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1. Introduction
What follows is a formalization of a gradual polymorphic effects system, which works as a privilege checking system. This
system combines the work of LPE [3] and TGE [1] to support gradual effects and effect polymorphism. This following sections
describe the extensions and modifications to TGE that are necessary to integrate gradual effects with effect polymorphism, and
subeffecting.

2. Source Language
We now present a formal model for a language with integrated support for gradual effect and effect polymorphism. The
language is inspired by TGE and LPE, and we call it Gradual Polymorphic Effect System (GPES).

2.1 Syntax

φ ∈ Priv, ξ ∈ CPriv = Priv ∪ {¿}
Φ ∈ PrivSet = P (Priv) , Ξ ∈ CPrivSet = P (CPriv)

v ::= unit | (λx : T . e)T ;Ξ;x Values
e ::= x | v | e e | e :: Ξ Terms

T ::= Unit | (x : T )
Ξ−→̄
x
T Types

Figure 1. Syntax of the source language

Figure 1 presents GPES’s syntax. As in TGE, the language is parameterized on some finite set of privileges Priv for a given
effect domain. Subeffecting is a partial order on effect privileges, denoted φ1 <: φ2. A consistent privilege, in CPriv, can
additionally be the unknown privilege ¿. A consistent privilege set Ξ is an element of the power set of CPriv, i.e. a set of
privileges that can include ¿.

A value can either be unit or a function. The main difference with TGE is that functions are fully annotated, including
the type of the argument T1, the return type T2, the latent (consistent) privilege set Ξ, and the relative effect variables x. A
term e can be a variable x, a value v, an application e e, or an effect ascription e :: Ξ. A type is either Unit or a function type
(x : T )

Ξ−→
x

T . Although functions have only one argument, the relative effect variables x can include variables defined in the
surrounding lexical context.

For instance, in a context Γ where f is defined, a function that takes a function g as argument, performs some output, and
applies both f and g, can be defined as follows:

(λg : Unit
>−→Unit . ...)Unit;{@output};{f,g}

2.2 Static Semantics
Rule [Var] is self explanatory. Rule [Fn] typechecks the body of the function using the annotated privilege set Ξ1 and relative
effect variables x1, and verifies that the type of the body T ′ is a consistent subtype of the annotated return type T2.

To type an effect ascription (rule [Eff]), the ascribed privilege set is used to typecheck the inner expression. This rule is the
same as in TGE save for the polymorphic context and the fact that is uses consistent subcontainment to check that the ascribed
privilege set is valid in the current context.

Rule [App] is an adaptation of the corresponding TGE typing rule to support relative effects. The sub-expressions e1 and
e2 are typed using adjusted privilege sets (according to each domain). c̃heck verifies that the application is allowed with the
given permissions Ξ. A subtlety is that if the invoked function is effect-polymorphic, its latent effects are not only Ξ1, but also
include the latent effects of the relative effect variables of the functions in y that are not already present in the polymorphic
context x.

These additional latent effects are computed by the auxiliary function latentΓ;x(T ) defined in [2]. The function needs access
to both the type environment Γ and the polymorphic context x to lookup the types of the relative effect variables. An extra
subtlety is that the type of each f in y\x is obtained in an environment in which the argument y has type T2, not T1. This is to
account for effect polymorphism: the actual latent effects of the argument come from e2.

Rule [AppP] is a new rule for the application of functions that are the parameter of an enclosing effect-polymorphic function
(i.e. f ∈ x). The difference between [AppP] and [App] is very subtle: the typing rule [AppP] does not need to check if the
latent effects of the function being applied are consistently subcontained in the set of privileges of the enclosing application.
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Γ ` T ′ .: T CSRefl
Γ ` T .: T

CSTrans
Γ ` T1 .: T2 Γ ` T2 .: T3

Γ ` T1 .: T3

CSFun
Γ ` T1 .: T1

′ Γ, x : T1 ` (Ξ′, [x/x′]x′) - (Ξ, x) Γ, x : T1 ` [x/x′]T2
′ .: T2

Γ ` (x′ : T1
′)

Ξ′
−−→
x

T2
′ .: (x : T1)

Ξ−→
x′

T2

Γ ` (Ξ′, x′) - (Ξ, x) CCnf
Ξ′ @∼: Ξ ∀x′ ∈ x′.Γ ` x′ - (Ξ, x)

Γ ` (Ξ′, x′) - (Ξ, x)

Γ ` x - (Ξ, x) CCnfVar x ∈ x
Γ ` x - (Ξ, x)

CCnfRel
x /∈ x Γ(x) = (y : Ta)

Ξy−−→
y

Tb y /∈ x Γ, y : Ta ` (Ξy, y) - (Ξ, x)

Γ ` x - (Ξ, x)

Γ ` T ′ < : T SRefl
Γ ` T < : T

STrans
Γ ` T1 < : T2 Γ ` T2 < : T3

Γ ` T1 < : T3

SFun
Γ ` T1 < : T1

′ Γ, x : T1 ` (Ξ′, [x/x′]x′) � (Ξ, x) Γ, x : T1 ` [x/x′]T2
′ < : T2

Γ ` (x′ : T1
′)

Ξ′
−−→
x

T2
′ < : (x : T1)

Ξ−→
x′

T2

Γ ` (Ξ′, x′) � (Ξ, x) Cnf
Ξ′ ⊆: Ξ ∀x′ ∈ x′.Γ ` x′ � (Ξ, x)

Γ ` (Ξ′, x′) � (Ξ, x)

Γ ` x � (Ξ, x) CnfVar x ∈ x
Γ ` x � (Ξ, x)

CnfRel
x /∈ x Γ(x) = (y : Ta)

Ξy−−→
y

Tb y /∈ x Γ, y : Ta ` (Ξy, y) � (Ξ, x)

Γ ` x � (Ξ, x)

[x/x′]T

T = (y : T1)
Ξy−−→
y

T2 y /∈ {x, x′}

[x/x′]T = (y : [x/x′]T1)
Ξy−−−−→

[x/x′]y
[x/x′]T2

[x/x′]x [x/x′]x = y where yi =

{
x if xi = x′

xi otherwise

Figure 2. Subtyping and Consistent subtyping rules

The reason is that in [AppP] the application is being polymorphic on f , meaning that the application is allowed to produce any
effect that f may produce.

3. Internal Language
GPES leaves many aspects of dynamic privilege checking implicit. This section introduces an internal language, GPESIL, that
makes these details explicit. GPES’s semantics are then defined by type-directed translation to GPESIL.

3.1 Syntax
GPESIL is structured much like GPES but elaborates several concepts as shown in Figure 4. First, the internal language
introduces a polymorphic application operator ◦. As GPESIL is a translation of the source language, polymorphic applications
f e2 is translated into ef ◦ e2(when casts are inserted), so it does not loose the information that it is a polymorphic application.
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Ξ; Γ;x ` e : T Var
Γ(x) = T

Ξ; Γ;x ` x : T
Fn

Ξ1; Γ, x : T1;x1 ` e : T ′ T ′ .: T2

Ξ; Γ;x ` (λx : T1 . e)
T2;Ξ1;x1 : (x : T1)

Ξ1−−→
x1

T2

App

ãdjust(Ξ); Γ;x ` e1 : (y : T1)
Ξ1−−→
y

T3

ãdjust(Ξ); Γ;x ` e2 : T2

Ξ1
′ = Ξ1 ∪ (∪f∈(y\x)latentΓ;x((Γ, y : T2)(f)))

Ξ1
′ @∼: Ξ T2 .: T1 c̃heck(Ξ)

Ξ; Γ;x ` e1 e2 : T3
AppP

Γ(f) = (y : T1)
Ξ1−−→
y

T3 ãdjust(Ξ); Γ;x ` e2 : T2

f ∈ x T2 .: T1 c̃heck(Ξ)

Ξ; Γ;x ` f e2 : T3

Eff
Ξ1; Γ;x ` e : T Ξ1 @∼: Ξ

Ξ; Γ;x ` (e :: Ξ1) : T

Figure 3. Type rules of the source language

Second, new applications are inserted during translation which does not need to behave as regular aplications. For this two
new primitive operators are introduced: primitive application •Γ and primitive polymorphic application •.

Third, a new term Error is introduced to indicate that a runtime effect check failed, and aborts the rest of the computation.
The has operation checks for the availability of particular privilege sets at runtime. The restrict operation restricts the
privileges available while evaluating its subexpression.

Finally, it adds three frames to represent evaluation contexts in our small-step semantics. One for applications and
polymorphic applications f . Another frame for errors g. And last, a frame for the primitive operations h.

v ::= unit | (λx : T . e)T ;Ξ;x Values
e ::= x | v | e e | e ◦ e | e•Γe | e • e | Error | has Φ e | restrict Ξ e Terms

T ::= Unit | (x : T )
Ξ−→̄
x
T Types

f ::= � e | v � | � ◦ e | v ◦� Frames
g ::= f | h | has Φ � | restrict Φ � Error Frames
h ::= �•Γe | v•Γ� | � • e | v •� Primitives Frames

Figure 4. Syntax of the internal language

3.2 Static Semantics
The type system of the internal language is presented in Figure 5. GPESIL mostly extends the source language with a few
critical differences.

In the internal language, effectful operations must have enough privileges to be performed. [IApp] and [IAppP] represent
the rules for application and polymorphic application. Both rules replace c̃heck with strict-check, consistent subtyping.: with
subtyping < : , and the consistent containment @∼: with containment ⊆. Rule [IAppP] new applies to the new polymorphic
application operator ◦ because polymorphic variables f may be casted during translation and therefore translated into new
expressions.

The primitive counterparts of rules [IApp] and [IAppP] rules are rules [IAprm] and [IAprmP] respectively. The mayor
difference is that the primitive rules do not perform a strict-check given that they are “artificially” introduced. To calculate the
latent effects of e1, [IAprm] uses Γ′ instead of Γ to use the correct type of y during cast insertion as will be explained later in
Section ??.

The restrict operator constrains its subexpression to be typable in a privilege set that is statically contained in the union
of its current privilege set and the latent effects of the relative variables x. For example the body of a map function that only
produces the effects of its argument Ξ1, can restrict its body to some privilege set smaller than Ξ1, otherwise no restrictions
could be inserted.

4 2015/5/8



Ξ; Γ;x ` e : T IVar
Γ(x) = T

Ξ; Γ;x ` x : T
IUnit

Ξ; Γ;x ` unit : Unit

IFn
Ξ1; Γ, x : T1;x1 ` e : T ′ T ′ < : T2

Ξ; Γ;x ` (λx : T1 . e)
T2;Ξ1;x1 : (x : T1)

Ξ1−−→
x1

T2

IApp

ãdjust(Ξ); Γ;x ` e1 : (y : T1)
Ξ1−−→
y

T3

ãdjust(Ξ); Γ;x ` e2 : T2

T2 < : T1 |Ξ1 ∪ lat(Γ, y : T2, y, x)| ⊆: |Ξ|
strict-check(Ξ)

Ξ; Γ;x ` e1 e2 : T3
IAppP

ãdjust(Ξ); Γ;x ` e1 : (y : T1)
Ξ1−−→
y

T3

ãdjust(Ξ); Γ;x ` e2 : T2

T2 < : T1 strict-check(Ξ)

Ξ; Γ;x ` e1 ◦ e2 : T3

IAprm

Ξ; Γ;x ` e1 : (y : T1)
Ξ1−−→
y

T3

Ξ; Γ;x ` e2 : T2

T2 < : T1 |Ξ1 ∪ lat(Γ′, y, x)| ⊆: |Ξ|
Ξ; Γ;x ` e1•Γ′e2 : T3

IAprmP

Γ(f) = (y : T1)
Ξ1−−→
y

T3

Ξ; Γ;x ` e2 : T2 T2 < : T1

Ξ; Γ;x ` f • e2 : T3
IHas

(Φ ∪ Ξ); Γ;x ` e : T

Ξ; Γ;x ` has Φ e : T

IRst
Ξ1; Γ;x ` e : T Ξ1 ≤ Ξ ∪ (∪f∈xlatentΓ;x(Γ(f)))

Ξ; Γ;x ` restrict Ξ1 e : T
IError

Ξ; Γ;x ` Error : T

Figure 5. Type rules of the internal language

3.3 Dynamic Semantics

Φ ` e→ e′

EFrame
adjust(Φ) ` e→ e′

Φ ` f [e]→ f [e′]
EError

Φ ` g[Error]→ Error

EApp
check(Φ)

Φ ` (λx : T1 . e)
T2;Ξ1;x1 v → [v/x]e

EAppP
check(Φ)

Φ ` (λx : T1 . e)
T2;Ξ1;x1 ◦ v → [v/x]e

EHasT
Φ′ ⊆ Φ Φ ` e→ e′

Φ ` has Φ′ e→ has Φ′ e′
EHasV

Φ ` has Φ′ v → v
EHasF

Φ′ 6⊆ Φ

Φ ` has Φ e→ Error

ERst
Φ′′ = max({Φ′ ∈ γ(Ξ) | Φ′ ⊆: Φ} Φ′′ ` e→ e′

Φ ` restrict Ξ e→ restrict Ξ e′
ERstV

Φ ` restrict Ξ v → v

EFrameprim Φ ` e→ e′

Φ ` h[e]→ h[e′]
EAppprim

Φ ` (λx : T1 . e)
T2;Ξ1;x1•Γlv → [v/x]e

EAppprimP
Φ ` (λx : T1 . e)

T2;Ξ1;x1 • v → [v/x]e

Figure 6. Evaluation rules of the internal language

GPESIL’s dynamic semantics are presented in Figure 6. The evaluation judgement has the form Φ ` e → e′, meaning that
e reduces to e′ under the curren privilege set Φ. The dynamic operations that are inserted either restrict the current privilege set
(restrict ) or check the current privilege set for a gievn effect privilege (has ). These operations are inserted whenever the
unknown effect is used in a typing derivation, to enforce the corresponding dynamic checks. If an effect check fails, a runtime
effect error is raised.

The [EFrame], [EError] and [EFrameprim] are rules for reducing context frames f , g, and h respectively. The [EApp] and
[EAppP] describes how an application of a lambda with a value reduces to the body by replacing the variable x with the value
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v. Both rules are guarded by a check from the M&M framework. Just like [1], if this check fails, then the program is stuck;
if programs never get stuck, then any effectful operation that is encountered must have the proper privileges to run. Rules
[EApprim] and [EApprimP] are the rules for primitive applications and primitive polymorphic applications respectively. Both
rules are identicall save for the operation symbol. The [EHasT] rule reduces the expression e only if the checked privilege
set Φ′ is contained in the current privilege set. The [EHasV] rule describes how a has operation applied to a value reduces
to the same value (values do not produce effects). In case the checked privilege set is not contained in the current privilege
set, rule [EHasF] reduces to an Error which is propagated using [EError]. The [ERst] reduces a restricted expression e using
the maximal privilege set Φ′′ that is subcontained in the current privilege set Phi. The maximal set it is computed using the
function max as shown in Figure 8. The [ERstV] reduces a restricted value into the same value.

4. Source to Internal Language Translation

Ξ; Γ;x ` e⇒ e′ : T

TVar
Γ(x) = T

Ξ; Γ;x ` x⇒ x : T
TUnit

Ξ; Γ;x ` unit⇒ unit : Unit

TFn
Ξ1; Γ, x : T1;x1 ` e⇒ e′ : T ′ T ′ .: T2

Ξ; Γ;x ` (λx : T1 . e)
T2;Ξ1;x1 ⇒ (λx : T1 . e

′)T2;Ξ1;x1 : (x : T1)
Ξ1−−→
x1

T2

TApp

ãdjust(Ξ); Γ;x ` e1 ⇒ e1
′ : (y : T1)

Ξ1−−→
y

T3

ãdjust(Ξ); Γ;x ` e2 ⇒ e2
′ : T2

Ξ1
′ = Ξ1 ∪ lat(Γ, y : T2, y, x) Ξ1

′ @∼: Ξ T2 .: T1

e1
′′ = 〈〈(y : T2)

Ξ−→T3 ⇐ (y : T1)
Ξ1−−→
y

T3〉〉trueΓ e1
′

e1 /∈ x c̃heck(Ξ) Φ = ∆(Ξ)

Ξ; Γ;x ` e1 e2 ⇒ insert-has?(Φ, e1
′′ e2

′) : T3

TAppP

Γ(f) = (y : T1)
Ξ1−−→
y

T3 ãdjust(Ξ); Γ;x ` e2 ⇒ e2
′ : T2

Γf = Γ, f : (y : T1)
⊥−→
f

T3

ef = 〈〈(y : T2)
Ξ−→ T3 ⇐ (y : T1)

⊥−→
f

T3〉〉falseΓf
f

f ∈ x T2 .: T1 c̃heck(Ξ) Φ = ∆(Ξ)

Ξ; Γ;x ` f e2 ⇒ insert-has?(Φ, ef ◦ e2
′) : T3

TEff
Ξ1; Γ;x ` e⇒ e′ : T Ξ1 @∼: Ξ Φ = (|Ξ1|\|Ξ|)

Ξ; Γ;x ` (e :: Ξ1)⇒ insert-has?(Φ,restrict Ξ1 e
′) : T

Figure 7. Transformation rules to the internal language

The dynamic semantics of GPES are defined by augmenting its type system to generate GPESIL expressions. The type
judgement has the form Ξ; Γ;x ` e⇒ e′ : T where e is translated into e′. The translation uses static type and effect information
from the source program to determine where runtime checks must be inserted.

Most of this translations are straightforward. The [TApp] describes the non-polymorphic function application. There are
two main differences compared to [App]. First, a runtime check may be introduced using insert-has?, to determine whether the
statically-missing privileges in Ξ to perform the application are available at runtime. This privilege set Φ is obtained using the
metafunction ∆ defined in [1] and presented in Figure 8, which computes the minimal set of additional privileges needed to
safely pass the c̃heck verification. The metafunction insert-has? inserts a dynamic check for privileges only if the privilege set
Φ is not empty. Second, a higher-order cast may be introduced to ensure that e1

′ has the proper type to accept e2
′ as argument.

A subtlety here is that the relative effects of e1
′ must be taken into consideration when inserting the cast. The cast is “compiled”

at translation time as seen in Figure 8.
Rule [TAppP] is the transformation rule for applications of functions that are the parameter of an enclosing effect-

polymorphic function. The compiled cast metafunction is inserted with a flag indicating to not insert dynamic checks for the
effects of f . Notice how [TAppP] inserts a cast by altering Γ changing the effect information of f to be pure and polymorphic
on itself (recursive functions). This way, when the cast is inserted, restrict , has and the primitive applications will
considerate f to be pure. As previously noted, the casted expression ef may loose the information about being a polymorphic
function in the internal language. For this point, the application f e2 is transformed replacing the regular application for a
“polymorphic application” ◦.
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5. Auxiliary Functions and Definitions

latentΓ;x(T )
Ξp = ∪f∈(y\x)latentΓ;x((Γ, y : T1)(f)))

latentΓ;x((y : T1)
Ξ−→
y
T2) = Ξ ∪ Ξp

〈〈T2 ⇐ T1〉〉
c

Γ e =


e if T1 < : T2

(λf : T1 . 〈T2 ⇐ T1〉
c

Γl
′ f)T2

′;⊥;∅•Γe if T1 6< : T2, and e 6= x

〈T2 ⇐ T1〉
c

Γl
x if T1 6< : T2, and e = x

Where T2
′ < : T2,Γl = (Γ, x1 : T21, x2 : T11),Γl

′ = (Γl, f : T1), if T1 = (x1 : T11)
Ξ1−−→
x1

T12, and T2 = (x2 : T21)
Ξ2−−→
x2

T22

lat(Γ, x1, x) = (∪f∈(x1\x)latentΓ;x(Γ(f)))

〈(x2 : T21)
Ξ2−−→
x2

T22 ⇐ (x1 : T11)
Ξ1−−→
x1

T12〉
true

Γ f =

(λx : T21 . 〈〈T22 ⇐ T12〉〉
true

Γ restrict
(
Ξ2 ∪ lat(Γ, x2, ∅)

)
has |Ξ1 ∪ lat(Γ, x1, x2)|\|Ξ2| f•Γ(〈〈T11 ⇐ T21〉〉

x2 6∈ x2

Γ x))T22
′;Ξ2;x2

Where T22
′ < : T22

〈(x2 : T21)
Ξ2−−→
x2

T22 ⇐ (x1 : T11)
Ξ1−−→
x1

T12〉
false

Γ f =

(λx : T21 . 〈〈T22 ⇐ T12〉〉
true

Γ restrict
(
Ξ2 ∪ lat(Γ, x2, ∅)

)
f • (〈〈T11 ⇐ T21〉〉

x2 6∈ x2

Γ x))T22
′;Ξ2;x2

Where T22
′ < : T22

insert-has?(Φ, e) =

{
e if Φ = ∅
has Φ e otherwise

∆(Ξ) =
(⋃

mins({Φ ∈ γ(Ξ) | check(Φ)})
)
\|Ξ|

mins(Υ) =
{

Φ ∈ Υ | ∀Φ′ ∈ Υ. Φ′ 6⊂: Φ
}

max(Υ) = {Φ ∈ Υ | ∀Φ′ ∈ Υ,Φ′ ⊆: Φ}

strict-check(Ξ) ⇐⇒ check(Φ) for all Φ ∈ γ(Ξ).

Ξ1 ≤ Ξ2 ⇐⇒ |Ξ1| ⊆: |Ξ2|

Figure 8. Auxiliary functions and definitions used in the gradual polymorphic effect system
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The auxiliary functions and definitions are presented in Figure 8. The latent metafunction calculates the latent effects of a
function type. It is the union of the concrete effect Ξ and the latent effects of its relative effects y (analysing the relative effects
types defined in Γ).

The cast compilation metafunction 〈〈·〉〉cΓ inserts a cast only if static subtyping does not hold. The first novelty with respect
to TGE is the boolean variable c, which indicates whether the cast must include the has check or not. The second novelty is
that the cast are resolved during translation, contrast to TGE where casts are resolved during evaluation. For this, if the casted
expression e is not a variable, it must be first reduced to a value and then perform the has and restrict operations.
Therefore, the casted expression e is applied to a new lambda. This new lambda is “artificial” and does not need have
permissions to perform an application, therefore the application is actually a “primitive” application. In case the expression e
is a variable, no primitive application must be inserted. Notice that each case of the cast compilation metafunction changes the
variabe context Γ so it includes all free variables needed to calculate latents effects. Also in case of a cast from/to a polymorphic
function, Γ is modified so it considers the effects of its argument as the check performed in [App] and [Tapp].

Cast themselves are defined by compilation to function wrappers. The function have two versions: one for non-polymorphic
applications (c = true), and one for polymorphic applications (c = false). The polymorphic version does not insert a
has operation and the primitive application is instead a primitive polymorphic application, i.e. it must not check for f
privileges given that we are beign polymorphic on that variable.

The general restrict/has scheme is the same as in TGE, except for two crucial differences to regain the flexibility of effect
polymorphism. First, the has check is conditioned to the check flag c using has?. For the argument cast, c is true only if the
target type of the cast is not polymorphic in its argument x2, i.e. x2 6∈ x2. Second, the inserted restrict and has must include
the latent effects of the relative effect variables of both types, because they represent the maximal privilege set that x2 and x1

may produce. This adaptation of restrict/has corresponds to the flexibility of effect polymorphism: applying a function on
which the expression is polymorphic is considered to not produce any effect (so, no has), but the permitted effects are bounded
by the declared latent effects of that function (so, a richer restrict). Finally, the cast on the return type always inserts a
dynamic check (there is no polymorphism on return values). In the translation rule [TApp], the higher-order cast starts with the
check flag set to true, because the application is not polymorphic, while in rule [TAppP], the outer check flag is false. Notice
that when the flag c is false, the primitive application is instead a primitive polymorphic application, i.e. it must not check for
f privilege set given that f is part of the relative efffect variables.
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6. Proofs of Type Soundness
This section proves soundness of GPES. First we prove soundness of GPESIL by proving progress and preservation. Then we
prove that the translation from GFT to GFTIL preserves typing and therefore proving soundness of GPES. Finally we present
lemmas and propositions that are needed for this section.

6.1 Soundness of Internal Language
6.1.1 Progress
Theorem 1. (Progress).
Suppose Ξ; ∅; ∅ ` e : T . Then either e is a value v, an Error, or Φ ` e→ e′ for all privilege sets Φ ∈ γ(Ξ).

Proof. By structural induction over derivations of Ξ; ∅;x ` e : T .

Case ([IUnit] and [IFn]). Both unit and (λx : T1 . e)
T2;Ξ1;x1 are values.

Case ([IVar]). This case cannot happen by hypothesis.

Case ([IError]). Error is an Error.

Case ([IRst]). By induction Hyphothesis, e is either

• A value, in which case [ERstV] can be applied to restrict Ξ′ e.
• An error, in which case [EError] can be applied with g = restrict Ξ′ �.
• ∀Φ′ ∈ γ(Ξ′),Φ′ ` e→ e′, in particular for the Φ′′ in the premise of [ERst], thus it can be applied. This Φ′′ exists because

since Ξ′ ≤ Ξ and there are no relative effect variables. Thus there ∃Φ′ ∈ γ(Ξ′) such that Φ′ ⊆: Φ.

Case ([IHas]). . By induction Hypothesis, e is either

• a value, in which case [EHasV] applies.
• An error in which case rule [EError] applies with g = has Φ �.
• ∀Φ′ ∈ γ(Φ ∪ Ξ),Φ′ ` e→ e′. We also know that for any Φ ∈ γ(Ξ), either

Φ′ 6⊆: Φ. In this case, rule [EHasF] applies.
Φ′ ⊆: Φ. In this case, since Φ′ ⊆: Φ and Φ ∈ γ(Ξ), then also Φ ∈ γ(Φ′ ∪ Ξ). Thus by hypothesis, Φ ` e→ e′ and thus
we can apply rule [EHasT].

Case ([IAprmP]). This case cannot happen by hypothesis.

Case ([IApp]). By induction Hypothesis, e1 is either

• An Error, in which case [EError] applies with g = � e.
• ∀Φ′ ∈ γ(ãdjust(Ξ)),Φ′ ` e1 → e1

′. By Theorem 16, since Φ ∈ γ(Ξ), ãdjust(Φ) ∈ γ(ãdjust(Ξ)) and thus
ãdjust(Φ) ` e1 → e1

′ and rule [EFrame] can be applied.
• A value. By Lemma 5 then e1 = (λx : T1 . e)

T2;Ξ1;x

At the same time, also by induction hyphotesis, e2 is either:
An Error, in which case [EError] applies with g = v �.
∀Φ′ ∈ γ(ãdjust(Ξ)),Φ′ ` e2 → e2

′. In which case by analogous arguments to the same case for e1, rule [EFrame]
can be applied.
A value. By typing premises, also strict-check(Ξ). By definition of strict-check, then ∀Φ ∈ γ(Ξ).check(Φ), and thus for
any Φ ∈ γ(Ξ) rule [EApp] can also be applied.

Case ([IAppP]). By induction Hypothesis, e1 is either

• An Error, in which case [EError] applies with g = � e.
• ∀Φ′ ∈ γ(ãdjust(Ξ)),Φ′ ` e1 → e1

′. By Theorem 16, since Φ ∈ γ(Ξ), ãdjust(Φ) ∈ γ(ãdjust(Ξ)) and thus
ãdjust(Φ) ` e1 → e1

′ and rule [EFrame] can be applied.
• A value. By Lemma 5 then e1 = (λx : T1 . e)

T2;Ξ1;x

At the same time, also by induction hyphotesis, e2 is either:
An Error, in which case [EError] applies with g = v ◦�.
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∀Φ′ ∈ γ(ãdjust(Ξ)),Φ′ ` e2 → e2
′. In which case by analogous arguments to the same case for e1, rule [EFrame]

can be applied.
A value. By typing premises, also strict-check(Ξ). By definition of strict-check, then ∀Φ ∈ γ(Ξ).check(Φ), and thus for
any Φ ∈ γ(Ξ) rule [EAppP] can also be applied.

Case ([IAppprm]). By induction Hypothesis, e1 is either

• An Error, in which case [EError] applies with g = � e.
• ∀Φ′ ∈ γ(Ξ),Φ′ ` e1 → e1

′. Since Φ ∈ γ(Ξ) and thus Φ ` e1 → e1
′ and rule [EFrameprim] can be applied.

• A value. By 5 then e1 = (λx : T1 . e)
T2;Ξ1;x

At the same time, also by induction hyphotesis, e2 is either:
An Error, in which case [EError] applies with g = v �.
∀Φ′ ∈ γ(Ξ),Φ′ ` e2 → e2

′. In which case by analogous arguments to the same case for e1, rule [EFrameprim] can be
applied.
A value. In this case [EAppprim] can be applied.

6.1.2 Preservation
Theorem 2 (Preservation). If Ξ; Γ;x ` e : T , and Φ ` e→ e′ for Φ ∈ γ(Ξ), then Ξ; Γ;x ` e′ : T ′ and T ′ < : T

Proof. By structural induction over the typing derivation and the applicable evaluation rules.

Case ([IFn], [IUnit], [IVar], [IAppP], [IAprmP] and [IError]). There rules are triviel since there is no rule in the operational
semantics that takes these expressions as premises to step.

Case ([IApp] and [EFrame] with f = � t). Thanks to Theorem 16, we can use the induction hypothesis to infer that

ãdjust(Ξ); Γ;x ` e1
′ : T1

′ Ξ1
′

−−→
y′

T3
′ and T1

′ Ξ1
′

−−→
y′

T3
′ < : T1

Ξ′

−−→
y

T3
′. By definition of subtyping, T1 < : T1

′ and

therefore T2 < : T1
′. By definition of latent effect and subtyping |Ξ1

′ ∪ lat(Γ′, y′, x)| ⊆: |Ξ1 ∪ lat(Γ′, y, x)| and therefore
|Ξ1

′ ∪ lat(Γ′, y′, x)| ⊆: |Ξ|. Thus we can reuse rule [IApp] to infer that Ξ; Γ;x ` e1
′ e2 : T3

′ and we know that T3
′ < : T3.

Case ([IApp] and [EFrame] with f = v �). By Theorem 16 we can use the induction hypothesis to infer that ãdjust(Ξ); Γ;x `
e2

′ : T2
′ and T2

′ < : T2.
Since T2 < : T1, then also T2

′ < : T1 and we can reuse rule [IApp] to infer that Ξ; Γ;x ` e1 e2
′ : T3.

Case ([IApp] and [EApp]). In this case e1 = (λy : T1 . e)
T3;Ξ1;y and Ξ1; Γ, y : T1; y ` e : T3.

Thus by Theorem 18, Ξ1; Γ; y ` [e2/y] e : T3, with T3
′ < : T3. Then by Proposition 15, Ξ; Γ;x ` [e2/y] e : T3

′, T3
′ < : T3.

Case ([IHas] and [EHasT]). e = has Φ e′. Therefore, application of [EHasT] takes the form
Φ ⊆: Φ′ Φ′ ` e′ → e′′

Φ′ ` has Φ e′ → has Φ e′′
with Φ′ ∈ γ(Ξ).
Since Φ ⊆: Φ′, then also Φ′ ∈ γ(Φ ∪ Ξ) and then by induction hypothesis Φ ∪ Ξ; Γ;x ` e′′ : T ′, T ′ < : T . We can then use
rule [IHas] to infer that Ξ; Γ;x ` has Φ e′′ : T ′ too.

Case ([IHas] and [EHasV]). By induction hypothesis and Lemma 17, in particular Ξ instead of Φ ∪ Ξ

Case ([IHas] and [EHasF]). Trivial by using rule [IError]

Case ([IRst] and [ERst]). Since by rule [ERst] Φ′′ ∈ γ(Ξ1), we can use induction hypothesis to infer that Ξ1; Γ;x ` e′ : T ′,
T ′ < : T . Then we reuse rule [IRst] to infer that Ξ; Γ;x ` restrict Ξ1 e

′ : T

Case ([IRst] and [ERstV]). By induction hypothesis and using Lemma 17, in particular Ξ instead of Ξ1 (analogous to [IHas]
and [EHasV]).

10 2015/5/8



Case ([IAprm] and [EFrameprim] with h = �•Γ′e). We can use induction hypothesis to infer that Ξ; Γ;x ` e1
′ : (y : T1

′)
Ξ1

′

−−→
y′

T3
′ and (y : T1

′)
Ξ1

′

−−→
y′

T3
′ < : (y : T1)

Ξ1−−→
y

T3. By definition of subtyping, T1 < : T1
′ and therefore T2 < : T1

′. By definition

of latent effect and subtyping |Ξ1
′ ∪ lat(Γ′, y′, x)| ⊆: |Ξ1 ∪ lat(Γ′, y, x)| and therefore |Ξ1

′ ∪ lat(Γ′, y′, x)| ⊆: |Ξ|. Thus we
can reuse rule [IAprm] to infer that Ξ; Γ;x ` e1

′ e2 : T3
′ and T3

′ < : T3.

Case ([IAprm] and [EFrameprim] with h = v•Γ′�). By Theorem 16 we can use the induction hypothesis to infer that
adjust(Ξ); Γ;x ` e2

′ : T2
′ and T2

′ < : T2.
Since T2 < : T1, then also T2

′ < : T1 and we can reuse rule [IAprm] to infer that Ξ; Γ;x ` e1 e2
′ : T3.

Case ([IAprm] and [EApprim]). In this case e1 = (λy : T1 . e)
T3;Ξ1;y and Ξ1; Γ, y : T1; y ` e : T3.

Thus by Theorem 18, Ξ1; Γ; y ` [e2/y] e : T3, with T3
′ < : T3. Then by Proposition 15, Ξ; Γ;x ` [e2/y] e : T3

′, T3
′ < : T3.

6.2 Translation Preserves Typing
Theorem 3 (Translation preserves typing). If Ξ; Γ;x ` e⇒ e′ : T in the source language then Ξ; Γ;x ` e′ : T in the internal
language.

Proof. By Case analysis

Case ([TUnit] and [TVar]). Using the rule premises we can trivially apply rules [IUnit] and [IVar], respectively.

Case ([TApp]). 1. By assumption
(a) Ξ; Γ;x ` e1 e2 ⇒ insert-has?(Φ, e1

′′ e2
′)

2. By induction on 1a

(a) ãdjust(Ξ); Γ;x ` e1
′ : (y : T1)

Ξ1−−→
y

T3

(b) ãdjust(Ξ); Γ;x ` e2
′ : T2

3. We also know that T2 .: T1 and Ξ1
′ @∼: Ξ, then (y : T1)

Ξ1−−→
y

T3 . (y : T2)
Ξ−→ T3.

4. Since e1
′ /∈ x, then ãdjust(Ξ); Γ;x ` 〈〈(y : T2)

Ξ−→ T3 ⇐ (y : T1)
Ξ1−−→
y

T3〉〉falseΓ e1
′ : (y : T2

′)
Ξ′

−−→
z

T3 and

(y : T2
′)

Ξ′

−−→
z

T3 < : (y : T2)
Ξ−→ T3 by 1a, 3 and proposition 20.

5. Since c̃heck(Ξ), by lemma 19, we know that strict-check(∆(Ξ) ∪ Ξ)

6. Finally we proceed on the cases for insert-has?.
(a) Φ = ∅. In this case, we also know that strict-check(Ξ) because ∅ ∪ Ξ = Ξ. Then we can apply rule [IApp] to infer that

Ξ; Γ;x ` (〈〈(y : T2)
Ξ−→ T3 ⇐ (y : T1)

Ξ1−−→
y

T3〉〉falseΓ e1
′) e2 : T3

(b) Φ 6= ∅
i. ãdjust(∆(Ξ)∪Ξ); Γ;x ` 〈〈(y : T2)

Ξ−→ T3 ⇐ (y : T1)
Ξ1−−→
y

T3〉〉falseΓ e1
′ : (y : T2

′)
Ξ′

−−→
z

T3 by 4, privilege monoticity

and subsumption proposition 15
ii. ãdjust(∆(Ξ) ∪ Ξ); Γ;x ` e2

′ : T2 by 2b, privilege monoticity and subsumption proposition 15

iii. ∆(Ξ) ∪ Ξ; Γ;x `
(
〈〈(y : T2)

Ξ−→ T3 ⇐ (y : T1)
Ξ1−−→
y

T3〉〉falseΓ e1
′) e2

′ : T3 by i, ii, 5 and [IApp]

iv. Ξ; Γ;x ` has ∆(Ξ)
((
〈〈(y : T2)

Ξ−→ T3 ⇐ (y : T1)
Ξ1−−→
y

T3〉〉falseΓ e1
′) e2

)
: T3 by [IHas]

Case ([TAppP]). 1. By assumption
(a) Ξ; Γ;x ` f e2 ⇒ insert-has?(Φ, ef ◦ e2

′)

2. ãdjust(Ξ); Γ;x ` e2
′ : T2, by induction on 1a.

3. We also know that T2 .: T1.

4. Since c̃heck(Ξ), by 19, we know that strict-check(∆(Ξ) ∪ Ξ)
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5. We proceed by cases for 〈〈(y : T2)
Ξ−→ T3 ⇐ (y : T1)

⊥−→
f

T3〉〉falseΓ f

Case ((y : T1)
⊥−→
f

T3 < : (y : T2)
Ξ−→ T3). Then

(a) 〈〈(y : T2)
Ξ−→ T3 ⇐ (y : T1)

⊥−→
f

T3〉〉falseΓ f = f

(b) Finally we proceed on the cases for insert-has?.
i. Φ = ∅. In this case, we also know that strict-check(Ξ) because ∅ ∪ Ξ = Ξ. We can apply rule [IAppP], to infer that

Ξ; Γ;x ` f ◦ e2 : T3.
ii. Φ 6= ∅

A. Γ(f) = (y : T1)
Ξ1−−→
y

T3

B. ãdjust(∆(Ξ) ∪ Ξ); Γ;x ` e2
′ : T2 by 2b, privilege monoticity and subsumption proposition ??

C. ∆(Ξ) ∪ Ξ; Γ;x ` f e2
′ : T3 by A, B, 4 and [IAppP].

D. Ξ; Γ;x ` has ∆(Ξ)
((
〈〈(y : T2)

Ξ−→ T3 ⇐ (y : T1)
⊥−→
f

T3〉〉falseΓ f
)
◦ e2

)
: T3 by [IHas]

Case ((y : T1)
⊥−→
f

T3 6< : (y : T2)
Ξ−→ T3). Then

(a) 〈〈(y : T2)
Ξ−→ T3 ⇐ (y : T1)

⊥−→
f

T3〉〉falseΓ f = 〈(y : T2)
Ξ−→ T3 ⇐ (y : T1)

⊥−→
f

T3〉falseΓl
f

(b) ãdjust(Ξ); Γ;x ` 〈(y : T2)
Ξ−→ T3 ⇐ (y : T1)

⊥−→
f

T3〉falseΓl
f : (y : T2)

Ξ−→ T3 from proposition 21.

(c) Finally we proceed on the cases for insert-has?.
i. Φ = ∅. In this case, we also know that strict-check(Ξ) because ∅ ∪ Ξ = Ξ. Then we can apply [IAppP] to infer that

Ξ; Γ;x ` (〈〈(y : T2)
Ξ−→ T3 ⇐ (y : T1)

⊥−→
f

T3〉〉falseΓ f) ◦ e2 : T3.

ii. Φ 6= ∅
A. ãdjust(∆(Ξ)∪Ξ); Γ;x ` 〈(y : T2)

Ξ−→ T3 ⇐ (y : T1)
⊥−→
f

T3〉falseΓl
f : (y : T2)

Ξ−→ T3 by 4, privilege monoticity

and subsumption proposition ??
B. ãdjust(∆(Ξ) ∪ Ξ); Γ;x ` e2

′ : T2 by 2b, privilege monoticity and subsumption proposition ??
C. ∆(Ξ) ∪ Ξ; Γ;x `

(
〈〈(y : T2)

Ξ−→ T3 ⇐ (y : T1)
⊥−→
f

T3〉〉falseΓ f
)
◦ e2

′ : T3 by A, B, 4 and [IAppP].

D. Ξ; Γ;x ` has ∆(Ξ)
((
〈〈(y : T2)

Ξ−→ T3 ⇐ (y : T1)
⊥−→
f

T3〉〉falseΓ f
)
◦ e2

′
)

: T3 by [IHas]

6.3 Auxiliary Lemmas and Propositions
All lemmas and propositions that are identical or based on a lemma or proposition of TGE [1] are presented indicating its
original number in TGE accompanied by a star “*”.

Property 1 (Privilege Monotonicity). (Property 1*)

• If Φ1 ⊆: Φ2 then check(Φ1) =⇒ check(Φ2);
• If Φ1 ⊆: Φ2 then adjust(Φ1) ⊆: adjust(Φ2).

Definition 1 (Consistent Adjust). (Definition 6*)
Let ãdjust : CPrivSet→ CPrivSet be defined as follows:

ãdjust(Ξ) = α ({adjust(Φ) |Φ ∈ γ (Ξ)}) .

Lemma 4 (Lemma 12*). ∀Φ ∈ γ(Ξ), |Ξ| ⊆: Φ.

Proof. By definition of |·|,
|Ξ| =

⋂
Φ∈γ(Ξ)

Φ

and then the lemma follows by definition of intersection.
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Proposition 5 (Proposition 13*). |Ξ| = Ξ\{¿}

Proof. By cases on the definition of γ.

Case (¿ /∈ Ξ). Then |Ξ| =
⋂
{Ξ} = Ξ = Ξ\{¿}.

Case (¿ ∈ Ξ). Then |Ξ| =
⋂
{(Ξ\{¿}) ∪ Φ|Φ ∈ P (PrivSet)} = Ξ\{¿}

Lemma 6 (Lemma 14*). |Ξ| ∈ γ(Ξ).

Proof. By cases on the definition of γ:

Case (¿ 6∈ Ξ). Since γ produces a singleton with Ξ, intersection over the singleton retrieves Ξ.

Case (¿ ∈ Ξ). Since ∅ ∈ P (CPrivSet), Ξ \ {¿} ∈ γ(Ξ), which also is the intersection of every possible set in γ(Ξ).

Lemma 7 (Lemma 15*). Ξ1 ⊆: Ξ2 ⇒ Ξ1 ≤ Ξ2.

Proof. By Proposition 6 and definition of ⊆, Ξ1 ⊆: Ξ2, which is the definition of ≤.

Lemma 8 (Lemma 16*). Ξ1 ≤ Ξ2 and strict-check(Ξ1)⇒ strict-check(Ξ2)

Proof. Since strict-check(Ξ1), then ∀Φ ∈ γ(Ξ1), check(Φ). In particular, by Lemma 7, check(|Ξ1|). By Privilege Monotonic-
ity Property 1 for check, therefore, check(|Ξ2|). Then by Property 1 for check and by lemma 4, check(Φ) ∀Φ ∈ Ξ2 and thus
strict-check(Ξ2).

Lemma 9 (Lemma 17*). If strict-check(Ξ1) and Ξ1 ⊆: Ξ2 then strict-check(Ξ2).

Proof. By lemma 8, Ξ1 ≤ Ξ2. Therefore, the lemma follows from Lemma 9.

Lemma 10 (Lemma 18*). |α(Υ)| =
⋂

Υ, for Υ 6= ∅.

Proof. By cases on the definition of α(Υ).

Case (Υ = {Φ} branch). then Φ = α(Υ), and since dom (α) = P (PrivSet), ¿ 6∈ Φ. Therefore γ(Φ) = Υ, and therefore by
definition of |·|, |α(Υ)| =

⋂
Υ.

Case (otherwise branch). Then α(Υ) = (
⋂

Υ) ∪ {¿}. Thus |α(Υ)| =
⋂
{(
⋂

Υ) ∪ Φ|Φ ∈ P (PrivSet)} and thus |α(Υ)| =⋂
Υ.

Lemma 11 (Lemma 19*). If
⋂

(Υ1) ∈ Υ1 and
⋂

(Υ1) ⊆:
⋂

(Υ2), then
⋂
{adjust(Φ) |∀Φ ∈ Υ1} ⊆:

⋂
{adjust(Φ) |∀Φ ∈ Υ2}.

Proof. Suppose
⋂

(Υ1) ∈ Υ1 and
⋂

(Υ1) ⊆:
⋂

(Υ2). Now suppose φ ∈
⋂
{adjust(Φ) |∀Φ ∈ Υ1}. Then since

⋂
(Υ1) ∈ Υ1,

in particular φ ∈ adjust(
⋂

(Υ1)) too.
Now let Φ ∈ Υ2. Since

⋂
(Υ1) ⊆:

⋂
(Υ2), it follows that

⋂
(Υ1) ⊆: Φ. So by monotonicity, φ ∈ adjust(Φ).

Thus, since Φ is arbitrary, φ ∈ adjust(Φ) for all Φ ∈ Υ2 and thus φ ∈
⋂
{adjust(Φ) |∀Φ ∈ Υ2}.

Lemma 12 (Lemma 20*). If Ξ1 ≤ Ξ2 then ãdjust(Ξ1) ≤ ãdjust(Ξ2)

Proof. By definition of ≤ and |·|,
⋂

(γ(Ξ1)) ⊆:
⋂

(γ(Ξ2)). Also, by Lemma 7,
⋂

(γ(Ξ1)) ∈ γ(Ξ1). Thus, by Lemma 12,⋂
{adjust(Φ) |∀Φ ∈ γ(Ξ1)} ⊆:

⋂
{adjust(Φ) |∀Φ ∈ γ(Ξ2)}.

Given that by definition of γ, for any Ξ γ(Ξ) 6= ∅, we can infer by Lemma 11 that |α({adjust(Φ) |∀Φ ∈ γ(Ξ1)})| ⊆:

|α({adjust(Φ|∀Φ ∈ γ(Ξ2))})|. By definition of ãdjust, this is equivalent to |ãdjust(Ξ1)| ⊆: |ãdjust(Ξ2)|, which at the same
time is the definition of ãdjust(Ξ1) ≤ ãdjust(Ξ2).

Lemma 13 (Lemma 21*). If Ξ1; Γ;x ` e : T and Ξ1 ≤ Ξ2, then Ξ2; Γ;x ` e : T .
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Proof. By structural induction over the typing derivations for Ξ1; Γ;x ` e : T .

Case (Rules [IFn], [IUnit], [IVar], [IError]). All of these rules do not enforce a restriction between the Ξ2 in the conclusions
and any Ξ (if existent) in the premises, so the same rule can be directly re-used to infer Ξ2; Γ;x ` e : T .

Case (Rule [IApp]). By lemma 13, since Ξ1 ≤ Ξ2, ãdjust(Ξ1) ≤ ãdjust(Ξ2).

Thus by induction hypothesis, we can infer both that ãdjust(Ξ2); Γ;x ` e1 : T1
Ξ′

−−→
y

T3 and that ãdjust(Ξ2); Γ;x ` e2 : T2.

By Lemma 9, we also know that strict-check(Ξ2).
By hypothesis we also know that T2 < : T1 and |Ξ′ ∪ lat(Γ, y, x)| ⊆: |Ξ1|, and then we can use rule [IApprm] to infer that
Ξ2; Γ;x ` e1 e2 : T3.

Case (Rule [IAppP]). By lemma 13, since Ξ1 ≤ Ξ2, ãdjust(Ξ1) ≤ ãdjust(Ξ2).

Thus by induction hypothesis, we can infer both that ãdjust(Ξ2); Γ;x ` e1 : T1
Ξ′

−−→
y

T3 and that ãdjust(Ξ2); Γ;x ` e2 : T2.

By Lemma 9, we also know that strict-check(Ξ2).
By hypothesis we also know that T2 < : T1 and then we can use rule [IAppP] to infer that Ξ2; Γ;x ` e1 ◦ e2 : T3.

Case (Rule [IAprm]). By lemma 13, since Ξ1 ≤ Ξ2, ãdjust(Ξ1) ≤ ãdjust(Ξ2).

Thus by induction hypothesis, we can infer both that ãdjust(Ξ2); Γ;x ` e1 : T1
Ξ′

−−→
y

T3 and that ãdjust(Ξ2); Γ;x ` e2 : T2.

By hypothesis we also know that T2 < : T1 and |Ξ′ ∪ lat(Γ′, y, x)| ⊆: |Ξ1|, and then we can use rule [IAprm] to infer that
Ξ2; Γ;x ` e1•Γ′e2 : T3.

Case (Rule [IAprmP]). By lemma 13, since Ξ1 ≤ Ξ2, ãdjust(Ξ1) ≤ ãdjust(Ξ2).
Thus by induction hypothesis, we can infer that ãdjust(Ξ2); Γ;x ` e2 : T2.
By hypothesis we also know that T2 < : T1, and then we can use rule [IAprmP] to infer that Ξ2; Γ;x ` f • e2 : T3.

Case ([IHas]). Since by hypothesis, |Ξ1| ⊆: |Ξ2|, in particular we know that Φ∪|Ξ1| ⊆: Φ∪Ξ2. We know that |Φ∪Ξ| = Φ∪|Ξ|,
then |Φ ∪ Ξ1| ⊆: |Φ ∪ Ξ2| and thus Φ ∪ Ξ1 ≤ Φ ∪ Ξ2.
By induction hypothesis, Φ ∪ Ξ2; Γ;x ` e : T . Then we can use rule [IHas] to infer that Ξ2; Γ;x ` has Φ e : T .

Case (Rule [IRst]). (Ξ1; Γ;x ` restrict Ξ′ e : T )
By hypothesis we know that Ξ′ ≤ Ξ1 and thus by transitivity of⊆, Ξ′ ≤ Ξ2. Therefore, we can use rule [IRst] with the premises
of the hypothesis to infer that Ξ2; Γ;x ` restrict Ξ′ e : T .

Proposition 14 (Subsumption). (Lemma 22*) If Ξ1; Γ;x ` e : T and Ξ1 ⊆: Ξ2, then Ξ2; Γ;x ` e : T .

Proof. By Lemma 8, Ξ1 ≤ Ξ2. Thus, by String Subsumption Lemma 14, Ξ2; Γ;x ` e : T .

Lemma 15 (Canonical Values). (Lemma 25*)

1. If Ξ; Γ;x ` v : Unit, then v = unit

2. If Ξ; Γ;x ` v : T1
Ξ1−−→
x1

T2, then v = (λx : T1 . e)
T2;Ξ1;x

Proof. The only rules for typing values in our type system are [IUnit], [IFn] and [IFnprm], respectively. They associate the type
premises with the expressions in the conclussions.

Theorem 16 (Theorem 26*). Φ ∈ γ(Ξ)⇒ adjust(Φ) ∈ γ(ãdjust(Ξ)).

Proof. Let Φ ∈ γ(Ξ). Then adjust(Φ) ∈ {adjust(Φ′) | Φ′ ∈ γ(Ξ)}.
By Proposition 1, {adjust(Φ′) | Φ′ ∈ γ(Ξ)} ⊆: γ(α({adjust(Φ′) | Φ′ ∈ γ(Ξ)})), which by Definition 1 is equivalent to
γ(ãdjust(Ξ)).

Lemma 17 (Lemma 28*).

1. Ξ; Γ;x ` v : T ⇒ Ξ′; Γ ` v : T

2. Ξ; Γ;x ` x : T ⇒ Ξ′; Γ ` x : T
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Proof. 1. We proceed by cases on v.

Case (unit). Then we can use rule [IUnit] for any other Ξ′.

Case ((λx : T1 . e)
T2;Ξ1;y). There is only one typing rule for functions. We can reuse the same [IFn] To type the function to

the same type in a context Ξ′ by reusing the original premise.

2. There is only one rule for typing variable identifiers, [IVar]. Since the lemma preserves the environment Γ, we can use rule
[IVar] to type the identifier in any Ξ′ context.

Theorem 18 (Preservation of types under substitution). (Theorem 29*) If Ξ; Γ, x : T1;x ` e3 : T3 and Ξ; Γ;x ` v : T2 with
T2 < : T1, then Ξ; Γ;x ` [e2/x] e3 : T ′ and T ′ < : T3.

Proof. By structural induction over the typing derivation for e2.

Case ([IUnit] and [IError]). Trivial since substitution does not change the expression.

Case ([IVar]). By definition of substitution, the interesting cases are:

• e3 = y 6= x ([v/x] y = y). Then by assumption we know that Γ(y) = T3 and thus we can infer that Ξ; Γ;x ` y : T3.
• e3 = x ([v/x]x = e2). Then by the theorem hypothesis we know that Ξ; Γ;x ` v : T2. We also know that Ξ; Γ, x : T1;x `
x : T3, which means that T3 = T1 and thus T ′ = T2 < : T1 = T3.

Case ([IFn]).

• (λx : T . e)T2;Ξ1;y . Then substitution does not affect the body and thus we reuse the original type derivation.
• (λy : T . e)T2;Ξ1;y Then by induction hypothesis, substitution of the body preserves typing and thus rule [IFn] can be used

to reconstruct the type for the modified expression.

Case ([IHas] and [IRst]). Analogous to the case for [IFn], since substitution for these expression is defined just as recursive
calls to substitution for the premises in the typing rules.

Case ([IApp]). By Lemma 17, we can infer that Ξ′; Γ;x ` v : T2, in particular for Ξ′ = ãdjust(Ξ). Thus we can use our
induction hypotheses to in both subexpressions of e3 = e′1 e

′
2.

Therefore, while ãdjust(Ξ) ; Γ;x ` e′1 : (y : T ′
1)

Ξ′

−−→
y′

T ′
3 and ãdjust(Ξ) ; Γ;x ` e′2 : T ′

2 with T ′
2 < : T ′

1 and |Ξ′ ∪

lat(Γ, y′, x)| ⊆: |Ξ| also ãdjust(Ξ) ; Γ;x ` [v/x] e′1 : T ′′
1

Ξ′′

−−→
y′′

T ′′
3 and ãdjust(Ξ) ; Γ;x ` [v/x] e′2 : T ′′

2 with T ′′
1

Ξ′′

−−→
y′′

T ′′
3 < : T ′

1
Ξ′

−−→
y′

T ′
3 and T ′′

2 < : T ′
2.

We therefore know that T ′′
2 < : T ′′

1, |Ξ′′ ∪ lat(Γ, y′′, x)| ⊆: |Ξ| and we can use rule [IApp] to infer back that Ξ; Γ;x `
[e2/x] e′1 [e2/x] e′2 : T ′′

3, and by transitivity of subtyping, T ′′
3 < : T3.

Case ([IAppP]). By Lemma 17, we can infer that Ξ′; Γ;x ` v : T2, in particular for Ξ′ = ãdjust(Ξ). Thus we can use our
induction hypotheses to in both subexpressions of e3 = e′1 ◦ e′2.

Therefore, while ãdjust(Ξ) ; Γ;x ` e′1 : (y : T ′
1)

Ξ′

−−→
y′

T ′
3 and ãdjust(Ξ) ; Γ;x ` e′2 : T ′

2 with T ′
2 < : T ′

1 also ãdjust(Ξ) ; Γ;x `

[v/x] e′1 : T ′′
1

Ξ′′

−−→
y′′

T ′′
3 and ãdjust(Ξ) ; Γ;x ` [v/x] e′2 : T ′′

2 with T ′′
1

Ξ′′

−−→
y′′

T ′′
3 < : T ′

1
Ξ′

−−→
y′

T ′
3 and T ′′

2 < : T ′
2.

We therefore know that T ′′
2 < : T ′′

1 and we can use rule [IAppP] to infer back that Ξ; Γ;x ` [e2/x] e′1 ◦ [e2/x] e′2 : T ′′
3, and

by transitivity of subtyping, T ′′
3 < : T3.

Lemma 19 (lemma 33*). c̃heck(Ξ)⇒ strict-check(∆(Ξ) ∪ Ξ)
i.e. If check(Φ) for some Φ ∈ γ(Ξ), then check(Φ) for every Φ ∈ γ(∆(Ξ) ∪ Ξ).

Proof. Suppose check(Φ) for some Φ ∈ γ(Ξ)
Then Υ = {Φ ∈ γ(Ξ) | check(Φ)} 6= ∅ so Φ =

⋃
mins(Υ) exists.

Furthermore, by M & M monoticity, check(Φ).
Note that Φ ⊆: Φ\|Ξ| ∪ Ξ = ∆(Ξ) ∪ Ξ, so if Φ2 ∈ γ(∆(Ξ) ∪ Ξ) then Φ ⊆: Φ2 and by M & M monoticity, check(Φ2).
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Proposition 20. If Ξ; Γ;x ` e : T1, e /∈ x and T1 .: T2 in the internal language, then Ξ; Γ;x ` 〈〈T2 ⇐ T1〉〉cΓe : T2
′ and

T2
′ < : T2.

Proof. By Case analysis

Case (T1 < : T2). 1. By assumption Ξ; Γ;x ` e : T1

2. 〈〈T2 ⇐ T1〉〉cΓe = e by definition of metafunction.
3. Ξ; Γ;x ` 〈〈T2 ⇐ T1〉〉cΓe : T1 by 1 and 2.

Case ((x1 : T11)
Ξ1−−→
x1

T12 6< : (x2 : T21)
Ξ2−−→
x2

T22 and e 6= x). Where T1 = (x1 : T11)
Ξ1−−→
x1

T12, T2 = (x2 : T21)
Ξ2−−→
x2

T22

and Γl = (Γ, x1 : T21, x2 : T11, f : T1)

1. 〈〈T2 ⇐ T1〉〉cΓe = (λf : T1 . 〈T2 ⇐ T1〉
c

Γl
f)T2

′;⊥;∅•Γe

2. Ξ; Γ, f : T1;x ` 〈T2 ⇐ T1〉
c

Γl
f : T2

′, where T2
′ < : T2 by proposition 21.

3. Ξ; Γ;x ` (λf : T1 . 〈T2 ⇐ T1〉
c

Γl
f)T2

′;⊥;∅ : T1
⊥−→ T2

′ by [IFun]

4. Ξ; Γ;x ` (λf : T1 . 〈T2 ⇐ T1〉
c

Γl
f)T2

′;⊥;∅•Γe : T2
′, and T2

′ < : T2 by [IAprm]

Case ((x1 : T11)
Ξ1−−→
x1

T12 6< : (x2 : T21)
Ξ2−−→
x2

T22 and e = x). Where T1 = (x1 : T11)
Ξ1−−→
x1

T12, T2 = (x2 : T21)
Ξ2−−→
x2

T22

and Γl = (Γ, x1 : T21, x2 : T11)

1. 〈〈T2 ⇐ T1〉〉cΓe = 〈T2 ⇐ T1〉cΓl
by definition of metafunction.

2. Ξ; Γ;x ` 〈T2 ⇐ T1〉cΓl
: T2

′ where T2
′ < : T2 by proposition 21.

3. Ξ; Γ;x ` 〈〈T2 ⇐ T1〉〉cΓe : T2
′ by 1 and 2.

Proposition 21. If Ξ; Γ;x ` f : (x1 : T11)
Ξ1−−→
x1

T12, x1 ∈ Γl, x2 ∈ Γl , then Ξ; Γ;x ` 〈(x2 : T21)
Ξ2−−→
x2

T22 ⇐ (x1 : T11)
Ξ1−−→
x1

T12〉trueΓl
f : (x2 : T21)

Ξ2−−→
x2

T22
′, (depending on the cast function, T22

′ = T22 or T22
′ = T12)

Proof. Let Ξl1 = Ξ1 ∪ lat(Γl, x1, x2) and Ξl2 = Ξ2 ∪ lat(Γl, x2, ∅). Let Γ′ = Γ, x : T2.

Case (c = true, |Ξl1|\|Ξl2| 6= ∅ ).

IFN

PROP.2
IRST

IHAS

IAPRM 1 & 2

IVAR

Γ′(f) = (x1 : T11)
Ξ1−−→
x1

T12

|Ξl
1| ∪ Ξl

2; Γ′;x2 ` f : (x1 : T11)
Ξ1−−→
x1

T12

PROP.2
T11
′ .: T11

|Ξl
1| ∪ Ξl

2; Γ′;x2 ` (〈〈T11 ⇐ T21〉〉x2 6∈x2
Γ x) : T11

′

T11
′ < : T11 |Ξ1 ∪ lat(Γl, x1, x2)| ⊆: |Ξl

1| ∪ |Ξl
2|

|Ξl
1| ∪ Ξl

2; Γ′;x2 ` f•Γl
(〈〈T11 ⇐ T21〉〉x2 6∈x2

Γ x) : T12

Ξl
2; Γ′;x2 ` insert-has?(|Ξl

1|\|Ξ2|, f•Γl
(〈〈T11 ⇐ T21〉〉x2 6∈x2

Γ x)) : T12

Ξ2; Γ′;x2 ` restrict
(
Ξl

2

)
insert-has?(|Ξl

1|\|Ξ2|, f•Γl
(〈〈T11 ⇐ T21〉〉x2 6∈x2

Γ x)) : T12

Ξ2; Γ′;x2 ` 〈〈T22 ⇐ T12〉〉trueΓ restrict
(
Ξl

2

)
insert-has?(|Ξl

1|\|Ξ2|, f•Γl
(〈〈T11 ⇐ T21〉〉x2 6∈x2

Γ x)) : T22
′

Ξ; Γ;x ` (λx : T21 . 〈〈T22 ⇐ T12〉〉trueΓ restrict
(
Ξl

2

)
insert-has?(|Ξl

1|\|Ξ2|, f•Γl
(〈〈T11 ⇐ T21〉〉x2 6∈x2

Γ x)))T22
′;Ξ2;x2 : (x2 : T21)

Ξ2−−→
x2

T22
′

Case (c=true, |Ξl1|\|Ξl2| = ∅). Trivial by using the same argument for c=true, |Ξl1|\|Ξl2| 6= ∅.
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Case (c = false). Let Γ′ = Γ, f : (x1 : T11)
Ξ1−−→
x1

T12 and Γ′′ = Γ, x : T2.

IFN

IRST

IAPRM

IVAR

Γ′(f) = (x1 : T11)
Ξ1−−→
x1

T12

|Ξl
1| ∪ Ξl

2; Γ′;x2 ` f : (x1 : T11)
Ξ1−−→
x1

T12

PROP.2
T11
′ .: T11

|Ξl
1| ∪ Ξl

2; Γ′;x2 ` (〈〈T11 ⇐ T21〉〉x2 6∈x2
Γ x) : T11

′ T11
′ < : T11

Ξl
2; Γ′;x2 ` f • (〈〈T11 ⇐ T21〉〉x2 6∈x2

Γ x) : T12

Ξ2; Γ′;x2 ` 〈〈T22 ⇐ T12〉〉trueΓ restrict
(
Ξl

2

)
f • (〈〈T11 ⇐ T21〉〉x2 6∈x2

Γ x) : T22
′

Ξ; Γ;x ` (λx : T21 . 〈〈T22 ⇐ T12〉〉trueΓ restrict
(
Ξl

2

)
f • (〈〈T11 ⇐ T21〉〉x2 6∈x2

Γ x))T22
′;Ξ2;x2 : (x2 : T21)

Ξ2−−→
x2

T22
′
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