, California, USA, Jan. 1995. ACM Press.

[20] E. Moggi. Notions of computation and monads. Information and
Computation, 93(1):55–92, July 1991.

[21] B. C. d. S. Oliveira, T. Schrijvers, and W. R. Cook. EffectiveAdvice:
discplined advice with explicit effects. In AOSD 2010 [2], pages 109–
120.

[22] B. C. D. S. Oliveira, T. Schrijvers, and W. R. Cook. MRI: Modular
reasoning about interference in incremental programming. Journal of
Functional Programming, 22:797–852, Nov. 2012.

[23] C. Prehofer. Semantic reasoning about feature composition via mul-
tiple aspect-weavings. In S. Jarzabek, D. C. Schmidt, and T. L.
Veldhuizen, editors, Proceedings of the 5th ACM SIGPLAN/SIGSOFT
Conference on Generative Programming and Component Engineer-
ing (GPCE 2006), pages 237–242, Portland, Oregon, Oct. 2006. ACM
Press.

[24] H. Rajan and G. T. Leavens. Ptolemy: A language with quantified,
typed events. In J. Vitek, editor, Proceedings of the 22nd European
Conference on Object-oriented Programming (ECOOP 2008), number
5142 in Lecture Notes in Computer Science, pages 155–179, Paphos,
Cyprus, july 2008. Springer-Verlag.

[25] M. Rinard, A. Salcianu, and S. Bugrara. A classification system and
analysis for aspect-oriented programs. In Proceedings of the 12th
ACM Symposium on Foundations of Software Engineering (FSE 12),
pages 147–158. ACM Press, 2004.

[26] N. Tabareau, I. Figueroa, and É. Tanter. A typed monadic embedding
of aspects. In J. Kinzle, editor, Proceedings of the 12th International
Conference on Aspect-Oriented Software Development (AOSD 2013),
pages 171–184, Fukuoka, Japan, Mar. 2013. ACM Press.

[27] R. Toledo, P. Leger, and É. Tanter. AspectScript: Expressive aspects
for the Web. In AOSD 2010 [2], pages 13–24.

[28] P. Wadler. The essence of functional programming. In Proceedings of
the 19th ACM Symposium on Principles of Programming Languages
(POPL 92), pages 1–14, Albuquerque, New Mexico, USA, Jan. 1992.
ACM Press.



A. Monad and Transformer Laws
A.1 Monad Laws
A.1.1 Left Identity

returnAT x >>=AT f
≡ {-unfolding >>=AT and returnAT -}
AT (unAT (AT (returnm (Return x))) >>=m λr → case r of

Return x → unAT (f x)
OpenApp t x g k → returnm $

OpenApp t x g (λy → k y >>=AT f ))
≡ {-unAT ◦ AT ≡ id -}
AT (return (Return a) >>=m λr → case r of

Return x → unAT (f x)
OpenApp t x g k → returnm $

OpenApp t x g (λy → k y >>=AT f ))
≡ {-left identity of >>=m -}
AT (case Return x of

Return x → unAT (f x)
OpenApp t x g k → returnm $

OpenApp t x g (λy → k y >>=AT f ))
≡ {-applying case + AT ◦ unAT ≡ id -}
f x

A.1.2 Right Identity

p >>=AT returnAT
≡ {-unfolding >>=AT -}
AT (unAT p >>=m λr → case r of

Return x → unAT (return x)
OpenApp t x g k → returnm $

OpenApp t x g (λy → k y >>=AT returnAT ))
≡ {-unAT ◦ AT ≡ id + unfolding returnAT -}
AT (unAT p >>=m λr → case r of

Return x → unAT (AT (returnm (Return x)))
OpenApp t x g k → returnm $

OpenApp t x g (λy → k y >>=AT returnAT ))
≡ {-AT ◦ unAT ≡ id + co-induction hypothesis -}
AT (unAT p >>=m (λr → case r of

Return x → returnm (Return x)
OpenApp t x g k → returnm (OpenApp t x g k))

≡ {-folding case branches -}
AT (unAT p >>=m (λr → returnm r))
≡ {-η-reduction -}
AT (unAT p >>=m returnm )
≡ {-right identity of >>=m + unAT ◦ AT ≡ id -}
p

A.1.3 Associativity of >>=AT

(p >>=AT f ) >>=AT h
≡ {-unfold >>=AT -}
[AT (unAT p >>=m λr → case r of

Return x → unAT (f x)
OpenApp t x g k → returnm $
OpenApp t x g (λy → k y >>=AT f ))] >>=AT h

≡ {-unfold >>=AT + simplifications -}
AT ((unAT p >>=m (λr → case r of ...))

>>=m (λr → case r of ...))
≡ {-associativity of >>=m -}
AT (unAT p >>=m λx → ((λr → case r of ...) x

>>=m (λr → case r of ...)))
≡ {-β-reduction -}
AT (unAT p >>=m λx → (case x of

Return x → unAT (f x)
OpenApp t x g k → returnm $

OpenApp t x g (λy → k y >>=AT f ))
>>=m (λr → case r of ...))

≡ {-distributing >>=m over the case branches -}

AT (unAT p >>=m λx → (case x of
Return x → unAT (f x) >>=m (λr → case r of ...)
OpenApp t x g k → returnm $

OpenApp t x g (λy → k y >>=AT f )
>>=m (λr → case r of ...)))

≡ {-id ≡ unAT ◦ AT + left unit of m and case -}
AT (unAT p >>=m λx → (case x of

Return x → unAT ◦ AT
(unAT (f x) >>=m (λr → case r of ...))

OpenApp t x g k → returnm $
OpenApp t x g (λy → k y >>=AT f >>=AT h)))

≡ {-folding definition of >>=AT -}
AT (unAT p >>=m λx → (case x of

Return x → unAT (f x >>=AT h)
OpenApp t x g k → returnm $

OpenApp t x g (λy → k y >>=AT f >>=AT h)))
≡ {-η-abstraction + α-renaming -}
AT (unAT p >>=m λr → (case r of

Return x → unAT ((λx → f x >>=AT h) x)
OpenApp t x g k → returnm $

OpenApp t x g (λy → k y >>=AT λx → f x >>=AT h)))
≡ {-folding definition of >>=AT -}
p >>=AT λx → (f x >>=AT h)

A.2 Monad Transformer Laws
A.2.1 Identity Preservation

lift (returnm x)
≡ {-unfold lift -}
AT (returnm x >>=m (λa → returnm ◦ Return a))
≡ {-left identity -}
AT (returnm ◦ Return x)
≡
returnAT x

A.2.2 Composition Preservation

lift m >>=AT (lift ◦ f )
≡ {-unfold >>=AT -}
AT (unAT (lift m) >>=m λr → case r of

Return x → unAT (lift ◦ f x)
OpenApp t x g k → returnm $

OpenApp t x g (λy → k y >>=AT f ))
≡ {-unfold lift -}
AT (unAT (AT (m >>=m λa → returnm (Return a)))
>>=m λr → case r of
Return x → unAT (lift ◦ f x)
OpenApp t x g k → returnm $

OpenApp t x g (λy → k y >>=AT f )))
≡ {-unAT ◦ AT ≡ id + associativity of >>=m -}
AT (m >>=m λa → (returnm (Return a)
>>=m λr → case r of
Return x → unAT (lift ◦ f x)
OpenApp t x g k → returnm $

OpenApp t x g (λy → k y >>=AT f )))
≡ {-left identity + case -}
AT (m >>=m λa → unAT (lift ◦ f a))
≡ {-unfold lift -}
AT (m >>=m λa →
unAT (AT (f a >>=m λa → returnm (Return a))))
≡ {-unAT ◦ AT ≡ id + η-reduction + assoc. of >>=m -}
AT ((m >>=m f ) >>=m λa → returnm (Return a))
≡ {-fold lift -}
lift (m >>=m f )



B. runAT is a Monad Morphism
B.1 Identity preservation

runAT aenv ◦ returnAT
≡ {-unfolding returnAT -}
runAT aenv ◦ AT ◦ returnm ◦ Return
≡ {-unfolding runAT -}
unAT ◦ AT ◦ returnm ◦ Return >>=m go
≡ {-unAT ◦ AT ≡ id + left identity -}
go ◦ Return
≡ {-evaluation -}
returnm

B.2 Compositionality
See Figure 4.

B.3 runAT is left inverse of lift

runAT aenv (lift m)
≡ {-unfold lift -}
runAT aenv (AT (m >>=m λa → returnm ◦ Return a))
≡ {-unfold runAT -}
unAT (AT (m >>=m λa → returnm ◦ Return a)) >>=m go
≡ {-unAT ◦ AT ≡ id + associativity of >>=m -}
m >>=m λa → (returnm ◦ Return a >>=m go)
≡ {-left identity + evaluating go -}
m >>=m returnm

≡ {-right identity -}
m
≡ {-fold id -}
id m


	Introduction
	Reasoning about Aspect Interference
	Monads, Reasoning, and Monadic AOP
	Monads and Monadic Reasoning in a Nutshell
	Monadic AOP
	Necessary Properties of AT
	Running Example in Monadic Style

	Compositional Reasoning, Formally
	System Decomposition
	Compositional Weaving
	Compositional Projection
	Contextual Harmlessness
	Local Harmlessness

	A Simple Monadic AOP Model
	An Embedding of Open Applications
	Running AT Computations
	Aspect Weaving
	Properties of AT

	Local Harmlessness
	Background: the MRI Framework
	Connecting MRI to AOP
	Harmlessness of Logging
	Harmlessness of Memoization

	Related Work
	Conclusions and Future Work

