
EffScript: Practical Effects for Scala
EffScript is a small domain-specific language for writing tailored effect disciplines for Scala. In addition to being customizable, the underlying effect system supports both
effect polymorphism (as developed by Lukas Rytz in his PhD thesis) and gradual effect checking (following the theory of Bañados, Garcia and Tanter).

Scala Implementation
The implementation of the Practical Effect system is developed as a compiler plugin for the Scala programming language. The plugin is based on the plugin developed by
Rytz et al and is composed of two sub plugins to implement bidirectional checking: the effect inference plugin, and the effect checking plugin. The effect inference plugin is
a modification of the one developed by Rytz et al, extended with support for gradual effects and the customizable effect system. In relation to bidirectional checking, Scala
has inference of effect, therefore there are cases where there is absence of effect annotations. The effect inference plugin is necessary to annotate function abstractions that
do not have effect annotations. This information about effect inference is used by the effect checking plugin to check and adjust sets of effect privileges, also inserting
runtime checks of effect wherever it may be necessary.

Getting Started Guide

The implementation

The code and examples can be downloaded here.

Alternatively an virtual box image can be downloaded here (http://www.pleiad.cl/paper_225_image.tar.gz) .

To run the examples, you need to have installed Scala (http://www.scala-lang.org/ (http://www.scala-lang.org/)), SBT (http://www.scala-sbt.org/ (http://www.scala-sbt.org/)) and
JDK1.7 (http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html (http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-
1880260.html)).

In case we have Java 1.8 already installed, we need to change the JAVA_HOME variable so it use Java 1.7 instead. For example:

export JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk1.7.0_79.jdk/Contents/HOME

PATH=$JAVA_HOME/bin:$PATH sbt

Compiling and packaging the inference and checking library
For the effect inference library:

cd efftp
sbt package

For the effect checking library:

cd gpes
sbt package

http://www.scala-lang.org/
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://pleiad.cl/_media/research/software/effscript/paper_225.tar.gz
http://www.scala-sbt.org/
http://www.pleiad.cl/paper_225_image.tar.gz

How to use the compiler plugins
Let us create new project that will use the effect system with a custom “simpleIO” discipline (see eff-examples/simpleUI.eff file). Note that we also provide a ready to
use project in folder playground-src:

name: simpleIO

privileges:
 @simpleNoIO
 @simpleOutput
 @simpleInput

lattice:
 top: @simpleOutput @simpleInput
 bottom: @simpleNoIO

pointcuts:
 def views.html.dummy.apply() prod @simpleNoIO
 def views.html.foo.apply[T]() prod @simpleNoIO
 call scala.Predef.read*: T prod @simpleInput
 call fakePrint(T <: String) prod @simpleOutput
 call readM prod @simpleInput
 def scala.Predef.read*(V): T prod @simpleInput

We first create the folder for our new project which we call playground

mkdir playground

We need to link the compiler libraries to our new project by creating symbolic links of the jars inside the new project. Note that we could have also copied the libraries but
modifications to the discipline implies performing a new copy after each compilation. To do this step we have two options:

1. Using the copyCompilerLibs.sh script\\At the root of the new project:

chmod +x copyCompilerLibs.sh #make sure the file has execution permissions
./copyCompilerLibs.sh playground

The copyCompilerLibs.sh script create two symbolic links to a folder lib at the root of the provided path.

2. Creating the symbolic links manually
Alternatively we can create the symbolic links manually. The copyCompilerLibs.sh script is equivalent to (note that the path to the jar must be absolute path, using
a relative path will not work properly):

cd playground
mkdir -p lib

ln -s [Absolute-path]/efftp/target/scala-2.10/effects-plugin_2.10-0.1-SNAPSHOT.jar lib/infer.jar
ln -s [Absolute-path]/gpes/target/scala-2.10/effects-checker-plugin_2.10-0.1-SNAPSHOT.jar lib/check.jar

Next we need to edit a build.sbt file to declare the project name, Scala version, libraries and compiler options.

The effect plugin works with Scala 2.10.3, which can be specified in every project by editing a build.sbt file at the root of the project.

Our build.sbt file looks like this:

name := "playground"

version := "0.1"

autoCompilerPlugins := true

scalaVersion := "2.10.4"

libraryDependencies ++= List("org.scala-lang" % "scala-compiler" % "2.10.4")

scalacOptions += "-Xplugin:lib/infer.jar"

scalacOptions += "-Xplugin:lib/check.jar"

scalacOptions += "-P:effects:domains:simpleIO"

scalacOptions += "-P:effects:unchecks:java.*:scala.(?!Function)*"

Next, let us create a file helloGE.scala to play with the effect system inside the folder “src/main/scala/”

Next, make sure helloGE.scala looks like this

import scala.annotation.effects._

object HelloGradualEffects{

 def main(args: Array[String]): Unit @simpleOutput = {
 println("hello gradual effects")
 }
}

Were the body of main is only allowed to produce @simpleOutput. We can test this by calling method “readInt” which produces @simpleInput according to the effscript
file:

 def main(args: Array[String]): Unit @simpleOutput = {
 println("hello gradual effects")
 readInt()
 }

If we run the last code using sbt:

sbt
>compile

Sbt will try to compile it, but it will raise a static error:

[error] found : @simpleInput
[error] required: @simpleOutput
[error] readInt()
[error] ̂
[error] one error found

http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/

Now let us test gradual effects:

 def main(args: Array[String]): Unit @simpleOutput @pure= {
 def foo: Int @unknown = {
 readInt()
 }
 println("hello gradual effects")
 foo
 }

Running the code gives a runtime error:

>run
...
[error] (run-main-1) runtimePrivileges.RuntimePrivileges$EffectPrivilegeException: Not enough privileges:simpleInput()
[error] at scala.this.Predef.readInt() (helloGE.scala:16)
runtimePrivileges.RuntimePrivileges$EffectPrivilegeException: Not enough privileges:simpleInput()
...
Caused by: runtimePrivileges.RuntimePrivileges$EffectPrivilegeException:
 The localized restriction to "simpleOutput()" did not set all the required privileges
 at foo (helloGE.scala:20)
 The outermost restriction to "simpleOutput()" did not set the required privileges
 at {
 def foo: Int @scala.annotation.effects.simpleNoIO @scala.annotation.effects.unknown = {
 scal... (helloGE.scala:13)
...

Step by Step Instructions
Architectural Constraints in Play
The effscript file to enforce the MVC pattern in Play with Effscript is defined in eff-examples/DBAccess.eff. To modify the discipline, just edit the DBAccess.eff file,
and then run

cd effscript
./updateDBAccessDomain

The files to test the effect discipline are found in a play application located in folder play-slick-advanced-effects. To run the application just run:

./copyCompilerLibs.sh play-slick-advanced-effects
cd play-slick-advanced-effects
./activator run

And just access http://localhost:9000 (http://localhost:9000) to test the effect discipline. The controller can be found in app/controllers/EffectController.scala. The
models can be found in app/models/ The template can be found in app/views/index.scala.html

To test the access to the database from the templates, just uncomment line 3 of file app/views/index.scala.html like this:

@{models.Users.byId(1) : @scala.annotation.effects.unknown}

http://scala-lang.org/
http://localhost:9000/
http://scala-lang.org/

And then reload the page:

To test that the EffectControllers only have access to insert Users just uncomment line 19 of file app/controllers/EffectController.scala:

Cars.insert(car)

And then reload the page to see how an static error is raised:

http://pleiad.cl/_detail/research/software/effscript/error1.png?id=research%3Asoftware%3Aeffscript
http://pleiad.cl/_detail/research/software/effscript/error2.png?id=research%3Asoftware%3Aeffscript

Modifying a discipline
Let us modify the simpleIO discipline defined in the previous section. Let us remember that the file can be found in eff-examples/simpleIO.eff.

To modify the discipline, just edit the simpleIO.eff file, and then run

cd effscript
./updateSimpleIODomain

Let us look at updateSimpleIODomain:

First it runs a script that uses effscript to generate the classes needed for the compiler plugins:

sbt "run ../eff-examples/simpleIO.eff"

then it copies the generated files into each of the compiler plugins, overriding the existing implementations with the new ones:

DIR=$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)

cp target/SimpleIO.scala $DIR/../gpes/src/main/scala/annotation/effects/SimpleIO.scala

cp target/SimpleIO.scala $DIR/../efftp/src/main/scala/scala/annotation/effects/SimpleIO.scala

cp target/SimpleIODomain\(check\).scala $DIR/../gpes/src/main/scala/simpleIO/SimpleIODomain.scala

cp target/SimpleIODomain\(infer\).scala $DIR/../efftp/src/main/scala/scala/tools/nsc/effects/simpleIO/SimpleIODomain.scala

After that step, we need to re-package both compiler plugins updating the .jar files.

Creating a new discipline
To create a new discipline we need to do extra steps. Let us suppose we want to add a new discipline called “newDisc”. Once we have created our newDisc.eff file we
need to create the folders for this discipline in every compiler plugin project:

mkdir gpes/src/main/scala/newDisc
mkdir efftp/src/main/scala/scala/tools/nsc/effects/newDisc

Then create and run a batch just like the previous step to generate the files and copy them into each compiler plugin project.

Next, we need to add this discipline into each of the compiler plugin projects:

For “gpes” we need to edit src/main/scala/EffectsCheckerPlugin.scala file, and add a new case inside mkDomains function:

 ...
 case "simpleTPIO" :: xs =>
 new simpletpio.SimpleTPIODomain {
 val global: EffectChecker.this.global.type = EffectChecker.this.global
 override val uncheckedFunctions = settings.unchecks
 } :: mkDomains(xs)
 case "newDisc" :: xs =>

http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/

 new newdisc.NewDiscDomain {
 val global: EffectChecker.this.global.type = EffectChecker.this.global
 override val uncheckedFunctions = settings.unchecks
 } :: mkDomains(xs)
 case x :: xs => mkDomains(xs)

For “efftp” we need to edit src/main/scala/tools/nsc/effects/EffectsPlugin.scala file, and add a new case inside mkDomains function:

 ...
 case "simpleTPIO" :: xs =>
 new simpletpio.SimpleTPIODomain {
 val global: EffectsPlugin.this.global.type = EffectsPlugin.this.global
 override val uncheckedFunctions = efftpSettings.unchecks
 } :: mkDomains(xs)
 case "newDisc" :: xs =>
 new newdisc.NewDiscDomain {
 val global: EffectsPlugin.this.global.type = EffectsPlugin.this.global
 override val uncheckedFunctions = efftpSettings.unchecks
 } :: mkDomains(xs)
 case x :: xs =>
 global.abort(s"Unknown effect domain: $x")

Next, just re package each of the compiler plugin projects and update libraries of every project accordingly (unless symbolic links are being used).

Running Benchmarks
Benchmarks are inside benchmarks folder.

Using Scala 2.10.x

For benchmarks, it is better to run them not using sbt as it is faster. To run the benchmarks using the scala command you need to have the Scala version 2.10.x. For
example, to run a benchmark using the scala command we can use the runExperiment script file:

#!/bin/bash
/usr/local/Cellar/scala210/2.10.4/bin/scala -cp CollsSimple/lib/check.jar:/usr/local/Cellar/scala210/2.10.4/libexec/lib/scala-reflect.jar $1 $2

Notice how the scala command and the reflection library correspond to version 2.10.4. We can run a “benchmark run” like this (edit this file to indicate the appropriate path
for Scala binaries and libraries):

./runExperiment [jar] [version]

Where [version] can be:

0 ⇒ 95 dynamic checks and 67 context adjustements
1 ⇒ 35 dynamic checks and 67 context adjustements
2 ⇒ 35 dynamic checks and 67 context adjustements
3 ⇒ fully annotated (do not produce runtime effect checks)

The [jar] can be:

http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/
http://scala-lang.org/

CollsNoeffs/target/scala-2.10/collsnoeffs_2.10-0.1.jar ⇒ without the effect system
CollsSimple/target/scala-2.10/collssimple_2.10-0.1.jar ⇒ default effect system.
CollsSimpleBits/target/scala-2.10/collssimple_2.10-0.1.jar ⇒ default effect system using bit vectors.
CollsSimpleSE/target/scala-2.10/collssimplese_2.10-0.1.jar ⇒ scenario with subeffecting.
CollsSimpleTP/target/scala-2.10/collssimpletp_2.10-0.1.jar ⇒ scenario with subeffecting and type parameters.

For example, to run the default effect system with the version with most dynamic checks:

./runExperiment CollsSimple/target/scala-2.10/collssimple_2.10-0.1.jar 0

The program returns the number of second of the benchmark.

Using SBT

In case we do not have Scala 2.10 we can always run each benchmark by entering to the folder of the experiment. The folders are the following:

CollsNoeffs ⇒ without the effect system
CollsSimple ⇒ default effect system.
CollsSimpleBits ⇒ default effect system using bit vectors.
CollsSimpleSE ⇒ scenario with subeffecting.
CollsSimpleTP ⇒ scenario with subeffecting and type parameters.

For instance:

cd CollsSimple

The versions of each experiment are the following:

0 ⇒ 95 dynamic checks and 67 context adjustements
1 ⇒ 35 dynamic checks and 67 context adjustements
2 ⇒ 35 dynamic checks and 67 context adjustements
3 ⇒ fully annotated (do not produce runtime effect checks)

For instance, to run the version 2 of the experiment, we run:

sbt "run 2"

