Gradual System F: Auxiliary Definitions and Proofs

ELIZABETH LABRADA, University of Chile, Chile
MATÍAS TORO, University of Chile, Chile
ÉRIC TANTER, University of Chile, Chile

Bringing the benefits of gradual typing to a language with parametric polymorphism like System F , while preserving relational parametricity, has proven extremely challenging: first attempts were formulated a decade ago, and several designs have been recently proposed, with varying syntax, behavior, and properties. Starting from a detailed review of the challenges and tensions that affect the design of gradual parametric languages, this work presents an extensive account of the semantics and metatheory of GSF, a gradual counterpart of System F. In doing so, we also report on the extent to which the Abstracting Gradual Typing methodology can help us derive such a language. Among gradual parametric languages that follow the syntax of System F, GSF achieves a unique combination of properties. We clearly establish the benefits and limitations of the language, and discuss several extensions of GSF towards a practical programming language.

CCS Concepts: • Theory of computation \rightarrow Type structures; Program semantics;
Additional Key Words and Phrases: Gradual typing, polymorphism, parametricity

[^0][^1]
Contents

Contents 2
SF: Well-formedness 3
GSF: Statics 4
Syntax and Syntactic Meaning of Gradual Types 4
Lifting the Static Semantics 5
Well-formedness 8
Static Properties 8
Static Equivalence for Static Terms 8
$\begin{array}{ll}\text { 2.4.1 } & \text { Static Equivalence for Sta } \\ \text { 2.4.2 } & \text { Static Gradual Guarantee }\end{array}$ 9
GSF: Dynamics 14
Evidence Type Precision 14
$\begin{array}{ll}3.1 & \text { Evidence Type } \\ 3.2 & \text { Initial Evidence }\end{array}$ 14
Consistent Transitivity 15
GSFz: Dynamic Semantics 15
Translation from GSF to GSF ε 16
GSF: Properties 18
Type Safety 18
Static Terms Do Not Fail 22
GSF and The Dynamic Gradual Guarantee 25
Evidence Type Precision 25
Monotonicity of Evidence Transitivity and Instantiation 25
Weak Dynamic Gradual Guarantee for GSF 33
Syntactic Strict Precision for GSF 41
GSF: Parametricity 47
Auxiliary Definitions 47
Fundamental Property 47
Contextual Equivalence 81
Parametricity vs. the DGG in GSF 83
A Cheap Theorem in GSF 84
Embedding Dynamic Sealing in GSF 86
Gradual Existential Types in GSF 110
$\begin{array}{ll}10.1 & \text { Existential types: primitive or encoded? } \\ 10.2 & \text { Translation from } \text { GSF }^{\exists} \text { to } \text { GSF }_{\varepsilon}^{\exists}\end{array}$ 110 111
10.3 Properties of GSF ${ }^{\exists}$ 111
$10.4 \quad \mathrm{GSF}^{\exists}$: Parametricity 112
10.5 A Weak Dynamic Gradual Guarantee for GSF $^{\exists}$ 125

1 SF: WELL-FORMEDNESS

In this section we present auxiliary definitions for well-formedness of type name stores, and well-formedness of types.

Definition 1.1 (Well-formedness of the type name store).

$$
\begin{array}{rr}
\alpha \notin \Sigma & \Sigma ; \cdot \vdash T \\
\qquad \begin{aligned}
& \vdash \Sigma, \alpha: T
\end{aligned}
\end{array}
$$

Definition 1.2 (Well-formedness of types).

$$
\begin{aligned}
& \frac{\vdash \Sigma}{\Sigma ; \Delta \vdash B} \quad \frac{\Sigma ; \Delta \vdash T_{1} \quad \Sigma ; \Delta \vdash T_{2}}{\Sigma ; \Delta \vdash T_{1} \rightarrow T_{2}} \quad \frac{\Sigma ; \Delta, X \vdash T}{\Sigma ; \Delta \vdash \forall X . T} \quad \frac{\Sigma ; \Delta \vdash T_{1} \quad \Sigma ; \Delta \vdash T_{2}}{\Sigma ; \Delta \vdash T_{1} \times T_{2}} \\
& \frac{\vdash \Sigma \quad X \in \Delta}{\Sigma ; \Delta \vdash X} \quad \frac{\vdash \Sigma \alpha: T \in \Sigma}{\Sigma ; \Delta \vdash \alpha}
\end{aligned}
$$

2 GSF: STATICS

In this section we present auxiliary definitions and proofs of the statics semantics of GSF not presented in the paper.

2.1 Syntax and Syntactic Meaning of Gradual Types

Proposition 6.2 (Precision, inductively). The inductive definition of type precision given in Figure 3 is equivalent to Definition 6.1.

Proof. Direct by induction on the type structure of G_{1} and G_{2}. We only present representative cases to illustrate the reasoning used in the proof. We prove first that $C\left(G_{1}\right) \subseteq C\left(G_{2}\right) \Rightarrow G_{1} \sqsubseteq G_{2}$, where $G_{1} \sqsubseteq G_{2}$ stands for the inductive definition given in Figure 3.

Case $\left(G_{1}=B, G_{2}=B\right)$. Then $\{B\} \subseteq\{B\}$, but we already know that $B \sqsubseteq B$ and the result holds.
Case ($G_{1}=G, G_{2}=$?). Then $C(G) \subseteq C(?)=$ Type, but $G \sqsubseteq$? is an axiom and the result holds.
Case $\left(G_{1}=\forall X . G_{1}^{\prime}, G_{2}=\forall X . G_{2}^{\prime}\right)$. Then we know that $\left\{\forall X . T \mid T \in C\left(G_{1}^{\prime}\right)\right\} \subseteq\left\{\forall X . T \mid T \in C\left(G_{1}^{\prime}\right)\right\}$, then it must be the case that $C\left(G_{1}^{\prime}\right) \subseteq C\left(G_{2}^{\prime}\right)$. Then by induction hypothesis $G_{1} \sqsubseteq G_{2}$, then by inductive definition of precision for type abstractions, $\forall X . G_{1} \sqsubseteq \forall X . G_{2}$ and the result holds.

Then we prove the other direction, i.e. $G_{1} \sqsubseteq G_{2} \Rightarrow C\left(G_{1}\right) \subseteq C\left(G_{2}\right)$.
Case $\left(G_{1}=B, G_{2}=B\right)$. Then $B \sqsubseteq B$, but we already know that $\{B\} \subseteq\{B\}$ and the result holds.
Case ($G_{1}=G, G_{2}=$?). Then $G \sqsubseteq$?, but $C(G) \subseteq C(?)=$ Type and the result holds.
Case $\left(G_{1}=\forall X . G_{1}^{\prime}, G_{2}=\forall X . G_{2}^{\prime}\right)$. Then we know that $\forall X . G_{1} \sqsubseteq \forall X . G_{2}$, then by looking at the premise of the corresponding definition, $G_{1}^{\prime} \sqsubseteq G_{2}^{\prime}$. Then by induction hypothesis $C\left(G_{1}^{\prime}\right) \subseteq C\left(G_{2}^{\prime}\right)$. But we have to prove that $\left\{\forall X . T \mid T \in C\left(G_{1}^{\prime}\right)\right\} \subseteq\left\{\forall X . T \mid T \in C\left(G_{1}^{\prime}\right)\right\}$, which is direct from $C\left(G_{1}^{\prime}\right) \subseteq$ $C\left(G_{2}^{\prime}\right)$.

Proposition 6.3 (Galois connection). $\langle C, A\rangle$ is a Galois connection, i.e.:
a) (Soundness) for any non-empty set of static types $S=\{\bar{T}\}$, we have $S \subseteq C(A(S))$
b) (Optimality) for any gradual type G, we have $A(C(G)) \sqsubseteq G$.

Proof. We first proceed to prove a) by induction on the structure of the non-empty set S.
Case $(\{B\})$. Then $A(\{B\})=B$. But $C(B)=\{B\}$ and the result holds.
Case $\left(\left\{\overline{T_{i 1} \rightarrow T_{i 2}}\right\}\right)$. Then $A\left(\left\{\overline{T_{i 1} \rightarrow T_{i 2}}\right\}\right)=A\left(\left\{\overline{T_{i 1}}\right\}\right) \rightarrow A\left(\left\{\overline{T_{i 2}}\right\}\right)$. But by definition of C, $C\left(A\left(\left\{\overline{T_{i 1}}\right\}\right) \rightarrow A\left(\left\{\overline{T_{i 2}}\right\}\right)\right)=\left\{T_{1} \rightarrow T_{2} \mid T_{1} \in C\left(A\left(\left\{\overline{T_{i 1}}\right\}\right)\right), T_{2} \in C\left(A\left(\left\{\overline{T_{i 2}}\right\}\right)\right)\right\}$. By induction hypotheses, $\left\{\overline{T_{i 1}}\right\} \subseteq C\left(A\left(\left\{\overline{T_{i 1}}\right\}\right)\right)$ and $\left\{\overline{T_{i 2}}\right\} \subseteq C\left(A\left(\left\{\overline{T_{i 2}}\right\}\right)\right)$, therefore $\left\{\overline{T_{i 1} \rightarrow T_{i 2}}\right\} \subseteq$ $\left\{T_{1} \rightarrow T_{2} \mid T_{1} \in\left\{\overline{T_{i 1}}\right\}, T_{2} \in\left\{\overline{T_{i 2}}\right\}\right\} \subseteq\left\{T_{1} \rightarrow T_{2} \mid T_{1} \in C\left(A\left(\left\{\overline{T_{i 1}}\right\}\right)\right), T_{2} \in C\left(A\left(\left\{\overline{T_{i 2}}\right\}\right)\right)\right\}$ and the result holds.

Case ($\left\{\overline{T_{i 1} \times T_{i 2}}\right\}$). We proceed analogous to case $\left\{\overline{T_{i 1} \rightarrow T_{i 2}}\right\}$.
Case $(\{X\},\{\alpha\})$. We proceed analogous to case $\{B\}$.
Case $\left(\left\{\overline{\forall X . T_{i}}\right\}\right)$. Then $A\left(\left\{\overline{\forall X . T_{i}}\right\}\right)=\forall X \cdot A\left(\left\{\overline{T_{i}}\right\}\right)$. But by definition of $C, C\left(\forall X \cdot A\left(\left\{\overline{T_{i}}\right\}\right)\right)=$ $\left\{\forall X . T \mid T \in C\left(A\left(\left\{\overline{T_{i}}\right\}\right)\right)\right\}$. By induction hypothesis, $\left\{\overline{T_{i}}\right\} \subseteq C\left(A\left(\left\{\overline{T_{i}}\right\}\right)\right)$, therefore $\left\{\overline{\forall X . T_{i}}\right\}=$ $\left\{\forall X . T \mid T \in\left\{\overline{T_{i}}\right\}\right\} \subseteq\left\{\forall X . T \mid T \in C\left(A\left(\left\{\overline{T_{i}}\right\}\right)\right)\right\}$ and the result holds.
Case $\left(\left\{\overline{T_{i}}\right\}\right.$ heterogeneous). Then $A\left(\left\{\overline{T_{i}}\right\}\right)=$? and therefore $C\left(A\left(\left\{\overline{T_{i}}\right\}\right)\right)=$ Type, but $\left\{\overline{T_{i}}\right\} \subseteq \operatorname{Type}$ and the result holds.

Now let us proceed to prove b) by induction on gradual type G.
Case (B). Trivial because $C(B)=\{B\}$, and $A(\{B\})=B$.
Case $\left(G_{1} \rightarrow G_{2}\right)$. We have to prove that $A\left(C\left(G_{1} \rightarrow G_{2}\right)\right) \sqsubseteq G_{1} \rightarrow G_{2}$, which is equivalent to prove that $C(A(\widehat{T})) \subseteq \widehat{T}$, where $\widehat{T}=C\left(G_{1} \rightarrow G_{2}\right)=\left\{T_{1} \rightarrow T_{2} \mid T_{1} \in C\left(G_{1}\right), T_{2} \in C\left(G_{2}\right)\right\}$. Then \widehat{T} has the form $\left\{\overline{T_{i 1} \rightarrow T_{i 2}}\right\}$, such that $\forall i, T_{i 1} \in C\left(G_{1}\right)$ and $T_{i 2} \in C\left(G_{2}\right)$. Also note that $\left\{\overline{T_{i 1}}\right\}=C\left(G_{1}\right)$ and $\left\{\overline{T_{i 2}}\right\}=C\left(G_{2}\right)$. But by definition of $A, A\left(\left\{\overline{T_{i 1} \rightarrow T_{i 2}}\right\}\right)=A\left(\left\{\overline{T_{i 1}}\right\}\right) \rightarrow A\left(\left\{\overline{T_{i 2}}\right\}\right)$ and therefore $C\left(A\left(\left\{\overline{T_{i 1}}\right\}\right) \rightarrow A\left(\left\{\overline{T_{i 2}}\right\}\right)\right)=\left\{T_{1} \rightarrow T_{2} \mid T_{1} \in C\left(A\left(\left\{\overline{T_{i 1}}\right\}\right)\right), T_{2} \in C\left(A\left(\left\{\overline{T_{i 2}}\right\}\right)\right)\right\}$. But by induction hypotheses $C\left(A\left(\left\{\overline{T_{i 1}}\right\}\right)\right) \subseteq C\left(G_{1}\right)$ and $C\left(A\left(\left\{\overline{T_{i 2}}\right\}\right)\right) \subseteq C\left(G_{2}\right)$ and the result holds.

Case $\left(G_{1} \times G_{2}\right)$. We proceed analogous to case $G_{1} \rightarrow G_{2}$.
Case (X, α). We proceed analogous to case B.
Case $(\forall X . G)$. We have to prove that $A(C(\forall X . G)) \sqsubseteq \forall X . G$, which is equivalent to prove that $C(A(\widehat{T})) \subseteq \widehat{T}$, where $\widehat{T}=C(\forall X . G)=\{\forall X . T \mid T \in C(G)\}$. Then \widehat{T} has the form $\left\{\overline{\forall X . T_{i}}\right\}$, such that $\forall i, T_{i} \in C(G)$. Also note that $\left\{\overline{T_{i}}\right\}=C(G)$. But by definition of $A, A\left(\left\{\overline{\forall X . T_{i}}\right\}\right)=\forall X . A\left(\left\{\overline{T_{i}}\right\}\right)$ and therefore $C\left(\forall X . A\left(\left\{\overline{T_{i}}\right\}\right)\right)=\left\{\forall X . T \mid T \in C\left(A\left(\left\{\overline{T_{i}}\right\}\right)\right)\right\}$. But by induction hypothesis $C\left(A\left(\left\{\overline{T_{i}}\right\}\right)\right) \subseteq$ $C(G)$ and the result holds.

Case (?). Then we have to prove that $C(A(?)) \subseteq C(?)=$ Type, but this is always true and the result holds immediately.

2.2 Lifting the Static Semantics

Definition 2.1 (Store precision). $\Xi_{1} \sqsubseteq \Xi_{2}$ if and only if $\operatorname{dom}\left(\Xi_{1}\right)=\operatorname{dom}\left(\Xi_{2}\right)$ and $\forall \alpha \in \operatorname{dom}\left(\Xi_{1}\right), \Xi_{1}(\alpha) \sqsubseteq$ $\Xi_{2}(\alpha)$.

Lemma 2.2. If $\Xi_{1} \sqsubseteq \Xi_{2}, \vdash \Xi_{i}, G_{1} \sqsubseteq G_{2}$, and $\Xi_{1} ; \Delta \vdash G_{1}$, then $\Xi_{2} ; \Delta \vdash G_{2}$.
Proof. Straightforward induction on relation $G_{1} \sqsubseteq G_{2}$. We only present interesting cases.
Case $\left(G_{1}=\forall X . G_{1}^{\prime}, G_{2}=\forall X . G_{2}^{\prime}\right)$. By definition of precision $G_{1}^{\prime} \sqsubseteq G_{1}^{\prime}$. By definition of wellformedness of types, $\Xi_{1} ; X \vdash G_{1}^{\prime}$ and then by induction hypothesis $\Xi_{2} ; \Delta, X \vdash G_{2}^{\prime}$. Then by definition of well-formedness of types $\Xi_{2} ; \Delta \vdash \forall X . G_{2}^{\prime}$ and the result holds.
Case $\left(G_{2}=\right.$?). This is trivial because as $\vdash \Xi_{2}$, then $\Xi_{2} ; \Delta \vdash$?.
Case $\left(G_{1}=\alpha, G_{2}=\alpha\right)$. Trivial by definition of $\Xi_{1} \sqsubseteq \Xi_{2}, \alpha \in \operatorname{dom}\left(\Xi_{2}\right)$, therefore $\alpha: G_{2}^{\prime} \in \Xi_{2}$ and then $\Xi_{2} ; \Delta \vdash \alpha$.

Lemma 2.3. Let $\Xi_{1} \sqsubseteq \Xi_{2}$, then $\vdash \Xi_{1} \Rightarrow \vdash \Xi_{2}$.
Proof. By induction on relation $\Xi_{1} \sqsubseteq \Xi_{2}$.
Case ($\cdot \sqsubseteq \cdot$). Trivial as $\stackrel{\bullet}{ } \cdot$
Case $\left(\Xi_{1}^{\prime}, \alpha: G_{1} \sqsubseteq \Xi_{2}^{\prime}, \alpha: G_{2}\right)$. By definition of store precision we know that $\Xi_{1}^{\prime} \sqsubseteq \Xi_{2}^{\prime}$ and that $G_{1} \sqsubseteq G_{2}$. By definition of well-formedness, $\vdash \Xi_{1}^{\prime}, \alpha: G_{1} \Rightarrow \vdash \Xi_{1}^{\prime}$, therefore by induction hypothesis $\vdash \Xi_{2}^{\prime}$. We only have left to prove is that $\Xi_{2}^{\prime} ; \vdash G_{2}$, which follows directly from Lemma 2.2.

Lemma 2.4. If $\Sigma \in C(\Xi)$ and $\vdash \Sigma$, then $\vdash \Xi$
Proof. Corollary of Lemma 2.3 as $\Sigma \sqsubseteq \Xi$.
Lemma 2.5. If $\Sigma ; \Delta \vdash T_{1}=T_{2}$, then $\Sigma ; \Delta \vdash T_{1}$ and $\Sigma ; \Delta \vdash T_{2}$.
Proof. By induction on relation $\Sigma ; \Delta \vdash T_{1}=T_{2}$. Most cases are straightforward, so we present only the interesting cases.

Case $\left(T_{1}=\forall X . T_{1}^{\prime}, T_{2}=\forall X . T_{2}^{\prime}\right)$. As $\Sigma ; \Delta \vdash \forall X . T_{1}^{\prime}=\forall X . T_{2}^{\prime}$, by inspection of the derivation rule, $\Sigma ; \Delta, X \vdash T_{1}^{\prime}=T_{2}^{\prime}$. By induction hypotheses we know that $\Sigma ; \Delta, X \vdash T_{1}^{\prime}$, and that $\Sigma ; \Delta, X \vdash T_{2}^{\prime}$. Therefore by well-formedness of types we know that $\Sigma ; \Delta \vdash \forall X . T_{1}^{\prime}$ and that $\Sigma ; \Delta \vdash \forall X . T_{2}^{\prime}$ and the result holds.

Case $\left(T_{1}=X, T_{2}=X\right)$. As $\Sigma ; \Delta \vdash X=X$, then we know by inspection of the derivation rule that $\vdash \Sigma$ and that $X \in \Delta$. Then as $\vdash \Sigma$ and that $X \in \Delta, \Sigma ; \Delta \vdash X$ and the result holds.

Proposition 6.6 (Consistency, inductively). The inductive definition of type consistency given in Figure 3 is equivalent to Definition 6.5.

Proof. First we prove that $\Sigma ; \Delta \vdash T_{1}=T_{2}$ for some $\Sigma \in C(\Xi), T_{i} \in C\left(G_{i}\right)$ implies that $\Xi ; \Delta \vdash$ $G_{1} \sim G_{2}$, where $\Xi ; \Delta \vdash G_{1} \sim G_{2}$ stands for the inductive definition of consistency. We proceed by straightforward induction on G_{i} such that the predicate holds (we only show interesting cases). By Lemma 2.4 we know that if $\vdash \Sigma$ then $\vdash \Xi$, which will be assumed to be true whenever is needed.

Case $\left(G_{1}=B, G_{2}=B\right)$. Then $\Sigma ; \Delta \vdash B=B$, but we already know that $\Xi \vdash B \sim B$ and the result holds.

Case ($G_{1}=G, G_{2}=$?). We know that $\Sigma ; \Delta \vdash T_{1}=T_{2}$ for some $T_{1} \in C(G)$ and $T_{2} \in C(?)$. Then by Lemma $2.5, \Sigma ; \Delta \vdash T_{1}$, and as $\Sigma \sqsubseteq \Xi$ and $T_{1} \sqsubseteq G$, by Lemma $2.2, \Xi ; \Delta \vdash G$. Then as $\Xi ; \Delta \vdash G$, $G \sim ?=$ Type and the result holds.
Case $\left(G_{1}=\forall X . G_{1}^{\prime}, G_{2}=\forall X . G_{2}^{\prime}\right)$. Then we know that $\Sigma ; \Delta \vdash \forall X . T_{1}=\forall X . T_{2}$ where $\forall X . T_{1} \in$ $C\left(\forall X . G_{1}^{\prime}\right), \forall X . T_{2} \in C\left(\forall X . G_{1}^{\prime}\right)$. Notice that $T_{1} \in C\left(G_{1}^{\prime}\right), T_{2} \in C\left(G_{2}^{\prime}\right)$, and that $\Sigma ; \Delta, X \vdash T_{1}=T_{2}$. Then by induction hypotheses, $\Xi \vdash G_{1}^{\prime} \sim G_{2}^{\prime}[\Delta, X]$, and therefore $\Xi ; \Delta \vdash \forall X . G_{1}^{\prime} \sim \forall X . G_{2}^{\prime}$ and the result holds.

Then we prove the other direction, i.e. $G_{1} \sqsubseteq G_{2} \Rightarrow C\left(G_{1}\right) \sim C\left(G_{2}\right)$.
Case $\left(G_{1}=B, G_{2}=B\right)$. Then $B \sqsubseteq B$, but we already know that $B \in C(B)$ and $\Sigma ; \Delta \vdash B=B$, and the result holds immediately.

Case ($G_{1}=G, G_{2}=$?). Then $G \sqsubseteq$?. Let $T_{1} \in C(G)$ and $\Sigma \in C(\Xi)$ such that $\Sigma ; \Delta \vdash T_{1}$. As $C(?)=$ Type, we can choose $T_{1} \in$ Type, so $\Sigma ; \Delta \vdash T_{1}=T_{1}$, and the result holds.
Case $\left(G_{1}=\forall X . G_{1}^{\prime}, G_{2}=\forall X . G_{2}^{\prime}\right)$. Then we know that $\Xi ; \Delta \vdash \forall X . G_{1}^{\prime} \sim \forall X . G_{2}^{\prime}$, then by looking at the premise of the corresponding definition, $\Xi ; \Delta, X \vdash G_{1}^{\prime} \sim G_{2}^{\prime}$. Then by induction hypotheses $\exists T_{1} \in C\left(G_{1}^{\prime}\right), T_{2} \in C\left(G_{2}^{\prime}\right), \Sigma \in C(\Xi)$, such that $\Sigma ; \Delta, X \vdash T_{1}=T_{2}$. By definition of consistency $\forall X . T_{i} \in C\left(G_{i}\right)$. Then by definition of equality, $\Sigma ; \Delta \vdash \forall X . T_{1}=\forall X . T_{2}$ and the result holds.

Definition 6.7 (Consistent lifting of functions). Let F_{n} be a function of type Type ${ }^{n} \rightarrow$ Type. Its consistent lifting F_{n}^{\sharp}, of type GTyPE ${ }^{n} \rightarrow$ GType, is defined as: $F_{n}^{\sharp}(\bar{G})=A\left(\left\{F_{n}(\bar{T}) \mid \bar{T} \in \overline{C(G)}\right\}\right)$

Lemma 2.6. $G=A(C(G))$
Proof. Then we have to prove that $G=A(C(G))$. By optimality (Prop 6.3.b), we know that $A(C(G)) \sqsubseteq G$, and by soundness (Prop 6.3.a), $C(G) \subseteq C(A(C(G)))$, i.e. $G \sqsubseteq A(C(G))$. Therefore $G \sqsubseteq A(C(G))$ and $A(C(G)) \sqsubseteq G$, thus $G=A(C(G))$ and the result holds.

Lemma 2.7. $G\left[G^{\prime} / X\right]=A\left(\left\{T\left[T^{\prime} / X\right] \mid T \in C(G), T^{\prime} \in C\left(G^{\prime}\right)\right\}\right)$.
Proof. We proceed by induction on G. We only present interesting cases.
Case $(G=X)$. Then $G\left[G^{\prime} / X\right]=G^{\prime}$, and $C(G)=\{X\}$. Then we have to prove that $G^{\prime}=$ $A\left(\left\{T^{\prime} \mid T^{\prime} \in C\left(G^{\prime}\right)\right\}\right)$. But notice that $A\left(\left\{T^{\prime} \mid T^{\prime} \in C\left(G^{\prime}\right)\right\}\right)=A\left(C\left(G^{\prime}\right)\right)$ and by Lemma 2.6 the result holds immediately.

Case ($G=$?). Then $G\left[G^{\prime} / X\right]=$?, and $C(G)=$ Type. Then we have to prove that $?=A\left(\left\{T\left[T^{\prime} / X\right] \mid T \in \operatorname{Type}, T^{\prime} \in C\left(G^{\prime}\right)\right\}\right)$. But notice that $A\left(\left\{T\left[T^{\prime} / X\right] \mid T \in \operatorname{Type}, T^{\prime} \in C\left(G^{\prime}\right)\right\}\right)=$ $A(C($ Type $))$ and by Lemma 2.6 the result holds immediately.

Case $\left(G=\forall Y . G^{\prime \prime}\right)$. Then $G\left[G^{\prime} / X\right]=\forall Y . G^{\prime \prime}\left[G^{\prime} / X\right]$, and $C(G)=\forall Y . C\left(G^{\prime \prime}\right)$. Then we have to prove that $\forall Y . G^{\prime \prime}\left[G^{\prime} / X\right]=A\left(\left\{\forall Y . T^{\prime \prime}\left[T^{\prime} / X\right] \mid T^{\prime \prime} \in C\left(G^{\prime \prime}\right), T^{\prime} \in C\left(G^{\prime}\right)\right\}\right)$. But notice that by definition of abstraction $A\left(\left\{\forall Y . T^{\prime \prime}\left[T^{\prime} / X\right] \mid T^{\prime \prime} \in C\left(G^{\prime \prime}\right), T^{\prime} \in C\left(G^{\prime}\right)\right\}\right)=\forall Y . A\left(\left\{T^{\prime \prime}\left[T^{\prime} / X\right] \mid T^{\prime \prime} \in C\left(G^{\prime \prime}\right), T^{\prime} \in C\left(G^{\prime}\right)\right\}\right)$. Then by induction hypothesis on $G^{\prime \prime}, G^{\prime \prime}\left[G^{\prime} / X\right]=A\left(\left\{T^{\prime \prime}\left[T^{\prime} \mid X\right] \mid T^{\prime \prime} \in C\left(G^{\prime \prime}\right), T^{\prime} \in C\left(G^{\prime}\right)\right\}\right)$, therefore $\forall Y . G^{\prime \prime}\left[G^{\prime} / X\right]=\forall Y . A\left(\left\{T^{\prime \prime}\left[T^{\prime} / X\right] \mid T^{\prime \prime} \in C\left(G^{\prime \prime}\right), T^{\prime} \in C\left(G^{\prime}\right)\right\}\right)$ and the result holds.

Proposition 6.8 (Consistent type functions). The definitions of dom $^{\#}$, cod $d^{\#}$, inst ${ }^{\#}$, and proj ${ }_{i}^{\#}$ given in Fig. 3 are consistent liftings, as per Def. 6.7, of the corresponding functions from Fig. 1.

Proof. We present the proof for inst ${ }^{\#}$ and dom $^{\#}$ (the other proofs are analogous).
First we prove that inst ${ }^{\sharp}\left(G, G^{\prime}\right)=A\left(\widehat{\operatorname{inst}}\left(C^{2}\left(G, G^{\prime}\right)\right)\right.$, where inst ${ }^{\sharp}\left(G, G^{\prime}\right)$ correspond to the algorithmic definitions presented in Fig. 3. Notice that

$$
\begin{aligned}
& A\left(\overparen{\text { inst }}\left(C^{2}\left(G, G^{\prime}\right)\right)\right) \\
& =A\left(\overparen{\text { inst }}\left(\left\{\left\langle T, T^{\prime}\right\rangle \mid T \in C(G), T^{\prime} \in C\left(G^{\prime}\right)\right\}\right)\right) \\
& =A\left(\left\{T\left[T^{\prime} / X\right] \mid \forall X . T \in C(G), T^{\prime} \in C\left(G^{\prime}\right)\right\}\right)
\end{aligned}
$$

But then the result follows immediately from Lemma 2.7.
Then we prove that $\operatorname{dom}^{\sharp}(G)=A(\widehat{\operatorname{dom}}(C(G)))$, where $\operatorname{dom}^{\sharp}(G)$ correspond to the algorithmic definitions presented in Fig. 3. We proceed by induction on G.
Case ($G=G_{1} \rightarrow G_{2}$). Notice that

$$
\begin{aligned}
& A(\overparen{\operatorname{dom}}(C(G))) \\
& =A\left(\overparen{\operatorname{dom}}\left(C\left(G_{1} \rightarrow G_{2}\right)\right)\right) \\
& =A\left(\overparen{\operatorname{dom}}\left(\left\{T_{1} \rightarrow T_{2} \mid T_{1} \in C\left(G_{1}\right), T_{2} \in C\left(G_{2}\right)\right\}\right)\right) \\
& =A\left(\left\{T_{1} \mid T_{1} \in C\left(G_{1}\right)\right\}\right) \\
& =A\left(C\left(G_{1}\right)\right)
\end{aligned}
$$

But $\operatorname{dom}^{\sharp}\left(G_{1} \rightarrow G_{2}\right)=G_{1}$. Then we have to prove that $G_{1}=A\left(C\left(G_{1}\right)\right)$ which holds immediately by Lemma 2.6.

Case ($G=$?). Notice that

$$
\begin{aligned}
& A(\widehat{\operatorname{dom}}(C(G))) \\
& =A(\widehat{\operatorname{dom}}(C(?))) \\
& =A(\widehat{\operatorname{dom}}(\mathrm{TYPE})) \\
& =A(\operatorname{TYPE}) \\
& =?
\end{aligned}
$$

and the result holds immediately as $\operatorname{dom}^{\sharp}(?)=$?.
Case $\left(G \neq ? \neq G_{1} \rightarrow G_{2}\right)$. If G has not the form $G_{1} \rightarrow G_{2}$, or is not ?, then $\operatorname{dom}^{\sharp}(G)$ is undefined. Then as $\nexists, T \in C(G)$ such that $T=T_{1} \rightarrow T_{2}$ the result holds immediately as $\operatorname{dom}(T)$ is undefined $\forall T \in C(G)$.

2.3 Well-formedness

In this section we present auxiliary definitions of the statics semantics of GSF.
Definition 2.8 (Well-formedness of type name store).

$$
\frac{\alpha \notin \Xi \quad \Xi ; \cdot \vdash G \quad \vdash \Xi}{\vdash \cdot, \alpha: G}
$$

Definition 2.9 (Well-formedness of types).

$$
\begin{aligned}
& \frac{\vdash \Xi}{\Xi ; \Delta \vdash B} \quad \frac{\Xi ; \Delta \vdash G_{1} \Xi ; \Delta \vdash G_{2}}{\Xi ; \Delta \vdash G_{1} \rightarrow G_{2}} \quad \frac{\Xi ; \Delta, X \vdash G}{\Xi ; \Delta \vdash \forall X . G} \quad \frac{\Xi ; \Delta \vdash G_{1} \Xi ; \Delta \vdash G_{2}}{\Xi ; \Delta \vdash G_{1} \times G_{2}} \\
& \frac{\vdash \Xi X \in \Delta}{\Xi ; \Delta \vdash X} \quad \frac{\vdash \Xi \quad \alpha: G \in \Xi}{\Xi ; \Delta \vdash \alpha} \quad \frac{\vdash \Xi}{\Xi ; \Delta \vdash ?}
\end{aligned}
$$

2.4 Static Properties

In this section we present two static properties of GSF and the proof: the static equivalence for static terms and the static gradual guarantee.

2.4.1 Static Equivalence for Static Terms.

Proposition 6.9 (Static equivalence for static terms). Let t be a static term and G a static type $(G=T)$. We have $\vdash_{s} t: T$ if and only if $\vdash t: T$

Proof. We prove this proposition for open terms instead. The proof is direct thanks to the equivalence between the typing rules and the equivalence between type equality and type consistency rules for static types. We only present one case to illustrate the reasoning.

First we prove $\Sigma ; \Delta \vdash_{s} t: T \Rightarrow \Sigma ; \Delta \vdash t: T$ by induction on judgment $\Sigma ; \Delta \vdash_{S} t: T$.
Case $\left(\Sigma ; \Delta \vdash s t^{\prime}\left[T^{\prime \prime}\right]: \operatorname{inst}\left(\forall X . T^{\prime}, T^{\prime \prime}\right)\right)$. Then $\Sigma ; \Delta \vdash_{s} t^{\prime}: \forall X . T^{\prime}$, and by induction hypothesis $\Sigma ; \Delta \vdash t^{\prime}: \forall X . T^{\prime}$. Then inst $t^{\#}\left(\forall X . T, T^{\prime \prime}\right)=T\left[T^{\prime \prime} / X\right]=\operatorname{inst}\left(\forall X . T^{\prime}, T^{\prime \prime}\right)$, and as $\Sigma ; \Delta \vdash T^{\prime \prime}$, therefore $\Sigma ; \Delta \vdash t^{\prime}\left[T^{\prime \prime}\right]: T\left[T^{\prime \prime} / X\right]$ and the result holds.

Then we prove $\Sigma ; \Delta \vdash t: T \Rightarrow \Sigma ; \Delta \vdash_{s} t: T$ by induction on judgment $\Sigma ; \Delta \vdash_{s} t: T$.
Case $\left(\Sigma ; \Delta \vdash t^{\prime}\left[T^{\prime \prime}\right]:\right.$ inst $\left.t^{\#}\left(\forall X . T^{\prime}, T^{\prime \prime}\right)\right)$. Then $\Sigma ; \Delta \vdash t^{\prime}: \forall X . T^{\prime}$, and by induction hypothesis $\Sigma ; \Delta \vdash s$ $t^{\prime}: \forall X . T^{\prime}$. Then inst $\left(\forall X . T, T^{\prime \prime}\right)=T\left[T^{\prime \prime} / X\right]=\operatorname{inst}{ }^{\sharp}\left(\forall X . T^{\prime}, T^{\prime \prime}\right)$, and as $\Sigma ; \Delta \vdash T^{\prime \prime}$, therefore $\Sigma ; \Delta \vdash_{s} t^{\prime}\left[T^{\prime \prime}\right]: T\left[T^{\prime \prime} / X\right]$ and the result holds.
2.4.2 Static Gradual Guarantee. In this section we present the proof of the static gradual guarantee property. In the Definition 2.10 and Definition 2.11 we present term precision and type environment precision.

Definition 2.10 (Term precision).

$$
\begin{aligned}
& (\mathrm{Px}) \frac{}{x \sqsubseteq x} \\
& (\mathrm{~Pb}) \frac{}{b \sqsubseteq b} \\
& (\mathrm{P} \lambda) \frac{t \sqsubseteq t^{\prime} \quad G \sqsubseteq G^{\prime}}{(\lambda x: G . t) \sqsubseteq\left(\lambda x: G^{\prime} . t^{\prime}\right)} \\
& (\mathrm{P} \Lambda) \frac{t \sqsubseteq t^{\prime}}{(\Lambda X . t) \sqsubseteq\left(\Lambda X . t^{\prime}\right)} \\
& \text { (Ppair) } \frac{t_{1} \sqsubseteq t_{1}^{\prime} \quad t_{2} \sqsubseteq t_{2}^{\prime}}{\left\langle t_{1}, t_{2}\right\rangle \sqsubseteq\left\langle t_{1}^{\prime}, t_{2}^{\prime}\right\rangle} \\
& (\text { Pasc }) \frac{t \sqsubseteq t^{\prime} \quad G \sqsubseteq G^{\prime}}{(t:: G) \sqsubseteq\left(t^{\prime}:: G^{\prime}\right)} \\
& \text { (Pop) } \frac{\bar{t} \sqsubseteq \overline{t^{\prime}}}{o p(\bar{t}) \sqsubseteq o p\left(\overline{t^{\prime}}\right)} \\
& \text { (Papp) } \frac{t_{1} \sqsubseteq t_{1}^{\prime} \quad t_{2} \sqsubseteq t_{2}^{\prime}}{t_{1} t_{2} \sqsubseteq t_{1}^{\prime} t_{2}^{\prime}} \\
& (\operatorname{Papp} G) \frac{t \sqsubseteq t^{\prime} \quad G \sqsubseteq G^{\prime}}{t[G] \sqsubseteq t^{\prime}\left[G^{\prime}\right]} \\
& \text { (Ppairi) } \frac{t \sqsubseteq t^{\prime}}{\pi_{i}(t) \sqsubseteq \pi_{i}\left(t^{\prime}\right)}
\end{aligned}
$$

Definition 2.11 (Type environment precision).

$$
\frac{\Gamma \sqsubseteq \Gamma^{\prime} \quad G \sqsubseteq G^{\prime}}{\Gamma . \sqsubseteq} \quad \frac{\Gamma: G \sqsubseteq \Gamma^{\prime}, x: G^{\prime}}{\Gamma, x}
$$

Lemma 2.12. If $\Xi ; \Delta ; \Gamma \vdash t: G$ and $\Gamma \sqsubseteq \Gamma^{\prime}$, then $\Xi ; \Delta ; \Gamma^{\prime} \vdash t: G^{\prime}$ for some $G \sqsubseteq G^{\prime}$.
Proof. Simple induction on type derivation $\Xi ; \Delta ; \Gamma \vdash t: G$ (we only present interesting cases).
Case $(t=x)$. we know that $\Sigma ; \Delta ; \Gamma \vdash x: G$ and $\Gamma(x)=G$. By definition of $\Gamma \sqsubseteq \Gamma^{\prime}, \Gamma(x) \sqsubseteq \Gamma^{\prime}(x)$, therefore $\Sigma ; \Delta ; \Gamma \vdash x: G^{\prime}$, where $G \sqsubseteq G^{\prime}$ and the result holds.

Case $\left(t=\left(\lambda x: G_{1} \cdot t^{\prime}\right)\right)$. we know that $\Sigma ; \Delta ; \Gamma \vdash\left(\lambda x: G_{1} \cdot t^{\prime}\right): G_{1} \rightarrow G_{2}$, where $\Sigma ; \Delta ; \Gamma, x: G_{1} \vdash t^{\prime}: G_{2}$. As $\Gamma \sqsubseteq \Gamma^{\prime}$ and $G_{1} \sqsubseteq G_{1}$, then by definition of precision for type environments, $\Gamma, x: G_{1} \sqsubseteq \Gamma^{\prime}, x: G_{1}^{\prime}$. Therefore by induction hypothesis on $\Sigma ; \Delta ; \Gamma, x: G_{1} \vdash t^{\prime}: G_{2}, \Sigma ; \Delta ; \Gamma^{\prime}, x: G_{1} \vdash t^{\prime}: G_{2}^{\prime}$, where $G_{2} \sqsubseteq G_{2}^{\prime}$. Finally, by $(G \lambda), \Sigma ; \Delta ; \Gamma^{\prime} \vdash\left(\lambda x: G_{1} \cdot t^{\prime}\right): G_{1} \rightarrow G_{2}^{\prime}$, and as $G_{1} \rightarrow G_{2} \sqsubseteq G_{1} \rightarrow G_{2}^{\prime}$, the result holds.

Lemma 2.13. If $\Xi ; \Delta \vdash G_{1} \sim G_{2}$ and $G_{1} \sqsubseteq G_{1}^{\prime}$ and $G_{2} \sqsubseteq G_{2}^{\prime}$ then $\Xi ; \Delta \vdash G_{1}^{\prime} \sim G_{2}^{\prime}$.
Proof. By definition of $\Xi ; \Delta \vdash \cdot \sim \cdot$, there exists $\left\langle T_{1}, T_{2}\right\rangle \in C^{2}\left(G_{1}, G_{2}\right)$ such that $T_{1}=T_{2} . G_{1} \sqsubseteq G_{1}^{\prime}$ and $G_{2} \sqsubseteq G_{2}^{\prime}$ mean that $C\left(G_{1}\right) \subseteq C\left(G_{1}^{\prime}\right)$ and $C\left(G_{2}\right) \subseteq C\left(G_{2}^{\prime}\right)$, therefore $\left\langle T_{1}, T_{2}\right\rangle \in C^{2}\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$, and the resul follows.

Lemma 2.14. If $G_{1} \sqsubseteq G_{1}^{\prime}$ and $G_{2} \sqsubseteq G_{2}^{\prime}$ then $G_{1}\left[G_{2} / X\right] \sqsubseteq G_{1}^{\prime}\left[G_{2}^{\prime} / X\right]$.
Proof. By induction on the relation of $G_{1} \sqsubseteq G_{1}^{\prime}$. We only present interesting cases.
Case $(X \sqsubseteq X)$. Then we have to prove that $X\left[G_{2} / X\right] \sqsubseteq X\left[G_{2}^{\prime} / X\right]$, which is equivalent to $G_{2} \sqsubseteq G_{2}^{\prime}$, but that is part of the premise and the result holds immediately.
Case ($G_{1} \sqsubseteq$?). Then we have to prove that $G_{1}\left[G_{2} / X\right] \sqsubseteq$? which is always true.

Case $\left(\forall Y . G_{3} \sqsubseteq \forall Y . G_{3}^{\prime}\right)$. Then we have to prove that $\forall Y . G_{3}\left[G_{2} / X\right] \sqsubseteq \forall Y \cdot G_{3}^{\prime}\left[G_{2}^{\prime} / X\right]$, which is equivalent to prove that $G_{3}\left[G_{2} / X\right] \sqsubseteq G_{3}^{\prime}\left[G_{2}^{\prime} / X\right]$, which holds by induction hypothesis on $G_{3} \sqsubseteq G_{3}^{\prime}$.

Lemma 2.15. If $G_{1} \sqsubseteq G_{1}^{\prime}$ and $G_{2} \sqsubseteq G_{2}^{\prime}$ then inst ${ }^{\sharp}\left(G_{1}, G_{2}\right) \sqsubseteq$ inst $^{\sharp}\left(G_{1}^{\prime}, G_{2}^{\prime}\right)$.
Proof. By induction on relation $G_{1} \sqsubseteq G_{1}^{\prime}$.
Case (? \sqsubseteq ?). The result is trivial as inst ${ }^{\sharp}\left(?, G_{i}^{\prime}\right)=$? and ? $\sqsubseteq ?$.
Case $\left(\forall X . G_{1} \sqsubseteq\right.$?, $\left.\forall X . G_{1} \sqsubseteq \forall X . G_{2}\right)$. The result follows directly from Lemma 2.14.

Lemma 2.16. If $G_{1} \sqsubseteq G_{2}$ then $\operatorname{proj}_{i}^{\sharp}\left(G_{1}\right) \sqsubseteq \operatorname{proj}_{i}^{\sharp}\left(G_{2}\right)$.
Proof. The proof is direct, analogous to Lemma 2.15, by induction on relation $G_{1} \sqsubseteq G_{2}$.
Proposition 2.17 (Static gradual guarantee for open terms). If $\Xi ; \Delta ; \Gamma \vdash t_{1}: G_{1}$ and $t_{1} \sqsubseteq t_{2}$, then $\Xi ; \Delta ; \Gamma \vdash t_{2}: G_{2}$, for some G_{2} such that $G_{1} \sqsubseteq G_{2}$.

Proof. We prove the property on opens terms instead of closed terms: If $\Xi ; \Delta ; \Gamma \vdash t_{1}: G_{1}$ and $t_{1} \sqsubseteq t_{2}$ then $\Xi ; \Delta ; \Gamma \vdash t_{2}: G_{2}$ and $G_{1} \sqsubseteq G_{2}$.

The proof proceed by induction on the typing derivation.
Case $(G \mathrm{x}, G \mathrm{~b})$. Trivial by definition of term precision (\sqsubseteq) using $(P x),(P b)$ respectively.
Case $(G \lambda)$. Then $t_{1}=\left(\lambda x: G_{1}^{\prime} \cdot t\right)$ and $G_{1}=G_{1}^{\prime} \rightrightarrows G_{2}^{\prime}$. By $(G \lambda)$ we know that:

$$
\begin{equation*}
(\mathrm{G} \lambda) \frac{\Xi ; \Delta ; \Gamma, x: G_{1}^{\prime} \vdash t: G_{2}^{\prime}}{\Xi ; \Delta ; \Gamma \vdash \lambda x: G_{1}^{\prime} \cdot t: G_{1}^{\prime} \rightarrow G_{2}^{\prime}} \tag{1}
\end{equation*}
$$

Consider t_{2} such that $t_{1} \sqsubseteq t_{2}$. By definition of term precision t_{2} must have the form $t_{2}=\left(\lambda x: G_{1}^{\prime \prime} . t^{\prime}\right)$ and therefore

$$
\begin{equation*}
(\mathrm{P} \lambda) \frac{t \sqsubseteq t^{\prime} \quad G_{1}^{\prime} \sqsubseteq G_{1}^{\prime \prime}}{\left(\lambda x: G_{1}^{\prime} \cdot t\right) \sqsubseteq\left(\lambda x: G_{1}^{\prime \prime} \cdot t^{\prime}\right)} \tag{2}
\end{equation*}
$$

Using induction hypotheses on the premises of (1) and (2), $\Xi ; \Delta ; \Gamma, x: G_{1}^{\prime} \vdash t^{\prime}: G_{2}^{\prime \prime}$ with $G_{2}^{\prime} \sqsubseteq G_{2}^{\prime \prime}$. By Lemma 2.12, $\Xi ; \Delta ; \Gamma, x: G_{1}^{\prime \prime} \vdash t^{\prime}: G_{2}^{\prime \prime \prime}$ where $G_{2}^{\prime \prime} \sqsubseteq G_{2}^{\prime \prime \prime}$. Then we can use rule $(G \lambda)$ to derive:

$$
(G \lambda) \frac{\Xi ; \Delta ; \Gamma, x: G_{1}^{\prime \prime} \vdash t^{\prime}: G_{2}^{\prime \prime \prime}}{\Xi ; \Delta ; \Gamma \vdash\left(\lambda x: G_{1}^{\prime \prime} \cdot t^{\prime}\right): G_{1}^{\prime \prime} \rightrightarrows G_{2}^{\prime \prime \prime}}
$$

Where $G_{2} \sqsubseteq G_{2}^{\prime \prime}$. Using the premise of (2) and the definition of type precision we can infer that

$$
G_{1}^{\prime} \overparen{\rightarrow} G_{2}^{\prime} \sqsubseteq G_{1}^{\prime \prime} \hookrightarrow G_{2}^{\prime \prime \prime}
$$

and the result holds.
Case $(G \Lambda)$. Then $t_{1}=(\Lambda X . t)$ and $G_{1}=\forall X . G_{1}^{\prime}$. By $(G \Lambda)$ we know that:

$$
\begin{equation*}
\text { (G } \Lambda) \frac{\Xi ; \Delta, X ; \Gamma \vdash t: G_{1}^{\prime}}{\Xi ; \Delta ; \Gamma \vdash \Lambda X . t: \forall X . G_{1}^{\prime}} \tag{3}
\end{equation*}
$$

Consider t_{2} such that $t_{1} \sqsubseteq t_{2}$. By definition of term precision t_{2} must have the form $t_{2}=\left(\Lambda X . t^{\prime}\right)$ and therefore

$$
\begin{equation*}
(\mathrm{P} \Lambda) \frac{t \sqsubseteq t^{\prime}}{(\Lambda X . t) \sqsubseteq\left(\Lambda X . t^{\prime}\right)} \tag{4}
\end{equation*}
$$

Using induction hypotheses on the premises of (3) and (4), $\Xi ; \Delta, X ; \Gamma \vdash t^{\prime}: G_{1}^{\prime \prime}$ with $G_{1}^{\prime} \sqsubseteq G_{1}^{\prime \prime}$. Then we can use rule $(G \Lambda)$ to derive:

$$
(G \Lambda) \frac{\Xi ; \Delta, X ; \Gamma \vdash t^{\prime}: G_{1}^{\prime \prime}}{\Xi ; \Delta ; \Gamma \vdash\left(\lambda X \cdot t^{\prime}\right): \forall X \cdot G_{1}^{\prime \prime}}
$$

Using the definition of type precision we can infer that

$$
\forall X \cdot G_{1}^{\prime} \sqsubseteq \forall X \cdot G_{1}^{\prime \prime}
$$

and the result holds.
Case (Gpair). Then $t_{1}=\left\langle t_{1}^{\prime}, t_{2}^{\prime}\right\rangle$ and $G_{1}=G_{1}^{\prime} \times G_{2}^{\prime}$. By (Gpair) we know that:

$$
\begin{equation*}
(\text { Gpair }) \frac{\Xi ; \Delta ; \Gamma \vdash t_{1}^{\prime}: G_{1}^{\prime} \quad \Xi ; \Delta ; \Gamma \vdash t_{2}^{\prime}: G_{2}^{\prime}}{\Xi ; \Delta ; \Gamma \vdash t_{1}^{\prime} t_{2}^{\prime}: G_{1}^{\prime} \times G_{2}^{\prime}} \tag{5}
\end{equation*}
$$

Consider t_{2} such that $t_{1} \sqsubseteq t_{2}$. By definition of term precision, t_{2} must have the form $\left\langle t_{1}^{\prime \prime}, t_{2}^{\prime \prime}\right\rangle$ and therefore

$$
\begin{equation*}
(\text { Ppair }) \frac{t_{1}^{\prime} \sqsubseteq t_{1}^{\prime \prime} \quad t_{2}^{\prime} \sqsubseteq t_{2}^{\prime \prime}}{\left\langle t_{1}^{\prime}, t_{2}^{\prime}\right\rangle \sqsubseteq\left\langle t_{1}^{\prime \prime}, t_{2}^{\prime \prime}\right\rangle} \tag{6}
\end{equation*}
$$

Using induction hypotheses on the premises of (5) and (6), $\Xi ; \Delta ; \Gamma \vdash t_{1}^{\prime \prime}: G_{1}^{\prime \prime}$ and $\Xi ; \Delta ; \Gamma \vdash t_{2}^{\prime \prime}: G_{2}^{\prime \prime}$, where $G_{1}^{\prime} \sqsubseteq G_{1}^{\prime \prime}$ and $G_{2}^{\prime} \sqsubseteq G_{2}^{\prime \prime}$. Then we can use rule (Gpair) to derive:

$$
\text { (Gpair) } \frac{\Xi ; \Delta ; \Gamma \vdash t_{1}^{\prime \prime}: G_{1}^{\prime \prime} \quad \Xi ; \Delta ; \Gamma \vdash t_{2}^{\prime \prime}: G_{2}^{\prime \prime}}{\Xi ; \Delta ; \Gamma \vdash\left\langle t_{1}^{\prime \prime}, t_{2}^{\prime \prime}\right\rangle: G_{1}^{\prime \prime} \times G_{2}^{\prime \prime}}
$$

Finally, using the definition of type precision we can infer that

$$
G_{1}^{\prime} \times G_{2}^{\prime} \sqsubseteq G_{1}^{\prime \prime} \times G_{2}^{\prime \prime}
$$

and the result holds.
Case (Gasc). Then $t_{1}=t:: G_{1}$. By (Gasc) we know that:

$$
\begin{equation*}
(\mathrm{Gasc}) \frac{\Xi ; \Delta ; \Gamma \vdash t: G \quad \Xi ; \Delta \vdash G \sim G_{1}}{\Xi ; \Delta ; \Gamma \vdash t:: G_{1}: G_{1}} \tag{7}
\end{equation*}
$$

Consider t_{2} such that $t_{1} \sqsubseteq t_{2}$. By definition of term precision t_{2} must have the form $t_{2}=t^{\prime}:: G_{2}$ and therefore

$$
\begin{equation*}
\text { (Pasc) } \frac{t \sqsubseteq t^{\prime} \quad G_{1} \sqsubseteq G_{2}}{t:: G_{1} \sqsubseteq t^{\prime}:: G_{2}} \tag{8}
\end{equation*}
$$

Using induction hypotheses on the premises of (7) and (8), $\Xi ; \Delta ; \Gamma \vdash t^{\prime}: G^{\prime}$ where $G \sqsubseteq G^{\prime}$. We can use rule (Gasc) and Lemma 2.13 to derive:

$$
(\text { Gasc }) \frac{\Xi ; \Delta ; \Gamma \vdash t^{\prime}: G^{\prime} \quad \Xi ; \Delta \vdash G^{\prime} \sim G_{2}}{\Xi ; \Delta ; \Gamma \vdash t^{\prime}:: G_{2}: G_{2}}
$$

Where $G_{1} \sqsubseteq G_{2}$ and the result holds.
Case (Cop). Then $t_{1}=o p(\bar{t})$ and $G_{1}=G^{*}$. By (Gop) we know that:

$$
\begin{equation*}
(\mathrm{Gop}) \frac{\Xi ; \Delta ; \Gamma \vdash \bar{t}: \bar{G} \quad t y(o p)=\overline{G_{2}} \rightarrow G^{*}}{\Xi ; \Delta \vdash \bar{G} \sim \overline{G_{2}}} \tag{9}
\end{equation*}
$$

Consider t_{2} such that $t_{1} \sqsubseteq t_{2}$ ．By definition of term precision t_{2} must have the form $t_{2}=o p\left(\overline{t^{\prime}}\right)$ and therefore

$$
\begin{equation*}
(\mathrm{Pop}) \frac{\bar{t} \sqsubseteq \overline{t^{\prime}}}{o p(\bar{t}) \sqsubseteq o p\left(\overline{t^{\prime}}\right)} \tag{10}
\end{equation*}
$$

Using induction hypotheses on the premises of（9）and（10），$\Xi ; \Delta ; \Gamma \vdash \overline{t^{\prime}}: \overline{G^{\prime}}$ ，where $\bar{G} \sqsubseteq \overline{G^{\prime}}$ ．Using the Lemma 2.13 we know that $\Xi ; \Delta \vdash \overline{G^{\prime}} \sim \overline{G_{2}}$ ．Therefore we can use rule（Gop）to derive：

$$
(\text { Gop }) \frac{\begin{array}{c}
\Xi ; \Delta ; \Gamma \vdash \overline{t^{\prime}}: \overline{G^{\prime}} \\
\Xi ; \Delta \vdash \overline{G^{\prime}} \sim \overline{G_{2}} \\
\Xi ; \Delta ; \Gamma \vdash o p\left(\overline{t^{\prime}}\right): G^{*}
\end{array} \overline{G_{2}} \rightarrow G^{*}}{}
$$

and the result holds．
Case（Gapp）．Then $t_{1}=t_{1}^{\prime} t_{2}^{\prime}$ and $G_{1}=\operatorname{cod}^{\sharp}\left(G_{1}^{\prime}\right)$ ．By（Gapp）we know that：

$$
(\mathrm{Gapp}) \frac{\Xi ; \Delta ; \Gamma \vdash t_{1}^{\prime}: G_{1}^{\prime} \quad \Xi ; \Delta ; \Gamma \vdash t_{2}^{\prime}: G_{2}^{\prime}}{\Xi ; \Delta \vdash \operatorname{dom}^{\sharp}\left(G_{1}^{\prime}\right) \sim G_{2}^{\prime}} \underset{\Xi ; \Delta ; \Gamma \vdash t_{1}^{\prime} t_{2}^{\prime}: \operatorname{cod}^{\sharp}\left(G_{1}^{\prime}\right)}{ }
$$

Consider t_{2} such that $t_{1} \sqsubseteq t_{2}$ ．By definition of term precision t_{2} must have the form $t_{2}=t_{1}^{\prime \prime} t_{2}^{\prime \prime}$ and therefore

$$
\begin{equation*}
(\text { Papp }) \frac{t_{1}^{\prime} \sqsubseteq t_{1}^{\prime \prime} \quad t_{2}^{\prime} \sqsubseteq t_{2}^{\prime \prime}}{t_{1}^{\prime} t_{2}^{\prime} \sqsubseteq t_{1}^{\prime \prime} t_{2}^{\prime \prime}} \tag{12}
\end{equation*}
$$

Using induction hypotheses on the premises of（11）and（12），$\Xi ; \Delta ; \Gamma \vdash t_{1}^{\prime \prime}: G_{1}^{\prime \prime}$ and $\Xi ; \Delta ; \Gamma \vdash t_{2}^{\prime \prime}: G_{2}^{\prime \prime}$ ， where $G_{1}^{\prime} \sqsubseteq G_{1}^{\prime \prime}$ and $G_{2}^{\prime} \sqsubseteq G_{2}^{\prime \prime}$ ．By definition type precision and the definition of $\operatorname{dom}^{\sharp}$ ， dom $^{\sharp}\left(G_{1}^{\prime}\right) \sqsubseteq$ $d o m^{\sharp}\left(G_{1}^{\prime \prime}\right)$ and，therefore by Lemma 2．13，$\Xi ; \Delta \vdash \operatorname{dom}^{\sharp}\left(G_{1}^{\prime \prime}\right) \sim G_{2}^{\prime \prime}$ ．Also，by the previous argument $\operatorname{cod}^{\sharp}\left(G_{1}^{\prime}\right) \sqsubseteq \operatorname{cod}^{\sharp}\left(G_{1}^{\prime \prime}\right)$ ．Then we can use rule（Gapp）to derive：

$$
(\mathrm{Gapp}) \frac{\Xi ; \Delta ; \Gamma \vdash t_{1}^{\prime \prime}: G_{1}^{\prime \prime} \quad \Xi ; \Delta ; \Gamma \vdash t_{2}^{\prime \prime}: G_{2}^{\prime \prime}}{\Xi ; \Delta \vdash d o m^{\sharp}\left(G_{1}^{\prime \prime}\right) \sim G_{2}^{\prime \prime}} ⿻ コ 一\left(\Xi ; \Delta ; \Gamma \vdash t_{1}^{\prime \prime} t_{2}^{\prime \prime}: \operatorname{cod}^{\sharp}\left(G_{1}^{\prime \prime}\right) \quad .\right.
$$

and the result holds．
Case（GappG）．Then $t_{1}=t[G]$ ．By（GappG）we know that：

$$
\begin{equation*}
\text { (GappG) } \frac{\Xi ; \Delta ; \Gamma \vdash t: G_{1}^{\prime} \quad \Xi ; \Delta \vdash G}{\Xi ; \Delta ; \Gamma \vdash t[G]: \text { inst }^{\sharp}\left(G_{1}^{\prime}, G\right)} \tag{13}
\end{equation*}
$$

where $G_{1}=$ inst $^{\sharp}\left(G_{1}^{\prime}, G\right)$ ．Consider t_{2} such that $t_{1} \sqsubseteq t_{2}$ ．By definition of term precision t_{2} must have the form $t_{2}=t^{\prime}\left[G^{\prime}\right]$ and therefore

$$
\begin{equation*}
(\text { PappG }) \frac{t \sqsubseteq t^{\prime} \quad G \sqsubseteq G^{\prime}}{t[G] \sqsubseteq t^{\prime}\left[G^{\prime}\right]} \tag{14}
\end{equation*}
$$

Using induction hypotheses on the premises of（13）and（14），$\Xi ; \Delta ; \Gamma \vdash t^{\prime}: G_{2}^{\prime}$ where $G_{1}^{\prime} \sqsubseteq G_{2}^{\prime}$ ．We can use rule（GappG）and Lemma 2.2 to derive：

$$
\text { (Gasc) } \frac{\Xi ; \Delta ; \Gamma \vdash t^{\prime}: G_{2}^{\prime} \quad \Xi ; \Delta \vdash G^{\prime}}{\Xi ; \Delta ; \Gamma \vdash t^{\prime}\left[G^{\prime}\right]: i n s t^{\sharp}\left(G_{2}^{\prime}, G^{\prime}\right)}
$$

Finally，by the Lemma 2.15 we know that inst ${ }^{\sharp}\left(G_{1}^{\prime}, G\right) \sqsubseteq i n s t^{\sharp}\left(G_{2}^{\prime}, G^{\prime}\right)$ and the result holds．

Case (Gpairi). Then $t_{1}=\pi_{i}(t)$ and $G_{1}=\operatorname{proj}_{i}^{\#}(G)$. By (Gpair) we know that:

$$
\begin{equation*}
\text { (Gpairi) } \frac{\Xi ; \Delta ; \Gamma \vdash t: G}{\Xi ; \Delta ; \Gamma \vdash \pi_{i}(t): \operatorname{proj}_{i}^{\sharp}(G)} \tag{15}
\end{equation*}
$$

Consider t_{2} such that $t_{1} \sqsubseteq t_{2}$. By definition of term precision, t_{2} must have the form $\pi_{i}\left(t^{\prime}\right)$ and therefore

$$
\begin{equation*}
\text { (Ppairi) } \frac{t \sqsubseteq t^{\prime}}{\pi_{i}(t) \sqsubseteq \pi_{i}\left(t^{\prime}\right)} \tag{16}
\end{equation*}
$$

Using induction hypotheses on the premises of (15) and (16), $\Xi ; \Delta ; \Gamma \vdash t^{\prime}: G^{\prime}$ where $G \sqsubseteq G^{\prime}$. Then we can use rule (Gpairi) to derive:

$$
\text { (Gpairi) } \frac{\Xi ; \Delta ; \Gamma \vdash t^{\prime}: G^{\prime}}{\Xi ; \Delta ; \Gamma \vdash \pi_{i}\left(t^{\prime}\right): \operatorname{proj}_{i}^{\#}\left(G^{\prime}\right)}
$$

Finally, by the Lemma 2.16 we can infer that $\operatorname{proj}_{i}^{\sharp}(G) \sqsubseteq \operatorname{proj}_{i}^{\#}\left(G^{\prime}\right)$ and the result holds.

Proposition 6.10 (Static gradual guarantee). Let t and t^{\prime} be closed GSF terms such that $t \sqsubseteq t^{\prime}$ and $\vdash t: G$. Then $\vdash t^{\prime}: G^{\prime}$ and $G \sqsubseteq G^{\prime}$.

Proof. Direct corollary of Prop. 2.17.

3 GSF: DYNAMICS

In this section, we expose auxiliary definitions of the dynamic semantics of GSF. First, we present type precision, interior and consistent transitivity definitions for evidence types. Then we show some important definitions, used in the dynamic semantics of GSF ε. Finally, we present the translation semantics from GSF to GSF ε.

3.1 Evidence Type Precision

Figure 20 presents the definition of the evidence type precision.

$E \sqsubseteq E$ Type precision

$B \sqsubseteq B$
$X \sqsubseteq X$

$$
\begin{aligned}
& E_{1} \sqsubseteq E_{1}^{\prime} \quad E_{2} \sqsubseteq E_{2}^{\prime} \\
& \hline E_{1} \rightarrow E_{2} \sqsubseteq E_{1}^{\prime} \rightarrow E_{2}^{\prime}
\end{aligned}
$$

$$
\frac{E_{1} \sqsubseteq E_{2}}{\forall X . E_{1} \sqsubseteq \forall X . E_{2}}
$$

$$
\frac{E_{1} \sqsubseteq E_{1}^{\prime} \quad E_{2} \sqsubseteq E_{2}^{\prime}}{E_{1} \times E_{2} \sqsubseteq E_{1}^{\prime} \times E_{2}^{\prime}}
$$

$$
\frac{E_{1} \sqsubseteq E_{2}}{\alpha^{E_{1}} \sqsubseteq \alpha^{E_{2}}}
$$

Fig. 20. Evidence Type Precision

3.2 Initial Evidence

In Figure 21 we present the interior function, used to compute the initial evidence.

$$
\begin{aligned}
& \mathcal{I}: \text { EType } \times \text { EType } \rightharpoonup \text { Evidence } \\
& \begin{array}{c}
E \in \operatorname{BASETyPE} \cup \operatorname{TypeVAR} \cup\{?\} \\
I(E, E)=I(?, E)=I(E, ?)=\langle E, E\rangle
\end{array} \frac{I\left(E_{1}, E_{2}\right)=\left\langle E_{1}^{\prime}, E_{2}^{\prime}\right\rangle}{I\left(\alpha^{E_{1}}, E_{2}\right)=\left\langle\alpha^{E_{1}^{\prime}}, E_{2}^{\prime}\right\rangle} \quad \frac{I\left(E_{1}, E_{2}\right)=\left\langle E_{1}^{\prime}, E_{2}^{\prime}\right\rangle}{I\left(E_{1}, \alpha^{E_{2}}\right)=\left\langle E_{1}^{\prime}, \alpha^{E_{2}^{\prime}}\right\rangle} \\
& \frac{\mathcal{I}\left(E_{11} \rightarrow E_{12}, ? \rightarrow ?\right)=\left\langle E_{1}^{\prime}, E_{2}^{\prime}\right\rangle}{I\left(E_{11} \rightarrow E_{12}, ?\right)=\left\langle E_{1}^{\prime}, E_{2}^{\prime}\right\rangle} \quad \frac{\mathcal{I}\left(? \rightarrow ?, E_{11} \rightarrow E_{12}\right)=\left\langle E_{1}^{\prime}, E_{2}^{\prime}\right\rangle}{I\left(?, E_{11} \rightarrow E_{12}\right)=\left\langle E_{1}^{\prime}, E_{2}^{\prime}\right\rangle} \\
& \frac{\mathcal{I}(\forall X . E, \forall X . ?)=\left\langle E_{1}^{\prime}, E_{2}^{\prime}\right\rangle}{\mathcal{I}(\forall X . E, ?)=\left\langle E_{1}^{\prime}, E_{2}^{\prime}\right\rangle} \quad \frac{\mathcal{I}(\forall X . ?, \forall X . E)=\left\langle E_{1}^{\prime}, E_{2}^{\prime}\right\rangle}{I} \quad \\
& \frac{\mathcal{I}\left(E_{11} \times E_{12}, ? \times ?\right)=\left\langle E_{11}^{\prime} \times E_{12}^{\prime}, E_{21}^{\prime} \times E_{22}^{\prime}\right\rangle}{I\left(E_{11} \times E_{12}, ?\right)=\left\langle E_{11}^{\prime} \times E_{12}^{\prime}, E_{21}^{\prime} \times E_{22}^{\prime}\right\rangle} \quad \frac{\mathcal{I}\left(? \times ?, E_{11} \times E_{12}\right)=\left\langle E_{11}^{\prime} \times E_{12}^{\prime}, E_{21}^{\prime} \times E_{22}^{\prime}\right\rangle}{\mathcal{I}\left(?, E_{11} \times E_{12}\right)=\left\langle E_{11}^{\prime} \times E_{12}^{\prime}, E_{21}^{\prime} \times E_{22}^{\prime}\right\rangle} \\
& \frac{I\left(E_{21}, E_{11}\right)=\left\langle E_{21}^{\prime}, E_{11}^{\prime}\right\rangle \quad \mathcal{I}\left(E_{12}, E_{22}\right)=\left\langle E_{12}^{\prime}, E_{22}^{\prime}\right\rangle}{I\left(E_{11} \rightarrow E_{12}, E_{21} \rightarrow E_{22}\right)=\left\langle E_{11}^{\prime} \rightarrow E_{12}^{\prime}, E_{21}^{\prime} \rightarrow E_{22}^{\prime}\right\rangle} \\
& \begin{array}{cc}
\mathcal{I}\left(E_{11}, E_{21}\right)=\left\langle E_{11}^{\prime}, E_{21}^{\prime}\right\rangle & \mathcal{I}\left(E_{12}, E_{22}\right)=\left\langle E_{12}^{\prime}, E_{22}^{\prime}\right\rangle \\
I & \left(E_{11} \times E_{12}, E_{21} \times E_{22}\right)=\left\langle E_{11}^{\prime} \times E_{12}^{\prime}, E_{21}^{\prime} \times E_{22}^{\prime}\right\rangle
\end{array} \quad \frac{\mathcal{I}\left(E_{1}, E_{2}\right)=\left\langle E_{1}^{\prime}, E_{2}^{\prime}\right\rangle}{\mathcal{I}\left(\forall X . E_{1}, \forall X . E_{2}\right)=\left\langle\forall X . E_{1}^{\prime}, \forall X . E_{2}^{\prime}\right\rangle}
\end{aligned}
$$

Fig. 21. GSF: Computing Initial Evidence

3.3 Consistent Transitivity

In Figure 22, we present the definition of consistent transitivity for evidence types.

$$
\begin{aligned}
& \text { (base) } \frac{\langle B, B\rangle \stackrel{\circ}{\circ}\langle B, B\rangle=\langle B, B\rangle}{} \\
& \text { (idL) } \frac{}{\left\langle E_{1}, E_{2}\right\rangle \circ\langle ?, ?\rangle=\left\langle E_{1}, E_{2}\right\rangle} \\
& \text { (sealL) } \frac{\left\langle E_{1}, E_{2}\right\rangle \circ\left\langle E_{3}, E_{4}\right\rangle=\left\langle E_{1}^{\prime}, E_{2}^{\prime}\right\rangle}{\left\langle E_{1}, E_{2}\right\rangle \circ\left\langle E_{3}, \alpha^{E_{4}}\right\rangle=\left\langle E_{1}^{\prime}, \alpha^{E_{2}^{\prime}}\right\rangle} \\
& \text { (typeVar) } \overline{\langle X, X\rangle \stackrel{ }{\circ}\langle X, X\rangle=\langle X, X\rangle} \\
& (\mathrm{idR})-\frac{\square ?, ?\rangle}{\circ}\left\langle E_{1}, E_{2}\right\rangle=\left\langle E_{1}, E_{2}\right\rangle \\
& (\text { sealR }) \frac{\left\langle E_{1}, E_{2}\right\rangle \circ\left\langle E_{3}, E_{4}\right\rangle=\left\langle E_{1}^{\prime}, E_{2}^{\prime}\right\rangle}{\left\langle\alpha^{E_{1}}, E_{2}\right\rangle \circ\left\langle E_{3}, E_{4}\right\rangle=\left\langle\alpha^{E_{1}^{\prime}}, E_{2}^{\prime}\right\rangle} \\
& \text { (unsl) } \frac{\left\langle E_{1}, E_{2}\right\rangle \circ\left\langle E_{3}, E_{4}\right\rangle=\left\langle E_{1}^{\prime}, E_{2}^{\prime}\right\rangle}{\left\langle E_{1}, \alpha^{E_{2}}\right\rangle \stackrel{\circ}{9}\left\langle\alpha^{E_{3}}, E_{4}\right\rangle=\left\langle E_{1}^{\prime}, E_{2}^{\prime}\right\rangle} \\
& \text { (func) } \frac{\left\langle E_{41}, E_{31}\right\rangle \circ\left\langle E_{21}, E_{11}\right\rangle=\left\langle E_{3}, E_{1}\right\rangle \quad\left\langle E_{12}, E_{22}\right\rangle \circ\left\langle E_{32}, E_{42}\right\rangle=\left\langle E_{2}, E_{4}\right\rangle}{\left\langle E_{11} \rightarrow E_{12}, E_{21} \rightarrow E_{22}\right\rangle \stackrel{\circ}{9}\left\langle E_{31} \rightarrow E_{32}, E_{41} \rightarrow E_{42}\right\rangle=\left\langle E_{1} \rightarrow E_{2}, E_{3} \rightarrow E_{4}\right\rangle} \\
& \text { (abst) } \frac{\left\langle E_{1}, E_{2}\right\rangle \circ \stackrel{\circ}{\circ}\left\langle E_{3}, E_{4}\right\rangle=\left\langle E_{1}^{\prime}, E_{2}^{\prime}\right\rangle}{\left\langle\forall X . E_{1}, \forall X . E_{2}\right\rangle \stackrel{\circ}{9}\left\langle\forall X . E_{3}, \forall X . E_{4}\right\rangle=\left\langle\forall X . E_{1}^{\prime}, \forall X . E_{2}^{\prime}\right\rangle} \\
& \text { (pair) } \frac{\left\langle E_{11}, E_{21}\right\rangle \circ\left\langle E_{31}, E_{41}\right\rangle=\left\langle E_{1}, E_{3}\right\rangle \quad\left\langle E_{12}, E_{22}\right\rangle \circ\left\langle E_{32}, E_{42}\right\rangle=\left\langle E_{2}, E_{4}\right\rangle}{\left\langle E_{11} \times E_{12}, E_{21} \times E_{22}\right\rangle \circ \stackrel{\circ}{\circ}\left\langle E_{31} \times E_{32}, E_{41} \times E_{42}\right\rangle=\left\langle E_{1} \times E_{2}, E_{3} \times E_{4}\right\rangle}
\end{aligned}
$$

Fig. 22. GSF: Consistent Transitivity

3.4 GSFع: Dynamic Semantics

In this section, we show the function definitions used in the dynamic semantics of GSF ε, specifically in the type application rule (RappG).

Definition 3.1.

$$
\varepsilon_{\text {out }} \triangleq\left\langle E_{*}\left[\alpha^{E}\right], E_{*}\left[E^{\prime}\right]\right\rangle \quad \text { where } E_{*}=\operatorname{lift}_{\Xi}\left(\operatorname{unlift}\left(\pi_{2}(\varepsilon)\right)\right), \alpha^{E}=\operatorname{lift}_{\Xi^{\prime}}(\alpha), E^{\prime}=\operatorname{lift}_{\Xi}\left(G^{\prime}\right)
$$

Definition 3.2. $\left\langle E_{1}, E_{2}\right\rangle\left[E_{3}\right]=\left\langle E_{1}\left[E_{3}\right], E_{2}\left[E_{3}\right]\right\rangle$

Definition 3.3.

$$
s\left[\alpha^{E} / X\right]= \begin{cases}b & s=b \\ \lambda x: G_{1}[\alpha / X] . t\left[\alpha^{E} / X\right] & s=\lambda x: G_{1} . t \\ \Lambda Y . t\left[\alpha^{E} / X\right] & s=\Lambda Y . t \\ \left\langle s_{1}\left[\alpha^{E} / X\right], s_{2}\left[\alpha^{E} / X\right]\right\rangle & s=\left\langle s_{1}, s_{2}\right\rangle \\ x & s=x \\ \varepsilon\left[\alpha^{E} / X\right] t\left[\alpha^{E} / X\right]:: G[\alpha / X] & s=\varepsilon t:: G \\ o p\left(t\left[\alpha^{E} / X\right]\right) & s=o p(\bar{t}) \\ t_{1}\left[\alpha^{E} / X\right] t_{2}\left[\alpha^{E} / X\right] & s=t_{1} t_{2} \\ \pi_{i}\left(t\left[\alpha^{E} / X\right]\right) & s=\pi_{i}(t) \\ t\left[\alpha^{E} / X\right][G[\alpha / X]] & s=t[G]\end{cases}
$$

Definition 3.4.

$$
\operatorname{lift}_{\Xi}(G)= \begin{cases}\operatorname{lift}_{\Xi}\left(G_{1}\right) \rightarrow \operatorname{lift}_{\Xi}\left(G_{2}\right) & G=G_{1} \rightarrow G_{2} \\ \forall X . l i f t_{\Xi}\left(G_{1}\right) & G=\forall X . G_{1} \\ \operatorname{lift}_{\Xi}\left(G_{1}\right) \times \operatorname{lift}_{\Xi}\left(G_{2}\right) & G=G_{1} \times G_{2} \\ \alpha \operatorname{lift_{\Xi }(\Xi (\alpha))} & G=\alpha \\ G & \text { otherwise }\end{cases}
$$

Definition 3.5.

$$
\operatorname{unlift}(E)= \begin{cases}B & E=B \\ \text { unlift }\left(E_{1}\right) \rightarrow \operatorname{unlift}\left(E_{2}\right) & E=E_{1} \rightarrow E_{2} \\ \forall X . u n l i f t\left(E_{1}\right) & E=\forall X . E_{1} \\ \text { unlift }\left(E_{1}\right) \times \operatorname{unlift}\left(E_{2}\right) & E=E_{1} \times E_{2} \\ \alpha & E=\alpha^{E_{1}} \\ X & E=X \\ ? & E=?\end{cases}
$$

3.5 Translation from GSF to GSF ε

In this section we present the translation from GSF to GSF ε (Figure 23), which inserts ascriptions to ensure that top-level constructors match in every elimination form. We use the following normalization metafunction:

$$
\begin{gathered}
\operatorname{norm}\left(t, G_{1}, G_{2}\right)=\varepsilon t:: G_{2}, \text { where } \varepsilon=\mathcal{I}_{\Xi}\left(G_{1}, G_{2}\right) \\
\mathcal{I}_{\Xi}\left(G_{1}, G_{2}\right)=\mathcal{I}\left(\operatorname{lift}_{\Xi}\left(G_{1}\right), \text { lift }_{\Xi}\left(G_{2}\right)\right)
\end{gathered}
$$

Lemma 7.1 (Translation Preserves Typing). Let t be a GSF term. If $\Delta ; \Gamma \vdash t: G$ then $\Delta ; \Gamma \vdash t \leadsto$ $t_{\varepsilon}: G$ and $\Delta ; \Gamma \vdash t_{\varepsilon}: G$.

Proof. The proof follows by induction on the typing derivation of $\Delta ; \Gamma \vdash t: G$.

$\Delta ; \Gamma \vdash v \sim_{v} u: G$ Value translation

$$
\text { (Gb) } \frac{t y(b)=B \quad \Delta \vdash \Gamma}{\Delta ; \Gamma \vdash b \sim_{v} b: B} \quad \text { (Gpairu) } \frac{\Delta ; \Gamma \vdash v_{1} \leadsto u_{1}: G_{1} \quad \Delta ; \Gamma \vdash v_{2} \leadsto u_{2}: G_{2}}{\Delta ; \Gamma \vdash\left\langle v_{1}, v_{2}\right\rangle \leadsto_{v}\left\langle u_{1}, u_{2}\right\rangle: G_{1} \times G_{2}}
$$

$$
(\mathrm{G} \lambda) \frac{\Delta ; \Gamma, x: G \vdash t \leadsto t^{\prime}: G^{\prime}}{\Delta ; \Gamma \vdash(\lambda x: G . t) \sim_{v}\left(\lambda x: G . t^{\prime}\right): G \rightarrow G^{\prime}} \quad(\mathrm{G} \Lambda) \frac{\Delta, X ; \Gamma \vdash t \leadsto t^{\prime}: G \quad \Delta \vdash \Gamma}{\Delta ; \Gamma \vdash(\Lambda X . t) \sim_{v}\left(\Lambda X . t^{\prime}\right): \forall X . G}
$$

$\Delta ; \Gamma \vdash t \sim t: G$ Term translation

$$
\begin{aligned}
& \text { (Gu) } \frac{\Delta ; \Gamma \vdash v \sim_{v} u: G \quad \varepsilon=I(G, G)}{\Delta ; \Gamma \vdash v \leadsto \varepsilon u:: G: G} \quad \text { (Gascu) } \frac{\Delta ; \Gamma \vdash v \sim_{v} u: G \quad \varepsilon=I\left(G, G^{\prime}\right)}{\Delta ; \Gamma \vdash v:: G^{\prime} \leadsto \varepsilon u:: G^{\prime}: G^{\prime}} \\
& (G x) \frac{x: G \in \Gamma \quad \Delta \vdash \Gamma}{\Delta ; \Gamma \vdash x \leadsto x: G} \quad(G a s c t) \frac{t \neq v \quad \Delta ; \Gamma \vdash t \leadsto t^{\prime}: G \quad \varepsilon=I\left(G, G^{\prime}\right)}{\Delta ; \Gamma \vdash t:: G^{\prime} \leadsto \varepsilon t^{\prime}:: G^{\prime}: G^{\prime}}
\end{aligned}
$$

$$
(\text { Gpairt }) \frac{\left(t_{1} \neq v_{1} \vee t_{2} \neq v_{2}\right) \quad \Delta ; \Gamma \vdash t_{1} \leadsto t_{1}^{\prime}: G_{1} \quad \Delta ; \Gamma \vdash t_{2} \leadsto t_{2}^{\prime}: G_{2}}{\Delta ; \Gamma \vdash\left\langle t_{1}, t_{2}\right\rangle \leadsto\left\langle t_{1}^{\prime}, t_{2}^{\prime}\right\rangle: G_{1} \times G_{2}}
$$

$$
(\mathrm{Gop}) \frac{\Delta ; \Gamma \vdash \bar{t} \leadsto \overline{t^{\prime}}: \overline{G_{1}} \quad \operatorname{ty}(o p)=\overline{G_{2}} \rightarrow G \quad \overline{t^{\prime \prime}}=\overline{\operatorname{norm}\left(t^{\prime}, G_{1}, G_{2}\right)}}{\Delta ; \Gamma \vdash o p(\bar{t}) \sim o p\left(\overline{t^{\prime \prime}}\right): G}
$$

$$
(G a p p) \frac{\begin{array}{c}
\Delta ; \Gamma \vdash t_{1} \leadsto t_{1}^{\prime}: G_{1} \quad t_{1}^{\prime \prime}=\operatorname{norm}\left(t_{1}^{\prime}, G_{1}, \operatorname{dom}^{\sharp}\left(G_{1}\right) \rightarrow \operatorname{cod}^{\sharp}\left(G_{1}\right)\right) \\
\Delta ; \Gamma \vdash t_{2} \leadsto t_{2}^{\prime}: G_{2} \\
t_{2}^{\prime \prime}=\operatorname{norm}\left(t_{2}^{\prime}, G_{2}, \operatorname{dom}^{\sharp}\left(G_{1}\right)\right)
\end{array}}{\Delta ; \Gamma \vdash t_{1} t_{2} \leadsto t_{1}^{\prime \prime} t_{2}^{\prime \prime}: \operatorname{cod}^{\sharp}\left(G_{2}\right)}
$$

$$
(\text { GappG }) \frac{\Delta ; \Gamma \vdash t \leadsto t^{\prime}: G \quad \Delta \vdash G^{\prime} \quad t^{\prime \prime}=\operatorname{norm}\left(t^{\prime}, G, \forall v a r^{\sharp}(G) . \operatorname{schm}_{u}^{\sharp}(G)\right)}{\Delta ; \Gamma \vdash t\left[G^{\prime}\right] \leadsto t^{\prime \prime}\left[G^{\prime}\right]: \text { inst }^{\sharp}\left(G, G^{\prime}\right)}
$$

$$
(\text { Gpair } i) \frac{\Delta ; \Gamma \vdash t \leadsto t^{\prime}: G \quad t^{\prime \prime}=\operatorname{norm}\left(t^{\prime}, G, \operatorname{proj}_{1}^{\#}(G) \times \operatorname{proj}_{2}^{\#}(G)\right)}{\Lambda \cdot \Gamma\left\llcorner\pi \cdot(t) \leadsto \pi \cdot\left(t^{\prime \prime}\right) \cdot \wedge r o i^{\#} \#(G)\right.}
$$

$$
\Delta ; \Gamma \vdash \pi_{i}(t) \leadsto \pi_{i}\left(t^{\prime \prime}\right): \operatorname{proj}_{i}^{\#}(G)
$$

$$
v a r^{\sharp}: \text { GTyPe } \rightharpoonup \text { GTyPE } \quad s c h m_{u}^{\#}: \text { GTyPe } \rightharpoonup \text { GTyPE }
$$

$$
\operatorname{var}^{\sharp}(\forall X . G)=X \quad \operatorname{schm}_{u}^{\sharp}(\forall X . G)=G
$$

$$
\operatorname{var}^{\sharp}(?)=X \text { fresh } \quad \operatorname{schm}_{u}^{\sharp}(?)=\text { ? }
$$

$$
\operatorname{var}^{\sharp}(G) \text { undefined o/w } \quad \operatorname{schm}_{u}^{\sharp}(G) \text { undefined o/w }
$$

$$
\operatorname{norm}\left(t, G_{1}, G_{2}\right)=\varepsilon t:: G_{2}, \text { where } \varepsilon=\mathcal{I}\left(G_{1}, G_{2}\right)
$$

Fig. 23. GSF to GSFe translation.

4 GSF: PROPERTIES

In this section we present some properties of GSF. Section 4.1, presents Type Safety and its proof. Section 4.2, shows the property and proof about static terms do not fail.

4.1 Type Safety

In this section we present the proof of type safety for GSF ε.
We define what it means for a store to be well typed with respect to a term. Informally, all free locations of a term and of the contents of the store must be defined in the domain of that store. Also, the store must preserve types between intrinsic locations and underlying values.

Lemma 4.1 (Canonical forms). Consider a value $\Xi ; \cdot ; \cdot \vdash v: G$. Then $v=\varepsilon u:: G$, with $\Xi ; \cdot ; \cdot \vdash u$: G^{\prime} and $\varepsilon \Vdash \Xi \vdash G^{\prime} \sim G$. Furthermore:
(1) If $G=B$, then $v=\varepsilon_{B} b:: B$, with $\Xi ; \cdot ; \cdot b: B$ and $\varepsilon_{B} \Vdash \Xi \vdash B \sim B$.
(2) If $G=G_{1} \rightarrow G_{2}$, then $v=\varepsilon\left(\lambda x: G_{1}^{\prime} \cdot t\right):: G_{1} \rightarrow G_{2}$, with $\Xi ; \cdot ; x: G_{1}^{\prime} \vdash t: G_{2}^{\prime}$ and $\varepsilon \Vdash \Xi \vdash G_{1}^{\prime} \rightarrow G_{2}^{\prime} \sim G_{1} \rightarrow G_{2}$.
(3) If $G=\forall X . G_{1}$, then $v=\varepsilon(\Lambda X . t):: \forall X . G_{1}$, with $\Xi ; \Delta, X ; \vdash t: G_{1}^{\prime}$ and $\varepsilon \Vdash \Xi \vdash \forall X . G_{1}^{\prime} \sim \forall X . G_{1}$.
(4) If $G=G_{1} \times G_{2}$, then $v=\varepsilon\left\langle u_{1}, u_{2}\right\rangle:: G_{1} \times G_{2}$, with $\Xi ; \cdot ; \cdot \vdash u_{1}: G_{1}^{\prime}, \Xi ; \cdot ; \cdot \vdash u_{2}: G_{2}^{\prime}$ and $\varepsilon \Vdash \Xi \vdash G_{1}^{\prime} \times G_{2}^{\prime} \sim G_{1} \times G_{2}$.

Proof. By direct inspection of the formation rules of evidence augmented terms.
Lemma 4.2 (Substitution). If $\Xi ; \Delta ; \Gamma, x: G_{1} \vdash t: G$, and $\Xi ; \cdot ; \cdot \vdash v: G_{1}$, then $\Xi ; \Delta ; \Gamma \vdash t[v / x]: G$.
Proof. By induction on the derivation of $\Xi ; \Delta ; \Gamma, x: G_{1} \vdash t: G$.
Lemma 4.3. If $\varepsilon \Vdash \Xi ; \Delta, X \vdash G_{1} \sim G_{2}, \Xi ; \cdot \vdash G^{\prime}, \alpha \notin \operatorname{dom}(\Xi)$, and $E=\operatorname{lift}_{\Xi}\left(G^{\prime}\right)$, then $\varepsilon\left[\alpha^{E^{\prime}} / X\right] \Vdash$ $\Xi, \alpha:=G^{\prime} ; \Delta \vdash G_{1}[\alpha / X] \sim G_{2}[\alpha / X]$.

Proof. By induction on the judgment $\varepsilon \Vdash \Xi ; \Delta, X \vdash G_{1} \sim G_{2}$ and the definition of evidences.
Lemma 4.4 (Type Substitution). If $\Xi ; \Delta, X ; \Gamma \vdash t: G, \Xi ; \cdot \vdash G^{\prime}, \alpha \notin \operatorname{dom}(\Xi)$, and $E=\operatorname{lift}_{\Xi}\left(G^{\prime}\right)$, then $\Xi, \alpha:=G^{\prime} ; \Delta ; \Gamma \vdash t\left[\alpha^{E} / X\right]: G[\alpha / X]$.

Proof. By induction on the derivation of $\Xi ; \Delta, X ; \Gamma \vdash t: G$ and Lemma 4.3.
Lemma 4.5. If $\varepsilon_{1} \Vdash \Xi ; \Delta \vdash G_{1}^{\prime} \sim G_{1}$, and $\varepsilon_{2} \Vdash \Xi ; \Delta \vdash G_{2}^{\prime} \sim G_{2}$, then $\varepsilon_{1} \times \varepsilon_{2} \Vdash \Xi ; \Delta \vdash G_{1}^{\prime} \times G_{2}^{\prime} \sim$ $G_{1} \times G_{2}$.

Proof. By definition of the judgment $\varepsilon \Vdash \Xi ; \Delta, X \vdash G_{1}^{\prime} \times G_{2}^{\prime} \sim G_{1} \times G_{2}$ and the definition of evidences.

Lemma 4.6. If $\varepsilon \Vdash \Xi ; \Delta \vdash G^{\prime} \sim G$ then $p_{i}(\varepsilon) \Vdash \Xi ; \Delta \vdash \operatorname{proj}_{i}^{\#}\left(G^{\prime}\right) \sim \operatorname{proj}_{i}^{\#}(G)$.
Proof. By definition of judgment $\varepsilon \Vdash \Xi ; \Delta, X \vdash \operatorname{proj}_{i}^{\#}\left(G^{\prime}\right) \sim \operatorname{proj}_{i}^{\#}(G)$ and the definition of evidences.

Proposition $4.7(\longrightarrow$ is well defined). If $\Xi ; \cdot ; \cdot \vdash t: G$, then either

- $\Xi \triangleright t \longrightarrow \Xi^{\prime} \triangleright t^{\prime}, \Xi \subseteq \Xi^{\prime}$ and $\Xi^{\prime} ; \cdots \cdot \vdash t^{\prime}: G$ or
- $\Xi \triangleright t \longrightarrow$ error

Proof. By induction on the structure of a derivation of $\Xi \triangleright t \longrightarrow r$, considering the last rule used in the derivation.

Case (Rapp). Then $t=\left(\varepsilon_{1}\left(\lambda x: G_{11} \cdot t_{1}\right):: G_{1} \rightarrow G_{2}\right)\left(\varepsilon_{2} u:: G_{1}\right)$. Then

If $\varepsilon^{\prime}=\left(\varepsilon_{2} \circ \operatorname{dom}\left(\varepsilon_{1}\right)\right)$ is not defined, then $\Xi \triangleright t \longrightarrow$ error, and then the result hold immediately. Suppose that consistent transitivity does hold, then

$$
\left.\Xi \triangleright\left(\varepsilon_{1}\left(\lambda x: G_{11} \cdot t_{1}\right):: G_{1} \rightarrow G_{2}\right)\left(\varepsilon_{2} u:: G_{1}\right) \longrightarrow \Xi \triangleright \operatorname{cod}\left(\varepsilon_{1}\right)\left(t_{1}\left[\varepsilon^{\prime} u:: G_{11}\right) / x\right]\right):: G_{2}
$$

As $\varepsilon_{2} \vdash G_{2}^{\prime} \sim G_{1}$ and by inversion lemma $\operatorname{dom}\left(\varepsilon_{1}\right) \vdash G_{1} \sim G_{11}$, then $\varepsilon^{\prime} \vdash G_{2}^{\prime} \sim G_{11}$. Therefore $\Xi ; \because ; \vdash \varepsilon^{\prime} u:: G_{11}: G_{11}$, and by Lemma 4.2, $\Xi ; \cdot ; \cdot \vdash t\left[\left(\varepsilon^{\prime} u:: G_{11}\right) / x\right]: G_{12}$.

Let us call $t^{\prime \prime}=t\left[\left(\varepsilon^{\prime} u:: G_{11}\right) / x\right]$. Then

$$
(\text { Easc }) \frac{\left.\Xi ; \cdot ; \cdot \vdash t_{1}\left[\varepsilon^{\prime} u:: G_{11}\right) / x\right]: G_{12} \quad \operatorname{cod}\left(\varepsilon_{1}\right) \Vdash \Xi ; \cdot \vdash G_{12} \sim G_{2}}{\left.\Xi ; \cdot ; \cdot \vdash \operatorname{cod}\left(\varepsilon_{1}\right)\left(t_{1}\left[\varepsilon^{\prime} u:: G_{11}\right) / x\right]\right):: G_{2}: G_{2}}
$$

and the result holds.
Case (RappG). Then $t=\left(\varepsilon \Lambda X . t_{1}:: \forall X . G_{x}\right)\left[G^{\prime}\right]$. Consider $G_{x}=\operatorname{sch} m_{u}^{\sharp}(G)$, then

$$
(E \operatorname{app} G) \frac{(E \text { asc }) \frac{\Xi ; X ; \cdot \vdash t_{1}: G_{1} \quad \varepsilon \Vdash \Xi ; X ; \cdot \vdash G_{1} \sim \forall X . G_{x}}{\Xi ; \cdot ; \cdot \vdash\left(\varepsilon \Lambda X . t_{1}:: \forall X . G_{x}\right): \forall X . G_{x}} \quad \Xi ; \cdot \vdash G^{\prime}}{\Xi ; \cdot ; \cdot \vdash\left(\varepsilon \Lambda X . t_{1}:: \forall X . G_{x}\right)\left[G^{\prime}\right]: G_{x}\left[G^{\prime} / X\right]}
$$

Then

$$
\Xi \triangleright\left(\varepsilon \Lambda X . t_{1}:: G\right)\left[G^{\prime}\right] \longrightarrow \Xi^{\prime} \triangleright \varepsilon_{G}^{E^{\prime} / \alpha^{E^{\prime}}}\left(\varepsilon\left[\alpha^{E^{\prime}}\right] t_{1}\left[\alpha^{E^{\prime}} / X\right]:: G_{x}[\alpha / X]\right):: G_{x}\left[G^{\prime} / X\right]
$$

where $\Xi^{\prime} \triangleq \Xi, \alpha:=G^{\prime}, \alpha \notin \operatorname{dom}(\Xi)$, and $E^{\prime} \triangleq \operatorname{lift}_{\Xi}\left(G^{\prime}\right)$, and
$\varepsilon_{\forall X . G_{x}}^{E^{\prime} / G^{E^{\prime}}}=\left\langle\operatorname{lift}_{\Xi}\left(G_{x}\right)\left[\alpha^{E^{\prime}} / X\right]\right.$, $\left.\operatorname{lift}_{\Xi}\left(G_{x}\left[G^{\prime} / X\right]\right)\right\rangle$. Notice that $\left\langle\operatorname{lift}_{\Xi}\left(G_{x}[\alpha / X]\right)\right.$, $\left.\operatorname{lift}_{\Xi}\left(G_{x}\left[G^{\prime} / X\right]\right)\right\rangle=$ $\mathcal{I}\left(G_{x}[\alpha / X], G_{x}\left[G^{\prime} / X\right]\right)$, and by definition of the special substitution, lift $t_{\Xi}\left(G_{x}\right)\left[\alpha^{E^{\prime}} / X\right] \sqsubseteq \operatorname{lift}_{\Xi}\left(G_{x}[\alpha / X]\right)$ (because $\operatorname{lift}_{\Xi}(\alpha)=\alpha^{E^{\prime}}$, and the substitution on evidences just extend unknowns with α). Therefore $\varepsilon_{\forall X . G_{x}}^{E^{\prime} / \sigma^{E^{\prime}}} \sqsubseteq \mathcal{I}\left(G_{x}[\alpha / X], G_{x}\left[G^{\prime} / X\right]\right)$, and $\varepsilon_{\forall X . G_{x}}^{E^{\prime} / E^{E^{\prime}}} \Vdash \Xi ; \cdot \vdash G_{x}[\alpha / X] \sim G_{x}\left[G^{\prime} / X\right]$. Also by Lemma 4.3 $\varepsilon\left[\alpha^{E^{\prime}}\right] \Vdash \Xi ; \cdot \vdash G_{1}[\alpha / X] \sim G_{x}[\alpha / X]$, and by Lemma 4.4, $\Xi ; \cdot ; \cdot t_{1}\left[\alpha^{E^{\prime}} / X\right]: G_{1}[\alpha / X]$.

Then, as $\Xi \subseteq \Xi^{\prime}$,

$$
(\text { Easc }) \frac{\begin{array}{c}
\Xi ; \cdot ; \cdot+t_{1}\left[\alpha^{E^{\prime}} / X\right]: G_{1}[\alpha / X] \\
(\text { Easc })
\end{array} \frac{\varepsilon\left[\alpha^{E^{\prime}}\right] \Vdash \Xi ; \cdot+G_{1}[\alpha / X] \sim G_{x}[\alpha / X]}{\Xi ; \cdot ; \cdot+\left(\varepsilon\left[\alpha^{E^{\prime}}\right] t_{1}\left[\alpha^{E^{\prime}} / X\right]:: G_{x}[\alpha / X]\right): G_{x}[\alpha / X]} \quad \varepsilon_{G}^{E^{\prime} / \alpha^{E^{\prime}}} \Vdash \Xi ; \cdot+G_{x}[\alpha / X] \sim G_{x}\left[G^{\prime} / X\right]}{\Xi ; \cdot ; \cdot+\varepsilon_{G}^{E^{\prime} / \alpha^{E^{\prime}}}\left(\varepsilon\left[\alpha^{E^{\prime}}\right] t_{1}\left[\alpha^{E^{\prime}} / X\right]:: G_{x}[\alpha / X]\right):: G_{x}\left[G^{\prime} / X\right]: G_{x}\left[G^{\prime} / X\right]}
$$

and the result holds.

Case (Rasc). Then $t=\varepsilon_{1}\left(\varepsilon_{2} u:: G_{2}\right):: G$. Then

$$
(\text { Easc }) \frac{(\text { Easc }) \frac{\Xi ; \cdot ; \cdot \vdash u: G_{u} \varepsilon_{2} \Vdash \Xi_{;} \cdot \vdash G_{u} \sim G_{2}}{\Xi ; \cdot ; \cdot+\varepsilon_{2} u:: G_{2}: G_{2}}}{\Xi ; \cdot ; \cdot+\varepsilon_{1}\left(\varepsilon_{2} u:: G_{2}\right):: G: G} \quad \varepsilon_{1} \Vdash \Xi_{; \cdot \vdash G_{2} \sim G}
$$

If $\left(\varepsilon_{2}{ }_{g} \varepsilon_{1}\right)$ is not defined, then $\Xi \triangleright t \longrightarrow$ error, and then the result hold immediately. Suppose that consistent transitivity does hold, then

$$
\Xi \triangleright \varepsilon_{1}\left(\varepsilon_{2} u:: G_{2}\right):: G \longrightarrow \Xi \triangleright\left(\varepsilon_{2} \circ \varepsilon_{1}\right) u:: G
$$

where $\left(\varepsilon_{2} \circ \varepsilon_{1}\right) \Vdash \Xi ; \cdot \vdash G_{u} \sim G$. Then

$$
(\text { Easc }) \frac{\Xi ; \cdot ;+\mathfrak{u}: G_{u}\left(\varepsilon_{2} \circ \varepsilon_{1}\right) \Vdash \Xi ; \cdot+G_{u} \sim G}{\Xi ; \cdot ; \cdot+\left(\varepsilon_{2} \circ \varepsilon_{1}\right) u:: G: G}
$$

and the result follows.
Case (Rop). Then $t=o p\left(\overline{\varepsilon u:: B^{\prime}}\right)$. Then

$$
(E \mathrm{op}) \frac{(\text { Easc }) \frac{\overline{\Xi ; \cdot ; \cdot+u: G_{u}} \overline{\varepsilon \Perp \Xi ; \cdot+G_{u} \sim B^{\prime}}}{\Xi ; \Delta ; \Gamma \vdash \overline{\varepsilon u:: B^{\prime}}: \overline{B^{\prime}}}}{\Xi ; \cdot ; \cdot+o p\left(\overline{\varepsilon u:: B^{\prime}}\right): B} \quad t y(o p)=\overline{B^{\prime}} \rightarrow B
$$

Let us assume that $t y(o p): \overline{B^{\prime}} \rightarrow B$.

$$
\Xi \triangleright o p\left(\overline{\varepsilon u:: B^{\prime}}\right) \longrightarrow \Xi \triangleright \varepsilon_{B} \delta(o p, \bar{u}):: B
$$

But as $\varepsilon_{B} \vdash \Xi ; \cdot \vdash B \sim B$, then

$$
(E \mathrm{asc}) \frac{\Xi ; \cdot ; \cdot \vdash \delta(o p, \bar{u}): B \quad \varepsilon_{B} \Vdash \Xi_{;} \cdot \vdash B \sim B}{\Xi ; \cdot ; \cdot \varepsilon_{B} \delta(o p, \bar{u}):: B: B}
$$

and the result follows.
Case (Rpair). Then $t=\left\langle\varepsilon_{1} u_{1}:: G_{1}, \varepsilon_{2} u_{2}:: G_{2}\right\rangle$. Then

$$
\begin{array}{ccc}
& \begin{array}{c}
\Xi ; \cdot \cdot \cdot \vdash u_{1}: G_{1}^{\prime}
\end{array} \begin{array}{c}
\Xi ; \cdot \cdot \vdash u_{2}: G_{2}^{\prime} \\
(\text { Epair })
\end{array} \frac{\varepsilon_{1} \Vdash \Xi ; \cdot \vdash G_{1}^{\prime} \sim G_{1}}{\Xi ; \cdot ; \cdot \vdash \varepsilon_{1} u_{1}:: G_{1}} \quad(\text { Easc }) \frac{\varepsilon_{2} \Vdash \Xi ; \cdot \vdash G_{2}^{\prime} \sim G_{2}}{\Xi ; \cdot \cdot \vdash \varepsilon_{2} u_{2}:: G_{2}} \\
{\left.\cline { 1 - 1 } u_{1}:: G_{1}, \varepsilon_{2} u_{2}:: G_{2}\right\rangle: G_{1} \times G_{2}} }
\end{array}
$$

Then

$$
\Xi \triangleright\left\langle\varepsilon_{1} u_{1}:: G_{1}, \varepsilon_{2} u_{2}:: G_{2}\right\rangle \longrightarrow \Xi \triangleright\left(\varepsilon_{1} \times \varepsilon_{2}\right)\left\langle u_{1}, u_{2}\right\rangle:: G_{1} \times G_{2}
$$

By Lemma 4.5, $\varepsilon_{1} \times \varepsilon_{2} \Vdash \Xi ; \cdot \vdash G_{1}^{\prime} \times G_{2}^{\prime} \sim G_{1} \times G_{2}$. Then

$$
(\text { Easc }) \frac{(\text { Epair }) \frac{\Xi ; \cdot ; \cdot \vdash u_{1}: G_{1}^{\prime} \quad \Xi ; \cdot ; \cdot \vdash u_{2}: G_{2}^{\prime}}{\Xi ; \cdot ; \cdot \vdash\left\langle u_{1}, u_{2}\right\rangle: G_{1}^{\prime} \times G_{2}^{\prime}} \quad \varepsilon_{1} \times \varepsilon_{2} \Vdash \Xi ; \cdot \vdash G_{1}^{\prime} \times G_{2}^{\prime} \sim G_{1} \times G_{2}}{\Xi ; \cdot ; \cdot \vdash\left(\varepsilon_{1} \times \varepsilon_{2}\right)\left\langle u_{1}, u_{2}\right\rangle:: G_{1} \times G_{2}: G_{1} \times G_{2}}
$$

and the result holds.
Case (Rproji). Then $t=\pi_{i}\left(\varepsilon\left\langle u_{1}, u_{2}\right\rangle:: G\right)$. Then

$$
(\text { Epairi }) \frac{(\text { Easc }) \frac{\frac{\Xi ; \cdot ; \cdot \vdash u_{i}: G_{i}^{\prime}}{\Xi ; \cdot ; \cdot \vdash\left\langle u_{1}, u_{2}\right\rangle: G_{1}^{\prime} \times G_{2}^{\prime}} \quad \varepsilon \Vdash \Xi ; \cdot \vdash G_{1}^{\prime} \times G_{2}^{\prime} \sim G}{\varepsilon\left\langle u_{1}, u_{2}\right\rangle:: G}}{\Xi ; \cdot ; \cdot \vdash \pi_{i}\left(\varepsilon\left\langle u_{1}, u_{2}\right\rangle:: G\right): \operatorname{proj}_{i}^{\#}(G)}
$$

Then

$$
\Xi \triangleright \pi_{i}\left(\varepsilon\left\langle u_{1}, u_{2}\right\rangle:: G\right) \longrightarrow \Xi \triangleright p_{i}(\varepsilon) u_{i}:: \operatorname{proj}_{i}^{\#}(G)
$$

By Lemma 4.6, $p_{i}(\varepsilon) \Vdash \Xi ; \cdot \vdash \operatorname{proj}_{i}^{\#}\left(G_{1}^{\prime} \times G_{2}^{\prime}\right) \sim \operatorname{proj}_{i}^{\#}(G)$. Then

$$
(E \mathrm{asc}) \frac{\Xi ; \cdot \cdot \cdot \vdash u_{i}: G_{i}^{\prime} \quad p_{i}(\varepsilon) \Vdash \Xi ; \cdot \vdash \operatorname{proj}_{i}^{\#}\left(G_{1}^{\prime} \times G_{2}^{\prime}\right) \sim \operatorname{proj}_{i}^{\#}(G)}{\Xi ; \cdot ; \cdot \vdash p_{i}(\varepsilon) u_{i}:: \operatorname{proj}_{i}^{\#}(G): \operatorname{proj}_{i}^{\#}(G)}
$$

and the result holds.

Proposition $4.8(\longmapsto$ is well defined). If $\Xi ; \cdot ; \cdot \vdash t: G$, then either

- $\Xi \triangleright t \longmapsto \Xi^{\prime} \triangleright t^{\prime}, \Xi \subseteq \Xi^{\prime}$ and $\Xi^{\prime} ; \cdot ; \cdot \vdash t^{\prime}: G$ or
- $\Xi \triangleright t \longmapsto$ error

Proof. By induction on the structure of t.

- If t has some of this form: $\varepsilon_{2}\left(\varepsilon_{1} u:: G_{1}\right):: G_{2}$,op $\left.(\overline{\varepsilon u}:: G),\left(\lambda x: G_{11} \cdot t\right):: G_{1} \rightarrow G_{2}\right)\left(\varepsilon_{2} u:: G_{1}\right)$, $\left\langle\varepsilon_{1} u_{1}:: G_{1}, \varepsilon_{2} u_{2}:: G_{2}\right\rangle, \pi_{i}\left(\varepsilon\left\langle u_{1}, u_{2}\right\rangle:: G_{1} \times G_{2}\right)$ or $(\varepsilon \Lambda X . t:: \forall X . G)$ [G^{\prime}], then by well-definedness of \longrightarrow (Prop 4.7), $\Xi \triangleright t \longrightarrow \Xi^{\prime} \triangleright t^{\prime}$ and $\Xi \subseteq \Xi^{\prime}$ and $\Xi^{\prime} ; \cdot ; \cdot \vdash t^{\prime}: G$ or $\Xi \triangleright t \longrightarrow$ error, . If $\Xi \triangleright t \longrightarrow \Xi^{\prime} \triangleright t^{\prime}, \Xi \subseteq \Xi^{\prime}$ and $\Xi^{\prime} ; \cdot ; \cdot \vdash t^{\prime}: G$, then by the rule $\mathrm{R} \longrightarrow$ the result holds. If $\Xi \triangleright t \longrightarrow$ error, then by the rule Rerr $\Xi \triangleright t \longmapsto$ error and the result holds immediately.
- If $t=f\left[t_{1}\right]$, we know that $\Xi ; \cdot ; \cdot \vdash f\left[t_{1}\right]: G$ and $\Xi ; \cdot ; \cdot \vdash t_{1}: G^{\prime}$, where $f: G^{\prime} \rightarrow G$. Then, by the induction hypothesis $\Xi \triangleright t_{1} \longmapsto \Xi^{\prime} \triangleright t_{1}^{\prime}, \Xi \subseteq \Xi^{\prime}$ and $\Xi^{\prime} ; \cdot ; \cdot t_{1}^{\prime}: G$ or $\Xi \triangleright t_{1} \longmapsto \Xi^{\prime} \triangleright$ error. If $\Xi \triangleright t_{1} \longmapsto \Xi^{\prime} \triangleright t_{1}^{\prime}$, by the $\mathrm{R} f$ rule the result holds. If $\Xi \triangleright t_{1} \longmapsto \Xi^{\prime} \triangleright$ error, by the Rferr rule the result holds. .

Proposition 4.9 (\longmapsto is well defined). If $\Xi ; \cdot ; \cdot \vdash t: G, t \leadsto t_{\varepsilon}$, then t_{ε} is a value v; or $\Xi \triangleright t_{\varepsilon} \longmapsto \Xi^{\prime} \triangleright t_{\varepsilon}^{\prime}, \Xi \subseteq \Xi^{\prime}$ and $\Xi^{\prime} ; \cdot ; \cdot t_{\varepsilon}^{\prime}: G ;$ or $\Xi \triangleright t_{\varepsilon} \longmapsto$ error.

Proof. By induction on the structure of t, using Lemma 4.8 and Canonical Forms (Lemma 4.1).

Now we can establish type safety of GSF: programs of GSF do not get stuck, though they may terminate with cast errors. Also the store of a program is well typed.

Proposition 8.4 (Type Safety). If $\vDash t: G$ then either $t \Downarrow \Xi \triangleright v$ with $\Xi \triangleright v: G, t \Downarrow$ error, or $t \Uparrow$.
Proof. Direct by 4.9.

4.2 Static Terms Do Not Fail

Lemma 8.2. (Properties of consistent transitivity).
(a) Associativity. $\left(\varepsilon_{1} \circ \varepsilon_{2}\right) \stackrel{q}{9} \varepsilon_{3}=\varepsilon_{1} \circ\left(\varepsilon_{2} \circ \varepsilon_{3}\right)$, or both are undefined.
(b) Optimality. If $\varepsilon=\varepsilon_{1} \circ \varepsilon_{2}$ is defined, then $\pi_{1}(\varepsilon) \sqsubseteq \pi_{1}\left(\varepsilon_{1}\right)$ and $\pi_{2}(\varepsilon) \sqsubseteq \pi_{2}\left(\varepsilon_{2}\right)$.
(c) Monotonicity. If $\varepsilon_{1} \sqsubseteq \varepsilon_{1}{ }^{\prime}$ and $\varepsilon_{2} \sqsubseteq \varepsilon_{2}{ }^{\prime}$ and $\varepsilon_{1} \circ \varepsilon_{2}$ is defined, then $\varepsilon_{1} \circ \varepsilon_{2} \sqsubseteq \varepsilon_{1}{ }^{\prime} \circ \varepsilon_{2}^{\prime}$.

Proof. A direct result of the application of the AGT framework.
Lemma 4.10. If ε_{1} and ε_{2} two static evidences, such that $\varepsilon_{1} \Vdash \Xi ; \Delta \vdash T_{1} \sim T_{2}$ and $\varepsilon_{2} \Vdash \Xi ; \Delta \vdash T_{2} \sim T_{3}$, then $\varepsilon_{1} \circ \varepsilon_{2}=\left\langle p_{1}\left(\varepsilon_{1}\right), p_{2}\left(\varepsilon_{2}\right)\right\rangle$.

Proof. Straightforward induction on types $T_{1}, T_{2}, T_{3}\left(\Xi ; \Delta \vdash T_{2} \sim T_{3}\right.$ coincides with $\Xi ; \Delta \vdash T_{2}=$ T_{3}), and optimality of evidences (Lemma 8.2), because the resulting evidence cannot gain precision as each component of the evidences are static (note that precision $\cdot \sqsubseteq \cdot$ between static types coincide with equality of static types $\Xi ; \Delta \vdash \cdot=\cdot$).

Lemma 4.11. Let T_{1} and T_{2} two static types, and Ξ a static store, such that $\Xi ; \Delta \vdash T_{1} \sim T_{2}$. Then $\mathcal{I}\left(T_{1}, T_{2}\right)=\mathcal{I}\left(\operatorname{lift} t_{\Xi}\left(T_{1}\right), \operatorname{lift}_{\Xi}\left(T_{2}\right)\right)=\left\langle\operatorname{lift}_{\Xi}\left(T_{1}\right), \operatorname{lift}_{\Xi}\left(T_{2}\right)\right\rangle$.

Proof. Straightforward induction on types T_{1}, T_{2}, and noticing that we cannot gain precision from the types.

Proposition 4.12 (Static terms progress and Preservation). Let t be a static term, Ξ a static store $(\Xi=\Sigma)$, and G a static type $(G=T)$. If $\Sigma ; \cdots \cdot \vdash t: T$, then either $\Sigma \triangleright t \longmapsto \Sigma^{\prime} \triangleright t^{\prime}$ and $\Sigma^{\prime} ; \cdot ; \cdot \vdash t^{\prime}: T$, for some Σ^{\prime} and t^{\prime} static; or t is a value v.

Proof. By induction on the structure of a derivation of $\Sigma ; \cdot ; \cdot \vdash t: T$.
Note that $\Xi ; \Delta \vdash T_{1} \sim T_{2}$ coincides with $\Xi ; \Delta \vdash T_{1}=T_{2}$, so we use the latter notation throughout the proof.

Case $(t=\varepsilon u:: G)$. The result is trivial as t is a value.
Case $\left(t=\left(\varepsilon_{1}\left(\lambda x: T_{11} . t_{1}\right):: T_{1} \rightarrow T_{2}\right)\left(\varepsilon_{2} u:: T_{1}\right)\right)$. Then

$$
\begin{array}{cc}
\begin{array}{c}
\Xi ; \cdot ; x: T_{11} \vdash t_{1}: T_{12} \\
\Xi ; \cdot ; \cdot \vdash\left(\lambda x: T_{11} \cdot t_{1}\right): T_{11} \rightarrow T_{12} \\
\varepsilon_{1} \Vdash \Sigma ; \Delta \vdash T_{11} \rightarrow T_{12}=T_{1} \rightarrow T_{2}
\end{array} & \begin{array}{c}
\Xi ; \cdot ; \vdash u: T_{2}^{\prime} \\
(\text { Eapp })
\end{array}
\end{array}
$$

By Lemma 4.10, $\varepsilon^{\prime}=\left(\varepsilon_{2} \circ \operatorname{dom}\left(\varepsilon_{1}\right)\right)$ is defined and by Lemma 4.11, the new evidence is also static. Then

$$
\left.\Xi \triangleright\left(\varepsilon_{1}\left(\lambda x: T_{11} \cdot t_{1}\right):: T\right)\left(\varepsilon_{2} u:: T_{1}\right) \longrightarrow \Xi \triangleright \operatorname{cod}\left(\varepsilon_{1}\right)\left(t_{1}\left[\varepsilon^{\prime} u:: T_{11}\right) / x\right]\right):: T_{2}
$$

And the result holds immediately by the Lemma 4.2 and the typing rule (Easc).
Case $\left(t=\left(\varepsilon \Lambda X . t_{1}:: \forall X . T_{x}\right)\left[T^{\prime}\right]\right)$. Then

$$
(E \operatorname{app} T) \frac{(\text { Easc }) \frac{\Xi ; X ; \cdot \vdash t_{1}: T_{1} \quad \varepsilon \Vdash \Sigma ; \Delta \vdash[=\Xi ; X ; \cdot] T_{1} \forall X . T_{x}}{\Xi ; \cdot \cdot+\left(\varepsilon \Lambda X . t_{1}:: \forall X . T_{x}\right): T} \quad \Xi ; \cdot \vdash T^{\prime}}{\Xi ; \cdot ; \cdot \vdash\left(\varepsilon \Lambda X . t_{1}:: \forall X . T_{x}\right)\left[T^{\prime}\right]: T_{x}\left[T^{\prime} / X\right]}
$$

Then

$$
\left(\varepsilon \Lambda X . t_{1}:: \forall X . T_{x}\right)\left[T^{\prime}\right] \longrightarrow \Xi^{\prime} \triangleright \varepsilon_{\forall X . T_{x}}^{E^{\prime} / \alpha^{E^{\prime}}}\left(\varepsilon\left[\alpha^{E^{\prime}}\right] t_{1}\left[\alpha^{E^{\prime}} / X\right]:: T_{x}[\alpha / X]\right):: T_{x}\left[T^{\prime} / X\right]
$$

where $\Xi^{\prime} \triangleq \Xi, \alpha:=T^{\prime}, \alpha \notin \operatorname{dom}(\Xi)$, and $E^{\prime} \triangleq \operatorname{lift}_{\Xi}\left(T^{\prime}\right)$, and
$\varepsilon_{\forall X . T_{x}}^{E^{\prime} / \alpha^{E^{\prime}}}=\left\langle\operatorname{lift}_{\Xi}\left(T_{x}\right)\left[\alpha^{E^{\prime}} / X\right]\right.$, lift $\left.t_{\Xi}\left(T_{x}\left[T^{\prime} / X\right]\right)\right\rangle$. Then, $\Xi \subseteq \Xi^{\prime}$, and Ξ^{\prime} is extended with a type name that maps to a static type. Finally, the result holds immediately by the Lemma 4.4 and Lemma 4.3, and the typing rule (Easc).

Case $\left(t=\Xi \triangleright \varepsilon_{1}\left(\varepsilon_{2} u:: T_{2}\right):: T\right)$. Then

$$
(E \mathrm{asc}) \frac{(E \mathrm{asc}) \frac{\Xi ; \cdot ; \cdot \vdash u: T_{u} \quad \varepsilon_{2} \Vdash \Sigma ; \Delta \vdash T_{u}=T_{2}}{\Xi ; \cdot ; \cdot \vdash \varepsilon_{2} u:: T_{2}: T_{2}}}{\Xi ; \cdot ; \cdot \vdash \varepsilon_{1}\left(\varepsilon_{2} u:: T_{2}\right):: T: T} \quad \varepsilon_{1} \Vdash \Sigma ; \Delta \vdash T_{2}=T
$$

By Lemma 4.10, $\varepsilon_{2} \circ{ }_{9} \varepsilon_{1}$ is defined and by Lemma 4.11, the new evidence is also static. Then

$$
\Xi \triangleright \varepsilon_{1}\left(\varepsilon_{2} u:: T_{2}\right):: T \longrightarrow \Xi \triangleright\left(\varepsilon_{2} ; \varepsilon_{1}\right) u:: T
$$

and the result holds by the typing rule (Easc).
Case $\left(t=o p\left(\overline{\varepsilon u:: B^{\prime}}\right)\right)$. Then

$$
(E \mathrm{asc}) \frac{(\text { Easc }) \frac{\overline{\Xi ; \because ; \cdot+u: T_{u}} \overline{\varepsilon \Vdash \Sigma ; \Delta \vdash T_{u}=B^{\prime}}}{\Xi ; \Delta ; \Gamma+\overline{\varepsilon u:: B^{\prime}}: \overline{B^{\prime}}}}{\Xi ; \because ;+o p\left(\overline{\varepsilon u:: B^{\prime}}\right): B} \quad t y(o p)=\overline{B^{\prime}} \rightarrow B
$$

Let us assume that $t y(o p): \overline{B^{\prime}} \rightarrow B$. Then

$$
\Xi \triangleright o p\left(\overline{\varepsilon u}:: B^{\prime}\right) \longrightarrow \Xi \triangleright \varepsilon_{B} \delta(o p, \bar{u}):: B
$$

And the result holds by the typing rule (Easc).
Case $\left(t=\left\langle\varepsilon_{1} u_{1}:: T_{1}, \varepsilon_{2} u_{2}:: T_{2}\right\rangle\right)$. Then

$$
(\text { Epair }) \frac{\begin{array}{c}
\Xi ; \because \cdot \vdash u_{1}: T_{1}^{\prime} \\
(\text { Easc })
\end{array}}{\begin{array}{c}
\Xi ; \because \cdot \vdash u_{2}: T_{2}^{\prime} \\
\varepsilon_{1} \Vdash \Sigma ; \Delta \vdash T_{1}^{\prime}=T_{1} \\
\Xi ; \cdot ; \cdot \vdash \varepsilon_{1} u_{1}:: T_{1}
\end{array} \quad(\text { Easc }) \frac{\begin{array}{c}
\varepsilon_{2} \Vdash \Sigma ; \Delta \vdash T_{2}^{\prime}=T_{2}
\end{array}}{\Xi ; \cdot ; \cdot \vdash\left\langle\varepsilon_{1} u_{1}:: T_{1}, \varepsilon_{2} u_{2}:: T_{2}\right\rangle: T_{1} \times T_{2}}} \begin{aligned}
& \Xi ; \cdot \vdash \varepsilon_{2} u_{2}:: T_{2} \\
& \hline
\end{aligned}
$$

Then

$$
\Xi \triangleright\left\langle\varepsilon_{1} u_{1}:: T_{1}, \varepsilon_{2} u_{2}:: T_{2}\right\rangle \longrightarrow \Xi \triangleright\left(\varepsilon_{1} \times \varepsilon_{2}\right)\left\langle u_{1}, u_{2}\right\rangle:: T_{1} \times T_{2}
$$

and the result holds by the Lemma 4.5.
Case $\left(t=\pi_{i}\left(\varepsilon\left\langle u_{1}, u_{2}\right\rangle:: T\right)\right)$. Then

$$
(E \text { pair }) \frac{(\text { Easc }) \frac{\frac{\Xi ; \cdot \because \cdot \vdash u_{i}: T_{i}^{\prime}}{\Xi ; \cdot ; \cdot \vdash\left\langle u_{1}, u_{2}\right\rangle: T_{1}^{\prime} \times T_{2}^{\prime}} \quad \varepsilon \Vdash \Sigma ; \Delta \vdash T_{1}^{\prime} \times T_{2}^{\prime}=T}{\varepsilon\left\langle u_{1}, u_{2}\right\rangle:: T}}{\Xi ; \cdot \cdot \cdot \vdash \pi_{i}\left(\varepsilon\left\langle u_{1}, u_{2}\right\rangle:: T\right): \operatorname{proj}_{i}^{\sharp}(T)}
$$

Then

$$
\Xi \triangleright \pi_{i}\left(\varepsilon\left\langle u_{1}, u_{2}\right\rangle:: T\right) \longrightarrow \Xi \triangleright p_{i}(\varepsilon) u_{i}:: \operatorname{proj}_{i}^{\#}(T)
$$

And the result holds by Lemma 4.6.
Case $\left(t=t_{1} t_{2}\right)$. Then by induction hypothesis $\Xi \triangleright t_{1} \longmapsto \Xi \triangleright t_{1}^{\prime}$, and t_{1}^{\prime} is static, and so $t_{1}^{\prime} t_{2}$.

Case $\left(t=v t_{2}\right.$). Then by induction hypothesis $\Xi \triangleright t_{2} \longmapsto \Xi \triangleright t_{2}^{\prime}$, and t_{2}^{\prime} is static, and so $v t_{2}^{\prime}$. Case $\left(t=t_{1}[T], t=\left\langle t_{1}, t_{2}\right\rangle, t=o p\left(\overline{t_{1}}\right), t=\pi_{i}\left(t_{1}\right)\right)$. Similar inductive reasoning to application cases.

Proposition 8.5 (Static terms do not fail). Let be a static term. If $\vdash t: T$ then $\neg(t \Downarrow$ error).
Proof. Direct by Lemma 4.12.

5 GSF AND THE DYNAMIC GRADUAL GUARANTEE

In this section, we prove the weaker variant of the DGG in GSFe and then in GSF. We also present auxiliary definitions and Propositions.

5.1 Evidence Type Precision

This section show the definition of evidence type precision.

5.2 Monotonicity of Evidence Transitivity and Instantiation

This section presents the proofs of the monotonicity of evidence transitivity and instantiation proposition.

Proposition 9.3 (\leqslant-Monotonicity of Consistent Transitivity). If $\varepsilon_{1} \leqslant \varepsilon_{2}, \varepsilon_{3} \leqslant \varepsilon_{4}$, and $\varepsilon_{1} \stackrel{\circ}{9} \varepsilon_{3}$ is defined, then $\varepsilon_{1} \stackrel{\circ}{9} \varepsilon_{3} \leqslant \varepsilon_{2} \circ \varepsilon_{4}$.

Proof. By definition of consistent transitivity for $=$ and the definition of precision.
Case $\left(\varepsilon_{i}=\langle B, B\rangle\right)$. The results follows immediately, due

$$
\langle B, B\rangle=(\langle B, B\rangle \circ\langle B, B\rangle) \leqslant(\langle B, B\rangle \circ\langle B, B\rangle=\langle B, B\rangle)
$$

Case $\left([X]-\varepsilon_{i}=\langle X, X\rangle\right)$. The results follows immediately, due

$$
\langle X, X\rangle=(\langle X, X\rangle \circ \stackrel{ }{\circ}\langle X, X\rangle) \leqslant(\langle X, X\rangle \circ ;\langle X, X\rangle=\langle X, X\rangle)
$$

Case $\left(\left[\alpha_{1}\right]-\varepsilon_{1}=\left\langle\alpha^{E_{1}}, E_{1}^{\prime}\right\rangle, \varepsilon_{2}=\left\langle\alpha^{E_{2}}, E_{2}^{\prime}\right\rangle, \varepsilon_{3}=\left\langle E_{3}, E_{3}^{\prime}\right\rangle, \varepsilon_{4}=\left\langle E_{4}, E_{4}^{\prime}\right\rangle\right)$. By the definition of \leqslant, we know that $\left\langle E_{1}, E_{1}^{\prime}\right\rangle \leqslant\left\langle E_{2}, E_{2}^{\prime}\right\rangle$ and $\left\langle E_{3}, E_{3}^{\prime}\right\rangle \leqslant\left\langle E_{4}, E_{4}^{\prime}\right\rangle$. By the definition of transitivity we know that $\left\langle\alpha^{E_{1}}, E_{1}^{\prime}\right\rangle \circ\left\langle E_{3}, E_{3}^{\prime}\right\rangle=\left\langle\alpha^{E_{5}}, E_{5}^{\prime}\right\rangle$ and $\left\langle\alpha^{E_{2}}, E_{2}^{\prime}\right\rangle \circ\left\langle E_{4}, E_{4}^{\prime}\right\rangle=\left\langle\alpha^{E_{6}}, E_{6}^{\prime}\right\rangle$, where $\left\langle E_{5}, E_{5}^{\prime}\right\rangle=\left\langle E_{1}, E_{1}^{\prime}\right\rangle \circ\left\langle E_{3}, E_{3}^{\prime}\right\rangle$ and $\left.\left\langle E_{6}, E_{6}^{\prime}\right\rangle=\left\langle E_{2}, E_{2}^{\prime}\right\rangle \circ \stackrel{\circ}{9} E_{4}, E_{4}^{\prime}\right\rangle$. Therefore, we are required to prove that $\left\langle\alpha^{E_{5}}, E_{5}^{\prime}\right\rangle \leqslant\left\langle\alpha^{E_{6}}, E_{6}^{\prime}\right\rangle$, or what is the same $\left\langle E_{5}, E_{5}^{\prime}\right\rangle \leqslant\left\langle E_{6}, E_{6}^{\prime}\right\rangle$. But the result follows immediately by the induction hypothesis on $\left\langle E_{1}, E_{1}^{\prime}\right\rangle \leqslant\left\langle E_{2}, E_{2}^{\prime}\right\rangle$ and $\left\langle E_{3}, E_{3}^{\prime}\right\rangle \leqslant\left\langle E_{4}, E_{4}^{\prime}\right\rangle$.

Case $\left(\left[\alpha_{2}\right]-\varepsilon_{1}=\left\langle E_{1}, \alpha^{E_{1}^{\prime}}\right\rangle, \varepsilon_{2}=\left\langle E_{2}, \alpha^{E_{2}^{\prime}}\right\rangle, \varepsilon_{3}=\left\langle\alpha^{E_{3}}, E_{3}^{\prime}\right\rangle, \varepsilon_{4}=\left\langle\alpha_{4}^{E}, E_{4}^{\prime}\right\rangle\right)$. By the definition of \leqslant, we know that $\left\langle E_{1}, E_{1}^{\prime}\right\rangle \leqslant\left\langle E_{2}, E_{2}^{\prime}\right\rangle$ and $\left\langle E_{3}, E_{3}^{\prime}\right\rangle \leqslant\left\langle E_{4}, E_{4}^{\prime}\right\rangle$. By the definition of transitivity we know that $\left\langle E_{1}, \alpha^{E_{1}^{\prime}}\right\rangle \stackrel{\circ}{9}\left\langle\alpha^{E_{3}}, E_{3}^{\prime}\right\rangle=\left\langle E_{5}, E_{5}^{\prime}\right\rangle$ and $\left\langle E_{2}, \alpha^{E_{2}^{\prime}}\right\rangle \stackrel{\circ}{9}\left\langle\alpha^{E_{4}}, E_{4}^{\prime}\right\rangle=\left\langle E_{6}, E_{6}^{\prime}\right\rangle$, where $\left\langle E_{5}, E_{5}^{\prime}\right\rangle=\left\langle E_{1}, E_{1}^{\prime}\right\rangle \circ\left\langle E_{3}, E_{3}^{\prime}\right\rangle$ and $\left\langle E_{6}, E_{6}^{\prime}\right\rangle=\left\langle E_{2}, E_{2}^{\prime}\right\rangle \circ \stackrel{\circ}{\circ}\left\langle E_{4}, E_{4}^{\prime}\right\rangle$. Therefore, we are required to prove that $\left\langle E_{5}, E_{5}^{\prime}\right\rangle \leqslant\left\langle E_{6}, E_{6}^{\prime}\right\rangle$. But the result follows immediately by the induction hypothesis on $\left\langle E_{1}, E_{1}^{\prime}\right\rangle \leqslant\left\langle E_{2}, E_{2}^{\prime}\right\rangle$ and $\left\langle E_{3}, E_{3}^{\prime}\right\rangle \leqslant$ $\left\langle E_{4}, E_{4}^{\prime}\right\rangle$.

Case $\left(\left[\alpha_{3}\right]-\varepsilon_{1}=\left\langle E_{1}, E_{1}^{\prime}\right\rangle, \varepsilon_{2}=\left\langle E_{2}, E_{2}^{\prime}\right\rangle, \varepsilon_{3}=\left\langle E_{3}, \alpha^{E_{3}^{\prime}}\right\rangle, \varepsilon_{4}=\left\langle E_{4}, \alpha^{E_{4}^{\prime}}\right\rangle\right)$. By the definition of \leqslant, we know that $\left\langle E_{1}, E_{1}^{\prime}\right\rangle \leqslant\left\langle E_{2}, E_{2}^{\prime}\right\rangle$ and $\left\langle E_{3}, E_{3}^{\prime}\right\rangle \leqslant\left\langle E_{4}, E_{4}^{\prime}\right\rangle$. By the definition of transitivity we know that $\left\langle E_{1}, E_{1}^{\prime}\right\rangle \stackrel{\circ}{9}\left\langle E_{3}, \alpha^{E_{3}^{\prime}}\right\rangle=\left\langle E_{5}, \alpha^{E_{5}^{\prime}}\right\rangle$ and $\left\langle E_{2}, E_{2}^{\prime}\right\rangle \stackrel{\circ}{9}\left\langle E_{4}, \alpha^{E_{4}^{\prime}}\right\rangle=\left\langle E_{6}, \alpha^{E_{6}^{\prime}}\right\rangle$, where $\left\langle E_{5}, E_{5}^{\prime}\right\rangle=\left\langle E_{1}, E_{1}^{\prime}\right\rangle \stackrel{\circ}{\circ}\left\langle E_{3}, E_{3}^{\prime}\right\rangle$ and $\left\langle E_{6}, E_{6}^{\prime}\right\rangle=\left\langle E_{2}, E_{2}^{\prime}\right\rangle \circ \circ\left\langle E_{4}, E_{4}^{\prime}\right\rangle$. Therefore, we are required to prove that $\left\langle E_{5}, \alpha^{E_{5}^{\prime}}\right\rangle \leqslant\left\langle E_{6}, \alpha^{E_{6}^{\prime}}\right\rangle$, or what is the same $\left\langle E_{5}, E_{5}^{\prime}\right\rangle \leqslant\left\langle E_{6}, E_{6}^{\prime}\right\rangle$. But the result follows immediately by the induction hypothesis on $\left\langle E_{1}, E_{1}^{\prime}\right\rangle \leqslant\left\langle E_{2}, E_{2}^{\prime}\right\rangle$ and $\left\langle E_{3}, E_{3}^{\prime}\right\rangle \leqslant\left\langle E_{4}, E_{4}^{\prime}\right\rangle$.

Case $\left([\forall]-\varepsilon_{i}=\left\langle\forall X . E_{i}, \forall X . E_{i}^{\prime}\right\rangle\right)$. By the definition of \leqslant, we know that $\left\langle E_{1}, E_{1}^{\prime}\right\rangle \leqslant\left\langle E_{2}, E_{2}^{\prime}\right\rangle$ and $\left\langle E_{3}, E_{3}^{\prime}\right\rangle \leqslant\left\langle E_{4}, E_{4}^{\prime}\right\rangle$. By the definition of transitivity we know that $\left\langle\forall X . E_{1}, \forall X . E_{1}^{\prime}\right\rangle \stackrel{\circ}{\circ}\left\langle\forall X . E_{3}, \forall X . E_{3}^{\prime}\right\rangle=$ $\left\langle\forall X . E_{5}, \forall X . E_{5}^{\prime}\right\rangle$ and $\left\langle\forall X . E_{2}, \forall X . E_{2}^{\prime}\right\rangle \circ\left\langle\forall X . E_{4}, \forall X . E_{4}^{\prime}\right\rangle=\left\langle\forall X . E_{6}, \forall X . E_{6}^{\prime}\right\rangle$, where $\left\langle E_{5}, E_{5}^{\prime}\right\rangle=\left\langle E_{1}, E_{1}^{\prime}\right\rangle$; $\left\langle E_{3}, E_{3}^{\prime}\right\rangle$ and $\left\langle E_{6}, E_{6}^{\prime}\right\rangle=\left\langle E_{2}, E_{2}^{\prime}\right\rangle \stackrel{\circ}{\circ}\left\langle E_{4}, E_{4}^{\prime}\right\rangle$. Therefore, we are required to prove that $\left\langle E_{5}, E_{5}^{\prime}\right\rangle \leqslant$ $\left\langle E_{6}, E_{6}^{\prime}\right\rangle$. But the result follows immediately by the induction hypothesis on $\left\langle E_{1}, E_{1}^{\prime}\right\rangle \leqslant\left\langle E_{2}, E_{2}^{\prime}\right\rangle$ and $\left\langle E_{3}, E_{3}^{\prime}\right\rangle \leqslant\left\langle E_{4}, E_{4}^{\prime}\right\rangle$.

Case $\left([\rightarrow]-\varepsilon_{i}=\left\langle E_{1 i} \rightarrow E_{2 i}, E_{1 i}^{\prime} \rightarrow E_{2 i}^{\prime}\right\rangle\right)$. By the definition of \leqslant, we know that $\left\langle E_{11}, E_{11}^{\prime}\right\rangle \leqslant$ $\left\langle E_{12}, E_{12}^{\prime}\right\rangle,\left\langle E_{13}, E_{13}^{\prime}\right\rangle \leqslant\left\langle E_{14}, E_{14}^{\prime}\right\rangle,\left\langle E_{21}, E_{21}^{\prime}\right\rangle \leqslant\left\langle E_{22}, E_{22}^{\prime}\right\rangle$ and $\left\langle E_{23}, E_{23}^{\prime}\right\rangle \leqslant\left\langle E_{24}, E_{24}^{\prime}\right\rangle$. By the definition of transitivity we know that $\left\langle E_{11} \rightarrow E_{21}, E_{11}^{\prime} \rightarrow E_{21}^{\prime}\right\rangle \circ\left\langle E_{13} \rightarrow E_{23}, E_{13}^{\prime} \rightarrow E_{23}^{\prime}\right\rangle=\left\langle E_{15} \rightarrow E_{25}, E_{15}^{\prime} \rightarrow E_{25}^{\prime}\right\rangle$ and $\left\langle E_{12} \rightarrow E_{22}, E_{12}^{\prime} \rightarrow E_{22}^{\prime}\right\rangle \stackrel{\circ}{9}\left\langle E_{14} \rightarrow E_{24}, E_{14}^{\prime} \rightarrow E_{24}^{\prime}\right\rangle=\left\langle E_{16} \rightarrow E_{26}, E_{16}^{\prime} \rightarrow E_{26}^{\prime}\right\rangle$, where $\left\langle E_{15}^{\prime}, E_{15}\right\rangle=$ $\left.\left.\left\langle E_{13}^{\prime}, E_{13}\right\rangle \circ \stackrel{E_{11}^{\prime}}{\prime}, E_{11}\right\rangle,\left\langle E_{25}, E_{25}^{\prime}\right\rangle=\left\langle E_{21}, E_{21}^{\prime}\right\rangle \circ \stackrel{E_{24}}{ }, E_{24}^{\prime}\right\rangle,\left\langle E_{16}, E_{16}^{\prime}\right\rangle=\left\langle E_{41}^{\prime}, E_{41}\right\rangle \circ\left\langle E_{12}^{\prime}, E_{12}\right\rangle$ and $\left\langle E_{26}, E_{26}^{\prime}\right\rangle=\left\langle E_{22}, E_{22}^{\prime}\right\rangle \stackrel{\circ}{\circ}\left\langle E_{24}, E_{24}^{\prime}\right\rangle$.

Therefore, we are required to prove that

$$
\left\langle E_{15} \rightarrow E_{25}, E_{15}^{\prime} \rightarrow E_{25}^{\prime}\right\rangle \leqslant\left\langle E_{16} \rightarrow E_{26}, E_{16}^{\prime} \rightarrow E_{26}^{\prime}\right\rangle
$$

or what is the same

$$
\left\langle E_{13}^{\prime}, E_{13}\right\rangle \circ\left\langle E_{11}^{\prime}, E_{11}\right\rangle=\left\langle E_{15}^{\prime}, E_{15}\right\rangle \leqslant\left\langle E_{16}^{\prime}, E_{16}\right\rangle=\left\langle E_{41}^{\prime}, E_{41}\right\rangle \circ\left\langle E_{12}^{\prime}, E_{12}\right\rangle
$$

and

$$
\left\langle E_{21}, E_{21}^{\prime}\right\rangle \circ\left\langle E_{23}, E_{23}^{\prime}\right\rangle=\left\langle E_{25}, E_{25}^{\prime}\right\rangle \leqslant\left\langle E_{26}, E_{26}^{\prime}\right\rangle=\left\langle E_{22}, E_{22}^{\prime}\right\rangle \circ\left\langle E_{24}, E_{24}^{\prime}\right\rangle
$$

But the result follows immediately by the induction hypothesis on $\left\langle E_{11}, E_{11}^{\prime}\right\rangle \leqslant\left\langle E_{12}, E_{12}^{\prime}\right\rangle$ and $\left\langle E_{13}, E_{13}^{\prime}\right\rangle \leqslant\left\langle E_{14}, E_{14}^{\prime}\right\rangle,\left\langle E_{21}, E_{21}^{\prime}\right\rangle \leqslant\left\langle E_{22}, E_{22}^{\prime}\right\rangle$ and $\left\langle E_{23}, E_{23}^{\prime}\right\rangle \leqslant\left\langle E_{24}, E_{24}^{\prime}\right\rangle$.
Case $\left([\times]-\varepsilon_{i}=\left\langle E_{1 i} \times E_{2 i}, E_{1 i}^{\prime} \times E_{2 i}^{\prime}\right\rangle\right)$. Similar to Case $[\rightarrow]$.
Case $\left(\left[?_{1}\right]-\varepsilon_{1}=\langle ?, ?\rangle\right)$. Since $\varepsilon_{1} \leqslant \varepsilon_{2}$, we know that $\varepsilon_{2}=\langle ?$, ? \rangle. Therefore, by the transitivity rules, we know that $\varepsilon_{1} \circ \varepsilon_{3}=\varepsilon_{3}$ and $\varepsilon_{2} \circ \varepsilon_{4}=\varepsilon_{4}$. Thus, we are required to prove that $\varepsilon_{3} \leqslant \varepsilon_{4}$, but the result follows immediately by premise.

Case $\left(\left[?_{2}\right]-\varepsilon_{2}=\langle ?, ?\rangle\right)$. The proof follows from some of the previous cases.

- $\left(\varepsilon_{1}=\langle ?, ?\rangle\right)$. The results follows immediately, since it was discussed in Case [? $\left.?_{1}\right]$.
- $\left(\varepsilon_{3}=\langle ?, ?\rangle\right)$. The results follows immediately, since it was discussed in Case [?3].
- $\left(\varepsilon_{4}=\langle ?, ?\rangle\right)$. The results follows immediately, since $\varepsilon_{1} \circ \varepsilon_{3} \leqslant\langle ?, ?\rangle \circ\langle ?, ?\rangle=\langle ?, ?\rangle$.
- $\left(\varepsilon_{i}=\langle B, B\rangle\right)$. The results follows immediately, since $\langle B, B\rangle \circ\langle B, B\rangle \leqslant\langle$?, ? $\rangle \stackrel{\circ}{\circ}\langle B, B\rangle$.
- $\left(\varepsilon_{i}=\langle X, X\rangle\right)$. This case is not possible, since $\langle X, X\rangle \nless\langle ?, ?\rangle$.
- Case $\left[\alpha_{1}\right]\left(\varepsilon_{1}=\left\langle E_{1}, \alpha^{E_{1}^{\prime}}\right\rangle, \varepsilon_{2}=\langle ?, ?\rangle, \varepsilon_{3}=\left\langle\alpha^{E_{3}}, E_{3}^{\prime}\right\rangle, \varepsilon_{4}=\left\langle\alpha_{4}^{E}, E_{4}^{\prime}\right\rangle\right)$. This case is not possible, since $\left\langle\alpha^{E_{1}}, E_{1}^{\prime}\right\rangle \nless\langle ?, ?\rangle$.
- Case $\left[\alpha_{2}\right]\left(\varepsilon_{1}=\left\langle E_{1}, \alpha^{E_{1}^{\prime}}\right\rangle, \varepsilon_{2}=\langle ?, ?\rangle, \varepsilon_{3}=\left\langle\alpha^{E_{3}}, E_{3}^{\prime}\right\rangle, \varepsilon_{4}=\left\langle\alpha_{4}^{E}, E_{4}^{\prime}\right\rangle\right)$. This case is not possible, since $\left\langle E_{1}, \alpha^{E_{1}^{\prime}}\right\rangle \nless\langle ?, ?\rangle$.
- Case $\left[\alpha_{3}\right]\left(\varepsilon_{1}=\left\langle E_{1}, E_{1}^{\prime}\right\rangle, \varepsilon_{2}=\langle ?, ?\rangle, \varepsilon_{3}=\left\langle E_{3}, \alpha^{E_{3}^{\prime}}\right\rangle, \varepsilon_{4}=\left\langle E_{4}, \alpha^{E_{4}^{\prime}}\right\rangle\right)$. This case was discussed in Case [α_{3}] above.
- $\left(\varepsilon_{1}=\left\langle\forall X . E_{1}, \forall X . E_{1}^{\prime}\right\rangle\right)$. This case is not possible, since $\left\langle\forall X . E_{1}, \forall X . E_{1}^{\prime}\right\rangle \nless\langle ?, ?\rangle$.
- $\left(\varepsilon_{i}=\left\langle E_{1 i} \rightarrow E_{2 i}, E_{1 i}^{\prime} \rightarrow E_{2 i}^{\prime}\right\rangle\right)$. We have to prove that

$$
\left\langle E_{11} \rightarrow E_{21}, E_{11}^{\prime} \rightarrow E_{21}^{\prime}\right\rangle \circ \stackrel{\circ}{9}\left\langle E_{13} \rightarrow E_{23}, E_{13}^{\prime} \rightarrow E_{23}^{\prime}\right\rangle \leqslant\langle ?, ?\rangle \circ \stackrel{\circ}{\circ}\left\langle E_{14} \rightarrow E_{24}, E_{14}^{\prime} \rightarrow E_{24}^{\prime}\right\rangle
$$

or what is the same

$$
\left\langle E_{11} \rightarrow E_{21}, E_{11}^{\prime} \rightarrow E_{21}^{\prime}\right\rangle \stackrel{\circ}{9}\left\langle E_{13} \rightarrow E_{23}, E_{13}^{\prime} \rightarrow E_{23}^{\prime}\right\rangle \leqslant\langle ? \rightarrow ?, ? \rightarrow ?\rangle \%\left\langle E_{14} \rightarrow E_{24}, E_{14}^{\prime} \rightarrow E_{24}^{\prime}\right\rangle
$$

But, this case was discussed in Case $[\rightarrow]$ above.

- $\left(\varepsilon_{i}=\left\langle E_{1 i} \times E_{2 i}, E_{1 i}^{\prime} \times E_{2 i}^{\prime}\right\rangle\right)$. We have to prove that

$$
\left\langle E_{11} \times E_{21}, E_{11}^{\prime} \times E_{21}^{\prime}\right\rangle \stackrel{\circ}{9}\left\langle E_{13} \times E_{23}, E_{13}^{\prime} \times E_{23}^{\prime}\right\rangle \leqslant\langle ?, ?\rangle \circ \stackrel{\circ}{\circ}\left\langle E_{14} \times E_{24}, E_{14}^{\prime} \times E_{24}^{\prime}\right\rangle
$$

or what is the same:

$$
\left\langle E_{11} \times E_{21}, E_{11}^{\prime} \times E_{21}^{\prime}\right\rangle \circ \stackrel{\circ}{\circ}\left\langle E_{13} \times E_{23}, E_{13}^{\prime} \times E_{23}^{\prime}\right\rangle \leqslant\langle ? \times ?, ? \times ?\rangle \circ \stackrel{\circ}{\circ}\left\langle E_{14} \times E_{24}, E_{14}^{\prime} \times E_{24}^{\prime}\right\rangle
$$

This case was discussed in Case $[\times]$.
Case $\left(\left[?_{3}\right]-\varepsilon_{3}=\langle\right.$?, ? $\left.\rangle\right)$. Since $\varepsilon_{3} \leqslant \varepsilon_{4}$, we know that $\varepsilon_{4}=\langle ?, ?\rangle$. Therefore, by the transitivity rules, we know that $\varepsilon_{1}{ }_{9} \varepsilon_{3}=\varepsilon_{1}$ and $\varepsilon_{2}{ }_{g} \varepsilon_{4}=\varepsilon_{2}$. Thus, we are required to prove that $\varepsilon_{1} \leqslant \varepsilon_{2}$, but the result follows immediately by premise.

Case $\left(\left[?_{4}\right]-\varepsilon_{4}=\langle ?, ?\rangle\right)$. The proof follows from some of the previous cases.

- $\left(\varepsilon_{1}=\langle ?, ?\rangle\right)$. The results follows immediately, since it was discussed in Case [? $\left.{ }_{1}\right]$.
- $\left(\varepsilon_{2}=\langle\right.$?, ? $\left.\rangle\right)$. The results follows immediately, since $\varepsilon_{1} \circ \varepsilon_{3} \leqslant\langle$?, ? $\rangle \stackrel{\circ}{\circ}\langle ?$, ? $\rangle=\langle$?, ? \rangle.
- $\left(\varepsilon_{3}=\langle ?, ?\rangle\right)$. The results follows immediately, since it was discussed in Case [? $?_{3}$].
- $\left(\varepsilon_{i}=\langle B, B\rangle\right)$. The results follows immediately, since $\langle B, B\rangle \circ \stackrel{\circ}{\circ}\langle B, B\rangle \leqslant\langle B, B\rangle \circ\langle$?, ? \rangle.
- $\left(\varepsilon_{i}=\langle X, X\rangle\right)$. This case is not possible, since $\langle X, X\rangle \nless\langle ?, ?\rangle$.
- Case $\left[\alpha_{1}\right]\left(\varepsilon_{1}=\left\langle\alpha^{E_{1}}, E_{1}^{\prime}\right\rangle, \varepsilon_{2}=\left\langle\alpha^{E_{2}}, E_{2}^{\prime}\right\rangle, \varepsilon_{3}=\left\langle E_{3}, E_{3}^{\prime}\right\rangle, \varepsilon_{4}=\langle ?, ?\rangle\right)$. This case was discussed in Case $\left[\alpha_{1}\right]$ above.
- Case $\left[\alpha_{2}\right]\left(\varepsilon_{1}=\left\langle E_{1}, \alpha^{E_{1}^{\prime}}\right\rangle, \varepsilon_{2}=\left\langle E_{2}, \alpha^{E_{2}^{\prime}}\right\rangle, \varepsilon_{3}=\left\langle\alpha^{E_{3}}, E_{3}^{\prime}\right\rangle, \varepsilon_{4}=\langle\right.$?, ? $\left.\rangle\right)$. This case is not possible, since $\left\langle E_{3}, \alpha^{E_{3}^{\prime}}\right\rangle \nless\langle ?, ?\rangle$.
- Case $\left[\alpha_{3}\right]\left(\varepsilon_{1}=\left\langle E_{1}, E_{1}^{\prime}\right\rangle, \varepsilon_{2}=\left\langle E_{2}, E_{2}^{\prime}\right\rangle, \varepsilon_{3}=\left\langle E_{3}, \alpha^{E_{3}^{\prime}}\right\rangle, \varepsilon_{4}=\langle ?, ?\rangle\right)$. This case is not possible, since $\left\langle E_{3}, \alpha^{E_{3}^{\prime}}\right\rangle \nless\langle ?, ?\rangle$.
- $\left(\varepsilon_{1}=\left\langle\forall X . E_{1}, \forall X . E_{1}^{\prime}\right\rangle\right)$. This case is not possible, since $\left\langle\forall X . E_{1}, \forall X . E_{1}^{\prime}\right\rangle \nless\langle ?, ?\rangle$.
- $\left(\varepsilon_{i}=\left\langle E_{1 i} \rightarrow E_{2 i}, E_{1 i}^{\prime} \rightarrow E_{2 i}^{\prime}\right\rangle\right)$. We have to prove that

$$
\left\langle E_{11} \rightarrow E_{21}, E_{11}^{\prime} \rightarrow E_{21}^{\prime}\right\rangle \stackrel{\circ}{\circ}\left\langle E_{13} \rightarrow E_{23}, E_{13}^{\prime} \rightarrow E_{23}^{\prime}\right\rangle \leqslant\left\langle E_{14} \rightarrow E_{24}, E_{14}^{\prime} \rightarrow E_{24}^{\prime}\right\rangle \circ \stackrel{\circ}{\circ}\langle, ?\rangle
$$

or what is the same

$$
\left\langle E_{11} \rightarrow E_{21}, E_{11}^{\prime} \rightarrow E_{21}^{\prime}\right\rangle \stackrel{\circ}{9}\left\langle E_{13} \rightarrow E_{23}, E_{13}^{\prime} \rightarrow E_{23}^{\prime}\right\rangle \leqslant\left\langle E_{14} \rightarrow E_{24}, E_{14}^{\prime} \rightarrow E_{24}^{\prime}\right\rangle \circ\langle ? \rightarrow ?, ? \rightarrow ?\rangle
$$

But, this case was discussed in Case [\rightarrow] above.

- $\left(\varepsilon_{i}=\left\langle E_{1 i} \times E_{2 i}, E_{1 i}^{\prime} \times E_{2 i}^{\prime}\right\rangle\right)$. We have to prove that

$$
\left\langle E_{11} \times E_{21}, E_{11}^{\prime} \times E_{21}^{\prime}\right\rangle \circ \stackrel{\circ}{9}\left\langle E_{13} \times E_{23}, E_{13}^{\prime} \times E_{23}^{\prime}\right\rangle \leqslant\left\langle E_{14} \times E_{24}, E_{14}^{\prime} \times E_{24}^{\prime}\right\rangle \circ ;\langle ?, ?\rangle
$$

or what is the same:

$$
\left\langle E_{11} \times E_{21}, E_{11}^{\prime} \times E_{21}^{\prime}\right\rangle \circ \stackrel{\circ}{\circ}\left\langle E_{13} \times E_{23}, E_{13}^{\prime} \times E_{23}^{\prime}\right\rangle \leqslant\left\langle E_{14} \times E_{24}, E_{14}^{\prime} \times E_{24}^{\prime}\right\rangle \circ\langle ? \times ?, ? \times ?\rangle
$$

This case was discussed in Case [\times].

Definition 5.1 (Store Precision). $\Xi_{1} \leqslant \Xi_{2} \Longleftrightarrow \Xi_{1}=\Xi_{1}^{\prime}, \alpha:=G_{1}, \Xi_{2}=\Xi_{2}^{\prime}, \alpha:=G_{2}, G_{1} \leqslant G_{2}$ and $\Xi_{1}^{\prime} \leqslant \Xi_{2}^{\prime}$, or $\Xi_{1}=\Xi_{2}=$.

Definition 5.2 (Typing Environment Precision). $\Gamma_{1} \sqsubseteq \Gamma_{2} \Longleftrightarrow \Gamma_{1}=\Gamma_{1}^{\prime}, x: G_{1}, \Gamma_{2}=\Gamma_{2}^{\prime}, x: G_{2}$, $G_{1} \leqslant G_{2}$ and $\Gamma_{1}^{\prime} \sqsubseteq \Gamma_{2}^{\prime}$, or $\Gamma_{1}=\Gamma_{2}=\cdot$

Proposition 5.3 (Lift Environment Precision). If $G_{1} \leqslant G_{2}$ and $\Xi_{1} \leqslant \Xi_{2}$, then $\hat{G_{1}} \leqslant \hat{G_{2}}$, where $\hat{G_{1}}=\operatorname{lift}_{\Xi_{1}}\left(G_{1}\right)$ and $\hat{G}_{2}=\operatorname{lift}_{\Xi_{2}}\left(G_{2}\right)$.

Proof. Remember that

$$
\operatorname{lift}_{\Xi}(G)= \begin{cases}\operatorname{lift}_{\Xi}\left(G_{1}\right) \rightarrow \operatorname{lift}_{\Xi}\left(G_{2}\right) & G=G_{1} \rightarrow G_{2} \\ \forall X . \operatorname{lift}_{\Xi}\left(G_{1}\right) & G=\forall X . G_{1} \\ \operatorname{lift}_{\Xi}\left(G_{1}\right) \times \operatorname{lift}_{\Xi}\left(G_{2}\right) & G=G_{1} \times G_{2} \\ \alpha \operatorname{lift}_{\Xi}(\Xi(\alpha)) & G=\alpha \\ G & \text { otherwise }\end{cases}
$$

The prove follows by the definition of $\hat{G}_{1}=\operatorname{lift}_{\Xi_{1}}\left(G_{1}\right)$ and induction on the structure of the type.
Case $\left(G_{i}=B\right)$. The result follows immediately due to $\hat{B}=B \leqslant B=\hat{B}$.
Case $\left(G_{i}=X\right)$. The result follows immediately due to $\hat{X}=X \leqslant X=\hat{X}$.
Case $\left(G_{i}=\alpha\right)$. We are required to prove that $\alpha^{\text {lift } \Xi_{1}}\left(\Xi_{1}(\alpha)\right) \leqslant \alpha^{\text {lift } \Xi_{2}}\left(\Xi_{2}(\alpha)\right)$, or what is the same lift $\Xi_{1}\left(\Xi_{1}(\alpha)\right) \leqslant \operatorname{lift}_{\Xi_{2}}\left(\Xi_{2}(\alpha)\right)$. Note that $\Xi_{1}(\alpha) \leqslant \Xi_{2}(\alpha)$ due to $\Xi_{1} \leqslant \Xi_{2}$. The result follows immediately by the induction hypothesis on $\Xi_{1}(\alpha) \leqslant \Xi_{2}(\alpha)$ and $\Xi_{1} \leqslant \Xi_{2}$.

Case $\left(G_{i}=\forall X . G_{i}^{\prime}\right)$. We know that $G_{1}^{\prime} \leqslant G_{2}^{\prime}$. We are required to prove that $\forall X$.lift $t_{\Xi_{1}}\left(G_{1}^{\prime}\right) \leqslant$ $\forall X$. lift $\Xi_{\Xi_{2}}\left(G_{2}^{\prime}\right)$, or what is the same lift $_{\Xi_{1}}\left(G_{1}^{\prime}\right) \leqslant \operatorname{lift}_{\Xi_{2}}\left(G_{2}^{\prime}\right)$. By the induction hypothesis on $G_{1}^{\prime} \leqslant G_{2}^{\prime}$ and $\Xi_{1} \leqslant \Xi_{2}$ the result follows immediately.

Case $\left(G_{i}=G_{i}^{\prime} \rightarrow G_{i}^{\prime \prime}\right.$). We know that $G_{1}^{\prime} \leqslant G_{2}^{\prime}$ and $G_{1}^{\prime \prime} \leqslant G_{2}^{\prime \prime}$. We are required to prove that $\operatorname{lift}_{\Xi_{1}}\left(G_{1}^{\prime}\right) \rightarrow \operatorname{lift}_{\Xi_{1}}\left(G_{1}^{\prime \prime}\right) \leqslant \operatorname{lift}_{\Xi_{2}}\left(G_{2}^{\prime}\right) \rightarrow$ lift $_{\Xi_{2}}\left(G_{2}^{\prime \prime}\right)$, or what is the same lift $\Xi_{\Xi_{1}}\left(G_{1}^{\prime}\right) \leqslant \operatorname{lift}_{\Xi_{2}}\left(G_{2}^{\prime}\right)$ and $\operatorname{lift}_{\Xi_{1}}\left(G_{1}^{\prime \prime}\right) \leqslant \operatorname{lift}_{\Xi_{2}}\left(G_{2}^{\prime \prime}\right)$. By the induction hypothesis on $G_{1}^{\prime} \leqslant G_{2}^{\prime}$ and $G_{1}^{\prime \prime} \leqslant G_{2}^{\prime \prime}$ with $\Xi_{1} \leqslant \Xi_{2}$ the result follows immediately.

Case $\left(G_{i}=G_{i}^{\prime} \times G_{i}^{\prime \prime}\right)$. This case is similar to the function case above.
Case $\left(G_{1}=\right.$?). Then $G_{2}=$?. The result follows immediately due to $\hat{?}=? \leqslant ?=\hat{?}$.
Case ($G_{2}=$?). Note that $\hat{G_{2}}=\hat{?}=$?. Therefore, we are required to prove that $\hat{G_{1}} \leqslant$?.

- Case $\left(G_{1}=B\right)$. The result follows immediately, $\hat{B}=B \leqslant$?
- Case $\left(G_{1}=X\right)$. This case is not possible due to $X \nless$?.
- Case $\left(G_{1}=\alpha\right)$. This case is not possible due to $\alpha \nless$?.
- Case $\left(G_{1}=\forall X . G_{1}^{\prime}\right)$. This case is not possible due to $\forall X . G_{1}^{\prime} \nless$?.
- Case $\left(G_{1}=G_{1}^{\prime} \rightarrow G_{2}^{\prime}\right)$. We are required to prove that $\operatorname{lift}_{\Xi_{1}}\left(G_{1}^{\prime}\right) \rightarrow$ lift $_{\Xi_{2}}\left(G_{2}^{\prime}\right) \leqslant$?, or what is the same lift $\Xi_{\Xi_{1}}\left(G_{1}^{\prime}\right) \rightarrow$ lift $_{\Xi_{2}}\left(G_{2}^{\prime}\right) \leqslant ? \rightarrow$?, which follows similar to the function case above.
- Case $\left(G_{1}=G_{1}^{\prime} \times G_{2}^{\prime}\right)$. We are required to prove that $\operatorname{lift}_{\Xi_{1}}\left(G_{1}^{\prime}\right) \times \operatorname{lift}_{\Xi_{2}}\left(G_{2}^{\prime}\right) \leqslant$?, or what is the same $\operatorname{lift}_{\Xi_{1}}\left(G_{1}^{\prime}\right) \times \operatorname{lift}_{\Xi_{2}}\left(G_{2}^{\prime}\right) \leqslant ? \times$?, which follows similar to the pair case above.

Proposition 5.4 (Unlift Evidence Types Preserves Precision). If $E_{1} \leqslant E_{2}$ then unlift $\left(E_{1}\right) \leqslant$ unlift $\left(E_{2}\right)$.

Proof. Remember that

$$
\operatorname{unlift}(E)= \begin{cases}B & E=B \\ \text { unlift }\left(E_{1}\right) \rightarrow \operatorname{unlift}\left(E_{2}\right) & E=E_{1} \rightarrow E_{2} \\ \forall X . \operatorname{nlift}\left(E_{1}\right) & E=\forall X . E_{1} \\ \text { unlift }\left(E_{1}\right) \times \text { unlift }\left(E_{2}\right) & E=E_{1} \times E_{2} \\ \alpha & E=\alpha^{E_{1}} \\ X & E=X \\ ? & E=?\end{cases}
$$

The prove follows by the definition of $\operatorname{unlift}\left(E_{1}\right)$ and induction on the structure of the type.
Case $\left(G_{i}=B\right)$. The result follows immediately due to unlift $(B)=B \leqslant B=\operatorname{unlift}(B)$.
Case $\left(G_{i}=X\right)$. The result follows immediately due to unlift $(X)=X \leqslant X=u n l i f t(X)$.
Case $\left(G_{i}=\alpha^{E_{i}^{\prime}}\right)$. The result follows immediately due to unlift $\left(\alpha^{E_{1}^{\prime}}\right)=\alpha \leqslant \alpha=\operatorname{unlift}\left(\alpha^{E_{2}^{\prime}}\right)$.
Case ($E_{i}=\forall X . E_{i}^{\prime}$). We know that $E_{1}^{\prime} \leqslant E_{2}^{\prime}$. We are required to prove that $\forall X$.unlift $\left(E_{1}^{\prime}\right) \leqslant$ $\forall X$.unlift $\left(E_{2}^{\prime}\right)$, or what is the same unlift $\left(E_{1}^{\prime}\right) \leqslant \operatorname{unlift}\left(E_{2}^{\prime}\right)$. By the induction hypothesis on $E_{1}^{\prime} \leqslant E_{2}^{\prime}$ the result follows immediately.

Case ($E_{i}=E_{i}^{\prime} \rightarrow E_{i}^{\prime \prime}$). We know that $E_{1}^{\prime} \leqslant E_{2}^{\prime}$ and $E_{1}^{\prime \prime} \leqslant E_{2}^{\prime \prime}$. We are required to prove that $\operatorname{unlift}\left(E_{1}^{\prime}\right) \rightarrow \operatorname{unlift}\left(E_{1}^{\prime \prime}\right) \leqslant \operatorname{unlift}\left(E_{2}^{\prime}\right) \rightarrow \operatorname{unlift}\left(E_{2}^{\prime \prime}\right)$, or what is the same unlift $\left(E_{1}^{\prime}\right) \leqslant \operatorname{unlift}\left(E_{2}^{\prime}\right)$ and unlift $\left(E_{1}^{\prime \prime}\right) \leqslant \operatorname{unlift}\left(E_{2}^{\prime \prime}\right)$. By the induction hypothesis on $E_{1}^{\prime} \leqslant E_{2}^{\prime}$ and $E_{1}^{\prime \prime} \leqslant E_{2}^{\prime \prime}$ the result follows immediately.

Case $\left(E_{i}=E_{i}^{\prime} \times E_{i}^{\prime \prime}\right)$. This case is similar to the function case above.
Case ($E_{1}=$?). Then $E_{2}=$?. The result follows immediately due to unlift(?) $=? \leqslant ?=$ unlift(?).
Case ($E_{2}=$?). Note that $\operatorname{unlift}\left(E_{2}\right)=$ unlift $(?)=$?. Therefore, we are required to prove that unlift $\left(E_{1}\right) \leqslant$?.

- Case $\left(E_{1}=B\right)$. The result follows immediately, unlift $(B)=B \leqslant$?.
- Case $\left(E_{1}=X\right)$. This case is not possible due to $X \not \subset$?.
- Case $\left(E_{1}=\alpha\right)$. This case is not possible due to $\alpha \nless$?.
- Case $\left(E_{1}=\forall X . E_{1}^{\prime}\right)$. This case is not possible due to $\forall X . E_{1}^{\prime} \nless$?.
- Case $\left(E_{1}=E_{1}^{\prime} \rightarrow E_{2}^{\prime}\right)$. We are required to prove that unlift $\left(E_{1}^{\prime}\right) \rightarrow \operatorname{unlift}\left(E_{2}^{\prime}\right) \leqslant$?, or what is the same unlift $\left(E_{1}^{\prime}\right) \rightarrow \operatorname{unlift}\left(E_{2}^{\prime}\right) \leqslant ? \rightarrow$?, which follows similar to the function case above.
- Case $\left(E_{1}=E_{1}^{\prime} \times E_{2}^{\prime}\right)$. We are required to prove that unlift $\left(E_{1}^{\prime}\right) \times \operatorname{unlift}\left(E_{2}^{\prime}\right) \leqslant$?, or what is the same unlift $\left(E_{1}^{\prime}\right) \times$ unlift $\left(E_{2}^{\prime}\right) \leqslant ? \times$?, which follows similar to the pair case above.

Proposition 5.5. If $\varepsilon_{1} \leqslant \varepsilon_{2}, G_{1} \leqslant G_{2}, \Xi_{1} \leqslant \Xi_{2}, \alpha:=G_{1} \in \Xi_{1}, \alpha:=G_{2} \in \Xi_{2}$ and $\varepsilon_{1}\left[\hat{\alpha_{1}} / X\right]$ is defined, then

- $\varepsilon_{1}\left[\hat{\alpha}_{1} / X\right] \leqslant \varepsilon_{2}\left[\hat{\alpha}_{2} / X\right]$.
- $\left\langle E_{1}^{*}\left[\hat{\alpha_{1}} / X\right], E_{1}^{*}\left[\hat{G}_{1} / X\right]\right\rangle \leqslant\left\langle E_{2}^{*}\left[\hat{\alpha_{2}} / X\right], E_{2}^{*}\left[\hat{G}_{2} / X\right]\right\rangle$.
where $E_{1}^{*}=\operatorname{lift} \underline{\Xi}_{1}\left(\operatorname{unlift}\left(\pi_{2}\left(\varepsilon_{1}\right)\right)\right), E_{2}^{*}=\operatorname{lift}_{\Xi_{2}}\left(\operatorname{unlift}\left(\pi_{2}\left(\varepsilon_{2}\right)\right)\right), \hat{\alpha_{1}}=\operatorname{lift}_{\Xi_{1}}\left(\alpha_{1}\right), \hat{\alpha_{2}}=\operatorname{lift}_{\Xi_{2}}\left(\alpha_{2}\right), \hat{G}_{1}=$ $\operatorname{lift}_{\Xi_{1}}\left(G_{1}\right)$ and $\hat{G_{2}}=\operatorname{lift}_{\Xi_{2}}\left(G_{2}\right)$.

Proof. Note that $\hat{\alpha_{1}} \leqslant \hat{\alpha_{2}}$ and $\hat{G_{1}} \leqslant \hat{G}_{2}$ by Proposition 5.3. Suppose that $\varepsilon_{1}=\left\langle E, E^{\prime}\right\rangle$ and $\varepsilon_{2}=\left\langle E^{\prime \prime}, E^{\prime \prime \prime}\right\rangle$. We are required to prove that

$$
\begin{aligned}
\varepsilon_{1}\left[\hat{\alpha_{1}} / X\right] & =\left\langle E\left[\hat{\alpha_{1}} / X\right], E^{\prime}\left[\hat{\alpha_{1}} / X\right]\right\rangle \leqslant\left\langle E^{\prime \prime}\left[\hat{\alpha_{2}} / X\right], E^{\prime \prime \prime}\left[\hat{\alpha_{2}} / X\right]\right\rangle=\varepsilon_{2}\left[\hat{\alpha_{2}} / X\right] \\
\varepsilon_{1}{ }^{*} & =\left\langle E_{1}^{*}\left[\hat{\alpha_{1}} / X\right], E_{1}^{*}\left[\hat{G_{1}} / X\right]\right\rangle \leqslant\left\langle E_{2}^{*}\left[\hat{\alpha_{2}} / X\right], E_{2}^{*}\left[\hat{G_{2}} / X\right]\right\rangle=\varepsilon_{2}{ }^{*}
\end{aligned}
$$

We follow by case analysis on the evidence type, the definition of consistent transitivity for $=$ and the definition of precision.

Case $\left(\varepsilon_{i}=\langle B, B\rangle\right)$. The results follows immediately because $\varepsilon_{1}\left[\hat{\alpha_{1}} / X\right]=\varepsilon_{2}\left[\hat{\alpha_{2}} / X\right]=\varepsilon_{1}{ }^{*}=\varepsilon_{2}{ }^{*}=$ $\langle B, B\rangle$.
Case $\left(\varepsilon_{i}=\langle X, X\rangle\right)$. We are required to prove that $\varepsilon_{1}\left[\hat{\alpha_{1}} / X\right]=\left\langle\hat{\alpha_{1}}, \hat{\alpha_{1}}\right\rangle \leqslant\left\langle\hat{\alpha_{2}}, \hat{\alpha_{2}}\right\rangle=\varepsilon_{2}\left[\hat{\alpha_{2}} / X\right]$, which follows immediately due to $\hat{\alpha_{1}} \leqslant \hat{\alpha_{2}}$. Also, we are required to prove that $\varepsilon_{1}{ }^{*}=\left\langle\hat{\alpha_{1}}, \hat{G}_{1}\right\rangle \leqslant\left\langle\hat{\alpha_{2}}, \hat{G_{2}}\right\rangle=$ $\varepsilon_{2}{ }^{*}$, which follows immediately due to $\hat{\alpha_{1}} \leqslant \hat{\alpha_{2}}$ and $\hat{G_{1}} \leqslant \hat{G_{2}}$.

Case $\left(\varepsilon_{i}=\langle Y, Y\rangle\right)$. The results follows immediately because $\varepsilon_{1}\left[\hat{\alpha_{1}} / X\right]=\varepsilon_{2}\left[\hat{\alpha_{2}} / X\right]=\varepsilon_{1}{ }^{*}=\varepsilon_{2}{ }^{*}=$ $\langle Y, Y\rangle$.
$\operatorname{Case}\left(\varepsilon_{i}=\left\langle\beta^{E_{i}}, E_{i}^{\prime}\right\rangle\right)$. The results follows immediately because $\varepsilon_{1}\left[\hat{\alpha_{1}} / X\right]=\left\langle\beta^{E_{1}}, E_{1}^{\prime}\right\rangle \leqslant\left\langle\beta^{E_{2}}, E_{2}^{\prime}\right\rangle=$ $\varepsilon_{2}\left[\hat{\alpha_{2}} / X\right]$ by premise (note that X can not be free in $\left\langle\beta^{E_{i}}, E_{i}^{\prime}\right\rangle$). Also, we are required to prove that $\varepsilon_{1}{ }^{*} \leqslant \varepsilon_{2}{ }^{*}$, but the result follows immediately by Preposition 5.4 and Proposition 5.3.
Case $\left(\varepsilon_{i}=\left\langle E_{i}, \beta^{E_{i}^{\prime}}\right\rangle\right)$. Similar to the previous case.
$\operatorname{Case}\left(\varepsilon_{i}=\left\langle\forall Y . E_{i}, \forall Y . E_{i}^{\prime}\right\rangle\right)$. By the definition of \leqslant, we know that $\left\langle E_{1}, E_{1}^{\prime}\right\rangle \leqslant\left\langle E_{2}, E_{2}^{\prime}\right\rangle$. We are required to prove that

$$
\varepsilon_{1}\left[\hat{\alpha_{1}} / X\right]=\left\langle\forall Y \cdot E_{1}\left[\hat{\alpha_{1}} / X\right], \forall Y \cdot E_{1}^{\prime}\left[\hat{\alpha_{1}} / X\right]\right\rangle \leqslant\left\langle\forall Y \cdot E_{2}\left[\hat{\alpha_{2}} / X\right], \forall Y \cdot E_{2}^{\prime}\left[\hat{\alpha_{2}} / X\right]\right\rangle=\varepsilon_{2}\left[\hat{\alpha_{2}} / X\right]
$$

or what is the same

$$
\left\langle E_{1}, E_{1}^{\prime}\right\rangle\left[\hat{\alpha}_{1} / X\right]=\left\langle E_{1}\left[\hat{\alpha_{1}} / X\right], E_{1}^{\prime}\left[\hat{\alpha_{1}} / X\right]\right\rangle \leqslant\left\langle E_{2}\left[\hat{\alpha_{2}} / X\right], E_{2}^{\prime}\left[\hat{\alpha_{2}} / X\right]\right\rangle=\left\langle E_{2}, E_{2}^{\prime}\right\rangle\left[\hat{\alpha_{2}} / X\right]
$$

By the induction hypothesis on $\left\langle E_{1}, E_{1}^{\prime}\right\rangle \leqslant\left\langle E_{2}, E_{2}^{\prime}\right\rangle$ the result follows immediately.
Also we are required to prove

$$
\varepsilon_{1}^{*}=\left\langle E_{1}^{*}\left[\hat{\alpha}_{1} / X\right], E_{1}^{*}\left[\hat{G_{1}} / X\right]\right\rangle \leqslant\left\langle E_{2}^{*}\left[\hat{\alpha_{2}} / X\right], E_{2}^{*}\left[\hat{G}_{2} / X\right]\right\rangle=\varepsilon_{2}^{*}
$$

Note that $E_{1}^{*}=\operatorname{lift} \Xi_{\Xi_{1}}\left(\operatorname{unlift}\left(\forall Y . E_{1}^{\prime}\right)\right)=\forall Y . \operatorname{lift} \Xi_{\Xi_{1}}\left(\operatorname{unlift}\left(E_{1}^{\prime}\right)\right)=\forall Y . E_{11}^{*}$ and $E_{2}^{*}=\operatorname{lift} t_{\Xi_{2}}\left(\operatorname{unlift}\left(\forall Y . E_{2}^{\prime}\right)\right)=$ $\forall Y . \operatorname{lift}_{\Xi_{2}}\left(\operatorname{unlift}\left(E_{2}^{\prime}\right)\right)=\forall Y . E_{22}^{*}$. Therefore, we are required to prove

$$
\left\langle E_{11}^{*}\left[\hat{\alpha_{1}} / X\right], E_{11}^{*}\left[\hat{G_{1}} / X\right]\right\rangle \leqslant\left\langle E_{22}^{*}\left[\hat{\alpha_{2}} / X\right], E_{22}^{*}\left[\hat{G_{2}} / X\right]\right\rangle
$$

By the induction hypothesis on $\left\langle E_{1}, E_{1}^{\prime}\right\rangle \leqslant\left\langle E_{2}, E_{2}^{\prime}\right\rangle$ the result follows immediately.
Case $\left(\varepsilon_{i}=\left\langle E_{1 i} \rightarrow E_{2 i}, E_{1 i}^{\prime} \rightarrow E_{2 i}^{\prime}\right\rangle\right)$. By the definition of \leqslant, we know that $\left\langle E_{11}, E_{11}^{\prime}\right\rangle \leqslant\left\langle E_{12}, E_{12}^{\prime}\right\rangle$ and $\left\langle E_{21}, E_{21}^{\prime}\right\rangle \leqslant\left\langle E_{22}, E_{22}^{\prime}\right\rangle$. We are required to prove that

$$
\begin{gathered}
\varepsilon_{1}\left[\hat{\alpha_{1}} / X\right]=\left\langle E_{11}\left[\hat{\alpha_{1}} / X\right] \rightarrow E_{12}\left[\hat{\alpha_{1}} / X\right], E_{11}^{\prime}\left[\hat{\alpha_{1}} / X\right] \rightarrow E_{12}^{\prime}\left[\hat{\alpha_{1}} / X\right]\right\rangle \leqslant \\
\left\langle E_{12}\left[\hat{\alpha_{2}} / X\right] \rightarrow E_{21}\left[\hat{\alpha_{2}} / X\right], E_{12}^{\prime}\left[\hat{\alpha_{2}} / X\right] \rightarrow E_{22}^{\prime}\left[\hat{\alpha_{2}} / X\right]\right\rangle=\varepsilon_{2}\left[\hat{\alpha_{2}} / X\right]
\end{gathered}
$$

or what is the same

$$
\left\langle E_{11}\left[\hat{\alpha}_{1} / X\right], E_{11}^{\prime}\left[\hat{\alpha_{1}} / X\right]\right\rangle \leqslant\left\langle E_{12}\left[\hat{\alpha_{2}} / X\right], E_{12}^{\prime}\left[\hat{\alpha_{2}} / X\right]\right\rangle
$$

and

$$
\left\langle E_{12}\left[\hat{\alpha}_{1} / X\right], E_{12}^{\prime}\left[\hat{\alpha_{1}} / X\right]\right\rangle \leqslant\left\langle E_{21}\left[\hat{\alpha_{2}} / X\right], E_{22}^{\prime}\left[\hat{\alpha_{2}} / X\right]\right\rangle
$$

By the induction hypothesis on $\left\langle E_{11}, E_{11}^{\prime}\right\rangle \leqslant\left\langle E_{12}, E_{12}^{\prime}\right\rangle$ and $\left\langle E_{21}, E_{21}^{\prime}\right\rangle \leqslant\left\langle E_{22}, E_{22}^{\prime}\right\rangle$ the result follows immediately.

Also we are required to prove

$$
\varepsilon_{1}^{*}=\left\langle E_{1}^{*}\left[\hat{\alpha}_{1} / X\right], E_{1}^{*}\left[\hat{G}_{1} / X\right]\right\rangle \leqslant\left\langle E_{2}^{*}\left[\hat{\alpha_{2}} / X\right], E_{2}^{*}\left[\hat{G}_{2} / X\right]\right\rangle=\varepsilon_{2}{ }^{*}
$$

Note that $E_{1}^{*}=\operatorname{lift}_{\Xi_{1}}\left(\operatorname{unlift}\left(E_{11}^{\prime} \rightarrow E_{12}^{\prime}\right)\right)=\operatorname{lift}_{\Xi_{2}}\left(\operatorname{unlift}\left(E_{11}^{\prime}\right)\right) \rightarrow \operatorname{lift}_{\Xi_{2}}\left(\operatorname{unlift}\left(E_{12}^{\prime}\right)\right)=E_{11}^{*} \rightarrow$ E_{12}^{*} and $E_{2}^{*}=\operatorname{lift}_{\Xi_{2}}\left(\operatorname{unlift}\left(E_{21}^{\prime} \rightarrow E_{22}^{\prime}\right)\right)=\operatorname{lift}_{\Xi_{2}}\left(\operatorname{unlift}\left(E_{21}^{\prime}\right)\right) \rightarrow \operatorname{lift}_{\Xi_{2}}\left(\operatorname{unlift}\left(E_{22}^{\prime}\right)\right)=E_{21}^{*} \rightarrow E_{22}^{*}$. Therefore, we are required to prove

$$
\left\langle E_{11}^{*}\left[\hat{\alpha}_{1} / X\right], E_{11}^{*}\left[\hat{G}_{1} / X\right]\right\rangle \leqslant\left\langle E_{21}^{*}\left[\hat{\alpha}_{2} / X\right], E_{21}^{*}\left[\hat{G}_{2} / X\right]\right\rangle
$$

and

$$
\left\langle E_{12}^{*}\left[\hat{\alpha_{1}} / X\right], E_{12}^{*}\left[\hat{G_{1}} / X\right]\right\rangle \leqslant\left\langle E_{22}^{*}\left[\hat{\alpha_{2}} / X\right], E_{22}^{*}\left[\hat{G}_{2} / X\right]\right\rangle
$$

By the induction hypothesis on $\left\langle E_{11}, E_{11}^{\prime}\right\rangle \leqslant\left\langle E_{12}, E_{12}^{\prime}\right\rangle$ and $\left\langle E_{21}, E_{21}^{\prime}\right\rangle \leqslant\left\langle E_{22}, E_{22}^{\prime}\right\rangle$ the result follows immediately.
$\operatorname{Case}\left(\varepsilon_{i}=\left\langle E_{1 i} \times E_{2 i}, E_{1 i}^{\prime} \times E_{2 i}^{\prime}\right\rangle\right)$. Similar to the function case.
Case $\left(\varepsilon_{1}=\langle\right.$?, ? $\left.\rangle\right)$. Note that if $\varepsilon_{1}=\langle$?, ? \rangle then $\varepsilon_{2}=\langle ?, ?\rangle$. Therefore, the result follows immediately because $\varepsilon_{1}\left[\hat{\alpha}_{1}\right]=\varepsilon_{2}\left[\hat{\alpha}_{2}\right]=\varepsilon_{1}{ }^{*}=\varepsilon_{2}{ }^{*}=\langle ?, ?\rangle$. This case is trivial,

Case $\left(\varepsilon_{2}=\langle ?, ?\rangle\right)$. Note that $\varepsilon_{2}\left[\hat{\alpha}_{2}\right]=\varepsilon_{2}{ }^{*}=\langle ?, ?\rangle$. Therefore, we are required to prove that $\varepsilon_{1}\left[\hat{\alpha}_{1}\right] \leqslant\langle ?, ?\rangle$ and $\varepsilon_{1}{ }^{*} \leqslant\langle ?, ?\rangle$.

- Case $\left(\varepsilon_{1}=\langle B, B\rangle\right)$. The result follows immediately, $\varepsilon_{1}\left[\hat{\alpha_{1}} / X\right]=\varepsilon_{1}{ }^{*}=\langle B, B\rangle \leqslant\langle$?, ? \rangle.
- Case $\left(\varepsilon_{1}=\langle X, X\rangle\right)$. This case is not possible due to $\langle X, X\rangle \nless\langle$?, ? \rangle.
- Case $\left(\varepsilon_{1}=\left\langle\alpha^{E_{1}}, E_{1}^{\prime}\right\rangle\right)$. This case is not possible due to $\left\langle\alpha^{E_{1}}, E_{1}^{\prime}\right\rangle \nless\langle$?, ? \rangle.
- Case $\left(\varepsilon_{1}=\left\langle E_{1}, \alpha^{E_{1}^{\prime}}\right\rangle\right)$. This case is not possible due to $\left\langle E_{1}, \alpha^{E_{1}^{\prime}}\right\rangle \nless\langle$?, ? \rangle.
- Case $\left(\varepsilon_{1}=\left\langle\forall Y . E_{1}, \forall Y . E_{1}^{\prime}\right\rangle\right)$. This case is not possible due to $\left\langle\forall Y . E_{1}, \forall Y . E_{1}^{\prime}\right\rangle \nless\langle ?, ?\rangle$.
- Case $\left(\varepsilon_{1}=\left\langle E_{11} \rightarrow E_{12}, E_{11}^{\prime} \rightarrow E_{12}^{\prime}\right\rangle\right)$. We are required to prove that $\varepsilon_{1}\left[\hat{\alpha}_{1}\right] \leqslant\langle ?$, ? \rangle and $\varepsilon_{1}^{*} \leqslant$ $\langle ?, ?\rangle$, or what is the same $\varepsilon_{1}\left[\hat{\alpha}_{1}\right] \leqslant\langle ? \rightarrow ?, ? \rightarrow ?\rangle$ and $\varepsilon_{1}{ }^{*} \leqslant\langle ? \rightarrow ?, ? \rightarrow ?\rangle$, which follows similar to the function case above.
- Case $\left(\varepsilon_{1}=\left\langle E_{11} \times E_{12}, E_{11}^{\prime} \times E_{12}^{\prime}\right\rangle\right)$. We are required to prove that $\varepsilon_{1}\left[\hat{\alpha}_{1}\right] \leqslant\langle ?, ?\rangle$ and $\varepsilon_{1}{ }^{*} \leqslant\langle ?$, ? \rangle, or what is the same $\varepsilon_{1}\left[\hat{\alpha}_{1}\right] \leqslant\langle ? \times ?, ? \times ?\rangle$ and $\varepsilon_{1}{ }^{*} \leqslant\langle ? \times ?, ? \times ?\rangle$, which follows similar to the pair case above.

Proposition 5.6. If $\varepsilon_{1} \sqsubseteq \varepsilon_{2}, G_{1} \leqslant G_{2}, \Xi_{1} \leqslant \Xi_{2}, \alpha:=G_{1} \in \Xi_{1}, \alpha:=G_{2} \in \Xi_{2}$ and $\varepsilon_{1}\left[\hat{\alpha_{1}} / X\right]$ is defined, then $\varepsilon_{1}\left[\hat{\alpha_{1}} / X\right] \sqsubseteq \varepsilon_{2}\left[\hat{\alpha_{2}} / X\right]$, where $\hat{\alpha_{1}}=\operatorname{lift}_{\Xi_{1}}(\alpha)$ and $\hat{\alpha_{2}}=\operatorname{lift}_{\Xi_{2}}(\alpha)$.

Proof. Similar to Proposition 5.5.

Proposition 5.7 (Monotonicity of Evidence Instantiation). If $\varepsilon_{1} \leqslant \varepsilon_{2}, G_{1} \leqslant G_{2}, \Xi_{1} \leqslant \Xi_{2}$, $\alpha:=G_{1} \in \Xi_{1}, \alpha:=G_{2} \in \Xi_{2}$ and $\varepsilon_{1}\left[\hat{\alpha_{1}}\right]$ is defined, then

- $\hat{\alpha_{1}} \leqslant \hat{\alpha_{2}}$.
- $\varepsilon_{1}\left[\hat{\alpha}_{1}\right] \leqslant \varepsilon_{2}\left[\hat{\alpha}_{2}\right]$.
- $\varepsilon_{1 \text { out }} \leqslant \varepsilon_{2 \text { out }}$.
where $\hat{\alpha_{1}}=\operatorname{lift}_{\Xi_{1}}(\alpha)$ and $\hat{\alpha_{2}}=\operatorname{lift}_{\Xi_{2}}(\alpha)$.
Proof. This result $\hat{\alpha_{1}} \leqslant \hat{\alpha_{2}}$ follows immediately by the Proposition 5.3.
Remember that

$$
\varepsilon_{\text {out }} \triangleq\left\langle E_{*}\left[\alpha^{E}\right], E_{*}\left[E^{\prime}\right]\right\rangle \quad \text { where } E_{*}=\operatorname{lift}_{\Xi}\left(\operatorname{unlift}\left(\pi_{2}(\varepsilon)\right)\right), \alpha^{E}=\operatorname{lift}_{\Xi^{\prime}}(\alpha), E^{\prime}=\operatorname{lift}_{\Xi}\left(G^{\prime}\right)
$$

Note that $\varepsilon_{1}\left[\hat{\alpha_{1}}\right]$ only succeed if $\varepsilon_{1}=\left\langle\forall X . E, \forall X . E^{\prime}\right\rangle$. Since $\varepsilon_{1} \leqslant \varepsilon_{2}$ and $\varepsilon_{1}=\left\langle\forall X . E, \forall X . E^{\prime}\right\rangle$, then $\varepsilon_{2}=\left\langle\forall X . E^{\prime \prime}, \forall X . E^{\prime \prime \prime}\right\rangle$. Let suppose that $\varepsilon_{1}^{\prime}=\left\langle E, E^{\prime}\right\rangle$ and $\varepsilon_{2}^{\prime}=\left\langle E^{\prime \prime}, E^{\prime \prime \prime}\right\rangle$. Then we are required to prove that

$$
\begin{aligned}
\varepsilon_{1}\left[\hat{\alpha_{1}}\right]=\varepsilon_{1}^{\prime}\left[\hat{\alpha_{1}} / X\right] & =\left\langle E\left[\hat{\alpha_{1}} / X\right], E^{\prime}\left[\hat{\alpha_{1}} / X\right]\right\rangle \leqslant\left\langle E^{\prime \prime}\left[\hat{\alpha_{2}} / X\right], E^{\prime \prime \prime}\left[\hat{\alpha_{2}} / X\right]\right\rangle=\varepsilon_{2}^{\prime}\left[\hat{\alpha_{2}} / X\right]=\varepsilon_{2}\left[\hat{\alpha_{2}}\right] \\
\varepsilon_{1 \text { out }} & =\left\langle E_{1}^{*}\left[\hat{\alpha_{1}} / X\right], E_{1}^{*}\left[\hat{G_{1}} / X\right]\right\rangle \leqslant\left\langle E_{2}^{*}\left[\hat{\alpha_{2}} / X\right], E_{2}^{*}\left[\hat{G_{2}} / X\right]\right\rangle=\varepsilon_{2 \text { out }}
\end{aligned}
$$

where $E_{1}^{*}=\operatorname{lift}_{\Xi_{1}}\left(\operatorname{unlift}\left(E^{\prime}\right)\right), E_{2}^{*}=\operatorname{lift}_{\Xi_{2}}\left(\operatorname{unlift}\left(E^{\prime \prime \prime}\right)\right), \hat{G_{1}}=\operatorname{lift}_{\Xi_{1}}\left(G_{1}\right)$ and $\hat{G}_{2}=\operatorname{lift}_{\Xi_{2}}\left(G_{2}\right)$.
By the Proposition 5.5 the result follows immediately.
Proposition 5.8. If $G_{1}^{*} \sqsubseteq G_{2}^{*}$ and $G_{1}^{\prime} \sqsubseteq G_{2}^{\prime}$ then $G_{1}^{*}\left[G_{1}^{\prime} / X\right] \sqsubseteq G_{2}^{*}\left[G_{2}^{\prime} / X\right]$.
Proof. Follow by induction on $G_{1}^{*} \sqsubseteq G_{2}^{*}$.
Case $(B \sqsubseteq B)$. The results follows immediately due to $B\left[G_{1}^{\prime} / X\right]=B \sqsubseteq B=B\left[G_{2}^{\prime} / X\right]$.
Case $(Y \sqsubseteq Y)$. If $Y=X$, the results follows immediately due to $X\left[G_{1}^{\prime} / X\right]=G_{1}^{\prime} \sqsubseteq G_{2}^{\prime}=X\left[G_{2}^{\prime} / X\right]$ and $G_{1}^{\prime} \sqsubseteq G_{2}^{\prime}$ by premise. If $Y \neq X$, the results, also, follows immediately due to $Y\left[G_{1}^{\prime} / X\right]=Y \sqsubseteq$ $Y=Y\left[G_{2}^{\prime} / X\right]$.
Case $(\alpha \sqsubseteq \alpha)$. The results follows immediately due to $\alpha\left[G_{1}^{\prime} / X\right]=\alpha \sqsubseteq \alpha=\alpha\left[G_{2}^{\prime} / X\right]$.
Case ($G \sqsubseteq$?). The results follows immediately due to $G\left[G_{1}^{\prime} / X\right] \sqsubseteq$? $=$? $\left[G_{2}^{\prime} / X\right]$.
Case $\left(\forall X . G_{1} \sqsubseteq \forall X . G_{2}\right)$. We know that

$$
\frac{G_{1} \sqsubseteq G_{2}}{\forall X . G_{1} \sqsubseteq \forall X \cdot G_{2}}
$$

By the definition of \sqsubseteq, we know that $G_{1} \sqsubseteq G_{2}$. We are required to prove that

$$
\left(\forall X . G_{1}\right)\left[G_{1}^{\prime} / X\right]=\left(\forall X . G_{1}\left[G_{1}^{\prime} / X\right]\right) \sqsubseteq\left(\forall X . G_{2}\left[G_{2}^{\prime} / X\right]\right)=\left(\forall X . G_{2}\right)\left[G_{2}^{\prime} / X\right]
$$

Or what is the same that $\left(G_{1}\left[G_{1}^{\prime} / X\right]\right) \sqsubseteq\left(G_{2}\left[G_{2}^{\prime} / X\right]\right)$. But the result follows immediately by the induction hypothesis on $G_{1} \sqsubseteq G_{2}$.

Case $\left(G_{1} \rightarrow G_{2} \sqsubseteq G_{3} \rightarrow G_{4}\right)$. We know that

$$
\begin{gathered}
G_{1} \sqsubseteq G_{3} \quad G_{2} \sqsubseteq G_{4} \\
\hline G_{1} \rightarrow G_{2} \sqsubseteq G_{3} \rightarrow G_{4}
\end{gathered}
$$

By the definition of \sqsubseteq, we know that $G_{1} \sqsubseteq G_{3}$ and $G_{2} \sqsubseteq G_{4}$. We are required to prove that

$$
\left(G_{1} \rightarrow G_{2}\right)\left[G_{1}^{\prime} / X\right]=\left(G_{1}\left[G_{1}^{\prime} / X\right] \rightarrow G_{2}\left[G_{1}^{\prime} / X\right]\right) \sqsubseteq\left(G_{3}\left[G_{2}^{\prime} / X\right] \rightarrow G_{4}\left[G_{2}^{\prime} / X\right]\right)=\left(G_{3} \rightarrow G_{4}\right)\left[G_{2}^{\prime} / X\right]
$$

Or what is the same that $G_{1}\left[G_{1}^{\prime} / X\right] \sqsubseteq G_{3}\left[G_{2}^{\prime} / X\right]$ and $G_{2}\left[G_{1}^{\prime} / X\right] \sqsubseteq G_{4}\left[G_{2}^{\prime} / X\right]$. But the result follows immediately by the induction hypothesis on $G_{1} \sqsubseteq G_{3}$ and $G_{2} \sqsubseteq G_{4}$.

Case $\left(G_{1} \times G_{2} \sqsubseteq G_{3} \times G_{4}\right)$. We know that

$$
\begin{gathered}
G_{1} \sqsubseteq G_{3} \quad G_{2} \sqsubseteq G_{4} \\
G_{1} \times G_{2} \sqsubseteq G_{3} \times G_{4}
\end{gathered}
$$

By the definition of \sqsubseteq, we know that $G_{1} \sqsubseteq G_{3}$ and $G_{2} \sqsubseteq G_{4}$. We are required to prove that

$$
\left(G_{1} \times G_{2}\right)\left[G_{1}^{\prime} / X\right]=\left(G_{1}\left[G_{1}^{\prime} / X\right] \times G_{2}\left[G_{1}^{\prime} / X\right]\right) \sqsubseteq\left(G_{3}\left[G_{2}^{\prime} / X\right] \times G_{4}\left[G_{2}^{\prime} / X\right]\right)=\left(G_{3} \times G_{4}\right)\left[G_{2}^{\prime} / X\right]
$$

Or what is the same that $G_{1}\left[G_{1}^{\prime} / X\right] \sqsubseteq G_{3}\left[G_{2}^{\prime} / X\right]$ and $G_{2}\left[G_{1}^{\prime} / X\right] \sqsubseteq G_{4}\left[G_{2}^{\prime} / X\right]$. But the result follows immediately by the induction hypothesis on $G_{1} \sqsubseteq G_{3}$ and $G_{2} \sqsubseteq G_{4}$.

Proposition 5.9. If $G_{1} \sqsubseteq G_{2}$ and $G_{1}^{\prime} \leqslant G_{2}^{\prime}$ then $G_{1}\left[G_{1}^{\prime} / X\right] \sqsubseteq G_{2}\left[G_{2}^{\prime} / X\right]$.
Proof. By Proposition 5.14 and Proposition 5.8 the results follows immediately.

Proposition 5.10. If $G_{1} \leqslant G_{2}$ and $G_{1}^{\prime} \leqslant G_{2}^{\prime}$ then $G_{1}\left[G_{1}^{\prime} / X\right] \leqslant G_{2}\left[G_{2}^{\prime} / X\right]$.
Proof. Straightforward induction on $G_{1} \leqslant G_{2}$. Very similar to Proposition 5.8.

Proposition 5.11. If $G_{1} \rightarrow G_{2}$ then $G_{1}[\alpha / X] \rightarrow G_{2}[\alpha / X]$.
Proof. By induction on the definition of $G_{1} \rightarrow G_{2}$.

5.3 Weak Dynamic Gradual Guarantee for GSF

In this section, we present the proof of the weak dynamic gradual guarantee for GSF ε previously presented and the auxiliary Propositions an Definitions.

Proposition 5.12 (Monotonicity of Evidence Substitution). If $\Omega \vdash s_{1}^{*} \leqslant s_{2}^{*}: G_{1}^{*} \leqslant G_{2}^{*}$ and $\Xi_{1} \leqslant \Xi_{2}$, then $\Omega[\alpha / X] \vdash s_{1}^{*}\left[\hat{\alpha_{1}} / X\right] \leqslant s_{2}^{*}\left[\hat{\alpha_{2}} / X\right]: G_{1}^{*}[\alpha / X] \leqslant G_{2}^{*}[\alpha / X]$, where $\alpha:=G_{1}^{* *} \in \Xi_{1}$, $\alpha:=G_{2}^{* *} \in \Xi_{2}, \hat{\alpha_{1}}=\operatorname{lift}_{\Xi_{1}}(\alpha)$ and $\hat{\alpha_{2}}=\operatorname{lift}_{\Xi_{2}}(\alpha)$.

Proof. We follow by induction on $\Omega \vdash s_{1}^{*} \leqslant s_{2}^{*}: G_{1}^{*} \leqslant G_{2}^{*}$. We avoid the notation $\Omega \vdash s_{1}^{*} \leqslant s_{2}^{*}$: $G_{1}^{*}[\alpha / X] \leqslant G_{2}^{*}[\alpha / X]$, and use $s_{1}^{*} \leqslant s_{2}^{*}$ instead, for simplicity, when the typing environments are not relevant.

Case $(b \leqslant b)$. The results follows immediately due to $b\left[\hat{\alpha_{1}} / X\right]=b \leqslant b=b\left[\hat{\alpha_{2}} / X\right]$.
Case $(x \leqslant x)$. The results follows immediately due to $x\left[\hat{\alpha_{1}} / X\right]=x \leqslant x=x\left[\hat{\alpha_{2}} / X\right]$.
Case $\left(\left(\lambda x: G_{1} . t_{1}\right) \leqslant\left(\lambda x: G_{2} . t_{2}\right)\right)$. We know that

$$
\frac{\Omega \vdash \Xi_{1} \triangleright t_{1}: G_{1}^{\prime} \leqslant \Xi_{2} \triangleright t_{2}: G_{2}^{\prime} \quad G_{1} \sqsubseteq G_{2}}{\left(\lambda x: G_{1} \cdot t_{1}\right) \leqslant\left(\lambda x: G_{2} \cdot t_{2}\right)}
$$

We are required to show

$$
\left(\lambda x: G_{1} \cdot t_{1}\right)\left[\hat{\alpha_{1}} / X\right]=\left(\lambda x: G_{1}[\alpha / X] \cdot t_{1}\left[\hat{\alpha_{1}} / X\right]\right) \leqslant\left(\lambda x: G_{2}[\alpha / X] \cdot t_{2}\left[\hat{\alpha_{2}} / X\right]\right)=\left(\lambda x: G_{2} \cdot t_{2}\right)\left[\hat{\alpha_{2}} / X\right]
$$

Note that $G_{1}[\alpha / X] \sqsubseteq G_{2}[\alpha / X]$, by Proposition 5.9.
Therefore, we are required to prove

$$
\Omega, x: G_{1}[\alpha / X] \sqsubseteq G_{2}[\alpha / X] \vdash \Xi_{1} \triangleright\left(t_{1}\left[\hat{\alpha_{1}} / X\right]\right): G_{1}^{\prime}[\alpha / X] \leqslant \Xi_{2} \triangleright\left(t_{2}\left[\hat{\alpha_{2}} / X\right]\right): G_{2}^{\prime}[\alpha / X]
$$

But the results follows immediately by the induction hypothesis on

$$
\Omega, x: G_{1} \sqsubseteq G_{2} \vdash \Xi_{1} \triangleright t_{1}: G_{1}^{\prime} \leqslant \Xi_{2} \triangleright t_{2}: G_{2}^{\prime}
$$

Case $\left(\left(\Lambda Y . t_{1}\right) \leqslant\left(\Lambda Y . t_{2}\right)\right)$. We know that

$$
\frac{t_{1} \leqslant t_{2}}{\left(\Lambda Y . t_{1}\right) \leqslant\left(\Lambda Y . t_{2}\right)}
$$

We are required to show

$$
\left(\Lambda Y . t_{1}\right)\left[\hat{\alpha_{1}} / X\right]=\left(\Lambda Y . t_{1}\left[\hat{\alpha_{1}} / X\right]\right) \leqslant\left(\Lambda Y . t_{2}\left[\hat{\alpha_{2}} / X\right]\right)=\left(\Lambda Y . t_{2}\right)\left[\hat{\alpha_{2}} / X\right]
$$

Therefore, we are required to prove $\left(t_{1}\left[\hat{\alpha_{1}} / X\right]\right) \leqslant\left(t_{2}\left[\hat{\alpha_{2}} / X\right]\right)$. But the results follows immediately by the induction hypothesis on $t_{1} \leqslant t_{2}$.

Case ($t_{1} t_{2} \leqslant t_{1} t_{2}^{\prime}$). We know that

$$
\frac{t_{1} \leqslant t_{1}^{\prime} \quad t_{2} \leqslant t_{2}^{\prime}}{t_{1} t_{2} \leqslant t_{1} t_{2}^{\prime}}
$$

We are required to show

$$
\left.\left(t_{1} t_{2}\right)\left[\hat{\alpha_{1}} / X\right]=t_{1}\left[\hat{\alpha_{1}} / X\right] t_{2}\left[\hat{\alpha_{1}} / X\right]\right) \leqslant\left(t_{1}^{\prime}\left[\hat{\alpha_{2}} / X\right] t_{2}^{\prime}\left[\hat{\alpha_{2}} / X\right]\right)=\left(t_{1}^{\prime} t_{2}^{\prime}\right)\left[\hat{\alpha_{2}} / X\right]
$$

Therefore, we are required to prove $t_{1}\left[\hat{\alpha_{1}} / X\right] \leqslant t_{1}^{\prime}\left[\hat{\alpha}_{2} / X\right]$ and $t_{2}\left[\hat{\alpha_{1}} / X\right] \leqslant t_{2}^{\prime}\left[\hat{\alpha_{2}} / X\right]$. But the results follows immediately by the induction hypothesis on $t_{1} \leqslant t_{1}^{\prime}$ and $t_{2} \leqslant t_{2}^{\prime}$.
Case ($\left.t_{1}\left[G_{1}\right] \leqslant t_{2}\left[G_{2}\right]\right)$. We know that

$$
\frac{t_{1} \leqslant t_{2} \quad G_{1} \leqslant G_{2}}{t_{1}\left[G_{1}\right] \leqslant t_{2}\left[G_{2}\right]}
$$

We are required to show

$$
\left(t_{1}\left[G_{1}\right]\right)\left[\hat{\alpha_{1}} / X\right]=\left(t_{1}\left[\hat{\alpha_{1}} / X\right]\left[G_{1}[\alpha / X]\right]\right) \leqslant\left(t_{2}\left[\hat{\alpha_{2}} / X\right]\left[G_{2}[\alpha / X]\right]\right)=\left(t_{2}\left[G_{2}\right]\right)\left[\hat{\alpha_{2}} / X\right]
$$

Note that $G_{1}[\alpha / X] \leqslant G_{2}[\alpha / X]$ by Proposition 5.10 and $G_{1} \leqslant G_{2}$.
Therefore, we are required to prove $\left(t_{1}\left[\hat{\alpha_{1}} / X\right]\right) \leqslant\left(t_{2}\left[\hat{\alpha_{2}} / X\right]\right)$. But the results follows immediately by the induction hypothesis on $t_{1} \leqslant t_{2}$.
Case ($\varepsilon_{1} s_{1}:: G_{1} \leqslant \varepsilon_{2} s_{2}:: G_{2}$).

$$
\frac{\varepsilon_{1} \leqslant \varepsilon_{2} \quad s_{1} \leqslant s_{2} \quad G_{1} \sqsubseteq G_{2}}{\varepsilon_{1} s_{1}:: G_{1} \leqslant \varepsilon_{2} s_{2}:: G_{2}}
$$

We are required to show

$$
\left(\varepsilon_{1} s_{1}:: G_{1}\right)\left[\hat{\alpha_{1}} / X\right]=\left(\varepsilon_{1}\left[\hat{\alpha_{1}} / X\right] s_{1}\left[\hat{\alpha_{1}} / X\right]:: G_{1}[\alpha / X]\right) \leqslant\left(\varepsilon_{2}\left[\hat{\alpha_{2}} / X\right] s_{2}\left[\hat{\alpha_{2}} / X\right]:: G_{2}[\alpha / X]\right)=\left(\varepsilon_{2} s_{2}:: G_{2}\right)\left[\hat{\alpha_{2}} / X\right]
$$

Note that by Proposition 5.5 and $\varepsilon_{1} \leqslant \varepsilon_{2}$, we know that $\varepsilon_{1}\left[\hat{\alpha_{1}} / X\right] \leqslant \varepsilon_{2}\left[\hat{\alpha_{2}} / X\right]$. Also, by Proposition 5.9 and $G_{1} \sqsubseteq G_{2}$, we know that $G_{1}[\alpha / X] \sqsubseteq G_{2}[\alpha / X]$.
Therefore, we are required to prove $\left(s_{1}\left[\hat{\alpha_{1}} / X\right]\right) \leqslant\left(s_{2}\left[\hat{\alpha_{2}} / X\right]\right)$. But the results follows immediately by the induction hypothesis on $s_{1} \leqslant s_{2}$.
Case ($\varepsilon_{G_{1}} t_{1}^{\prime}:: G_{1} \leqslant \varepsilon_{G_{2}} t_{2}^{\prime}:: G_{2}$).

$$
\frac{\Omega \vdash \Xi_{1} \triangleright t_{1}^{\prime}: G_{1}^{\prime} \leqslant \Xi_{2} \triangleright t_{2}^{\prime}: G_{2}^{\prime} \quad G_{1} \sqsubseteq G_{2} \quad G_{1}^{\prime} \rightarrow G_{1} \quad G_{2}^{\prime} \rightarrow G_{2}}{\Omega \vdash \Xi_{1} \triangleright \varepsilon_{G_{1}}\left(t_{1}^{\prime}:: G_{1}: G_{1} \leqslant \Xi_{2} \triangleright \varepsilon_{G_{2}} t_{2}^{\prime}:: G_{2}: G_{2}\right.}
$$

We are required to show

$$
\begin{aligned}
& \left(\varepsilon_{G_{1}} t_{1}^{\prime}:: G_{1}\right)\left[\hat{\alpha_{1}} / X\right]=\left(\varepsilon_{G_{1}}\left[\hat{\alpha_{1}} / X\right] t_{1}^{\prime}\left[\hat{\alpha_{1}} / X\right]:: G_{1}[\alpha / X]\right) \leqslant \\
& \left(\varepsilon_{G_{2}}\left[\hat{\alpha_{2}} / X\right] t_{2}^{\prime}\left[\hat{\alpha_{2}} / X\right]:: G_{2}[\alpha / X]\right)=\left(\varepsilon_{G_{2}} t_{2}^{\prime}:: G_{2}\right)\left[\hat{\alpha_{2}} / X\right]
\end{aligned}
$$

Note that since $G_{1} \sqsubseteq G_{2}$ and Proposition 5.24 , we know that $\varepsilon_{G_{1}} \sqsubseteq \varepsilon_{G_{2}}$. Note that by Proposition 5.6 and $\varepsilon_{G_{1}} \sqsubseteq \varepsilon_{G_{2}}$, we know that $\varepsilon_{G_{1}}\left[\hat{\alpha_{1}} / X\right] \sqsubseteq \varepsilon_{G_{2}}\left[\hat{\alpha_{2}} / X\right]$. Also, by Proposition 5.9 and $G_{1} \sqsubseteq G_{2}$, we know that $G_{1}[\alpha / X] \sqsubseteq G_{2}[\alpha / X]$. By Proposition 5.11, we know that $G_{1}^{\prime}[\alpha / X] \rightarrow G_{1}[\alpha / X]$ and $G_{2}^{\prime}[\alpha / X] \rightarrow G_{2}[\alpha / X]$. Therefore, we are required to prove $\left(t_{1}\left[\hat{\alpha_{1}} / X\right]\right) \leqslant\left(t_{2}\left[\hat{\alpha_{2}} / X\right]\right)$. But the results follows immediately by the induction hypothesis on $t_{1} \leqslant t_{2}$.

Proposition 5.13 (Substitution Preserves Precision). If $\Omega^{\prime}, x: G_{1} \sqsubseteq G_{2} \vdash s_{1} \leqslant s_{2}: G_{1}^{\prime} \leqslant G_{2}^{\prime}$ and $\Omega^{\prime} \vdash v_{1} \leqslant v_{2}: G_{1} \leqslant G_{2}$, then $\Omega^{\prime} \vdash s_{1}\left[v_{1} / x\right] \leqslant s_{2}\left[v_{2} / x\right]: G_{1}^{\prime} \leqslant G_{2}^{\prime}$.

Proof. We follow by induction on $\Omega^{\prime}, x: G_{1} \sqsubseteq G_{2} \vdash t_{1} \leqslant t_{2}: G_{1}^{\prime} \leqslant G_{2}^{\prime}$. We avoid the notation $\Omega^{\prime}, x: G_{1} \sqsubseteq G_{2} \vdash t_{1} \leqslant t_{2}: G_{1}^{\prime} \leqslant G_{2}^{\prime}$, and use $t_{1} \leqslant t_{2}$ instead, for simplicity, when the typing environments are not relevant. Let suppose that $\Omega=\Omega^{\prime}, x: G_{1} \sqsubseteq G_{2}$.

Case $(b \leqslant b)$. The result follows immediately.
Case $(x \leqslant x)$. We know that

$$
\left(\leqslant \mathrm{x}_{\varepsilon}\right) \frac{x: G_{1} \sqsubseteq G_{2} \in \Omega}{\Omega \vdash \Xi_{1} \triangleright x: G_{1} \leqslant \Xi_{2} \triangleright x: G_{2}}
$$

The result follows immediately due to $\Omega \vdash \Xi_{1} \triangleright v_{1}: G_{1} \leqslant \Xi_{2} \triangleright v_{2}: G_{2}$ and

$$
t_{1}\left[v_{1} / x\right]=x\left[v_{1} / x\right]=v_{1} \leqslant v_{2}=x\left[v_{2} / x\right]=t_{2}\left[v_{2} / x\right]
$$

Case $\left(\left(\lambda y: G_{1}^{\prime \prime} \cdot t_{1}^{\prime}\right) \leqslant\left(\lambda y: G_{2}^{\prime \prime} \cdot t_{2}^{\prime}\right)\right)$. We know that

$$
\frac{\Omega, y: G_{1}^{\prime \prime} \sqsubseteq G_{2}^{\prime \prime} \vdash \Xi_{1} \triangleright t_{1}^{\prime}: G_{1}^{\prime \prime \prime} \leqslant \Xi_{2} \triangleright t_{2}^{\prime}: G_{2}^{\prime \prime \prime} \quad G_{1}^{\prime \prime} \sqsubseteq G_{2}^{\prime \prime}}{\Omega \vdash \Xi_{1} \triangleright\left(\lambda y: G_{1}^{\prime \prime} \cdot t_{1}^{\prime}\right): G_{1}^{\prime \prime} \rightarrow G_{1}^{\prime \prime \prime} \leqslant \Xi_{2} \triangleright\left(\lambda y: G_{2}^{\prime \prime} \cdot t_{2}^{\prime}\right): G_{2}^{\prime \prime} \rightarrow G_{2}^{\prime \prime \prime}}
$$

Note that we are required to prove that $\Omega \vdash \Xi_{1} \triangleright\left(\lambda y: G_{1}^{\prime \prime} \cdot t_{1}^{\prime}\right): G_{1}^{\prime \prime} \rightarrow G_{1}^{\prime \prime \prime} \leqslant \Xi_{2} \triangleright\left(\lambda y: G_{2}^{\prime \prime} \cdot t_{2}^{\prime}\right):$ $G_{2}^{\prime \prime} \rightarrow G_{2}^{\prime \prime \prime}$.

$$
\left(\lambda y: G_{1}^{\prime \prime} \cdot t_{1}^{\prime}\right)\left[v_{1} / x\right]=\left(\lambda y: G_{1}^{\prime \prime} \cdot t_{1}^{\prime}\left[v_{1} / x\right]\right) \leqslant\left(\lambda y: G_{2}^{\prime \prime} \cdot t_{2}^{\prime}\left[v_{2} / x\right]\right)=\left(\lambda y: G_{2}^{\prime \prime} \cdot t_{2}^{\prime}\right)\left[v_{2} / x\right]
$$

or what is the same $\Omega, y: G_{1}^{\prime \prime} \sqsubseteq G_{2}^{\prime \prime} \vdash \Xi_{1} \triangleright t_{1}^{\prime}\left[v_{1} / x\right]: G_{1}^{\prime \prime \prime} \leqslant \Xi_{2} \triangleright t_{2}^{\prime}\left[v_{2} / x\right]: G_{2}^{\prime \prime \prime}$. But the result follows immediately by the induction hypothesis on $\Omega, y: G_{1}^{\prime \prime} \sqsubseteq G_{2}^{\prime \prime} \vdash \Xi_{1} \triangleright t_{1}^{\prime}: G_{1}^{\prime \prime \prime} \leqslant \Xi_{2} \triangleright t_{2}^{\prime}: G_{2}^{\prime \prime \prime}$.
Case $\left(\left(\Lambda X . t_{1}^{\prime}\right) \leqslant\left(\Lambda X . t_{2}^{\prime}\right)\right)$. We know that

$$
\frac{\Omega \vdash \Xi_{1} \triangleright t_{1}^{\prime}: G_{1}^{\prime \prime} \leqslant \Xi_{2} \triangleright t_{2}^{\prime}: G_{2}^{\prime \prime}}{\Omega \vdash \Xi_{1} \triangleright\left(\Lambda X . t_{1}^{\prime}\right): \forall X . G_{1}^{\prime \prime} \leqslant \Xi_{2} \triangleright\left(\Lambda X . t_{2}^{\prime}\right): \forall X . G_{2}^{\prime \prime}}
$$

Note that we are required to prove that $\Omega \vdash \Xi_{1} \triangleright\left(\Lambda X . t_{1}^{\prime}\right): \forall X . G_{1}^{\prime \prime} \leqslant \Xi_{2} \triangleright\left(\Lambda X . t_{2}^{\prime}\right): \forall X . G_{2}^{\prime \prime}$.

$$
\left(\Lambda X . t_{1}^{\prime}\right)\left[v_{1} / x\right]=\left(\Lambda X . t_{1}^{\prime}\left[v_{1} / x\right]\right) \leqslant\left(\Lambda X . t_{2}^{\prime}\left[v_{2} / x\right]\right)=\left(\Lambda X . t_{2}^{\prime}\right)\left[v_{2} / x\right]
$$

or what is the same $\Omega \vdash \Xi_{1} \triangleright t_{1}^{\prime}\left[v_{1} / x\right]: G_{1}^{\prime \prime} \leqslant \Xi_{2} \triangleright t_{2}^{\prime}\left[v_{2} / x\right]: G_{2}^{\prime \prime}$. But the result follows immediately by the induction hypothesis on $\Omega \vdash \Xi_{1} \triangleright t_{1}^{\prime}: G_{1}^{\prime \prime} \leqslant \Xi_{2} \triangleright t_{2}^{\prime}: G_{2}^{\prime \prime}$.
Case $\left(t_{1}^{\prime} t_{2}^{\prime} \leqslant t_{1}^{\prime \prime} t_{2}^{\prime \prime}\right)$. We know that

$$
\frac{\Omega \vdash \Xi_{1} \triangleright t_{1}^{\prime}: G_{1}^{\prime \prime} \rightarrow G_{1}^{\prime \prime \prime} \leqslant \Xi_{2} \triangleright t_{2}^{\prime}: G_{2}^{\prime \prime} \rightarrow G_{2}^{\prime \prime \prime} \quad \Omega \vdash \Xi_{1} \triangleright t_{1}^{\prime \prime}: G_{1}^{\prime \prime} \leqslant \Xi_{2} \triangleright t_{2}^{\prime \prime}: G_{2}^{\prime \prime}}{\Omega \vdash \Xi_{1} \triangleright t_{1}^{\prime} t_{1}^{\prime \prime}: G_{1}^{\prime \prime \prime} \leqslant \Xi_{2} \triangleright t_{2}^{\prime} t_{2}^{\prime \prime}: G_{2}^{\prime \prime \prime}}
$$

Note that we are required to prove that $\Omega \vdash \Xi_{1} \triangleright t_{1}^{\prime} t_{1}^{\prime \prime}: G_{1}^{\prime \prime \prime} \leqslant \Xi_{2} \triangleright t_{2}^{\prime} t_{2}^{\prime \prime}: G_{2}^{\prime \prime \prime}$.

$$
\left(t_{1}^{\prime} t_{1}^{\prime \prime}\right)\left[v_{1} / x\right]=t_{1}^{\prime}\left[v_{1} / x\right] t_{1}^{\prime \prime}\left[v_{1} / x\right] \leqslant t_{2}^{\prime}\left[v_{2} / x\right] t_{2}^{\prime \prime}\left[v_{2} / x\right]=\left(t_{2}^{\prime} t_{2}^{\prime \prime}\right)\left[v_{2} / x\right]
$$

or what is the same $\Omega \vdash \Xi_{1} \triangleright t_{1}^{\prime}\left[v_{1} / x\right]: G_{1}^{\prime \prime} \rightarrow G_{1}^{\prime \prime \prime} \leqslant \Xi_{2} \triangleright t_{2}^{\prime}\left[v_{2} / x\right]: G_{2}^{\prime \prime} \rightarrow G_{2}^{\prime \prime \prime}$ and $\Omega \vdash$ $\Xi_{1} \triangleright t_{1}^{\prime \prime}\left[v_{1} / x\right]: G_{1}^{\prime \prime \prime} \leqslant \Xi_{2} \triangleright t_{2}^{\prime \prime}\left[v_{2} / x\right]: G_{2}^{\prime \prime \prime}$. But the result follows immediately by the induction hypothesis on $\Omega \vdash \Xi_{1} \triangleright t_{1}^{\prime}: G_{1}^{\prime \prime} \rightarrow G_{1}^{\prime \prime \prime} \leqslant \Xi_{2} \triangleright t_{2}^{\prime}: G_{2}^{\prime \prime} \rightarrow G_{2}^{\prime \prime \prime}$ and $\Omega \vdash \Xi_{1} \triangleright t_{1}^{\prime \prime}: G_{1}^{\prime \prime} \leqslant \Xi_{2} \triangleright t_{2}^{\prime \prime}: G_{2}^{\prime \prime}$.

Case $\left(t_{1}^{\prime}\left[G_{1}^{\prime \prime}\right] \leqslant t_{2}^{\prime}\left[G_{2}^{\prime \prime}\right]\right)$.

$$
\frac{\Omega \vdash \Xi_{1} \triangleright t_{1}^{\prime}: \forall X . G_{1}^{\prime \prime \prime} \leqslant \Xi_{2} \triangleright t_{2}^{\prime}: \forall X . G_{2}^{\prime \prime \prime} \quad G_{1}^{\prime \prime} \leqslant G_{2}^{\prime \prime}}{\Omega \vdash \Xi_{1} \triangleright t_{1}^{\prime}\left[G_{1}^{\prime \prime}\right]: G_{1}^{\prime \prime \prime}\left[G_{1}^{\prime \prime} / X\right] \leqslant \Xi_{2} \triangleright t_{2}^{\prime}\left[G_{2}^{\prime \prime}\right]: G_{2}^{\prime \prime \prime}\left[G_{2}^{\prime \prime} / X\right]}
$$

Note that we are required to prove that $\Omega \vdash \Xi_{1} \triangleright t_{1}^{\prime}\left[G_{1}^{\prime \prime}\right]: G_{1}^{\prime \prime \prime}\left[G_{1}^{\prime \prime} / X\right] \leqslant \Xi_{2} \triangleright t_{2}^{\prime}\left[G_{2}^{\prime \prime}\right]: G_{2}^{\prime \prime \prime}\left[G_{2}^{\prime \prime} / X\right]$.

$$
\left(t_{1}^{\prime}\left[G_{1}^{\prime \prime}\right]\right)\left[v_{1} / x\right]=\left(t_{1}^{\prime}\left[v_{1} / x\right]\left[G_{1}^{\prime \prime}\right]\right) \leqslant\left(t_{2}^{\prime}\left[v_{2} / x\right]\left[G_{2}^{\prime \prime}\right]\right)=\left(t_{2}^{\prime}\left[G_{2}^{\prime \prime}\right]\right)\left[v_{2} / x\right]
$$

or what is the same $\Omega \vdash \Xi_{1} \triangleright t_{1}^{\prime}\left[v_{1} / x\right]: G_{1}^{\prime \prime \prime}\left[G_{1}^{\prime \prime} / X\right] \leqslant \Xi_{2} \triangleright t_{2}^{\prime}\left[v_{2} / x\right]: G_{2}^{\prime \prime \prime}\left[G_{2}^{\prime \prime} / X\right]$. But the result follows immediately by the induction hypothesis on $\Omega \vdash \Xi_{1} \triangleright t_{1}^{\prime}: G_{1}^{\prime \prime \prime}\left[G_{1}^{\prime \prime} / X\right] \leqslant \Xi_{2} \triangleright t_{2}^{\prime}: G_{2}^{\prime \prime \prime}\left[G_{2}^{\prime \prime} / X\right]$.
Case ($\left.\varepsilon_{1} s_{1}^{\prime}:: G_{1}^{\prime \prime} \leqslant \varepsilon_{1} s_{1}^{\prime}:: G_{1}^{\prime \prime}\right)$.

$$
\frac{\varepsilon_{1} \leqslant \varepsilon_{2} \quad \Omega \vdash \Xi_{1} \triangleright s_{1}^{\prime}: G_{1}^{\prime \prime \prime} \leqslant \Xi_{2} \triangleright s_{2}^{\prime}: G_{2}^{\prime \prime \prime} \quad G_{1}^{\prime \prime} \sqsubseteq G_{2}^{\prime \prime}}{\Omega \vdash \Xi_{1} \triangleright \varepsilon_{1} s_{1}^{\prime}:: G_{1}^{\prime \prime}: G_{1}^{\prime \prime} \leqslant \Xi_{2} \triangleright \varepsilon_{2} s_{2}^{\prime}:: G_{2}^{\prime \prime}: G_{2}^{\prime \prime}}
$$

Note that we are required to prove that $\Omega \vdash \Xi_{1} \triangleright \varepsilon_{1} s_{1}^{\prime}:: G_{1}^{\prime \prime}: G_{1}^{\prime \prime} \leqslant \Xi_{2} \triangleright \varepsilon_{2} s_{2}^{\prime}:: G_{2}^{\prime \prime}: G_{2}^{\prime \prime}$.

$$
\left(\varepsilon_{1} s_{1}^{\prime}:: G_{1}^{\prime \prime}\right)\left[v_{1} / x\right]=\left(\varepsilon_{1} s_{1}^{\prime}\left[v_{1} / x\right]:: G_{1}^{\prime \prime}\right) \leqslant\left(\varepsilon_{2} s_{2}^{\prime}\left[v_{2} / x\right]:: G_{2}^{\prime \prime}\right)=\left(\varepsilon_{2} s_{2}^{\prime}:: G_{2}^{\prime \prime}\right)\left[v_{2} / x\right]
$$

or what is the same $\Omega \vdash \Xi_{1} \triangleright s_{1}^{\prime}\left[v_{1} / x\right]: G_{1}^{\prime \prime \prime} \leqslant \Xi_{2} \triangleright s_{2}^{\prime}\left[v_{2} / x\right]: G_{2}^{\prime \prime \prime}$. But the result follows immediately by the induction hypothesis on $\Omega \vdash \Xi_{1} \triangleright s_{1}^{\prime}: G_{1}^{\prime \prime \prime} \leqslant \Xi_{2} \triangleright s_{2}^{\prime}: G_{2}^{\prime \prime \prime}$.

Case ($\left.\varepsilon_{G_{1}^{\prime}} t_{1}^{\prime}:: G_{1} \leqslant \varepsilon_{G_{2}^{\prime}} t_{2}^{\prime}:: G_{2}^{\prime}\right)$. We know that

$$
\frac{\varepsilon_{G_{1}} \nless \varepsilon_{G_{2}} \quad \Omega \vdash \Xi_{1} \triangleright t_{1}^{\prime}: G_{1}^{\prime \prime \prime} \leqslant \Xi_{2} \triangleright t_{2}^{\prime}: G_{2}^{\prime \prime \prime} \quad G_{1}^{\prime} \sqsubseteq G_{2}^{\prime} \quad G_{1}^{\prime \prime} \rightarrow G_{1}^{\prime} \quad G_{2}^{\prime \prime} \rightarrow G_{2}^{\prime}}{\Omega \vdash \Xi_{1} \triangleright \varepsilon_{G_{1}^{\prime}}^{\prime} t_{1}^{\prime}:: G_{1}^{\prime}: G_{1}^{\prime} \leqslant \Xi_{2} \triangleright \varepsilon_{G_{2}^{\prime}} t_{2}^{\prime}:: G_{2}^{\prime}: G_{2}^{\prime}}
$$

Note that we are required to prove that

$$
\begin{gathered}
\left(\varepsilon_{G_{1}^{\prime}} t_{1}^{\prime}:: G_{1}^{\prime}\right)\left[v_{1} / x\right]=\left(\varepsilon_{G_{1}^{\prime \prime}}^{\prime} t_{1}^{\prime}\left[v_{1} / x\right]:: G_{1}^{\prime}\right) \leqslant \\
\left(\varepsilon_{G_{2}^{\prime}}^{\prime} t_{2}^{\prime}\left[v_{2} / x\right]:: G_{2}^{\prime \prime}\right)=\left(\varepsilon_{G_{2}^{\prime}} t_{2}^{\prime}:: G_{2}^{\prime}\right)\left[v_{2} / x\right]
\end{gathered}
$$

or what is the same $\Omega \vdash \Xi_{1} \triangleright t_{1}^{\prime}\left[v_{1} / x\right]: G_{1}^{\prime \prime \prime} \leqslant \Xi_{2} \triangleright t_{2}^{\prime}\left[v_{2} / x\right]: G_{2}^{\prime \prime \prime}$. But the result follows immediately by the induction hypothesis on $\Omega \vdash \Xi_{1} \triangleright t_{1}^{\prime}: G_{1}^{\prime \prime \prime} \leqslant \Xi_{2} \triangleright t_{2}^{\prime}: G_{2}^{\prime \prime \prime}$.

Proposition 5.14. If $G_{1}^{*} \leqslant G_{2}^{*}$ then $G_{1}^{*} \sqsubseteq G_{2}^{*}$.
Proof. Examining \leqslant rules.
Case $(B \leqslant B)$. The results follows immediately by the rule $G \sqsubseteq G$.
Case $(X \leqslant X)$. The results follows immediately by the rule $G \sqsubseteq G$.
Case $(\alpha \leqslant \alpha)$. The results follows immediately by the rule $G \sqsubseteq G$.
Case ($B \leqslant$?). The results follows immediately by the rule $G \sqsubseteq$?.
Case ($G_{1} \rightarrow G_{2} \leqslant$?). The results follows immediately by the rule $G \sqsubseteq$?.
Case ($G_{1} \times G_{2} \leqslant$?). The results follows immediately by the rule $G \sqsubseteq$?.
Case (? \leqslant ?). The results follows immediately by the rule $G \sqsubseteq$?.
Case $\left(\forall X . G_{1} \leqslant \forall X . G_{2}\right)$. We know that

$$
\frac{G_{1} \leqslant G_{2}}{\forall X . G_{1} \leqslant \forall X . G_{2}}
$$

By the induction hypothesis on $G_{1} \leqslant G_{2}$, we know that $G_{1} \sqsubseteq G_{2}$. We are required to prove that $\forall X . G_{1} \sqsubseteq \forall X . G_{2}$, which follows immediately by the rule

$$
\frac{G_{1} \sqsubseteq G_{2}}{\forall X . G_{1} \sqsubseteq \forall X . G_{2}}
$$

Case ($G_{1} \rightarrow G_{2} \leqslant G_{3} \rightarrow G_{4}$). We know that

$$
\begin{gathered}
G_{1} \leqslant G_{3} \quad G_{2} \leqslant G_{4} \\
\hline G_{1} \rightarrow G_{2} \leqslant G_{3} \rightarrow G_{4}
\end{gathered}
$$

By the induction hypothesis on $G_{1} \leqslant G_{3}$ and $G_{2} \leqslant G_{4}$, we know that $G_{1} \sqsubseteq G_{3}$ and $G_{2} \sqsubseteq G_{4}$. We are required to prove that $G_{1} \rightarrow G_{2} \sqsubseteq G_{3} \rightarrow G_{4}$, which follows immediately by the rule

$$
\begin{gathered}
G_{1} \sqsubseteq G_{3} \quad G_{2} \sqsubseteq G_{4} \\
\hline G_{1} \rightarrow G_{2} \sqsubseteq G_{3} \rightarrow G_{4}
\end{gathered}
$$

Case $\left(G_{1} \times G_{2} \leqslant G_{3} \times G_{4}\right)$. We know that

$$
\begin{gathered}
G_{1} \leqslant G_{3} \quad G_{2} \leqslant G_{4} \\
\hline G_{1} \times G_{2} \leqslant G_{3} \times G_{4}
\end{gathered}
$$

By the induction hypothesis on $G_{1} \leqslant G_{3}$ and $G_{2} \leqslant G_{4}$, we know that $G_{1} \sqsubseteq G_{3}$ and $G_{2} \sqsubseteq G_{4}$. We are required to prove that $G_{1} \times G_{2} \sqsubseteq G_{3} \times G_{4}$, which follows immediately by the rule

$$
\frac{G_{1} \sqsubseteq G_{3} \quad G_{2} \sqsubseteq G_{4}}{G_{1} \times G_{2} \sqsubseteq G_{3} \times G_{4}}
$$

Proposition 5.15. If $v_{1} \leqslant t_{2}$ then $t_{2}=v_{2}$.
Proof. Exploring \leqslant rules.
Proposition 5.16. If $\varepsilon_{1} \leqslant \varepsilon_{2}$ then

- $\operatorname{dom}\left(\varepsilon_{1}\right) \leqslant \operatorname{dom}\left(\varepsilon_{2}\right)$
- $\operatorname{cod}\left(\varepsilon_{1}\right) \leqslant \operatorname{cod}\left(\varepsilon_{2}\right)$
- $p_{i}\left(\varepsilon_{1}\right) \leqslant p_{i}\left(\varepsilon_{2}\right)$
- $\operatorname{schm}_{u}\left(\varepsilon_{1}\right) \leqslant \operatorname{schm}_{u}\left(\varepsilon_{2}\right)$

Proof. By inspecting the evidence shape and the definition of $\varepsilon_{1} \leqslant \varepsilon_{2}$.
Proposition 5.17. If $\varepsilon \Vdash \Xi ; \Delta \vdash G^{\prime \prime} \sim G^{\prime}$ and $G^{\prime} \rightarrow G$, then $\varepsilon \circ \varepsilon_{G}=\varepsilon$.
Proof. By Lemma 6.30 and definition of $G^{\prime} \rightarrow G$ and $\varepsilon \circ \varepsilon_{G}=\varepsilon$.
Proposition 5.18. If $\Xi_{1} \vdash t_{1} \leqslant \Xi_{2} \vdash t_{2}$ and $\Xi_{1} \triangleright t_{1} \longrightarrow \Xi_{1}^{\prime} \triangleright t_{1}^{\prime}$, then $\Xi_{2} \triangleright t_{2} \longrightarrow \Xi_{2}^{\prime} \triangleright t_{2}^{\prime}$ and $\Xi_{1}^{\prime} \vdash t_{1}^{\prime} \leqslant \Xi_{2}^{\prime} \vdash t_{2}^{\prime}$.

Proof. If $\Xi_{1} \vdash t_{1} \leqslant \Xi_{2} \vdash t_{2}$, we know that $\vdash t_{1} \leqslant t_{2}: G_{1} \leqslant G_{2}, \Xi_{1} \leqslant \Xi_{2}, \Xi_{1} \vdash t_{1}: G_{1}$ and $\Xi_{2} \vdash t_{2}: G_{2}$. We follow by induction on $\vdash t_{1} \leqslant t_{2}: G_{1} \leqslant G_{2}$. We avoid the notation $\vdash t_{1} \leqslant t_{2}: G_{1} \leqslant G_{2}$, and use $t_{1} \leqslant t_{2}$ instead, for simplicity, when the typing environments are not relevant.

Case $(b \leqslant b)$. This case does not applies because b is not a term t, therefore it can not reduce.
Case $(x \leqslant x)$. This case does not applies because x is not a term t, therefore it can not reduce.
Case $\left(\left(\lambda x: G_{1}^{*} \cdot t_{1}^{*}\right) \leqslant\left(\lambda x: G_{2}^{*} \cdot t_{2}^{*}\right)\right)$. This case does not applies because $\lambda x: G_{1}^{*} \cdot t_{1}^{*}$ is not a term t, therefore it can not reduce.

Case $\left(\left(\Lambda X . t_{1}^{*}\right) \leqslant\left(\Lambda X . t_{2}^{*}\right)\right)$. This case does not applies because $\Lambda X . t_{1}^{*}$ is not a term t, therefore it can not reduce.

Case $\left(t_{11}^{*} t_{12}^{*} \leqslant t_{21}^{*} t_{22}^{*}\right)$. We know that

$$
\frac{t_{11}^{*} \leqslant t_{21}^{*} \quad t_{12}^{*} \leqslant t_{22}^{*}}{t_{11}^{*} t_{12}^{*} \leqslant t_{21}^{*} t_{22}^{*}}
$$

Also, since $\Xi_{1} \triangleright t_{1} \longrightarrow \Xi_{1}^{\prime} \triangleright t_{1}^{\prime}$, we know that $t_{11}^{*}=\varepsilon_{11} \lambda x: G_{1}^{*} \cdot t_{11}:: G_{12} \rightarrow G_{11}$ and $t_{12}^{*}=v_{12}=\varepsilon_{12} u_{12}$: G_{12}. By Proposition 5.15, we know that $t_{21}^{*}=\varepsilon_{21} \lambda x: G_{2}^{*} \cdot t_{21}:: G_{22} \rightarrow G_{21}$ and $t_{22}^{*}=v_{22}=\varepsilon_{22} u_{22}: G_{22}$. By the reduction rules, we know that

$$
\Xi_{1} \triangleright\left(\varepsilon_{11} \lambda x: G_{1}^{*} . t_{11}:: G_{12} \rightarrow G_{11}\right)\left(\varepsilon_{12} u_{12}: G_{12}\right) \longrightarrow \Xi_{1} \triangleright \operatorname{cod}\left(\varepsilon_{11}\right)\left(t_{11}\left[\left(\left(\varepsilon_{12} ; \operatorname{dom}\left(\varepsilon_{11}\right)\right) u_{11}:: G_{1}^{*}\right) / x\right]\right):: G_{11}
$$

By Proposition 5.16, we know that $\operatorname{dom}\left(\varepsilon_{11}\right) \leqslant \operatorname{dom}\left(\varepsilon_{21}\right)$ and $\operatorname{cod}\left(\varepsilon_{11}\right) \leqslant \operatorname{cod}\left(\varepsilon_{21}\right)$. Therefore, by Proposition ?? and $\varepsilon_{12} \leqslant \varepsilon_{22}$, we know that $\left(\varepsilon_{12} \circ \operatorname{dom}\left(\varepsilon_{11}\right)\right) \leqslant\left(\varepsilon_{22} \circ \operatorname{dom}\left(\varepsilon_{21}\right)\right)$.

Therefore, we know that

$$
\Xi_{2} \triangleright\left(\varepsilon_{21} \lambda x: G_{2}^{*} \cdot t_{21}:: G_{22} \rightarrow G_{21}\right)\left(\varepsilon_{22} u_{22}: G_{22}\right) \longrightarrow \Xi_{2} \triangleright \operatorname{cod}\left(\varepsilon_{21}\right)\left(t_{21}\left[\left(\left(\varepsilon_{22} ; \operatorname{dom}\left(\varepsilon_{21}\right)\right) u_{21}:: G_{2}^{*}\right) / x\right]\right):: G_{21}
$$

Thus, by the \leqslant rules, $u_{11} \leqslant u_{21}$ and $G_{1}^{*} \sqsubseteq G_{2}^{*}$, we know that

$$
\left(\left(\varepsilon_{12} \circ \operatorname{dom}\left(\varepsilon_{11}\right)\right) u_{11}:: G_{1}^{*}\right) \leqslant\left(\left(\varepsilon_{22} \circ \operatorname{dom}\left(\varepsilon_{21}\right)\right) u_{21}:: G_{2}^{*}\right)
$$

By Proposition 5.13, we know that

$$
\left(t_{11}\left[\left(\left(\varepsilon_{12} \circ \operatorname{dom}\left(\varepsilon_{11}\right)\right) u_{11}:: G_{1}^{*}\right) / x\right]\right) \leqslant\left(t_{21}\left[\left(\left(\varepsilon_{22} \circ \operatorname{dom}\left(\varepsilon_{21}\right)\right) u_{21}:: G_{2}^{*}\right) / x\right]\right)
$$

Finally, since $\operatorname{cod}\left(\varepsilon_{11}\right) \leqslant \operatorname{cod}\left(\varepsilon_{21}\right)$ and $G_{11} \sqsubseteq G_{21}$ and the \leqslant rules the result holds.

$$
\Xi_{1} \vdash \operatorname{cod}\left(\varepsilon_{11}\right)\left(t_{11}\left[\left(\left(\varepsilon_{12} ; \operatorname{dom}\left(\varepsilon_{11}\right)\right) u_{11}:: G_{1}^{*}\right) / x\right]\right):: G_{11} \leqslant \Xi_{2}+\operatorname{cod}\left(\varepsilon_{21}\right)\left(t_{21}\left[\left(\left(\varepsilon_{22} ; \operatorname{dom}\left(\varepsilon_{21}\right)\right) u_{21}:: G_{2}^{*}\right) / x\right]\right):: G_{21}
$$

$\operatorname{Case}\left(t_{1}^{*}\left[G_{1}^{*}\right] \leqslant t_{2}^{*}\left[G_{2}^{*}\right]\right)$. We know that

$$
\frac{t_{1}^{*} \leqslant t_{2}^{*} \quad G_{1}^{*} \leqslant G_{2}^{*}}{t_{1}^{*}\left[G_{1}^{*}\right] \leqslant t_{2}^{*}\left[G_{2}^{*}\right]}
$$

Also, since $\Xi_{1} \triangleright t_{1} \longrightarrow \Xi_{1}^{\prime} \triangleright t_{1}^{\prime}$, we know that $t_{1}^{*}=\varepsilon_{11} \Lambda X . t_{11}:: \forall X . G_{11}$. By Proposition 5.15 , we know that $t_{2}^{*}=\varepsilon_{22} \Lambda X . t_{22}:: \forall X . G_{22}$. By the reduction rules, we know that

$$
\Xi_{1} \triangleright\left(\varepsilon_{11} \Lambda X . t_{11}:: \forall X . G_{11}\right)\left[G_{1}^{*}\right] \longrightarrow \Xi_{1}^{\prime} \triangleright \varepsilon_{11 \text { out }}\left(\varepsilon_{11}\left[\hat{\alpha_{1}}\right] t_{11}\left[\hat{\alpha_{1}} / X\right]:: G_{11}[\alpha / X]\right):: G_{11}\left[G_{1}^{*} / X\right]
$$

where $\Xi_{1}^{\prime}=\Xi_{1}, \alpha:=G_{1}^{*}$ and $\hat{\alpha_{1}}=\operatorname{lift}_{\Xi_{1}^{\prime}}(\alpha)$.
By Proposition 5.7, we know that $\varepsilon_{11 \text { out }} \leqslant \varepsilon_{22 o u t}$ and $\varepsilon_{11}\left[\hat{\alpha}_{1}\right] \leqslant \varepsilon_{22}\left[\hat{\alpha}_{2}\right]$.
Therefore, we know that

$$
\Xi_{2} \triangleright\left(\varepsilon_{22} \Lambda X . t_{22}:: \forall X . G_{22}\right)\left[G_{2}^{*}\right] \longrightarrow \Xi_{2}^{\prime} \triangleright \varepsilon_{22 \text { out }}\left(\varepsilon_{22}\left[\hat{\alpha_{2}}\right] t_{22}\left[\hat{\alpha_{2}} / X\right]:: G_{22}[\alpha / X]\right):: G_{22}\left[G_{2}^{*} / X\right]
$$

where $\Xi_{2}^{\prime}=\Xi_{2}, \alpha:=G_{2}^{*}$ and $\hat{\alpha_{2}}=\operatorname{lift}_{\Xi_{2}^{\prime}}(\alpha)$.
By Proposition 5.12 we know that $t_{11}\left[\hat{\alpha_{1}} / X\right] \leqslant t_{22}\left[\hat{\alpha}_{2} / X\right]$. By Proposition 5.8 and Proposition 5.9, we know that $G_{11}[\alpha / X] \leqslant G_{22}[\alpha / X]$ and $G_{11}\left[G_{1}^{*} / X\right] \leqslant G_{22}\left[G_{2}^{*} / X\right]$, respectively.

Finally, by the \leqslant rules the result holds.

$$
\Xi_{1}^{\prime} \triangleright \varepsilon_{1 \text { out }}\left(\varepsilon_{1}\left[\hat{\alpha_{1}}\right] t_{1}\left[\hat{\alpha_{1}} / X\right]:: G_{1}[\alpha / X]\right):: G_{1}\left[G_{1}^{*} / X\right] \leqslant \Xi_{2}^{\prime} \triangleright \varepsilon_{22 \text { out }}\left(\varepsilon_{22}\left[\hat{\alpha_{2}}\right] t_{22}\left[\hat{\alpha_{2}} / X\right]:: G_{22}[\alpha / X]\right):: G_{22}\left[G_{2}^{*} / X\right]
$$

Case ($\left.\varepsilon_{1} s_{1}:: G_{1}^{*} \leqslant \varepsilon_{2} s_{2}:: G_{2}^{*}\right)$. We know that

$$
\frac{\varepsilon_{1} \leqslant \varepsilon_{2} \quad s_{1} \leqslant s_{2} \quad G_{1}^{*} \sqsubseteq G_{2}^{*}}{\varepsilon_{1} s_{1}:: G_{1}^{*} \leqslant \varepsilon_{2} s_{2}:: G_{2}^{*}}
$$

Also, since $\Xi_{1} \triangleright t_{1} \longrightarrow \Xi_{1}^{\prime} \triangleright t_{1}^{\prime}$, we know that $s_{1}=\left(\varepsilon_{11} u_{11}:: G_{11}\right)$. By Proposition 5.15 , we know that $s_{2}=\left(\varepsilon_{2} u_{2}:: G_{2}\right)$. By the reduction rules, we know that

$$
\Xi_{1} \triangleright \varepsilon_{1}\left(\varepsilon_{11} u_{11}:: G_{11}\right):: G_{1}^{*} \longrightarrow \Xi_{1} \triangleright\left(\varepsilon_{11} \circ \varepsilon_{1}\right) u_{11}:: G_{1}^{*}
$$

By the \leqslant rules, we know that $\varepsilon_{11} \leqslant \varepsilon_{22}$ and $\varepsilon_{1} \leqslant \varepsilon_{2}$. Therefore, by Proposition ??, we know that $\left(\varepsilon_{11} \circ \varepsilon_{1}\right) \leqslant\left(\varepsilon_{22} \circ \varepsilon_{2}\right)$.

Therefore, we know that

$$
\Xi_{2} \triangleright \varepsilon_{2}\left(\varepsilon_{22} u_{22}:: G_{22}\right):: G_{2}^{*} \longrightarrow \Xi_{2} \triangleright\left(\varepsilon_{22} \circ \varepsilon_{2}\right) u_{22}:: G_{2}^{*}
$$

Thus, by the \leqslant rules, $u_{11} \leqslant u_{22}$ and $G_{1}^{*} \sqsubseteq G_{2}^{*}$, the result holds.

$$
\Xi_{1} \vdash\left(\varepsilon_{11} \rho \varepsilon_{1}\right) u_{11}:: G_{1}^{*} \leqslant \Xi_{2} \vdash\left(\varepsilon_{22} \circ \varepsilon_{2}\right) u_{22}:: G_{2}^{*}
$$

$\operatorname{Case}\left(\varepsilon_{G_{1}^{*}}\left(\varepsilon_{11} u_{1}:: G_{1}^{*}\right):: G_{1}^{*} \leqslant \varepsilon_{G_{2}^{*}}\left(\varepsilon_{22} u_{2}:: G_{2}^{*}\right):: G_{2}^{*}\right)$. We know that

$$
\frac{\Omega \vdash u_{11} \leqslant u_{22}: G_{1}^{* *} \leqslant G_{2}^{* *} \quad G_{1}^{*} \sqsubseteq G_{2}^{*} \quad G_{1}^{* *} \rightarrow G_{1}^{*} \quad G_{2}^{* *} \rightarrow G_{2}^{*}}{\Omega \vdash \varepsilon_{G_{1}^{*}}\left(\varepsilon_{11} u_{11}:: G_{1}^{* *}\right):: G_{1}^{*} \leqslant \varepsilon_{G_{2}^{*}}\left(\varepsilon_{22} u_{22}:: G_{2}^{* *}\right):: G_{2}^{*}: G_{1}^{*} \leqslant G_{2}^{*}}
$$

Also, since $\Xi_{1} \triangleright t_{1} \longrightarrow \Xi_{1}^{\prime} \triangleright t_{1}^{\prime}$, we know that $t_{1}=\varepsilon_{G_{1}^{*}}\left(\varepsilon_{11} u_{11}:: G_{1}^{* *}\right):: G_{1}^{*}$. By Proposition 5.15, we know that $s_{2}=\varepsilon_{G_{2}^{*}}\left(\varepsilon_{22} u_{22}:: G_{2}^{* *}\right):: G_{2}^{*}$. By the reduction rules, we know that

$$
\Xi_{1} \triangleright \varepsilon_{G_{1}^{*}}\left(\varepsilon_{11} u_{11}:: G_{1}^{* *}\right):: G_{1}^{*} \longrightarrow \Xi_{1} \triangleright\left(\varepsilon_{11} 9 \varepsilon_{G_{1}^{*}}\right) u_{11}:: G_{1}^{*}
$$

We know by the definition of $\Xi \vdash \varepsilon_{G_{1}^{*}}\left(\varepsilon_{11} u_{11}:: G_{1}^{* *}\right):: G_{1}^{*} \leqslant \varepsilon_{G_{2}^{*}}\left(\varepsilon_{22} u_{22}:: G_{2}^{* *}\right):: G_{2}^{*}: G_{1}^{*} \leqslant G_{2}^{*}$ that $\Xi_{1} \vdash\left(\varepsilon_{11} u_{11}:: G_{1}^{* *}\right): G_{1}^{* *}$ and $\Xi_{2} \vdash\left(\varepsilon_{22} u_{22}:: G_{2}^{* *}\right): G_{2}^{* *}$, and therefore, $\varepsilon_{11} \Vdash \Xi_{1} \vdash G_{1}^{* * *} \sim G_{1}^{* *}$ and $\varepsilon_{22} \Vdash \Xi_{2} \vdash G_{2}^{* * *} \sim G_{2}^{* *}$. By the \leqslant rules, we know that $\varepsilon_{11} \leqslant \varepsilon_{22}$ and $\varepsilon_{G_{1}^{*}} \sqsubseteq \varepsilon_{G_{2}^{*}}$. Therefore, by Lemma 5.17 and $G_{1}^{* *} \rightarrow G_{1}^{*}$ and $G_{2}^{* *} \rightarrow G_{2}^{*}$, we know that $\left(\varepsilon_{11} \circ \varepsilon_{G_{1}^{*}}\right)=\varepsilon_{11}$ and $\left(\varepsilon_{22} \circ \varepsilon_{G_{2}^{*}}\right)=\varepsilon_{22}$.

Therefore, we know that

$$
\Xi_{2} \triangleright \varepsilon_{G_{2}^{*}}\left(\varepsilon_{22} u_{22}:: G_{2}^{* *}\right):: G_{2}^{*} \longrightarrow \Xi_{2} \triangleright\left(\varepsilon_{22} \circ \varepsilon_{G_{2}^{*}}\right) u_{22}:: G_{2}^{*}
$$

Then, by the \leqslant rules, $u_{11} \leqslant u_{22}$ and $G_{1}^{*} \sqsubseteq G_{2}^{*}$, the result holds.

$$
\Xi_{1} \vdash\left(\varepsilon_{11} \circ \varepsilon_{1}\right) u_{11}:: G_{1}^{*} \leqslant \Xi_{2}+\left(\varepsilon_{22} \circ \varepsilon_{2}\right) u_{22}:: G_{2}^{*}
$$

Proposition 5.19. If $\Xi_{1} \vdash t_{1} \leqslant \Xi_{2} \vdash t_{2}$ and $\Xi_{1} \triangleright t_{1} \longmapsto \Xi_{1}^{\prime} \triangleright t_{1}^{\prime}$, then $\Xi_{2} \triangleright t_{2} \longmapsto \Xi_{2}^{\prime} \triangleright t_{2}^{\prime}$ and $\Xi_{1}^{\prime}+t_{1}^{\prime} \leqslant \Xi_{2}^{\prime}+t_{2}^{\prime}$.

Proof. If $\Xi_{1} \vdash t_{1} \leqslant \Xi_{2} \vdash t_{2}$, we know that $\vdash t_{1} \leqslant t_{2}: G_{1} \leqslant G_{2}, \Xi_{1} \leqslant \Xi_{2}, \Xi_{1} \vdash t_{1}: G_{1}$ and $\Xi_{2} \vdash t_{2}: G_{2}$. We avoid the notation $\vdash t_{1} \leqslant t_{2}: G_{1} \leqslant G_{2}$, and use $t_{1} \leqslant t_{2}$ instead, for simplicity, when the typing environments are not relevant.

By induction on reduction $\Xi_{1} \triangleright t_{1} \longmapsto \Xi_{1}^{\prime} \triangleright t_{1}^{\prime}$.
$\operatorname{Case}\left(\Xi_{1} \triangleright t_{1} \longrightarrow \Xi_{1}^{\prime} \triangleright t_{1}^{\prime}\right)$. By Proposition 5.18, we know that $\Xi_{2} \triangleright t_{2} \longrightarrow \Xi_{2}^{\prime} \triangleright t_{2}^{\prime}, \Xi_{1}^{\prime} \vdash t_{1}^{\prime} \leqslant \Xi_{2}^{\prime} \vdash t_{2}^{\prime}$; and the result holds immediately.

Case $\left(\Xi_{1} \triangleright \varepsilon_{11} t_{11}:: G_{11} \longmapsto \Xi_{1}^{\prime} \triangleright \varepsilon_{11} t_{11}^{\prime}:: G_{11}\right)$. By inspection of $\leqslant, t_{2}=\varepsilon_{22} t_{22}:: G_{22}$, where $\varepsilon_{11} \leqslant \varepsilon_{22}$ or $\varepsilon_{11} \sqsubseteq \varepsilon_{22}, t_{11} \leqslant t_{22}$ and $G_{11} \sqsubseteq G_{22}$. By induction hypothesis on $\Xi_{1} \triangleright t_{11} \longmapsto \Xi_{1}^{\prime} \triangleright t_{11}^{\prime}$, then $\Xi_{2} \triangleright t_{22} \longmapsto \Xi_{2}^{\prime} \triangleright t_{22}^{\prime}$, where $\Xi_{1}^{\prime} \vdash t_{11}^{\prime} \leqslant \Xi_{2}^{\prime} \vdash t_{22}^{\prime}$. Then, by \leqslant, we know that $\Xi_{1}^{\prime} \vdash \varepsilon_{11} t_{11}^{\prime}:: G_{11} \leqslant \Xi_{2}^{\prime} \vdash$ $\varepsilon_{22} t_{22}^{\prime}:: G_{22}$ and the result holds.
Case $\left(\Xi_{1} \triangleright t_{11} t_{12} \longmapsto \Xi_{1}^{\prime} \triangleright t_{11}^{\prime} t_{12}\right)$. By inspection of $\leqslant, t_{2}=t_{21} t_{22}$, where $t_{11} \leqslant t_{21}$ and $t_{12} \leqslant t_{22}$. By induction hypothesis on $\Xi_{1} \triangleright t_{11} \longmapsto \Xi_{1}^{\prime} \triangleright t_{11}^{\prime}$, we know that $\Xi_{2} \triangleright t_{21} \longmapsto \Xi_{2}^{\prime} \triangleright t_{21}^{\prime}$, where $\Xi_{1}^{\prime} \vdash t_{11}^{\prime} \leqslant$ $\Xi_{2}^{\prime} \vdash t_{21}^{\prime}$. Then, by \leqslant, we know that $\Xi_{1}^{\prime} \vdash t_{11}^{\prime} t_{12} \leqslant \Xi_{2}^{\prime} \vdash t_{21}^{\prime} t_{22}$ and the result holds.
Case $\left(\Xi_{1} \triangleright v_{11} t_{12} \longmapsto \Xi_{1}^{\prime} \triangleright v_{11} t_{12}^{\prime}\right)$. By inspection of \leqslant and Proposition 5.15, $t_{2}=v_{21} t_{22}$, where $v_{11} \leqslant v_{21}$ and $t_{12} \leqslant t_{22}$. By induction hypothesis on $\Xi_{1} \triangleright t_{12} \longmapsto \Xi_{1}^{\prime} \triangleright t_{12}^{\prime}$, then $\Xi_{2} \triangleright t_{22} \longmapsto \Xi_{2}^{\prime} \triangleright t_{22}^{\prime}$, where $\Xi_{1}^{\prime} \vdash t_{12}^{\prime} \leqslant \Xi_{2}^{\prime} \vdash t_{22}^{\prime}$. Then, by \leqslant, we know that $\Xi_{1}^{\prime} \vdash v_{11} t_{12}^{\prime} \leqslant \Xi_{2}^{\prime} \vdash v_{21} t_{22}^{\prime}$ and the result holds.

Case $\left(\Xi_{1} \triangleright t_{11}\left[G_{11}\right] \longmapsto \Xi_{1}^{\prime} \triangleright t_{11}^{\prime}\left[G_{11}\right]\right)$. By inspection of $\leqslant, t_{2}=t_{22}\left[G_{22}\right]$, where $t_{11} \leqslant t_{22}$ and $G_{11} \leqslant G_{22}$. By induction hypothesis on $\Xi_{1} \triangleright t_{11} \longmapsto \Xi_{1}^{\prime} \triangleright t_{11}^{\prime}$, we know that $\Xi_{2} \triangleright t_{22} \longmapsto \Xi_{2}^{\prime} \triangleright t_{22}^{\prime}$, where $\Xi_{1}^{\prime} \vdash t_{11}^{\prime} \leqslant \Xi_{2}^{\prime} \vdash t_{22}^{\prime}$. Then, by \leqslant, we know that $\Xi_{1}^{\prime} \vdash t_{11}^{\prime}\left[G_{11}\right] \leqslant \Xi_{2}^{\prime} \vdash t_{22}^{\prime}\left[G_{22}\right]$ and the result holds.

Proposition 9.4 (Small-step DGG ${ }^{\leqslant}$For GSFg). Suppose $\Xi_{1} \triangleright t_{1} \leqslant \Xi_{2} \triangleright t_{2}$.
a. If $\Xi_{1} \triangleright t_{1} \longmapsto \Xi_{1}^{\prime} \triangleright t_{1}^{\prime}$, then $\Xi_{2} \triangleright t_{2} \longmapsto \Xi_{2}^{\prime} \triangleright t_{2}^{\prime}$, and we have $\Xi_{1}^{\prime} \triangleright t_{1}^{\prime} \leqslant \Xi_{2}^{\prime} \triangleright t_{2}^{\prime}$.
b. If $t_{1}=v_{1}$, then $t_{2}=v_{2}$.

Proof. Direct by Lemma 5.19 and 5.15.

Proposition 5.20. Let suppose $\Xi_{1} \vdash t_{1} \leqslant \Xi_{2} \vdash t_{2}$.

- $\Xi_{1} \triangleright t_{1} \longmapsto{ }^{*} \Xi_{1}^{\prime} \triangleright v_{1}$ implies $\Xi_{2} \triangleright t_{2} \longmapsto{ }^{*} \Xi_{2}^{\prime} \triangleright v_{2}, \Xi_{1}^{\prime} \vdash v_{1} \leqslant \Xi_{2}^{\prime} \vdash v_{2}$.
- t_{1} diverges implies t_{2} diverges.
- $\Xi_{2} \triangleright t_{2} \longmapsto{ }^{*} \Xi_{2}^{\prime} \triangleright v_{2}$ implies $\Xi_{1} \triangleright t_{1} \longmapsto{ }^{*} \Xi_{1}^{\prime} \triangleright v_{1}$ and $\Xi_{1}^{\prime} \vdash v_{1} \leqslant \Xi_{2}^{\prime} \vdash v_{2}$, or $\Xi_{1} \triangleright t_{1} \longmapsto{ }^{*}$ error.
- t_{2} diverges implies t_{1} diverges, or $\Xi_{1} \triangleright t_{1} \longmapsto{ }^{*}$ error.

Proof. The proof is by case analysis on the reduction of t_{1} or t_{2}.

- Suppose that $\Xi_{1} \triangleright t_{1} \longmapsto{ }^{*} \Xi_{1}^{\prime} \triangleright v_{1}$. Then $\Xi_{2} \triangleright t_{2} \longmapsto^{*} \Xi_{2}^{\prime} \triangleright v_{2}, \Xi_{1}^{\prime} \vdash v_{1} \leqslant \Xi_{2}^{\prime} \vdash v_{2}$ by Proposition 5.19 and Proposition 5.15.
- Suppose that t_{1} diverges. Then t_{2} diverges by Proposition 5.19.
- Suppose that $\Xi_{2} \triangleright t_{2} \longmapsto^{*} \Xi_{2}^{\prime} \triangleright v_{2}$. Then, the only possibilities given the two previous results are $\Xi_{1} \triangleright t_{1} \longmapsto{ }^{*} \Xi_{1}^{\prime} \triangleright v_{1}$ and $\Xi_{1}^{\prime} \vdash v_{1} \leqslant \Xi_{2}^{\prime} \vdash v_{2}$, or $\Xi_{1} \triangleright t_{1} \longmapsto^{*}$ error, and the result holds.
- Suppose that t_{2} diverges. Then, the only possibilities given the two previous results are t_{1} diverges, or $\Xi_{1} \triangleright t_{1} \longmapsto{ }^{*}$ error, and the result holds.

Theorem $9.5\left(\mathrm{DGG}^{\leqslant}\right)$. Suppose $t_{1} \leqslant t_{2}$, $t_{1}: G_{1}$, and $\vdash t_{2}: G_{2}$.
a. If $t_{1} \Downarrow v_{1}$, then $t_{2} \Downarrow v_{2}$ and $\cdot \vdash \Xi_{1} \triangleright v_{1}: G_{1} \leqslant \Xi_{2} \triangleright v_{2}: G_{2}$, for some $\Xi_{1} \leqslant \Xi_{2}$. If $t_{1} \Uparrow$ then $t_{2} \Uparrow$.
b. If $t_{2} \Downarrow v_{2}$, then $t_{1} \Downarrow v_{1}$ and $\cdot \vdash \Xi_{1} \triangleright v_{1}: G_{1} \leqslant \Xi_{2} \triangleright v_{2}: G_{2}$, for some $\Xi_{1} \leqslant \Xi_{2}$, or $t_{1} \Downarrow$ error. If $t_{2} \Uparrow$, then $t_{1} \Uparrow$ or $t_{1} \Downarrow$ error.

Proof. Direct by Lemma 5.26 and 5.20.
Lemma 9.6. Let $\vdash t: G, G \sqsubseteq G^{\prime}$, and $t^{\prime}=t:: G^{\prime}:: G$, then

- $t \Downarrow v \Longleftrightarrow t^{\prime} \Downarrow v$
- $t \Downarrow$ error $\Longleftrightarrow t^{\prime} \Downarrow$ error

Proof. Direct consequence of the weak dynamic gradual guarantee (Theorem 9.5).
Lemma 9.8. Let $\vdash t_{1}: G_{1}$ and $\vdash t_{2}: G_{2}$ such that $\vdash t_{1} t_{2}: G, t_{1} t_{2} \Downarrow v$, and let $G_{1} \sqsubseteq G_{1}^{\prime}$, $G_{2} \sqsubseteq G_{2}^{\prime}$, and $G \sqsubseteq G^{\prime}$, such that $\vdash\left(t_{1}:: G_{1}^{\prime}\right)\left(t_{2}:: G_{2}^{\prime}\right): G^{\prime}$, then $\left(t_{1}:: G_{1}^{\prime}\right)\left(t_{2}:: G_{2}^{\prime}\right) \Downarrow v^{\prime}$ such that $\vdash \Xi_{1} \triangleright v: G \leqslant \Xi_{2} \triangleright v^{\prime}: G^{\prime}$, for some Ξ_{1}, Ξ_{2}.

Proof. From $\vdash\left(t_{1}:: G_{1}^{\prime}\right)\left(t_{2}:: G_{2}^{\prime}\right): G$, we know that $\vdash G_{1} \sim G_{1}^{\prime}$ and $\vdash G_{2} \sim G_{2}^{\prime}$, where $\vdash t_{1}: G_{1}$ ad $\vdash t_{2}: G_{2}$. As $G_{1} \sqsubseteq G_{1}^{\prime}$, and $G_{2} \sqsubseteq G_{2}^{\prime}$, then $G_{1} \sqcap G_{1} \sqsubseteq G_{1} \sqcap G_{1}^{\prime}$ and $G_{2} \sqcap G_{2} \sqsubseteq G_{2} \sqcap G_{2}^{\prime}$. Notice that if $t_{1} t_{2} \Downarrow v$, then $\left(t_{1}:: G_{1}\right)\left(t_{2}:: G_{2}\right) \Downarrow v$ (trivial ascriptions). Therefore, by (\leqslant ascv) or (\leqslant asct), $\vdash\left(t_{1}:: G_{1}\right)\left(t_{2}:: G_{2}\right): T \leqslant\left(t_{1}:: G_{1}^{\prime}\right)\left(t_{2}:: G_{2}^{\prime}\right): G$, then the result holds by DGG^{\leqslant}(Th.9.5).

Lemma 9.7. Let $\vdash t: G$ such that $t \Downarrow v$, and let $G \sqsubseteq G^{\prime}$, then $t:: G^{\prime} \Downarrow v^{\prime}$ such that $\vdash \Xi \triangleright v: G \leqslant$ $\Xi \triangleright v^{\prime}: G^{\prime}$, for some Ξ.

Direct by Th.9.5. Similar to Lemma 9.8.
Lemma 9.9. Let $\vdash t: G_{1}$ such that $\vdash t\left[G_{2}\right]: G, t\left[G_{2}\right] \Downarrow v$, and let $G_{1} \sqsubseteq G_{1}^{\prime}, G_{2} \leqslant G_{2}^{\prime}$, and $G \sqsubseteq G^{\prime}$, such that $\vdash\left(t:: G_{1}^{\prime}\right)\left[G_{2}^{\prime}\right]: G^{\prime}$, then $\left(t:: G_{1}^{\prime}\right)\left[G_{2}^{\prime}\right] \Downarrow v^{\prime}$ such that $\vdash \Xi_{1} \triangleright v: G \leqslant \Xi_{2} \triangleright v^{\prime}: G^{\prime}$, for some Ξ_{1}, Ξ_{2}.

Proof. Direct by Th.9.5. Similar to Lemma 9.8.
Proposition 9.10. Suppose t_{1} and t_{2} GSF terms such that $\cdot \vdash t_{1}: G_{1} \leqslant t_{2}: G_{2}$, and their elaborations $\cdot \vdash t_{1} \leadsto t_{\varepsilon_{1}}: G_{1}$ and $\cdot \vdash t_{2} \leadsto t_{\varepsilon_{2}}: G_{2}$. Then $\cdot \vdash \cdot \triangleright t_{\varepsilon_{1}}: G_{1} \leqslant \cdot \triangleright t_{\varepsilon_{2}}: G_{2}$.

Proof. Direct by Prop. 5.26.

5.4 Syntactic Strict Precision for GSF

Now, we present the proof of the weak dynamic gradual guarantee for GSF previously presented and the auxiliary Propositions an Definitions.

Proposition 5.21. $\mathcal{I}_{\Xi}\left(G_{1} \sqcap G_{2}, G_{1} \sqcap G_{2}\right)=\mathcal{I}_{\Xi}\left(G_{1}, G_{2}\right)$
Proof. By the definition of Π and $\mathcal{I}_{\Xi}\left(G_{1}, G_{2}\right)$.
Proposition 5.22. $\Omega \vdash s_{1} \leqslant s_{2}: G_{1} \leqslant G_{2}$ then $G_{1} \sqsubseteq G_{2}$.
Proof. By the definition of Π and $I_{\Xi}\left(G_{1}, G_{2}\right)$.
Proposition 5.23. If $G_{1} \sqcap G_{2} \leqslant G_{1}^{\prime} \sqcap G_{2}^{\prime}$, then

$$
\mathcal{I}_{\Xi}\left(G_{1}, G_{2}\right)=\mathcal{I}_{\Xi}\left(G_{1} \sqcap G_{2}, G_{1} \sqcap G_{2}\right) \leqslant \mathcal{I}_{\Xi}\left(G_{1}^{\prime} \sqcap G_{2}^{\prime}, G_{1}^{\prime} \sqcap G_{2}^{\prime}\right)=\mathcal{I}_{\Xi}\left(G_{1}^{\prime}, G_{2}^{\prime}\right)
$$

Proof. By Proposition 5.21 and the definition of \leqslant in evidence.

Proposition 5.24. If $G_{1} \leqslant G_{2}$, then

$$
\mathcal{I}_{\Xi}\left(G_{1}, G_{1}\right) \sqsubseteq \mathcal{I}_{\Xi}\left(G_{2}, G_{2}\right)
$$

Proof. By the definition of \mathcal{I}_{Ξ} and the \sqsubseteq in evidence.
Definition 5.25. $\Omega \equiv \Gamma_{1} \sqsubseteq \Gamma_{2} \Longleftrightarrow\left(\Omega=\Omega^{\prime}, x: G_{1} \sqsubseteq G_{2}, \Gamma_{1}=\Gamma_{1}^{\prime}, x: G_{1}, \Gamma_{2}=\Gamma_{2}^{\prime}, x: G_{2}, G_{1} \sqsubseteq G_{2}\right.$ and $\left.\Omega^{\prime} \equiv \Gamma_{1}^{\prime} \sqsubseteq \Gamma_{2}^{\prime}\right) \vee\left(\Omega=\Gamma_{1}=\Gamma_{2}=\cdot\right)$.

Proposition 5.26. If $\Omega \vdash \Xi_{1} \triangleright t_{1}^{*}: G_{1}^{*} \leqslant \Xi_{2} \triangleright t_{2}^{*}: G_{2}^{*}, \Omega \equiv \Gamma_{1} \sqsubseteq \Gamma_{2}, \Xi_{1} \leqslant \Xi_{2}$ and $\Xi_{i} ; \Delta ; \Gamma_{i} \vdash t_{i}^{*} \leadsto$ $t_{i}^{* *}: G_{i}^{*}$, then $\Omega \vdash \Xi_{1} \triangleright t_{1}^{* *}: G_{1}^{*} \leqslant \Xi_{2} \triangleright t_{2}^{* *}: G_{2}^{*}$.

Proof. We follow by induction on $\Omega \vdash \Xi_{1} \triangleright t_{1}^{*}: G_{1}^{*} \leqslant \Xi_{2} \triangleright t_{2}^{*}: G_{2}^{*}$. We avoid the notation $\Omega \vdash \Xi_{1} \triangleright t_{1}^{*}: G_{1}^{*} \leqslant \Xi_{2} \triangleright t_{2}^{*}: G_{2}^{*}$, and use $t_{1}^{*} \leqslant t_{2}^{*}$ instead, for simplicity, when the typing environments are not relevant. We use metavariable v or u in GSF to range over constants, functions and type abstractions.

Remember that

$$
\operatorname{norm}\left(t, G_{1}, G_{2}\right)=\varepsilon t:: G_{2}, \text { where } \varepsilon=\mathcal{I}_{\Xi}\left(G_{1}, G_{2}\right)
$$

By Proposition 5.21 we know that

$$
\mathcal{I}_{\Xi}\left(G_{1}, G_{2}\right)=\mathcal{I}_{\Xi}\left(G_{1} \sqcap G_{2}, G_{1} \sqcap G_{2}\right)=\mathcal{I}\left(\operatorname{lif}_{\Xi}\left(G_{1}\right), \operatorname{lif}_{\Xi}\left(G_{2}\right)\right)
$$

Case $\left(\Omega \vdash \Xi_{1} \triangleright u_{1}: G_{1}^{*} \leqslant \Xi_{2} \triangleright u_{2}: G_{2}^{*}\right)$. We know that

$$
\begin{gathered}
(\leqslant \mathrm{v}) \frac{\Omega \vdash u_{1}: G_{1}^{*} \leqslant v u_{2}: G_{2}^{*} \quad G_{1}^{*} \leqslant G_{2}^{*}}{\Omega \vdash \Xi_{1} \triangleright u_{1}: G_{1}^{*} \leqslant \Xi_{2} \triangleright u_{2}: G_{2}^{*}} \\
(\mathrm{Gu}) \frac{\Xi_{1} ; \Delta ; \Gamma_{1} \vdash u_{1} \leadsto u_{1}^{\prime}: G_{1}^{*} \quad \varepsilon_{G_{1}^{*}}=\mathcal{I}_{\Xi}\left(G_{1}^{*}, G_{1}^{*}\right)}{\Xi_{1} ; \Delta ; \Gamma_{1} \vdash u_{1} \leadsto \varepsilon_{G_{1}^{*}}^{\prime} u_{1}^{\prime}:: G_{1}^{*}: G_{1}^{*}} \\
(\mathrm{Gu}) \frac{\Xi_{2} ; \Delta ; \Gamma_{2} \vdash u_{2} \leadsto u_{2}^{\prime}: G_{2}^{*} \quad \varepsilon_{G_{2}^{*}}=\mathcal{I}_{\Xi}\left(G_{2}^{*}, G_{2}^{*}\right)}{\Xi_{2} ; \Delta ; \Gamma_{2} \vdash u_{2} \leadsto \varepsilon_{G_{2}^{*}} u_{2}^{\prime}:: G_{2}^{*}: G_{2}^{*}}
\end{gathered}
$$

We have to prove that $\Omega \vdash \varepsilon_{G_{1}^{*}} u_{1}^{\prime}:: G_{1}^{*} \leqslant \varepsilon_{G_{2}^{*}} u_{2}^{\prime}:: G_{2}^{*}: G_{1}^{*} \leqslant G_{2}^{*}$. By the rule ($\leqslant \operatorname{asc}_{\varepsilon}$), we are required to prove that $\varepsilon_{G_{1}^{*}} \leqslant \varepsilon_{G_{2}^{*}}$, $\Omega \vdash u_{1}^{\prime} \leqslant u_{2}^{\prime}: G_{1}^{*} \leqslant G_{2}^{*}$ and $G_{1}^{*} \sqsubseteq G_{2}^{*}$. Since $G_{1}^{*} \leqslant G_{2}^{*}, \Xi_{1} \leqslant \Xi_{2}$ and Proposition 5.3, we know that $\varepsilon_{G_{1}^{*}} \leqslant \varepsilon_{G_{2}^{*}}$. Also, by Proposition 5.14 and $G_{1}^{*} \leqslant G_{2}^{*}$ we now that $G_{1}^{*} \sqsubseteq G_{2}^{*}$. Therefore, we only have required to prove that $\Omega \vdash u_{1}^{\prime} \leqslant u_{2}^{\prime}: G_{1}^{*} \leqslant G_{2}^{*}$. We follow by case analysis on $\Omega \vdash u_{1}: G_{1}^{*} \leqslant v u_{2}: G_{2}^{*}$.

- Case $\left(\Omega \vdash b: B \leqslant_{v} b: B\right)$. We know that

$$
\begin{gathered}
(\leqslant b) \frac{t y(b)=B}{\Omega \vdash b: B \leqslant v b: B} \\
(\mathrm{G} b) \frac{t y(b)=B}{\Xi_{i} ; \Delta ; \Gamma_{i} \vdash b \sim b: B}
\end{gathered}
$$

We have to prove that $\Omega \vdash b \leqslant b: B \leqslant B$. Then, by $\left(\leqslant b_{\varepsilon}\right)$ rule, we know that $\Omega \vdash b \leqslant b: B \leqslant$ B and the result holds.

- Case $\left(\Omega \vdash\left(\lambda x: G_{1} \cdot t_{1}\right): G_{1} \rightarrow G_{2} \leqslant v\left(\lambda x: G_{1}^{\prime} \cdot t_{2}\right): G_{1}^{\prime} \rightarrow G_{2}^{\prime}\right)$. We know that

$$
\begin{gathered}
(\leqslant \lambda) \frac{\Omega, x: G_{1} \sqsubseteq G_{1}^{\prime} \vdash \Xi_{1} \triangleright t_{1}: G_{2} \leqslant \Xi_{2} \triangleright t_{2}: G_{2}^{\prime} \quad G_{1} \sqsubseteq G_{1}^{\prime}}{\Omega \vdash\left(\lambda x: G_{1} \cdot t_{1}\right): G_{1} \rightarrow G_{2} \leqslant v\left(\lambda x: G_{1}^{\prime} \cdot t_{2}\right): G_{1}^{\prime} \rightarrow G_{2}^{\prime}} \\
(\mathrm{G} \lambda) \frac{\Xi_{1} ; \Delta ; \Gamma_{1}, x: G_{1} \vdash t_{1} \leadsto t_{1}^{\prime}: G_{2}}{\Xi_{1} ; \Delta ; \Gamma_{1} \vdash\left(\lambda x: G_{1} \cdot t_{1}\right) \leadsto\left(\lambda x: G_{1} \cdot t_{1}^{\prime}\right): G_{1} \rightarrow G_{2}} \\
(\mathrm{G} \lambda) \frac{\Xi_{2} ; \Delta ; \Gamma_{2}, x: G_{1}^{\prime} \vdash t_{2} \leadsto t_{2}^{\prime}: G_{2}^{\prime}}{\Xi_{2} ; \Delta ; \Gamma_{2} \vdash\left(\lambda x: G_{1}^{\prime} \cdot t_{2}\right) \leadsto\left(\lambda x: G_{1}^{\prime} \cdot t_{2}^{\prime}\right): G_{1}^{\prime} \rightarrow G_{2}^{\prime}}
\end{gathered}
$$

Therefore, we are required to prove that $\Omega \vdash\left(\lambda x: G_{1} \cdot t_{1}^{\prime}\right) \leqslant\left(\lambda x: G_{1}^{\prime} \cdot t_{2}^{\prime}\right): G_{1} \rightarrow G_{2} \leqslant G_{1}^{\prime} \rightarrow$ G_{2}^{\prime}, or what is the same by the $\left(\leqslant \lambda_{\varepsilon}\right)$ that $\Omega, x: G_{1} \sqsubseteq G_{1}^{\prime} \vdash t_{1}^{\prime} \leqslant t_{2}^{\prime}: G_{2} \leqslant G_{2}^{\prime}$, but the result
follows immediately by the induction hypothesis on $\Omega, x: G_{1} \sqsubseteq G_{1}^{\prime} \vdash \Xi_{1} \triangleright t_{1}: G_{2} \leqslant \Xi_{2} \triangleright t_{2}: G_{2}^{\prime}$, with the translations t_{1}^{\prime} and $t_{2}^{\prime}\left(\Omega, x: G_{1} \sqsubseteq G_{1}^{\prime} \equiv \Gamma_{1}, x: G_{1} \sqsubseteq \Gamma_{2}, x: G_{1}^{\prime}\right)$.

- Case $\left(\Omega \vdash\left(\Lambda X . t_{1}\right): \forall X . G_{1} \leqslant v\left(\Lambda X . t_{2}\right): \forall X . G_{2}\right)$. We know that

$$
\begin{aligned}
& (\leqslant \Lambda) \frac{\Omega \vdash \Xi_{1} \triangleright t_{1}: G_{1} \leqslant \Xi_{2} \triangleright t_{2}: G_{2}}{\Omega \vdash\left(\Lambda X . t_{1}\right): \forall X . G_{1} \leqslant_{v}\left(\Lambda X . t_{2}\right): \forall X . G_{2}} \\
& (\mathrm{G} \lambda) \frac{\Xi_{1} ; \Delta, X ; \Gamma_{1} \vdash t_{1} \leadsto t_{1}^{\prime}: G_{1}}{\Xi_{1} ; \Delta ; \Gamma_{1} \vdash\left(\Lambda X . t_{1}\right) \leadsto\left(\Lambda X . t_{1}^{\prime}\right): \forall X . G_{1}} \\
& (\mathrm{G} \lambda) \frac{\Xi_{2} ; \Delta, X ; \Gamma_{2} \vdash t_{2} \leadsto t_{2}^{\prime}: G_{2}}{\Xi_{2} ; \Delta ; \Gamma_{2} \vdash\left(\Lambda X . t_{2}\right) \leadsto\left(\Lambda X . t_{2}^{\prime}\right): \forall X . G_{2}}
\end{aligned}
$$

Therefore, we are required to prove that $\Omega \vdash\left(\Lambda X . t_{1}^{\prime}\right) \leqslant\left(\Lambda X . t_{2}^{\prime}\right): \forall X . G_{1} \leqslant \forall X . G_{2}$, or what is the same by the rule $\left(\leqslant \Lambda_{\varepsilon}\right)$ that $\Omega \vdash t_{1}^{\prime} \leqslant t_{2}^{\prime}: G_{1} \leqslant G_{2}$, but the result follows immediately by the induction hypothesis on $\Omega \vdash \Xi_{1} \triangleright t_{1}: G_{1} \leqslant \Xi_{2} \triangleright t_{2}: G_{2}$, with the translations t_{1}^{\prime} and t_{2}^{\prime}.

Case $\left(\Omega \vdash \Xi_{1} \triangleright x: G_{1}^{*} \leqslant \Xi_{2} \triangleright x: G_{2}^{*}\right)$. We know that

$$
\begin{gathered}
(\leqslant \mathrm{x}) \frac{x: G_{1}^{*} \sqsubseteq G_{2}^{*} \in \Omega}{\Omega \vdash \Xi_{1} \triangleright x: G_{1}^{*} \leqslant \Xi_{2} \triangleright x: G_{2}^{*}} \\
(\mathrm{Gx}) \frac{x: G_{1}^{*} \in \Gamma_{1}}{\Xi_{1} ; \Delta ; \Gamma_{1} \vdash x} \sim x: G_{1}^{*} \\
(\mathrm{Gx}) \frac{x: G_{2}^{*} \in \Gamma_{2}}{\Xi_{2} ; \Delta ; \Gamma_{2} \vdash x} \sim x: G_{2}^{*}
\end{gathered}
$$

We have to prove that $\Omega \vdash x \leqslant x: G_{1}^{*} \leqslant G_{2}^{*}$. Then, by the rule $\left(\leqslant \mathrm{x}_{\varepsilon}\right)$, we know that $\Omega \vdash x \leqslant x$: $G_{1}^{*} \leqslant G_{2}^{*}$ and the result holds.

Case $((\leqslant \mathrm{ascv}))$. We know that

$$
\begin{aligned}
(\leqslant \mathrm{ascv}) & \begin{array}{l}
\Omega \vdash u_{1}: G_{1}^{* *} \leqslant v u_{2}: G_{2}^{* *} \quad G_{1}^{* *} \sqcap G_{1}^{*} \leqslant G_{2}^{* *} \sqcap G_{2}^{*} \quad G_{1}^{*} \sqsubseteq G_{2}^{*} \\
\Omega \vdash \Xi_{1} \triangleright u_{1}:: G_{1}^{*}: G_{1}^{*} \leqslant \Xi_{2} \triangleright u_{2}:: G_{2}^{*}: G_{2}^{*} \\
(\mathrm{Gascu}) \frac{\Xi_{1} ; \Delta ; \Gamma_{1} \vdash u_{1} \leadsto u_{1}^{\prime}: G_{1}^{* *} \quad \varepsilon_{1}=\mathcal{I}_{\Xi}\left(G_{1}^{* *}, G_{1}^{*}\right)}{\Xi_{1} ; \Delta ; \Gamma_{1} \vdash u_{1}:: G_{1}^{*} \leadsto \varepsilon_{1} u_{1}^{\prime}:: G_{1}^{*}: G_{1}^{*}} \\
(\mathrm{Gascu}) \frac{\Xi_{2} ; \Delta ; \Gamma_{2} \vdash u_{2} \leadsto u_{2}^{\prime}: G_{2}^{* *} \quad \varepsilon_{2}=\mathcal{I}_{\Xi}\left(G_{2}^{* *}, G_{2}^{*}\right)}{\Xi_{2} ; \Delta ; \Gamma_{2} \vdash u_{2}:: G_{2}^{*} \leadsto \varepsilon_{2} u_{2}^{\prime}:: G_{2}^{*}: G_{2}^{*}}
\end{array}
\end{aligned}
$$

We have to prove that $\Omega \vdash \varepsilon_{1} u_{1}^{\prime}:: G_{1}^{*} \leqslant \varepsilon_{2} u_{2}^{\prime}:: G_{2}^{*}: G_{1}^{*} \leqslant G_{2}^{*}$, or what is the same by the rule ($\leqslant \operatorname{asc}_{\varepsilon}$), we have to prove that $\varepsilon_{1} \leqslant \varepsilon_{2}, \Omega \vdash u_{1}^{\prime} \leqslant u_{2}^{\prime}: G_{1}^{* *} \leqslant G_{2}^{* *}$ and $G_{1}^{*} \sqsubseteq G_{2}^{*}$. By Proposition 5.21, we know that $\varepsilon_{1}=I_{\Xi}\left(G_{1}^{* *}, G_{1}^{*}\right)=\mathcal{I}_{\Xi}\left(G_{1}^{* *} \sqcap G_{1}^{*}, G_{1}^{* *} \sqcap G_{1}^{*}\right)$ and $\varepsilon_{2}=\mathcal{I}_{\Xi}\left(G_{2}^{* *}, G_{2}^{*}\right)=\mathcal{I}_{\Xi}\left(G_{2}^{* *} \sqcap G_{2}^{*}, G_{2}^{* *} \sqcap G_{2}^{*}\right)$. Since $G_{1}^{* *} \sqcap G_{1}^{*} \leqslant G_{2}^{* *} \sqcap G_{2}^{*}$, then $\varepsilon_{1}=\mathcal{I}_{\Xi}\left(G_{1}^{* *}, G_{1}^{*}\right)=\mathcal{I}_{\Xi}\left(G_{1}^{* *} \sqcap G_{1}^{*}, G_{1}^{* *} \sqcap G_{1}^{*}\right) \leqslant \mathcal{I}_{\Xi}\left(G_{2}^{* *} \sqcap G_{2}^{*}, G_{2}^{* *} \sqcap G_{2}^{*}\right)=$ $\mathcal{I}_{\Xi}\left(G_{2}^{* *}, G_{2}^{*}\right)=\varepsilon_{2}$, by Proposition 5.23. Thus, we only have to prove that $\Omega \vdash u_{1}^{\prime} \leqslant u_{2}^{\prime}: G_{1}^{* *} \leqslant G_{2}^{* *}$, and we know that $\Omega \vdash u_{1}^{\prime}: G_{1}^{* *} \leqslant_{v} u_{2}^{\prime}: G_{2}^{* *}$. We follow by case analysis on $\Omega \vdash u_{1}: G_{1}^{* *} \leqslant_{v} u_{2}: G_{2}^{* *}$.

- Case $\left(\Omega+b: B \leqslant_{v} b: B\right)$. We know that

$$
\begin{gathered}
(\leqslant b) \frac{t y(b)=B}{\Omega \vdash b: B \leqslant_{v} b: B} \\
(\mathrm{G} b) \frac{t y(b)=B}{\Xi_{i} ; \Delta ; \Gamma_{i} \vdash b \leadsto b: B}
\end{gathered}
$$

We have to prove that $\Omega \vdash b \leqslant b: B \leqslant B$. Then, by $\left(\leqslant b_{\varepsilon}\right)$ rule, we know that $\Omega \vdash b \leqslant b: B \leqslant$ B and the result holds.

- Case $\left(\Omega \vdash\left(\lambda x: G_{1} \cdot t_{1}\right): G_{1} \rightarrow G_{2} \leqslant v\left(\lambda x: G_{1}^{\prime} \cdot t_{2}\right): G_{1}^{\prime} \rightarrow G_{2}^{\prime}\right)$. We know that

$$
\begin{aligned}
& (\leqslant \lambda) \frac{\Omega, x: G_{1} \sqsubseteq G_{1}^{\prime} \vdash \Xi_{1} \triangleright t_{1}: G_{2} \leqslant \Xi_{2} \triangleright t_{2}: G_{2}^{\prime} \quad G_{1} \sqsubseteq G_{1}^{\prime}}{\Omega \vdash\left(\lambda x: G_{1} \cdot t_{1}\right): G_{1} \rightarrow G_{2} \leqslant v\left(\lambda x: G_{1}^{\prime} \cdot t_{2}\right): G_{1}^{\prime} \rightarrow G_{2}^{\prime}} \\
& (\mathrm{G} \lambda) \frac{\Xi_{1} ; \Delta ; \Gamma_{1}, x: G_{1} \vdash t_{1} \leadsto t_{1}^{\prime}: G_{2}}{\Xi_{1} ; \Delta ; \Gamma_{1} \vdash\left(\lambda x: G_{1} \cdot t_{1}\right) \leadsto\left(\lambda x: G_{1} \cdot t_{1}^{\prime}\right): G_{1} \rightarrow G_{2}} \\
& (\mathrm{G} \lambda) \frac{\Xi_{2} ; \Delta ; \Gamma_{2}, x: G_{1}^{\prime} \vdash t_{2} \leadsto t_{2}^{\prime}: G_{2}^{\prime}}{\Xi_{2} ; \Delta ; \Gamma_{2} \vdash\left(\lambda x: G_{1}^{\prime} \cdot t_{2}\right) \leadsto\left(\lambda x: G_{1}^{\prime} \cdot t_{2}^{\prime}\right): G_{1}^{\prime} \rightarrow G_{2}^{\prime}}
\end{aligned}
$$

Therefore, we are required to prove that $\Omega \vdash\left(\lambda x: G_{1} \cdot t_{1}^{\prime}\right) \leqslant\left(\lambda x: G_{1}^{\prime} \cdot t_{2}^{\prime}\right): G_{1} \rightarrow G_{2} \leqslant G_{1}^{\prime} \rightarrow$ G_{2}^{\prime}, or what is the same by the $\left(\leqslant \lambda_{\varepsilon}\right)$ that $\Omega, x: G_{1} \sqsubseteq G_{1}^{\prime} \vdash t_{1}^{\prime} \leqslant t_{2}^{\prime}: G_{2} \leqslant G_{2}^{\prime}$, but the result follows immediately by the induction hypothesis on $\Omega, x: G_{1} \sqsubseteq G_{1}^{\prime} \vdash \Xi_{1} \triangleright t_{1}: G_{2} \leqslant \Xi_{2} \triangleright t_{2}: G_{2}^{\prime}$, with the translations t_{1}^{\prime} and $t_{2}^{\prime}\left(\Omega, x: G_{1} \sqsubseteq G_{1}^{\prime} \equiv \Gamma_{1}, x: G_{1} \sqsubseteq \Gamma_{2}, x: G_{1}^{\prime}\right)$.

- Case $\left(\Omega \vdash\left(\Lambda X . t_{1}\right): \forall X . G_{1} \leqslant v\left(\Lambda X . t_{2}\right): \forall X . G_{2}\right)$. We know that

$$
\begin{aligned}
& (\leqslant \Lambda) \frac{\Omega \vdash \Xi_{1} \triangleright t_{1}: G_{1} \leqslant \Xi_{2} \triangleright t_{2}: G_{2}}{\Omega \vdash\left(\Lambda X . t_{1}\right): \forall X . G_{1} \leqslant_{v}\left(\Lambda X . t_{2}\right): \forall X . G_{2}} \\
& (G \lambda) \frac{\Xi_{1} ; \Delta, X ; \Gamma_{1} \vdash t_{1} \leadsto t_{1}^{\prime}: G_{1}}{\Xi_{1} ; \Delta ; \Gamma_{1} \vdash\left(\Lambda X . t_{1}\right) \leadsto\left(\Lambda X . t_{1}^{\prime}\right): \forall X . G_{1}} \\
& (\mathrm{G} \lambda) \frac{\Xi_{2} ; \Delta, X ; \Gamma_{2} \vdash t_{2} \leadsto t_{2}^{\prime}: G_{2}}{\Xi_{2} ; \Delta ; \Gamma_{2} \vdash\left(\Lambda X . t_{2}\right) \sim\left(\Lambda X . t_{2}^{\prime}\right): \forall X . G_{2}}
\end{aligned}
$$

Therefore, we are required to prove that $\Omega \vdash\left(\Lambda X . t_{1}^{\prime}\right) \leqslant\left(\Lambda X . t_{2}^{\prime}\right): \forall X . G_{1} \leqslant \forall X . G_{2}$, or what is the same by the rule $\left(\leqslant \Lambda_{\varepsilon}\right)$ that $\Omega \vdash t_{1}^{\prime} \leqslant t_{2}^{\prime}: G_{1} \leqslant G_{2}$, but the result follows immediately by the induction hypothesis on $\Omega \vdash \Xi_{1} \triangleright t_{1}: G_{1} \leqslant \Xi_{2} \triangleright t_{2}: G_{2}$, with the translations t_{1}^{\prime} and t_{2}^{\prime}.
Case $\left(\Omega \vdash \Xi_{1} \triangleright t_{1}:: G_{1}^{*}: G_{1}^{*} \leqslant \Xi_{2} \triangleright t_{2}:: G_{2}^{*}: G_{2}^{*}\right)$.

$$
\begin{array}{r}
(\leqslant \text { asct }) \begin{array}{r}
\Omega \vdash \Xi_{1} \triangleright t_{1}: G_{1} \leqslant \Xi_{2} \triangleright t_{2}: G_{2} \quad G_{1} \sqcap G_{1}^{*} \leqslant G_{2} \sqcap G_{2}^{*} \quad G_{1}^{*} \sqsubseteq G_{2}^{*} \\
\Omega \vdash \Xi_{1} \triangleright t_{1}:: G_{1}^{*}: G_{1}^{*} \leqslant \Xi_{2} \triangleright t_{2}:: G_{2}^{*}: G_{2}^{*} \\
(\text { Gasct }) \frac{\Xi_{1} ; \Delta ; \Gamma_{1} \vdash t_{1} \leadsto t_{1}^{\prime}: G_{1} \quad \varepsilon_{1}=I_{\Xi}\left(G_{1}, G_{1}^{*}\right)}{\Xi_{1} ; \Delta ; \Gamma_{1} \vdash t_{1}:: G_{1}^{*} \leadsto \varepsilon_{1} t_{1}^{\prime}:: G_{1}^{*}: G_{1}^{*}} \\
(\text { Gasct }) \frac{\Xi_{2} ; \Delta ; \Gamma_{2} \vdash t_{2} \leadsto t_{2}^{\prime}: G_{2} \quad \varepsilon_{2}=\mathcal{I}_{\Xi}\left(G_{2}, G_{2}^{*}\right)}{\Xi_{2} ; \Delta ; \Gamma_{2} \vdash t_{2}:: G_{2}^{*} \leadsto \varepsilon_{2} t_{2}^{\prime}:: G_{2}^{*}: G_{2}^{*}}
\end{array},
\end{array}
$$

We have to prove that $\Omega \vdash \varepsilon_{1} t_{1}^{\prime}:: G_{1}^{*} \leqslant \varepsilon_{2} t_{2}^{\prime}:: G_{2}^{*}: G_{1}^{*} \leqslant G_{2}^{*}$, or what is the same by the rule $\left(\leqslant \operatorname{asc}_{\varepsilon}\right)$, we have to prove that $\varepsilon_{1} \leqslant \varepsilon_{2}, \Omega \vdash t_{1}^{\prime} \leqslant t_{2}^{\prime}: G_{1} \leqslant G_{2}$ and $G_{1}^{*} \sqsubseteq G_{2}^{*}$. By Proposition 5.21, we know that $\varepsilon_{1}=\mathcal{I}_{\Xi}\left(G_{1}, G_{1}^{*}\right)=\mathcal{I}_{\Xi}\left(G_{1} \sqcap G_{1}^{*}, G_{1} \sqcap G_{1}^{*}\right)$ and $\varepsilon_{2}=I_{\Xi}\left(G_{2}, G_{2}^{*}\right)=\mathcal{I}_{\Xi}\left(G_{2} \sqcap G_{2}^{*}, G_{2} \sqcap G_{2}^{*}\right)$. Since $G_{1} \sqcap G_{1}^{*} \leqslant G_{2} \sqcap G_{2}^{*}$, then $\varepsilon_{1}=\mathcal{I}_{\Xi}\left(G_{1}, G_{1}^{*}\right)=\mathcal{I}_{\Xi}\left(G_{1} \sqcap G_{1}^{*}, G_{1} \sqcap G_{1}^{*}\right) \leqslant \mathcal{I}_{\Xi}\left(G_{2} \sqcap G_{2}^{*}, G_{2} \sqcap G_{2}^{*}\right)=$ $I_{\Xi}\left(G_{2}, G_{2}^{*}\right)=\varepsilon_{2}$, by Proposition 5.23. Thus, we only have to prove that $\Omega \vdash t_{1}^{\prime} \leqslant t_{2}^{\prime}: G_{1} \leqslant G_{2}$, and we know that $\Omega \vdash t_{1}^{\prime}: G_{1} \leqslant v t_{2}^{\prime}: G_{2}$, then by the induction hypothesis the result holds.
$\operatorname{Case}\left(\Omega \vdash \Xi_{1} \triangleright t_{1} t_{1}^{\prime}: \operatorname{cod}^{\sharp}\left(G_{1}\right) \leqslant \Xi_{2} \triangleright t_{2} t_{2}^{\prime}: \operatorname{cod}^{\sharp}\left(G_{2}\right)\right)$.

$$
\begin{aligned}
& \Omega \vdash \Xi_{1} \triangleright t_{1}: G_{1} \leqslant \Xi_{2} \triangleright t_{2}: G_{2} \quad \Omega \vdash \Xi_{1} \triangleright t_{1}^{\prime}: G_{1}^{\prime} \leqslant \Xi_{2} \triangleright t_{2}^{\prime}: G_{2}^{\prime} \\
& (\leqslant \mathrm{app}) \frac{G_{1}^{\prime} \sqcap \operatorname{dom}^{\sharp}\left(G_{1}\right) \leqslant G_{2}^{\prime} \sqcap \operatorname{dom}^{\sharp}\left(G_{2}\right)}{\Omega \vdash \Xi_{1} \triangleright t_{1} t_{1}^{\prime}: \operatorname{cod}^{\sharp}\left(G_{1}\right) \leqslant \Xi_{2} \triangleright t_{2} t_{2}^{\prime}: \operatorname{cod}^{\sharp}\left(G_{2}\right)} \\
& \Xi_{1} ; \Delta ; \Gamma_{1} \vdash t_{1} \leadsto t_{11}: G_{1} \quad t_{11}^{\prime}=\operatorname{norm}\left(t_{11}, G_{1}, \operatorname{dom}^{\sharp}\left(G_{1}\right) \rightarrow \operatorname{cod}^{\sharp}\left(G_{1}\right)\right) \\
& \text { (Gapp) } \frac{\Xi_{1} ; \Delta ; \Gamma_{1} \vdash t_{1}^{\prime} \leadsto t_{12}: G_{1}^{\prime} \quad t_{12}^{\prime}=\operatorname{norm}\left(t_{12}, G_{1}^{\prime}, \operatorname{dom}^{\sharp}\left(G_{1}\right)\right)}{\Xi_{1} ; \Delta ; \Gamma_{1} \vdash t_{1} t_{1}^{\prime} \sim t_{11}^{\prime} t_{12}^{\prime}: \operatorname{cod}^{\sharp}\left(G_{1}\right)} \\
& \begin{array}{r}
\Xi_{2} ; \Delta ; \Gamma_{2} \vdash t_{2} \leadsto t_{21}: G_{2} \quad t_{21}^{\prime}=\operatorname{norm}\left(t_{21}, G_{2}, \operatorname{dom}^{\sharp}\left(G_{2}\right) \rightarrow \operatorname{cod}^{\sharp}\left(G_{2}\right)\right) \\
\Xi_{2} ; \Delta ; \Gamma_{2} \vdash t_{2}^{\prime} \leadsto t_{22}: G_{2}^{\prime} \quad t_{22}^{\prime}=\operatorname{norm}\left(t_{22}, G_{2}^{\prime}, \operatorname{dom}^{\sharp}\left(G_{2}\right)\right)
\end{array} \Xi_{2 ; \Delta ; \Gamma_{2} \vdash t_{2} t_{2}^{\prime} \leadsto t_{21}^{\prime} t_{22}^{\prime}: \operatorname{cod}^{\sharp}\left(G_{2}\right)}
\end{aligned}
$$

We have to prove that $\Omega \vdash t_{11}^{\prime} t_{12}^{\prime} \leqslant t_{21}^{\prime} t_{22}^{\prime}: \operatorname{cod}^{\sharp}\left(G_{1}\right) \leqslant \operatorname{cod}^{\sharp}\left(G_{2}\right)$, or what is the same by the rule $\left(\leqslant \operatorname{app}_{\varepsilon}\right)$, we have to prove that $\Omega \vdash t_{11}^{\prime} \leqslant t_{21}^{\prime}: \operatorname{dom}^{\sharp}\left(G_{1}\right) \rightarrow \operatorname{cod}^{\sharp}\left(G_{1}\right) \leqslant \operatorname{dom}^{\sharp}\left(G_{2}\right) \rightarrow \operatorname{cod}^{\sharp}\left(G_{2}\right)$ and $\Omega \vdash t_{12}^{\prime} \leqslant t_{22}^{\prime}: \operatorname{dom}^{\sharp}\left(G_{1}\right) \leqslant \operatorname{dom}^{\sharp}\left(G_{2}\right)$. We know that

$$
t_{11}^{\prime}=\operatorname{norm}\left(t_{11}, G_{1}, \operatorname{dom}^{\sharp}\left(G_{1}\right) \rightarrow \operatorname{cod}^{\sharp}\left(G_{1}\right)\right)=\varepsilon_{11} t_{11}:: \operatorname{dom}^{\sharp}\left(G_{1}\right) \rightarrow \operatorname{cod}^{\sharp}\left(G_{1}\right)
$$

where $\varepsilon_{11}=\mathcal{I}_{\Xi_{1}}\left(G_{1}, \operatorname{dom}^{\sharp}\left(G_{1}\right) \rightarrow \operatorname{cod}^{\sharp}\left(G_{1}\right)\right)=I_{\Xi_{1}}\left(\operatorname{dom}^{\sharp}\left(G_{1}\right) \rightarrow \operatorname{cod}^{\sharp}\left(G_{1}\right), \operatorname{dom}^{\sharp}\left(G_{1}\right) \rightarrow \operatorname{cod}^{\sharp}\left(G_{1}\right)\right)=$ $\varepsilon_{d o m^{\sharp}\left(G_{1}\right) \rightarrow c o d^{\sharp}\left(G_{1}\right)}$

$$
t_{21}^{\prime}=\operatorname{norm}\left(t_{21}, G_{2}, \operatorname{dom}^{\sharp}\left(G_{2}\right) \rightarrow \operatorname{cod}^{\sharp}\left(G_{2}\right)\right)=\varepsilon_{21} t_{21}:: \operatorname{dom}^{\sharp}\left(G_{2}\right) \rightarrow \operatorname{cod}^{\sharp}\left(G_{2}\right)
$$

where $\varepsilon_{21}=\mathcal{I}_{\Xi_{2}}\left(G_{2}, \operatorname{dom}^{\sharp}\left(G_{2}\right) \rightarrow \operatorname{cod}^{\sharp}\left(G_{2}\right)\right)=\mathcal{I}_{\Xi_{2}}\left(\operatorname{dom}^{\sharp}\left(G_{2}\right) \rightarrow \operatorname{cod}^{\sharp}\left(G_{2}\right), \operatorname{dom}^{\sharp}\left(G_{2}\right) \rightarrow \operatorname{cod}^{\sharp}\left(G_{2}\right)\right)=$ $\varepsilon_{d o m}{ }^{\sharp}\left(G_{2}\right) \rightarrow c o d^{\sharp}\left(G_{2}\right)$

By induction hypothesis on $\Omega \vdash \Xi_{1} \triangleright t_{1}: G_{1} \leqslant \Xi_{2} \triangleright t_{2}: G_{2}$, we know that $\Omega \vdash t_{11} \leqslant t_{21}: G_{1} \leqslant G_{2}$, and by Proposition 5.22, we know that $G_{1} \sqsubseteq G_{2}$, thus $\operatorname{dom}^{\sharp}\left(G_{1}\right) \rightarrow \operatorname{cod}^{\sharp}\left(G_{1}\right) \sqsubseteq \operatorname{dom}^{\sharp}\left(G_{2}\right) \rightarrow$ $\operatorname{cod}^{\sharp}\left(G_{2}\right)$. Therefore, we only have to prove by rule $\left(\leqslant \operatorname{Masc}_{\varepsilon}\right)$ that $\varepsilon_{11} \sqsubseteq \varepsilon_{21}$. But, by Proposition 5.24 and $\operatorname{dom}^{\sharp}\left(G_{1}\right) \rightarrow \operatorname{cod}^{\sharp}\left(G_{1}\right) \sqsubseteq \operatorname{dom}^{\sharp}\left(G_{2}\right) \rightarrow \operatorname{cod}^{\sharp}\left(G_{2}\right)$ the results holds.

Also, we know that

$$
\begin{aligned}
& t_{12}^{\prime}=\operatorname{norm}\left(t_{12}, G_{1}^{\prime}, \operatorname{dom}^{\sharp}\left(G_{1}\right)\right)=\varepsilon_{12} t_{12}:: \operatorname{dom}^{\sharp}\left(G_{1}\right) \text { where } \varepsilon_{12}=\mathcal{I}_{\Xi_{1}}\left(G_{1}^{\prime}, \operatorname{dom}^{\sharp}\left(G_{1}\right)\right) \\
& t_{22}^{\prime}=\operatorname{norm}\left(t_{22}, G_{2}^{\prime}, \operatorname{dom}^{\sharp}\left(G_{2}\right)\right)=\varepsilon_{22} t_{22}:: \operatorname{dom}^{\sharp}\left(G_{2}\right) \text { where } \varepsilon_{22}=\mathcal{I}_{\Xi_{2}}\left(G_{2}^{\prime}, \operatorname{dom}^{\sharp}\left(G_{2}\right)\right)
\end{aligned}
$$

By induction hypothesis on $\Omega \vdash \Xi_{1} \triangleright t_{1}^{\prime}: G_{1}^{\prime} \leqslant \Xi_{2} \triangleright t_{2}^{\prime}: G_{2}^{\prime}$, we know that $\Omega \vdash t_{12} \leqslant t_{22}: G_{1}^{\prime} \leqslant$ G_{2}^{\prime}. and and by Proposition 5.22, we know that $\operatorname{dom}^{\sharp}\left(G_{1}\right) \sqsubseteq d o m^{\sharp}\left(G_{2}\right)$. By Proposition 5.23 and $G_{1}^{\prime} \sqcap \operatorname{dom}^{\sharp}\left(G_{1}\right) \leqslant G_{2}^{\prime} \sqcap \operatorname{dom}^{\sharp}\left(G_{2}\right)$, we know that

$$
\begin{gathered}
\varepsilon_{12}=\mathcal{I}_{\Xi_{1}}\left(G_{1}^{\prime}, \operatorname{dom}^{\sharp}\left(G_{1}\right)\right)=\mathcal{I}_{\Xi_{1}}\left(G_{1}^{\prime} \sqcap \operatorname{dom}^{\sharp}\left(G_{1}\right), G_{1}^{\prime} \sqcap \operatorname{dom}^{\sharp}\left(G_{1}\right)\right) \leqslant \\
\mathcal{I}_{\Xi_{2}}\left(G_{2}^{\prime} \sqcap \operatorname{dom}^{\sharp}\left(G_{2}\right), G_{2}^{\prime} \sqcap \operatorname{dom}^{\sharp}\left(G_{2}\right)\right)=\mathcal{I}_{\Xi_{2}}\left(G_{2}^{\prime}, \operatorname{dom}^{\sharp}\left(G_{2}\right)\right)=\varepsilon_{22}
\end{gathered}
$$

Therefore, the results holds.
$\operatorname{Case}\left(\Omega \vdash \Xi_{1} \triangleright t_{1}\left[G_{1}^{\prime}\right]:\right.$ inst $^{\sharp}\left(G_{1}, G_{1}^{\prime}\right) \leqslant \Xi_{2} \triangleright t_{2}\left[G_{2}^{\prime}\right]:$ inst $\left.{ }^{\sharp}\left(G_{2}, G_{2}^{\prime}\right)\right)$.

$$
(\leqslant \mathrm{appG}) \frac{\Omega \vdash \Xi_{1} \triangleright t_{1}: G_{1} \leqslant \Xi_{2} \triangleright t_{2}: G_{2} \quad G_{1}^{\prime} \leqslant G_{2}^{\prime}}{\Omega \vdash \Xi_{1} \triangleright t_{1}\left[G_{1}^{\prime}\right]: \operatorname{inst}^{\sharp}\left(G_{1}, G_{1}^{\prime}\right) \leqslant \Xi_{2} \triangleright t_{2}\left[G_{2}^{\prime}\right]: \text { inst }^{\sharp}\left(G_{2}, G_{2}^{\prime}\right)}
$$

$$
\begin{aligned}
(G a p p G) & \frac{\Xi_{1} ; \Delta ; \Gamma_{1} \vdash t_{1} \leadsto t_{1}^{\prime}: G_{1} \quad t_{1}^{\prime \prime}=\operatorname{norm}\left(t_{1}^{\prime}, G_{1}, \forall v a r^{\sharp}\left(G_{1}\right) \cdot \operatorname{schm}_{u}^{\sharp}\left(G_{1}\right)\right)}{\Xi_{1} ; \Delta ; \Gamma_{1} \vdash t_{1}\left[G_{1}^{\prime}\right]} \sim t_{1}^{\prime \prime}\left[G_{1}^{\prime}\right]: \text { inst }^{\sharp}\left(G_{1}, G_{1}^{\prime}\right) \\
(G a p p G) & \frac{\Xi_{2} ; \Delta ; \Gamma_{2} \vdash t_{2} \leadsto t_{2}^{\prime}: G_{2} \quad t_{2}^{\prime \prime}=\operatorname{norm}\left(t_{2}^{\prime}, G_{2}, \forall v a r^{\sharp}\left(G_{2}\right) \cdot \operatorname{schm}_{u}^{\sharp}\left(G_{2}\right)\right)}{\Xi_{2} ; \Delta ; \Gamma_{2} \vdash t_{2}\left[G_{2}^{\prime}\right]} \sim t_{2}^{\prime \prime}\left[G_{2}^{\prime}\right]: \text { inst }^{\sharp}\left(G_{2}, G_{2}^{\prime}\right)
\end{aligned}
$$

We have to prove that $\Omega \vdash t_{1}^{\prime \prime}\left[G_{1}^{\prime}\right] \leqslant t_{2}^{\prime \prime}\left[G_{2}^{\prime}\right]: G_{1}^{*} \leqslant G_{2}^{*}$, or what is the same by the rule (\leqslant app G_{ε}), we have to prove that $t_{1}^{\prime \prime} \leqslant t_{2}^{\prime \prime}$ and $G_{1}^{\prime} \leqslant G_{2}^{\prime}$. $G_{1}^{\prime} \leqslant G_{2}^{\prime}$ follows by premise. We know that

$$
t_{1}^{\prime \prime}=\operatorname{norm}\left(t_{1}^{\prime}, G_{1}, \forall \operatorname{var}^{\sharp}\left(G_{1}\right) \cdot \operatorname{schm}_{u}^{\sharp}\left(G_{1}\right)\right)=\varepsilon_{1} t_{1}^{\prime}:: \forall \operatorname{var}^{\sharp}\left(G_{1}\right) \cdot \operatorname{schm}_{u}^{\sharp}\left(G_{1}\right)
$$

where $\varepsilon_{1}=\mathcal{I}_{\Xi_{1}}\left(G_{1}, \forall \operatorname{var}^{\sharp}\left(G_{1}\right) \cdot \operatorname{schm}_{u}^{\sharp}\left(G_{1}\right)\right)=\mathcal{I}_{\Xi_{1}}\left(\forall \operatorname{var}^{\sharp}\left(G_{1}\right) \cdot \operatorname{schm}_{u}^{\sharp}\left(G_{1}\right), \forall v a r^{\sharp}\left(G_{1}\right) \cdot \operatorname{schm}_{u}^{\sharp}\left(G_{1}\right)\right)=$ $\varepsilon_{\forall \operatorname{var}^{\sharp}\left(G_{1}\right) . \operatorname{schm}}{ }_{u}^{\sharp}\left(G_{1}\right)$

$$
t_{2}^{\prime \prime}=\operatorname{norm}\left(t_{2}^{\prime}, G_{2}, \forall \operatorname{var}^{\sharp}\left(G_{2}\right) \cdot \operatorname{schm}_{u}^{\sharp}\left(G_{2}\right)\right)=\varepsilon_{2} t_{2}^{\prime}:: \forall \operatorname{var}^{\sharp}\left(G_{2}\right) \cdot \operatorname{schm}_{u}^{\sharp}\left(G_{2}\right)
$$

where $\varepsilon_{2}=\mathcal{I}_{\Xi_{2}}\left(G_{2}, \forall \operatorname{var}^{\sharp}\left(G_{2}\right) \cdot \operatorname{schm}_{u}^{\sharp}\left(G_{2}\right)\right)=\mathcal{I}_{\Xi_{2}}\left(\forall \operatorname{var}^{\sharp}\left(G_{2}\right) \cdot \operatorname{schm}_{u}^{\sharp}\left(G_{2}\right), \forall v a r^{\sharp}\left(G_{2}\right) \cdot \operatorname{schm}_{u}^{\sharp}\left(G_{2}\right)\right)=$ $\varepsilon_{\forall v a r \sharp}{ }^{\sharp}\left(G_{2}\right) . \operatorname{schm}_{u}^{\sharp}\left(G_{2}\right)$

By induction hypothesis on $\Omega \vdash \Xi_{1} \triangleright t_{1}: G_{1} \leqslant \Xi_{2} \triangleright t_{2}: G_{2}$, we know that $\Omega \vdash t_{1}^{\prime} \leqslant t_{2}^{\prime}: G_{1} \leqslant G_{2}$, and by Proposition 5.22, we know that $G_{1} \sqsubseteq G_{2}$, thus $\forall v a r^{\sharp}\left(G_{1}\right) . \operatorname{schm}_{u}^{\sharp}\left(G_{1}\right) \sqsubseteq \forall v a r^{\sharp}\left(G_{2}\right) . s c h m_{u}^{\sharp}\left(G_{2}\right)$. Therefore, we only have to prove by rule ($\leqslant \operatorname{Masc}_{\varepsilon}$) that $\varepsilon_{1} \sqsubseteq \varepsilon_{2}$. But, by Proposition 5.24 and $\forall v a r^{\sharp}\left(G_{1}\right) . s^{c h m_{u}^{\sharp}}\left(G_{1}\right) \sqsubseteq \forall v a r^{\sharp}\left(G_{2}\right) . \operatorname{schm}_{u}^{\sharp}\left(G_{2}\right)$ the results holds.

6 GSF: PARAMETRICITY

In this section we present the logical relation for parametricity of GSF, the proof of the fundamental property, and the soundness of the logical relation wrt contextual approximation.

6.1 Auxiliary Definitions

In this section we show function definitions used in the logical relation of GSF (Figure 12).
Definition 6.1. $\operatorname{ev}(\varepsilon u:: G)=\varepsilon$
Definition 6.2.

$$
\operatorname{const}(E)= \begin{cases}B & E=B \\ ? \rightarrow ? & E=E_{1} \rightarrow E_{2} \\ \forall X . ? & E=\forall X \cdot E_{1} \\ ? \times ? & E=E_{1} \times E_{2} \\ \alpha & E=\alpha^{E_{1}} \\ X & E=X \\ ? & E=?\end{cases}
$$

6.2 Fundamental Property

Theorem 10.1 (Fundamental Property). If $\Xi ; \Delta ; \Gamma \vdash t: G$ then $\Xi ; \Delta ; \Gamma \vdash t \leq t: G$.
Proof. By induction on the type derivation of t.
Case (Easc). Then $t=\varepsilon s:: G$, and therefore:

$$
(\text { Easc }) \frac{\Xi ; \Delta ; \Gamma \vdash s: G^{\prime} \quad \varepsilon \Vdash \Xi ; \Delta \vdash G^{\prime} \sim G}{\Xi ; \Delta ; \Gamma \vdash \varepsilon s:: G: G}
$$

We follow by induction on the structure of s.

- If $s=b$ then:

$$
(\mathrm{Eb}) \frac{t y(b)=B \quad \Xi ; \Delta \vdash \Gamma}{\Xi ; \Delta ; \Gamma \vdash b: B}
$$

Then we have to prove that $\Xi ; \Delta ; \Gamma \vdash \varepsilon b:: G \leq \varepsilon b:: G: G$, but the result follows directly by Prop 6.3 (Compatibility of Constant).

- If $s=\lambda x: G_{1} \cdot t^{\prime}$ then:

$$
(\mathrm{E} \lambda) \frac{\Xi ; \Delta ; \Gamma, x: G_{1} \vdash t^{\prime}: G_{2}}{\Xi ; \Delta ; \Gamma \vdash \lambda x: G_{1} \cdot t^{\prime}: G_{1} \rightarrow G_{2}}
$$

Then we have to prove that:

$$
\Xi ; \Delta ; \Gamma \vdash \varepsilon\left(\lambda x: G_{1} \cdot t^{\prime}\right):: G \leq \varepsilon\left(\lambda x: G_{1} \cdot t^{\prime}\right):: G: G
$$

By induction hypotheses we already know that $\Xi ; \Delta ; \Gamma, x: G_{1} \vdash t^{\prime} \leq t^{\prime}: G_{2}$. But the result follows directly by Prop 6.4 (Compatibility of term abstraction).

- If $s=\Lambda X . t^{\prime}$ then:

$$
(\mathrm{E} \Lambda) \frac{\Xi ; \Delta, X ; \Gamma \vdash t^{\prime}: G^{*} \quad \Xi ; \Delta \vdash \Gamma}{\Xi ; \Delta ; \Gamma \vdash \Lambda X . t^{\prime}: \forall X . G^{*}}
$$

Then we have to prove that:

$$
\Xi ; \Delta ; \Gamma \vdash \varepsilon\left(\Lambda X . t^{\prime}\right):: G \leq \varepsilon\left(\Lambda X . t^{\prime}\right):: G: G
$$

By induction hypotheses we already know that $\Xi ; \Delta, X ; \Gamma \vdash t^{\prime} \leq t^{\prime}: G^{*}$. But the result follows directly by Prop 10.2 (Compatibility of type abstraction).

- If $s=\left\langle u_{1}, u_{2}\right\rangle$ then:

$$
\left(\text { Epair } \frac{\Xi ; \Delta ; \Gamma \vdash u_{1}: G_{1} \quad \Xi ; \Delta ; \Gamma \vdash u_{2}: G_{2}}{\Xi ; \Delta ; \Gamma \vdash\left\langle u_{1}, u_{2}\right\rangle: G_{1} \times G_{2}}\right.
$$

Then we have to prove that:

$$
\Xi ; \Delta ; \Gamma \vdash \varepsilon\left\langle u_{1}, u_{2}\right\rangle:: G \leq \varepsilon\left\langle u_{1}, u_{2}\right\rangle:: G: G
$$

We know by premise that $\Xi ; \Delta ; \Gamma \vdash \pi_{1}(\varepsilon) u_{1}:: G_{1}: G_{1}$ and $\Xi ; \Delta ; \Gamma \vdash \pi_{2}(\varepsilon) u_{2}:: G_{2}: G_{2}$. Then by induction hypotheses we already know that: $\Xi ; \Delta ; \Gamma \vdash \pi_{1}(\varepsilon) u_{1}:: G_{1} \leq \pi_{1}(\varepsilon) u_{1}:: G_{1}: G_{1}$ and $\Xi ; \Delta ; \Gamma \vdash \pi_{2}(\varepsilon) u_{2}:: G_{2} \leq \pi_{2}(\varepsilon) u_{2}:: G_{2}: G_{2}$. But the result follows directly by Prop 6.5 (Compatibility of pairs).

- If $s=t^{\prime}$, and therefore:

$$
\left(\text { Easc) } \frac{\Xi ; \Delta ; \Gamma \vdash t^{\prime}: G^{\prime} \quad \varepsilon \vdash \Xi ; \Delta \vdash G^{\prime} \sim G}{\Xi ; \Delta ; \Gamma \vdash \varepsilon t^{\prime}:: G: G}\right.
$$

By induction hypotheses we already know that $\Xi ; \Delta ; \Gamma \vdash t^{\prime} \leq t^{\prime}: G^{\prime}$, then the result follows directly by Prop 6.8 (Compatibility of ascriptions).
Case (Epair). Then $t=\left\langle t_{1}, t_{2}\right\rangle$, and therefore:

$$
(\text { Epair }) \frac{\Xi ; \Delta ; \Gamma \vdash t_{1}: G_{1} \quad \Xi ; \Delta ; \Gamma \vdash t_{2}: G_{2}}{\Xi ; \Delta ; \Gamma \vdash\left\langle t_{1}, t_{2}\right\rangle: G_{1} \times G_{2}}
$$

where $G=G_{1} \times G_{2}$ Then we have to prove that:

$$
\Xi ; \Delta ; \Gamma \vdash\left\langle t_{1}, t_{2}\right\rangle \leq\left\langle t_{1}, t_{2}\right\rangle: G_{1} \times G_{2}
$$

By induction hypotheses we already know that: $\Xi ; \Delta ; \Gamma \vdash t_{1} \leq t_{1}: G_{1}$ and $\Xi ; \Delta ; \Gamma \vdash t_{2} \leq t_{2}: G_{2}$. But the result follows directly by Prop 6.6 (Compatibility of pairs).

Case (Ex). Then $t=x$, and therefore:

$$
\text { (Ex) } \frac{x: G \in \Gamma \quad \Xi ; \Delta+\Gamma}{\Xi ; \Delta ; \Gamma+x: G}
$$

Then we have to prove that $\Xi ; \Delta ; \Gamma \vdash x \leq x: G$. But the result follows directly by Prop 6.7 (Compatibility of variables).

Case (Eop). Then $t=o p\left(\overline{t^{\prime}}\right)$, and therefore:

$$
\left(\text { (Eop) } \frac{\Xi ; \Delta ; \Gamma+\overline{t^{\prime}}: \overline{G^{\prime}} \quad t y(o p)=\overline{G^{\prime}} \rightarrow G}{\Xi ; \Delta ; \Gamma+o p\left(\overline{t^{\prime}}\right): G}\right.
$$

Then we have to prove that: $\Xi ; \Delta ; \Gamma \vdash o p\left(\overline{t^{\prime}}\right) \leq o p\left(\overline{t^{\prime}}\right): G$. By the induction hypothesis we obtain that: $\Xi ; \Delta ; \Gamma \vdash \overline{t^{\prime}} \leq \overline{t^{\prime}}: \bar{G}$. Then the result follows directly by Prop 6.9 (Compatibility of app operator).
Case (Eapp). Then $t=t_{1} t_{2}$, and therefore:

$$
(\text { Eapp }) \frac{\Xi ; \Delta ; \Gamma \vdash t_{1}: G_{11} \rightarrow G_{12} \quad \Xi ; \Delta ; \Gamma \vdash t_{2}: G_{11}}{\Xi ; \Delta ; \Gamma \vdash t_{1} t_{2}: G_{12}}
$$

where $G=G_{12}$. Then we have to prove that:

$$
\Xi ; \Delta ; \Gamma \vdash t_{1} t_{2} \leq t_{1} t_{2}: G_{12}
$$

By the induction hypothesis we obtain that: $\Xi ; \Delta ; \Gamma+t_{1} \leq t_{1}: G_{11} \rightarrow G_{12}$ and $\Xi ; \Delta ; \Gamma+t_{2} \leq t_{2}: G_{11}$. Then the result follows directly by Prop 6.10 (Compatibility of term application).

Case (EappG). Then $t=t^{\prime}\left[G_{2}\right]$, and therefore:

$$
(\text { EappG }) \frac{\Xi ; \Delta ; \Gamma \vdash t^{\prime}: \forall X . G_{1} \quad \Xi ; \Delta \vdash G_{2}}{\Xi ; \Delta ; \Gamma \vdash t^{\prime}\left[G_{2}\right]: G_{1}\left[G_{2} / X\right]}
$$

where $G=G_{1}\left[G_{2} / X\right]$. Then we have to prove that:

$$
\Xi ; \Delta ; \Gamma \vdash t^{\prime}\left[G_{2}\right] \leq t^{\prime}\left[G_{2}\right]: G_{1}\left[G_{2} / X\right]
$$

By induction hypotheses we know that:

$$
\Xi ; \Delta ; \Gamma \vdash t^{\prime} \leq t^{\prime}: \forall X . G_{1}
$$

Then the result follows directly by Prop 10.3 (Compatibility of type application).
Case (Epair1). Then $t=\pi_{1}\left(t^{\prime}\right)$, and therefore:

$$
\text { (Epair1) } \frac{\Xi ; \Delta ; \Gamma \vdash t^{\prime}: G_{1} \times G_{2}}{\Xi ; \Delta ; \Gamma \vdash \pi_{1}\left(t^{\prime}\right): G_{1}}
$$

where $G=G_{1}$. Then we have to prove that: $\Xi ; \Delta ; \Gamma \vdash \pi_{1}\left(t^{\prime}\right) \leq \pi_{1}\left(t^{\prime}\right): G_{1}$. By the induction hypothesis we obtain that: $\Xi ; \Delta ; \Gamma \vdash t^{\prime} \leq t^{\prime}: G_{1} \times G_{2}$. Then the result follows directly by Prop 6.11 (Compatibility of access to the first component of the pair).

Case (Epair2). Then $t=\pi_{2}\left(t^{\prime}\right)$, and therefore:

$$
\left(\text { Epair2) } \frac{\Xi ; \Delta ; \Gamma \vdash t^{\prime}: G_{1} \times G_{2}}{\Xi ; \Delta ; \Gamma \vdash \pi_{2}\left(t^{\prime}\right): G_{2}}\right.
$$

where $G=G_{2}$. Then we have to prove that: $\Xi ; \Delta ; \Gamma \vdash \pi_{2}\left(t^{\prime}\right) \leq \pi_{2}\left(t^{\prime}\right): G_{2}$. By the induction hypothesis we obtain that: $\Xi ; \Delta ; \Gamma \vdash t^{\prime} \leq t^{\prime}: G_{1} \times G_{2}$. Then the result follows directly by Prop 6.12 (Compatibility of access to the second component of the pair).

In order to prove parametricity, we add an index to the evidence and we are more detailed in the reduction rules. A brief explanation is given below. The index of an evidence is an integer greater than cero. To know the index of an evidence ε, we use the following operator $\varepsilon . n=k$, which specifies that the index of the evidence ε is the integer $k>0$. The reduction rules always took a step. Here we redefine them and they can take one or more steps. This will depend on whether or not a transitivity of evidence is applied. If it does, the rule will take as many steps as the evidence index on the right. Below we define the steps in the rules
$\Xi \triangleright t \longrightarrow \Xi \triangleright t$ or error Notion of reduction

(Rasc)	$\Xi \triangleright \varepsilon_{2}\left(\varepsilon_{1} u:: G_{1}\right):: G_{2}$	\xrightarrow{k}	$\begin{cases}\Xi \triangleright\left(\varepsilon_{1} \circ \varepsilon_{2}\right) u:: G_{2} & \text { if } \varepsilon_{2} \cdot n=k \\ \text { error } & \text { if not defined }\end{cases}$
(Rop)	$\Xi \triangleright o p(\overline{\varepsilon u ~:: ~ G ~})$	$\xrightarrow{1}$	$\Xi \triangleright \varepsilon_{B} \delta(o p, \bar{u}):: B \quad$ where $B \triangleq \operatorname{cod}(t y(o p))$
(Rapp) Ξ	.t) :: $\left.G_{1} \rightarrow G_{2}\right)\left(\varepsilon_{2} u:: G_{1}\right)$	$\xrightarrow{k+1}$	$\left\{\begin{array}{l} \left.\Xi \triangleright \operatorname{cod}\left(\varepsilon_{1}\right)\left(t\left[\left(\varepsilon_{2} \circ \operatorname{dom}\left(\varepsilon_{1}\right)\right) u:: G_{11}\right) / x\right]\right):: G_{2} \\ \quad \text { if } \operatorname{dom}\left(\varepsilon_{1}\right)=k \\ \text { error } \quad \text { if not defined } \end{array}\right.$
(Rpair)	$\Xi \triangleright\left\langle\varepsilon_{1} u_{1}:: G_{1}, \varepsilon_{2} u_{2}:: G_{2}\right\rangle$	$\xrightarrow{1}$	$\Xi \triangleright\left(\varepsilon_{1} \times \varepsilon_{2}\right)\left\langle u_{1}, u_{2}\right\rangle:: G_{1} \times G_{2}$
(Rproji)	$\Xi \triangleright \pi_{i}\left(\varepsilon\left\langle u_{1}, u_{2}\right\rangle:: G_{1} \times G_{2}\right)$	$\xrightarrow{1}$	$\Xi \triangleright p_{i}(\varepsilon) u_{i}:: G_{i}$
(RappG)	$\Xi \triangleright(\varepsilon \Lambda X . t:: \forall X . G)\left[G^{\prime}\right]$	$\xrightarrow{1}$	$\begin{aligned} & \Xi^{\prime} \triangleright \varepsilon_{\text {out }}(\varepsilon[\hat{\alpha}] t[\hat{\alpha} / X]:: G[\alpha / X]):: G\left[G^{\prime} / X\right] \\ & \text { where } \Xi^{\prime} \triangleq \Xi, \alpha:=G^{\prime} \text { for some } \alpha \notin \operatorname{dom}(\Xi) \\ & \text { and } \hat{\alpha}=\operatorname{lift}_{\Xi^{\prime}}(\alpha) \end{aligned}$

Proposition 6.3 (Compatibility-Eb). If $b \in B, \varepsilon \vdash \Xi ; \Delta \vdash B \sim G$ and $\Xi ; \Delta \vdash \Gamma$ then:

$$
\Xi ; \Delta ; \Gamma \vdash \varepsilon b:: G \leq \varepsilon b:: G: G
$$

Proof. As b is constant then it does not have free variables or type variables, then $b=\rho\left(\gamma_{i}(b)\right)$. Then we have to prove that for all $W \in \mathcal{S} \llbracket \Xi \rrbracket$ it is true that:

$$
\left(W, \rho_{1}(\varepsilon) b:: \rho(G), \rho_{2}(\varepsilon) b:: \rho(G) \in \mathcal{T}_{\rho} \llbracket G \rrbracket\right.
$$

As $\rho_{i}(\varepsilon) b:: G$ are values, then we have to prove that:

$$
\left(W, \rho_{1}(\varepsilon) b:: \rho(G), \rho_{2}(\varepsilon) b:: \rho(G)\right) \in \mathcal{V}_{\rho} \llbracket G \rrbracket
$$

(1) $G=B$, we know that $\langle B, B\rangle=\varepsilon \vdash \Xi ; \Delta \vdash B \sim B$, then $\rho_{i}(\varepsilon)=\varepsilon$ and the result follows immediately by the definition of $\mathcal{V}_{\rho} \llbracket B \rrbracket$.
(2) If $G \in$ Typename then $\varepsilon=\left\langle H_{3}, \alpha^{E_{4}}\right\rangle$. Notice that as $\alpha^{E_{4}}$ cannot have free type variables therefore H_{3} neither. Then $\varepsilon=\rho_{i}(\varepsilon)$. As α is sync, then let us call $G^{\prime \prime}=W \cdot \Xi_{i}(\alpha)$. We have to prove that:

$$
\left(W,\left\langle H_{3}, \alpha^{E_{4}}\right\rangle b:: \alpha,\left\langle H_{3}, \alpha^{E_{4}}\right\rangle b:: \alpha\right) \in \mathcal{V}_{\rho} \llbracket \alpha \rrbracket
$$

which, by definition of $\mathcal{V}_{\rho} \llbracket \alpha \rrbracket$, is equivalent to prove that:

$$
\left(\downarrow W,\left\langle H_{3}, E_{4}\right\rangle b:: G^{\prime \prime},\left\langle E_{3}, E_{4}\right\rangle b:: G^{\prime \prime}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime \prime} \rrbracket
$$

Then we proceed by case analysis on ε :

- (Case $\left.\varepsilon=\left\langle H_{3}, \alpha^{\beta^{E_{4}}}\right\rangle\right)$. We know that $\left\langle H_{3}, \alpha^{\beta^{E_{4}}}\right\rangle \vdash \Xi ; \Delta \vdash B \sim \alpha$, then by Lemma 6.29, $\left\langle H_{3}, \beta^{E_{4}}\right\rangle \vdash \Xi ; \Delta \vdash B \sim G^{\prime \prime}$. As $\beta^{E_{4}} \sqsubseteq G^{\prime \prime}$, then $G^{\prime \prime}$ can either be ? or β.
If $G^{\prime \prime}=$?, then by definition of $\mathcal{V}_{\rho} \llbracket ? \rrbracket$, we have to prove that the resulting values belong to $\mathcal{V}_{\rho} \llbracket \beta \rrbracket$. Also as $\left\langle H_{3}, \beta^{E_{4}}\right\rangle \vdash \Xi ; \Delta \vdash B \sim$?, by Lemma $6.27,\left\langle H_{3}, \beta^{E_{4}}\right\rangle \vdash \Xi ; \Delta \vdash B \sim \beta$, and then we proceed just like this case once again (this is process is finite as there are no circular references by construction and it ends up in something different to a type name). If $G^{\prime \prime}=\beta$ we use an analogous argument as for $G^{\prime \prime}=$?
- (Case $\left.\varepsilon=\left\langle H_{3}, \alpha^{H_{4}}\right\rangle\right)$. We have to prove that

$$
\left(\downarrow W,\left\langle H_{3}, H_{4}\right\rangle b:: G^{\prime \prime},\left\langle H_{3}, H_{4}\right\rangle b:: G^{\prime \prime}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime \prime} \rrbracket
$$

By Lemma 6.29, $\left\langle H_{3}, H_{4}\right\rangle \vdash \Xi ; \Delta \vdash B \sim G^{\prime \prime}$. Then if $G^{\prime \prime}=$?, we proceed as the case $G=$?, with the evidence $\varepsilon=\left\langle H_{3}, H_{4}\right\rangle$. If $G^{\prime \prime} \in \operatorname{HeadType}$, we proceed as the previous case where $G=B$, and the evidence $\varepsilon=\left\langle H_{3}, H_{4}\right\rangle$.
Also, we have to prove that $\left(\forall \Xi^{\prime}, \varepsilon^{\prime}, G_{1}^{*}\right.$, such that $\varepsilon^{\prime} . n=k, \varepsilon^{\prime}=\left\langle\alpha^{E_{1}^{* *}}, E_{2}^{* *}\right\rangle(\downarrow W \in$ $\left.\mathcal{S} \llbracket \Xi^{\prime} \rrbracket \wedge \varepsilon^{\prime} \vdash \Xi^{\prime} \vdash \alpha \sim G_{1}^{*}\right)$, we get that

$$
\left.\left(\downarrow_{1} W, \varepsilon^{\prime}\left(\left\langle H_{3}, \alpha^{H_{4}}\right\rangle u_{1}:: \alpha\right):: G_{1}^{*}, \varepsilon^{\prime}\left(\left\langle H_{4}, \alpha^{E_{22}}\right\rangle u_{2}:: \alpha\right):: G_{1}^{*}\right) \in \mathcal{T}_{\rho} \llbracket G_{1}^{*} \rrbracket\right)
$$

or what is the same $\left(\left(\left\langle H_{3}, \alpha^{H_{4}}\right\rangle ; \varepsilon^{\prime}\right)\right.$ fails the result follows immediately)

$$
\left.\left(\downarrow_{1+k} W,\left(\left\langle H_{3}, \alpha^{H_{4}}\right\rangle ; \varepsilon^{\prime}\right) u_{1}:: G_{1}^{*},\left(\left\langle H_{2}, \alpha^{H_{4}}\right\rangle ; \varepsilon^{\prime}\right) u_{2}:: G_{1}^{*}\right) \in \mathcal{V}_{\rho} \llbracket G_{1}^{*} \rrbracket\right)
$$

By definition of transitivity and Lemma 6.30, we know that

$$
\left\langle H_{3}, \alpha^{H_{4}}\right\rangle \stackrel{\circ}{9}\left\langle\alpha^{E_{1}^{* *}}, E_{2}^{* *}\right\rangle=\left\langle H_{3}, H_{4}\right\rangle \circ \stackrel{\circ}{\circ}\left\langle E_{1}^{* *}, E_{2}^{* *}\right\rangle
$$

We know that $\left\langle E_{1}^{* *}, E_{2}^{* *}\right\rangle \vdash \Xi^{\prime} \vdash G^{\prime \prime} \sim G_{1}^{*}$. Since $\left\langle E_{1}^{* *}, E_{2}^{* *}\right\rangle \vdash \Xi \vdash G^{\prime \prime} \sim G_{1}^{*}, \downarrow_{1} W \in \mathcal{S} \llbracket \Xi^{\prime} \rrbracket$, $\left(\downarrow_{1} W,\left\langle H_{3}, H_{4}\right\rangle u_{1}:: G^{\prime \prime},\left\langle H_{1}, H_{4}\right\rangle u_{2}:: G^{\prime \prime}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime \prime} \rrbracket$, by Lemma 6.17, we know that (since
$\left(\left\langle H_{3}, \alpha^{H_{4}}\right\rangle \circ \varepsilon^{\prime}\right)$ does not fail then $\left(\left\langle H_{3}, H_{4}\right\rangle \stackrel{\circ}{\circ}\left\langle E_{1}^{* *}, E_{2}^{* *}\right\rangle\right)$ also does not fail by the transitivity rules)

$$
\left(\downarrow_{1+k} W,\left(\left\langle H_{3}, H_{4}\right\rangle \circ\left\langle E_{1}^{* *}, E_{2}^{* *}\right\rangle\right) u_{1}:: G_{1}^{*},\left(\left\langle H_{3}, H_{4}\right\rangle \circ\left\langle\left\langle E_{1}^{* *}, E_{2}^{* *}\right\rangle\right) u_{2}:: G_{1}^{*}\right) \in \mathcal{V}_{\rho} \llbracket G_{1}^{*} \rrbracket\right)
$$

The result follows immediately.
(3) If $G=$? we have the following cases:

- $\left(G=\right.$?, $\left.\varepsilon=\left\langle H_{3}, H_{4}\right\rangle\right)$. By the definition of $\mathcal{V}_{\rho} \llbracket ? \rrbracket$ in this case we have to prove that:

$$
\left(W, \rho_{1}(\varepsilon) b:: \operatorname{const}\left(H_{4}\right), \rho_{2}(\varepsilon) b:: \operatorname{const}\left(H_{4}\right)\right) \in \mathcal{V}_{\rho} \llbracket \operatorname{const}\left(H_{4}\right) \rrbracket
$$

but as const $\left(H_{4}\right)=B$ (note that $H_{3}=B$ then since $H_{4} \in$ HeadType has to be B). The the result follows immediately since is part of the premise.

- $\left(G=\right.$?, $\left.\varepsilon=\left\langle H_{3}, \alpha^{E_{4}}\right\rangle\right)$. Notice that as $\alpha^{E_{4}}$ cannot have free type variables therefore E_{3} neither. Then $\varepsilon=\rho_{i}(\varepsilon)$. By the definition of $\mathcal{V}_{\rho} \llbracket ? \rrbracket$ we have to prove that

$$
\left(W,\left\langle H_{3}, \alpha^{E_{4}}\right\rangle u_{1}:: \alpha,\left\langle H_{3}, \alpha^{E_{4}}\right\rangle u_{2}:: \alpha\right) \in \mathcal{V}_{\rho} \llbracket \alpha \rrbracket
$$

Note that by Lemma 6.27 we know that $\varepsilon \vdash \Xi ; \Delta \vdash B \sim \alpha$. Then we proceed just like the case $G \in$ TypeName.

Proposition 6.4 (Compatibility-E λ). If $\Xi ; \Delta ; \Gamma, x: G_{1} \vdash t \leq t^{\prime}: G_{2}, \varepsilon \vdash \Xi ; \Delta \vdash G_{1} \rightarrow G_{2} \sim G$ then:

$$
\Xi ; \Delta ; \Gamma \vdash \varepsilon\left(\lambda x: G_{1} \cdot t\right):: G \leq \varepsilon\left(\lambda x: G_{1} \cdot t^{\prime}\right):: G: G
$$

Proof. First, we are required to show that $\Xi ; \Delta ; \Gamma \vdash \varepsilon\left(\lambda x: G_{1} . t\right):: G: G$ and $\Xi ; \Delta ; \Gamma \vdash \varepsilon(\lambda x$: $\left.G_{1} \cdot t^{\prime}\right):: G: G$, which follow from $\varepsilon \vdash \Xi ; \Delta \vdash G_{1} \rightarrow G_{2} \sim G$ and $\Xi ; \Delta ; \Gamma \vdash \lambda x: G_{1} . t: G_{1} \rightarrow G_{2}$ and $\Xi ; \Delta ; \Gamma \vdash \lambda x: G_{1} \cdot t^{\prime}: G_{1} \rightarrow G_{2}$ respectively, which follow (respectively) from $\Xi ; \Delta ; \Gamma, x: G_{1} \vdash t: G_{2}$ and $\Xi ; \Delta ; \Gamma, x: G_{1} \vdash t^{\prime}: G_{2}$, which follow from $\Xi ; \Delta ; \Gamma, x: G_{1} \vdash t \leq t^{\prime}: G_{2}$.

Consider arbitrary W, ρ, γ such that $W \in \mathcal{S} \llbracket \Xi \rrbracket,(W, \rho) \in \mathcal{D} \llbracket \Delta \rrbracket$ and $(W, \gamma) \in \mathcal{G}_{\rho} \llbracket \Gamma \rrbracket$. We are required to show that:

$$
\left(W, \rho\left(\gamma_{1}\left(\varepsilon\left(\lambda x: G_{1} \cdot t\right):: G\right)\right), \rho\left(\gamma_{2}\left(\varepsilon\left(\lambda x: G_{1} \cdot t\right):: G\right)\right)\right) \in \mathcal{T}_{\rho} \llbracket G \rrbracket
$$

Consider arbitrary i, v_{1} and Ξ_{1} such that $i<W . j$ and:

$$
W \cdot \Xi_{1} \triangleright \rho\left(\gamma_{1}\left(\varepsilon\left(\lambda x: G_{1} . t\right):: G\right)\right) \longrightarrow^{i} \Xi_{1} \triangleright v_{1}
$$

Since $\rho\left(\gamma_{1}\left(\varepsilon\left(\lambda x: G_{1} \cdot t\right):: G\right)\right)=\varepsilon_{1}^{\rho}\left(\lambda x: \rho\left(G_{1}\right) . \rho\left(\gamma_{1}(t)\right)\right):: \rho(G)$ and $\varepsilon_{2}^{\rho}\left(\lambda x: \rho\left(G_{1}\right) . \rho\left(\gamma_{2}\left(t^{\prime}\right)\right)\right):: \rho(G)$ is already a value, where $\varepsilon_{i}^{\rho}=\rho_{i}(\varepsilon)$, we have $i=0$ and $v_{1}=\varepsilon_{1}^{\rho}\left(\lambda x: \rho\left(G_{1}\right) . \rho\left(\gamma_{1}(t)\right)\right):: \rho(G)$ and $\Xi_{1}=W \cdot \Xi_{1}$. Since $\varepsilon_{2}^{\rho}\left(\lambda x: \rho\left(G_{1}\right) . \rho\left(\gamma_{2}\left(t^{\prime}\right)\right)\right):: \rho(G)$ is already a value, we are required to show that $\exists W^{\prime}$, such that $W^{\prime} . j+i=W \cdot j, W^{\prime} \geq W, W^{\prime} \cdot \Xi_{1}=\Xi_{1}, W^{\prime} . \Xi_{2}=\Xi_{2}$ and:

$$
\left(W^{\prime}, \varepsilon_{1}^{\rho}\left(\lambda x: \rho\left(G_{1}\right) . \rho\left(\gamma_{1}(t)\right)\right):: \rho(G), \varepsilon_{2}^{\rho}\left(\lambda x: \rho\left(G_{1}\right) . \rho\left(\gamma_{2}\left(t^{\prime}\right)\right)\right):: \rho(G)\right) \in \mathcal{V}_{\rho} \llbracket G \rrbracket
$$

Let $W^{\prime}=W$, then we have to show that:

$$
\left(W, \varepsilon_{1}^{\rho}\left(\lambda x: \rho\left(G_{1}\right) . \rho\left(\gamma_{1}(t)\right)\right):: \rho(G), \varepsilon_{2}^{\rho}\left(\lambda x: \rho\left(G_{1}\right) . \rho\left(\gamma_{2}\left(t^{\prime}\right)\right)\right):: \rho(G)\right) \in \mathcal{V}_{\rho} \llbracket G \rrbracket
$$

Let's suppose that $\varepsilon_{1}^{\rho} \cdot n=k$.
First we have to prove that:

$$
W . \Xi_{1} ; \Delta ; \Gamma \vdash \varepsilon_{1}^{\rho}\left(\lambda x: \rho\left(G_{1}\right) . \rho\left(\gamma_{1}(t)\right)\right):: \rho(G): \rho(G)
$$

As we know that $\Xi ; \Delta ; \Gamma \vdash \varepsilon\left(\lambda x: G_{1} . t\right):: G: G$, by Lemma 6.25 the result follows immediately. The case $W . \Xi_{2} ; \Delta ; \Gamma \vdash \varepsilon_{2}^{\rho}\left(\lambda x: \rho\left(G_{1}\right) . \rho\left(\gamma_{2}\left(t^{\prime}\right)\right)\right):: \rho(G): \rho(G)$ is similar.

The type G can be $G_{1}^{\prime} \rightarrow G_{2}^{\prime}$, for some G_{1}^{\prime} and G_{2}^{\prime}, or ? or a TypeName.
(1) $G=G_{1}^{\prime} \rightarrow G_{2}^{\prime}$, we are required to show that $\forall W^{\prime \prime}, v_{1}^{\prime}=\varepsilon_{1}^{\prime} u_{1}^{\prime}:: \rho\left(G_{1}^{\prime}\right), v_{2}^{\prime}=\varepsilon_{2}^{\prime} u_{2}^{\prime}:: \rho\left(G_{1}^{\prime}\right)$, such that $W^{\prime \prime} \geq W$ and $\left(\downarrow W^{\prime \prime}, v_{1}^{\prime}, v_{2}^{\prime}\right) \in \mathcal{V}_{\rho} \llbracket G_{1}^{\prime} \rrbracket$, it is true that:
$\left(W^{\prime \prime}, \varepsilon_{1}^{\rho}\left(\lambda x: \rho\left(G_{1}\right) . \rho\left(\gamma_{1}(t)\right)\right):: \rho\left(G_{1}^{\prime} \rightarrow G_{2}^{\prime}\right) v_{1}^{\prime}, \varepsilon_{2}^{\rho}\left(\lambda x: \rho\left(G_{1}\right) . \rho\left(\gamma_{2}\left(t^{\prime}\right)\right)\right):: \rho\left(G_{1}^{\prime} \rightarrow G_{2}^{\prime}\right) v_{2}^{\prime}\right) \in \mathcal{T}_{\rho} \llbracket G_{2}^{\prime} \rrbracket$
If $\left(\varepsilon_{1}^{\prime} \circ \operatorname{dom}\left(\varepsilon_{1}^{\rho}\right)\right)$ fails, then by Lemma $6.26\left(\varepsilon_{2}^{\prime} ; \operatorname{dom}\left(\varepsilon_{2}^{\rho}\right)\right)$ and the result follows immediately.
Else, if $\left(\varepsilon_{i}^{\prime} \circ \operatorname{dom}\left(\varepsilon_{i}^{\rho}\right)\right)$ follows, where $\operatorname{dom}\left(\varepsilon_{1}^{\rho}\right) \cdot n=k$, we know that

$$
\begin{gathered}
W^{\prime \prime} . \Xi_{1} \triangleright \varepsilon_{1}^{\rho}\left(\lambda x: \rho\left(G_{1}\right) \cdot \rho\left(\gamma_{1}(t)\right)\right):: \rho\left(G_{1}^{\prime} \rightarrow G_{2}^{\prime}\right) v_{1}^{\prime} \longrightarrow^{k+1} \\
W^{\prime \prime} . \Xi_{1} \triangleright \operatorname{cod}\left(\varepsilon_{1}^{\rho}\right)\left(\rho\left(\gamma_{1}(t)\right)\left[\left(\varepsilon_{1}^{\prime} \circ \operatorname{dom}\left(\varepsilon_{1}^{\rho}\right) u_{1}^{\prime}:: \rho\left(G_{1}\right)\right) / x\right]\right):: \rho\left(G_{2}^{\prime}\right) v_{1}^{\prime} \longrightarrow{ }^{k^{*}} \\
\Xi_{1} \triangleright \operatorname{cod}\left(\varepsilon_{1}^{\rho}\right) v_{1 f}:: \rho\left(G_{2}^{\prime}\right) \longrightarrow k \\
\Xi_{1} \triangleright v_{1}^{*}
\end{gathered}
$$

Thus, we have to prove that there exists W^{*}, such that:

$$
W^{\prime \prime} . \Xi_{2} \triangleright \varepsilon_{2}^{\rho}\left(\lambda x: \rho\left(G_{1}\right) . \rho\left(\gamma_{2}\left(t^{\prime}\right)\right)\right):: \rho\left(G_{1}^{\prime} \rightarrow G_{2}^{\prime}\right) v_{2}^{\prime} \longrightarrow{ }^{*} \Xi_{2} \triangleright v_{2}^{*}
$$

and $\left(W^{*}, v_{1}^{*}, v_{2}^{*}\right) \in \mathcal{V}_{\rho} \llbracket G_{2}^{\prime} \rrbracket, W^{*} . j+1+2 k+k^{*}=W^{\prime \prime} . j, W^{*} . \Xi_{1}=\Xi_{1}$ and $W^{*} . \Xi_{2}=\Xi_{2}$.
Note that $\operatorname{dom}\left(\varepsilon_{i}^{\rho}\right) \vdash W^{\prime \prime} . \Xi_{i} \vdash \rho\left(G_{1}^{\prime}\right) \sim \rho\left(G_{1}\right)$. By the Lemma 6.17 (with the type G_{1} and the evidences $\left.\operatorname{dom}\left(\varepsilon_{i}^{\rho}\right) \vdash W^{\prime \prime} . \Xi_{i} \vdash \rho\left(G_{1}^{\prime}\right) \sim \rho\left(G_{1}\right)\right)$ it is true that:

$$
\left(\downarrow_{1} W^{\prime \prime}, \operatorname{dom}\left(\varepsilon_{1}^{\rho}\right) v_{1}^{\prime}:: G_{1}, \operatorname{dom}\left(\varepsilon_{2}^{\rho}\right) v_{2}^{\prime}:: G_{1}\right) \in \mathcal{T}_{\rho} \llbracket G_{1} \rrbracket
$$

Since $\left(\varepsilon_{i}^{\prime} \circ \operatorname{dom}\left(\varepsilon_{i}^{\rho}\right)\right)$ does not fail, it is true that:

$$
\left(\left(\downarrow_{k+1} W^{\prime \prime}\right),\left(\varepsilon_{1}^{\prime} ; \operatorname{dom}\left(\varepsilon_{1}^{\rho}\right)\right) u_{1}^{\prime}:: G_{1},\left(\varepsilon_{2}^{\prime} ; \operatorname{dom}\left(\varepsilon_{2}^{\rho}\right)\right) u_{2}^{\prime}:: G_{1}\right) \in \mathcal{V}_{\rho} \llbracket G_{1} \rrbracket
$$

We instantiate the hypothesis $\Xi ; \Delta ; \Gamma \vdash t \leq t^{\prime}: G_{2}$, with $\left(\downarrow_{k+1} W^{\prime \prime}\right)$, ρ and $\gamma\left[x: \rho\left(G_{1}\right) \mapsto\right.$ $\left.\left(v_{1}^{\prime \prime}, v_{2}^{\prime \prime}\right)\right]$, where $v_{i}^{\prime \prime}=\left(\varepsilon_{i}^{\prime} ; \operatorname{dom}\left(\varepsilon_{i}^{\rho}\right)\right) u_{i}^{\prime}:: \rho\left(G_{1}\right)$. Note that $\mathcal{S} \llbracket \Xi \rrbracket \ni\left(\downarrow_{k+1} W^{\prime \prime}\right) \geq W$ by the definition of $\mathcal{S} \llbracket \Xi \rrbracket,\left(\left(\downarrow_{k+1} W^{\prime \prime}\right), \rho\right) \in \mathcal{D} \llbracket \Delta \rrbracket$ by the definition of $\mathcal{D} \llbracket \Delta \rrbracket$ and $\left(\left(\downarrow_{k+1} W^{\prime \prime}\right), \gamma[x \mapsto\right.$ $\left.\left.\left(v_{1}^{\prime \prime}, v_{2}^{\prime \prime}\right)\right]\right) \in \mathcal{G}_{\rho} \llbracket \Gamma, x: \rho\left(G_{1}\right) \rrbracket$, which follow from: $\left(\left(\downarrow_{k+1} W^{\prime \prime}\right), \gamma\right) \in \mathcal{G}_{\rho} \llbracket \Gamma \rrbracket$ and $\left(\left(\downarrow_{k+1}\right.\right.$ $\left.\left.W^{\prime \prime}\right), v_{1}^{\prime \prime}, v_{2}^{\prime \prime}\right) \in \mathcal{V}_{\rho} \llbracket G_{1} \rrbracket$ which follows from above. Then, we have that:

$$
\left(\left(\downarrow_{k+1} W^{\prime \prime}\right), \rho\left(\gamma_{1}(t)\right)\left[v_{1}^{\prime \prime} / x\right], \rho\left(\gamma_{2}\left(t^{\prime}\right)\right)\left[v_{2}^{\prime \prime} / x\right]\right) \in \mathcal{T}_{\rho} \llbracket G_{2} \rrbracket
$$

If the following term reduces to error, then the result follows immediately.

$$
W^{\prime \prime} . \Xi_{1} \triangleright \rho\left(\gamma_{1}(t)\right)\left[v_{1}^{\prime \prime} / x\right]
$$

If the above is not true, then the following terms reduce to values $\left(v_{i f}\right)$ and $\exists W^{\prime \prime \prime} \geq\left(\downarrow_{k+1} W^{\prime \prime}\right)$ such that $\left(W^{\prime \prime \prime}, v_{1 f}, v_{2 f}\right) \in \mathcal{V}_{\rho} \llbracket G_{2} \rrbracket$ and $W^{\prime \prime \prime} . j+k^{*}=\left(\downarrow_{k+1} W^{\prime \prime}\right) . j$, or what is the same $W^{\prime \prime \prime} \cdot j+k^{*}+k+1=\left(W^{\prime \prime}\right) \cdot j$.

$$
\begin{aligned}
& W^{\prime \prime} . \Xi_{1} \triangleright \rho\left(\gamma_{1}(t)\right)\left[v_{1}^{\prime \prime} / x\right] \longrightarrow{ }^{k^{*}} W^{\prime \prime \prime} \cdot \Xi_{1} \triangleright v_{1 f} \\
& W^{\prime \prime} . \Xi_{2} \triangleright \rho\left(\gamma_{2}\left(t^{\prime}\right)\right)\left[v_{2}^{\prime \prime} / x\right] \longrightarrow{ }^{*} W^{\prime \prime \prime} . \Xi_{2} \triangleright v_{2 f}
\end{aligned}
$$

We instantiate the induction hypothesis in the previous result $\left(\left(W^{\prime \prime \prime}, v_{1 f}, v_{2 f}\right)\right)$ with the type G_{2}^{\prime} and the evidence $\operatorname{cod}\left(\varepsilon_{i}^{\rho}\right) \vdash W^{\prime} \cdot \Xi_{i} \vdash G_{2}^{\prime \prime} \sim G_{2}^{\prime}$, then we obtain that:

$$
\left(W^{\prime \prime \prime}, \operatorname{cod}\left(\varepsilon_{1}^{\rho}\right) v_{1 f}:: \rho\left(G_{2}^{\prime}\right), \operatorname{cod}\left(\varepsilon_{2}^{\rho}\right) v_{2 f}:: \rho\left(G_{2}^{\prime}\right)\right) \in \mathcal{T}_{\rho} \llbracket G_{2}^{\prime} \rrbracket
$$

Therefore, we get $\left(\downarrow_{k} W^{\prime \prime \prime}, v_{1}^{*}, v_{2}^{*}\right) \in \mathcal{V}_{\rho} \llbracket G_{2}^{\prime} \rrbracket$. Taking $W^{*}=\left(\downarrow_{k} W^{\prime \prime \prime}\right)$, the result follows immediately. Note that $W^{\prime \prime \prime} . j+k+k^{*}+1=W^{\prime \prime} . j$ and therefore $\left(\downarrow_{k} W^{\prime \prime \prime}\right) . j+1+2 k+k^{*}=W^{\prime \prime} . j$.

For the other cases of G, let's considerer that $u_{1}=\lambda x: \rho\left(G_{1}\right) . \rho\left(\gamma_{1}(t)\right), u_{2}=\lambda x: \rho\left(\rho\left(G_{1}\right) . \rho\left(\gamma_{2}\left(t^{\prime}\right)\right)\right.$ and $G^{*}=G_{1} \rightarrow G_{2}$, we have to prove that:

$$
\left(W, \rho_{1}(\varepsilon) u_{1}:: \rho(G), \rho_{2}(\varepsilon) u_{2}:: \rho(G)\right) \in \mathcal{V}_{\rho} \llbracket G \rrbracket
$$

(2) If $G \in$ TypeName then $\varepsilon=\left\langle H_{3}, \alpha^{E_{4}}\right\rangle$. Notice that as $\alpha^{E_{4}}$ cannot have free type variables therefore H_{3} neither. Then $\varepsilon=\rho_{i}(\varepsilon)$. As α is sync, then let us call $G^{\prime \prime}=W \cdot \Xi_{i}(\alpha)$. We have to prove that:

$$
\left(W,\left\langle H_{3}, \alpha^{E_{4}}\right\rangle u_{1}:: \alpha,\left\langle H_{3}, \alpha^{E_{4}}\right\rangle u_{2}:: \alpha\right) \in \mathcal{V}_{\rho} \llbracket \alpha \rrbracket
$$

which, by definition of $\mathcal{V}_{\rho} \llbracket \alpha \rrbracket$, is equivalent to prove that:

$$
\left(\downarrow W,\left\langle H_{3}, E_{4}\right\rangle u_{1}:: G^{\prime \prime},\left\langle E_{3}, E_{4}\right\rangle u_{2}:: G^{\prime \prime}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime \prime} \rrbracket
$$

Then we proceed by case analysis on ε :

- (Case $\left.\varepsilon=\left\langle H_{3}, \alpha^{\beta^{E_{4}}}\right\rangle\right)$. We know that $\left\langle H_{3}, \alpha^{\beta^{E_{4}}}\right\rangle \vdash \Xi ; \Delta \vdash G^{*} \sim \alpha$, then by Lemma 6.29, $\left\langle H_{3}, \beta^{E_{4}}\right\rangle \vdash \Xi ; \Delta \vdash G^{*} \sim G^{\prime \prime}$. As $\beta^{E_{4}} \sqsubseteq G^{\prime \prime}$, then $G^{\prime \prime}$ can either be ? or β.
If $G^{\prime \prime}=$?, then by definition of $\mathcal{V}_{\rho} \llbracket ? \rrbracket$, we have to prove that the resulting values belong to $\mathcal{V}_{\rho} \llbracket \beta \rrbracket$. Also as $\left\langle H_{3}, \beta^{E_{4}}\right\rangle \vdash \Xi ; \Delta \vdash G^{*} \sim$?, by Lemma 6.27, $\left\langle H_{3}, \beta^{E_{4}}\right\rangle \vdash \Xi ; \Delta \vdash G^{*} \sim \beta$, and then we proceed just like this case once again (this is process is finite as there are no circular references by construction and it ends up in something different to a type name). If $G^{\prime \prime}=\beta$ we use an analogous argument as for $G^{\prime \prime}=$?.
- (Case $\left.\varepsilon=\left\langle H_{3}, \alpha^{H_{4}}\right\rangle\right)$. We have to prove that

$$
\left(\downarrow W,\left\langle H_{3}, H_{4}\right\rangle u_{1}:: G^{\prime \prime},\left\langle H_{3}, H_{4}\right\rangle u_{2}:: G^{\prime \prime}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime \prime} \rrbracket
$$

By Lemma 6.29, $\left\langle H_{3}, H_{4}\right\rangle \vdash \Xi ; \Delta \vdash G^{*} \sim G^{\prime \prime}$. Then if $G^{\prime \prime}=$?, we proceed as the case $G=$?, with the evidence $\varepsilon=\left\langle H_{3}, H_{4}\right\rangle$. If $G^{\prime \prime} \in$ HeadType, we proceed as the previous case where $G=G_{1}^{\prime} \rightarrow G_{2}^{\prime}$, and the evidence $\varepsilon=\left\langle H_{3}, H_{4}\right\rangle$.
Also, we have to prove that $\left(\forall \Xi^{\prime}, \varepsilon^{\prime}, G_{1}^{*}\right.$, such that $\varepsilon^{\prime} . n=k, \varepsilon^{\prime}=\left\langle\alpha^{E_{1}^{* *}}, E_{2}^{* *}\right\rangle(\downarrow W \in$ $\mathcal{S} \llbracket \Xi^{\prime} \rrbracket \wedge \varepsilon^{\prime} \vdash \Xi^{\prime} \vdash \alpha \sim G_{1}^{*}$), we get that

$$
\left.\left(\downarrow_{1} W, \varepsilon^{\prime}\left(\left\langle H_{3}, \alpha^{H_{4}}\right\rangle u_{1}:: \alpha\right):: G_{1}^{*}, \varepsilon^{\prime}\left(\left\langle H_{4}, \alpha^{E_{22}}\right\rangle u_{2}:: \alpha\right):: G_{1}^{*}\right) \in \mathcal{T}_{\rho} \llbracket G_{1}^{*} \rrbracket\right)
$$

or what is the same $\left(\left(\left\langle H_{3}, \alpha^{H_{4}}\right\rangle ; \varepsilon^{\prime}\right)\right.$ fails the result follows immediately)

$$
\left.\left(\downarrow_{1+k} W,\left(\left\langle H_{3}, \alpha^{H_{4}}\right\rangle ; \varepsilon^{\prime}\right) u_{1}:: G_{1}^{*},\left(\left\langle H_{2}, \alpha^{H_{4}}\right\rangle ; \varepsilon^{\prime}\right) u_{2}:: G_{1}^{*}\right) \in \mathcal{V}_{\rho} \llbracket G_{1}^{*} \rrbracket\right)
$$

By definition of transitivity and Lemma 6.30, we know that

$$
\left\langle H_{3}, \alpha^{H_{4}}\right\rangle \circ\left\langle\alpha^{E_{1}^{* *}}, E_{2}^{* *}\right\rangle=\left\langle H_{3}, H_{4}\right\rangle \circ\left\langle E_{1}^{* *}, E_{2}^{* *}\right\rangle
$$

We know that $\left\langle E_{1}^{* *}, E_{2}^{* *}\right\rangle \vdash \Xi^{\prime} \vdash G^{\prime \prime} \sim G_{1}^{*}$. Since $\left\langle E_{1}^{* *}, E_{2}^{* *}\right\rangle \vdash \Xi \vdash G^{\prime \prime} \sim G_{1}^{*}, \downarrow_{1} W \in \mathcal{S} \llbracket \Xi^{\prime} \rrbracket$, $\left(\downarrow_{1} W,\left\langle H_{3}, H_{4}\right\rangle u_{1}:: G^{\prime \prime},\left\langle H_{1}, H_{4}\right\rangle u_{2}:: G^{\prime \prime}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime \prime} \rrbracket$, by Lemma 6.17, we know that (since $\left(\left\langle H_{3}, \alpha^{H_{4}}\right\rangle \circ \varepsilon^{\prime}\right)$ does not fail then $\left(\left\langle H_{3}, H_{4}\right\rangle \stackrel{\circ}{\circ}\left\langle E_{1}^{* *}, E_{2}^{* *}\right\rangle\right)$ also does not fail by the transitivity rules)

The result follows immediately.
(3) If $G=$? we have the following cases:

- $\left(G=?, \varepsilon=\left\langle H_{3}, H_{4}\right\rangle\right)$. By the definition of $\mathcal{V}_{\rho} \llbracket ? \rrbracket$ in this case we have to prove that:

$$
\left(W, \rho_{1}(\varepsilon) u_{1}:: \rho(G), \rho_{2}(\varepsilon) u_{2}:: \rho(G)\right) \in \mathcal{V}_{\rho} \llbracket \operatorname{const}\left(H_{4}\right) \rrbracket
$$

but as $\operatorname{const}\left(H_{4}\right)=$? \rightarrow ?, we proceed just like this case where $G=G_{1}^{\prime} \rightarrow G_{2}$, where $G_{1}^{\prime}=$? and $G_{2}^{\prime}=$?.

- $\left(G=\right.$?, $\left.\varepsilon=\left\langle H_{3}, \alpha^{E_{4}}\right\rangle\right)$. Notice that as $\alpha^{E_{4}}$ cannot have free type variables therefore E_{3} neither. Then $\varepsilon=\rho_{i}(\varepsilon)$. By the definition of $\mathcal{V}_{\rho} \llbracket$? \rrbracket we have to prove that

$$
\left(W,\left\langle H_{3}, \alpha^{E_{4}}\right\rangle u_{1}:: \alpha,\left\langle H_{3}, \alpha^{E_{4}}\right\rangle u_{2}:: \alpha\right) \in \mathcal{V}_{\rho} \llbracket \alpha \rrbracket
$$

Note that by Lemma 6.27 we know that $\varepsilon \vdash \Xi ; \Delta \vdash G^{*} \sim \alpha$. Then we proceed just like the case $G \in$ TypeName.

Lemma 10.2 (Compatibility-E Λ). If $\Xi ; \Delta, X \vdash t_{1} \leq t_{2}: G, \varepsilon \vdash \Xi ; \Delta \vdash \forall X . G \sim G^{\prime}$ and $\Xi ; \Delta \vdash \Gamma$ then $\Xi ; \Delta ; \Gamma \vdash \varepsilon\left(\Lambda X . t_{1}\right):: G^{\prime} \leq \varepsilon\left(\Lambda X . t_{2}\right):: G^{\prime}: G^{\prime}$.

Proof. First, we are required to prove that $\Xi ; \Delta ; \Gamma \vdash \varepsilon\left(\Lambda X . t_{i}\right):: G^{\prime}: G^{\prime}$, but by unfolding the premises we know that $\Xi ; \Delta, X \vdash t_{i}: G$, therefore:

$$
\frac{\Xi ; \Delta, X ; \Gamma \vdash t_{i}: G \quad \Xi ; \Delta \vdash \Gamma}{\Xi ; \Delta ; \Gamma \vdash \Lambda X . t_{i} \in \forall X . G}
$$

Then we can conclude that:

$$
\frac{\Xi ; \Delta ; \Gamma \vdash \Lambda X . t_{i} \in \forall X . G \quad \varepsilon \vdash \Xi ; \Delta \vdash \forall X . G \sim G^{\prime}}{\Xi ; \Delta ; \Gamma \vdash \varepsilon\left(\Lambda X . t_{i}\right):: G^{\prime}: G^{\prime}}
$$

Consider arbitrary W, ρ, γ such that $W \in \mathcal{S} \llbracket \Xi \rrbracket,(W, \rho) \in \mathcal{D} \llbracket \Delta \rrbracket$ and $(W, \gamma) \in \mathcal{G}_{\rho} \llbracket \Gamma \rrbracket$. We are required to show that:

$$
\left(W, \rho\left(\gamma_{1}\left(\varepsilon\left(\Lambda X . t_{1}\right):: G^{\prime}\right)\right), \rho\left(\gamma_{2}\left(\varepsilon\left(\Lambda X . t_{2}\right):: G^{\prime}\right)\right)\right) \in \mathcal{T}_{\rho} \llbracket G^{\prime} \rrbracket
$$

First we have to prove that:

$$
W . \Xi_{i} \vdash \rho\left(\gamma_{i}\left(\varepsilon\left(\Lambda X . t_{i}\right):: G^{\prime}\right)\right): \rho\left(G^{\prime}\right)
$$

As we know that $\Xi ; \Delta ; \Gamma \vdash \varepsilon\left(\Lambda X . t_{i}\right):: G^{\prime}: G^{\prime}$, by Lemma 6.25 the result follows immediately.
By definition of substitutions $\left.\rho\left(\gamma_{i}\left(\varepsilon\left(\Lambda X . t_{1}\right):: G^{\prime}\right)\right)=\varepsilon_{i}^{\rho}\left(\Lambda X . \rho\left(\gamma_{i}\left(t_{i}\right)\right)\right)\right):: \rho\left(G^{\prime}\right)$, where $\varepsilon_{i}^{\rho}=\rho_{i}(\varepsilon)$, therefore we have to prove that:

$$
\left.\left.\left(W, \varepsilon_{1}^{\rho}\left(\Lambda X . \rho\left(\gamma_{1}\left(t_{1}\right)\right)\right)\right):: \rho\left(G^{\prime}\right), \varepsilon_{2}^{\rho}\left(\Lambda X . \rho\left(\gamma_{2}\left(t_{2}\right)\right)\right)\right):: \rho\left(G^{\prime}\right)\right) \in \mathcal{T}_{\rho} \llbracket G^{\prime} \rrbracket
$$

We already know that both terms are values and therefore we only have to prove that:

$$
\left.\left.\left(W, \varepsilon_{1}^{\rho}\left(\Lambda X . \rho\left(\gamma_{1}\left(t_{1}\right)\right)\right)\right):: \rho\left(G^{\prime}\right), \varepsilon_{2}^{\rho}\left(\Lambda X . \rho\left(\gamma_{2}\left(t_{2}\right)\right)\right)\right):: \rho\left(G^{\prime}\right)\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime} \rrbracket
$$

Let's suppose that $\varepsilon_{1}^{\rho} \cdot n=k$.
The type G^{\prime} can be $\forall X . G_{1}^{\prime}$, for some G_{1}^{\prime}, ? or a TypeName. Let $u_{1}=\Lambda X . \rho\left(\gamma_{1}\left(t_{1}\right)\right), u_{2}=\Lambda X . \rho\left(\gamma_{2}\left(t_{2}\right)\right)$ and $G^{*}=\forall X . G$, we have to prove that:

$$
\left(W, \rho_{1}(\varepsilon) u_{1}:: \rho(G), \rho_{2}(\varepsilon) u_{2}:: \rho(G)\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime} \rrbracket
$$

(1) If $G^{\prime}=\forall X . G_{1}^{\prime}$, then consider $W^{\prime} \geq W$, and G_{1}, G_{2}, R and α, such that $W^{\prime} . \Xi_{i} \vdash G_{i}$, and $R \in \operatorname{Rel}_{W^{\prime} \cdot j}\left[G_{1}, G_{2}\right]$.

$$
\begin{aligned}
& \left.\qquad W^{\prime} . \Xi_{i} \triangleright \varepsilon_{i}^{\rho}\left(\Lambda X . \rho\left(\gamma_{i}\left(t_{i}\right)\right)\right)\right):: \forall X . \rho\left(G_{1}^{\prime}\right)\left[G_{i}\right] \longrightarrow \\
& W^{\prime} . \Xi_{i}, \alpha:=G_{i} \triangleright \varepsilon_{\forall X . \rho\left(\alpha_{1}^{\prime}\right)}^{E_{i} E_{i}}\left(\varepsilon_{i}^{\rho}\left[\alpha^{E_{i}}\right] \rho\left(\gamma_{i}\left(t_{i}\right)\right)\left[\alpha^{E_{i}} / X\right]:: \rho\left(G_{1}^{\prime}\right)[\alpha / X]\right):: \rho\left(G_{1}^{\prime}\right)\left[G_{i} / X\right] \\
& \text { where } E_{i}^{\prime}=\operatorname{lift}_{\left(W^{\prime} \cdot \Xi_{i}\right)}\left(G_{i}\right) .
\end{aligned}
$$

Note that $\varepsilon \vdash \Xi ; \Delta \vdash \forall X . G \sim \forall X . G_{1}^{\prime}$, then $\varepsilon=\left\langle\forall X . E_{1}, \forall X . E_{2}\right\rangle$, for some E_{1}, E_{2}, K and L. By the Lemma 6.24 we know that $\varepsilon_{i}^{\rho} \vdash W . \Xi_{i} ; \Delta \vdash \forall X . \rho(G) \sim \forall X . \rho\left(G_{1}^{\prime}\right)$, then $\varepsilon_{i}^{\rho}=\left\langle\forall X . E_{i 1}, \forall X . E_{i 2}\right\rangle$, where $\forall X . E_{i 1}=\rho_{i}\left(E_{1}\right)$ and $E_{i 2}=\rho_{i}\left(E_{2}\right)$.
Then we have to prove that:

$$
\begin{gathered}
\left(W^{\prime \prime},\left(\varepsilon_{1}^{\rho}\left[\alpha^{E_{1}}\right]\right) \rho\left(\gamma_{1}\left(t_{1}\right)\right)\left[\alpha^{E_{1}} / X\right]:: \rho\left(G_{1}^{\prime}\right)[\alpha / X],\right. \\
\left.\left(\varepsilon_{2}^{\rho}\left[\alpha^{E_{2}}\right]\right) \rho\left(\gamma_{2}\left(t_{2}\right)\right)\left[\alpha^{E_{2}} / X\right]:: \rho\left(G_{1}^{\prime}\right)[\alpha / X]\right) \in \mathcal{T}_{\rho[X \mapsto \alpha]} \llbracket G_{1}^{\prime} \rrbracket
\end{gathered}
$$

where $W^{\prime \prime}=\downarrow\left(W^{\prime} \boxtimes\left(\alpha, G_{1}, G_{2}, R\right)\right)$.
Note that

$$
\begin{gathered}
W^{\prime \prime} . \Xi_{1} \triangleright\left(\varepsilon_{1}^{\rho} \llbracket \alpha^{E_{1}} \rrbracket\right) \rho\left(\gamma_{1}\left(t_{1}\right)\right):: \rho\left(G_{1}^{\prime}\right)[\alpha / X] \longmapsto{ }^{k^{*}} \\
\Xi_{1} \triangleright\left(\varepsilon_{1}^{\rho} \llbracket \alpha^{E_{1}} \rrbracket\right) v_{1 f} \longmapsto \longmapsto^{k} \\
\Xi_{1} \triangleright v_{1}^{*}
\end{gathered}
$$

Let $\rho^{\prime}=\rho[X \mapsto \alpha]$. We instantiate the premise $\Xi ; \Delta ; \Gamma \vdash t_{1} \leq t_{2}: G$ with $W^{\prime \prime}, \rho^{\prime}$ and γ, such that $W^{\prime \prime} \in \mathcal{S} \llbracket \Xi \rrbracket$, as $\alpha \in \operatorname{dom}\left(W^{\prime} . \kappa[\alpha \mapsto R]\right)$ then $\left(W^{\prime \prime}, \rho^{\prime}\right) \in \mathcal{D} \llbracket \Delta, X \rrbracket$. Also note that as X is fresh, then $\forall\left(v_{1}^{*}, v_{2}^{*}\right) \in \operatorname{cod}(\gamma)$, such that $\Xi ; \Delta ; \Gamma \vdash v_{i}^{*}: G^{*}, X \notin F V\left(G^{*}\right)$, then it is easy to see that $\left(W^{\prime \prime}, \gamma\right) \in \mathcal{G}_{\rho[X \mapsto \alpha]} \llbracket \Gamma \rrbracket$. Then we know that:

$$
\left(W^{\prime \prime}, \rho^{\prime}\left(\gamma_{1}\left(t_{1}\right)\right), \rho^{\prime}\left(\gamma_{2}\left(t_{2}\right)\right)\right) \in \mathcal{T}_{\rho^{\prime}} \llbracket G \rrbracket
$$

But note that:

$$
\rho^{\prime}\left(\gamma_{i}\left(t_{i}\right)\right)=\rho[\alpha / X]\left(\gamma_{i}\left(t_{i}\right)\right)=\rho\left(\gamma_{i}\left(t_{i}\right)\right)\left[\alpha^{E_{i}} / X\right]
$$

Then we have that:

$$
\left(W^{\prime \prime}, \rho\left(\gamma_{1}\left(t_{1}\right)\right)\left[\alpha^{E_{1}} / X\right], \rho\left(\gamma_{2}\left(t_{2}\right)\right)\left[\alpha^{E_{2}} / X\right]\right) \in \mathcal{T}_{\rho[\alpha / X]} \llbracket G \rrbracket
$$

If the following term reduces to error, then the result follows immediately.

$$
W^{\prime \prime} \cdot \Xi_{1} \triangleright \rho\left(\gamma_{1}\left(t_{1}\right)\right)\left[\alpha^{E_{1}} / X\right]
$$

If the above is not true, then the following terms reduce to values ($\left.v_{i f}=\varepsilon_{i f} u_{i f}:: \rho^{\prime}(G)\right)$ and $\exists W^{\prime \prime \prime} \geq W^{\prime \prime}$ such that $\left(W^{\prime \prime \prime}, v_{1 f}, v_{2 f}\right) \in \mathcal{V}_{\rho[\alpha \mapsto X]} \llbracket G \rrbracket$ and $W^{\prime \prime \prime} . j+k^{*}=W^{\prime \prime} . j$.

$$
W^{\prime \prime} . \Xi_{i} \triangleright \rho\left(\gamma_{i}\left(t_{i}\right)\right)\left[\alpha^{E_{i}} / X\right] \longrightarrow{ }^{*} W^{\prime \prime \prime} \cdot \Xi_{i} \triangleright v_{i f}
$$

We instantiate the Lemma 6.17 with the type G_{1}^{\prime} and the evidence $\left\langle E_{1}, E_{2}\right\rangle \vdash \Xi ; \Delta, X \vdash G \sim G_{1}^{\prime}$ (remember that $\left.\varepsilon=\left\langle\forall X . E_{1}, \forall X . E_{2}\right\rangle\right)$. Note that $\varepsilon_{i}^{\rho} \llbracket \alpha^{E_{i}} \rrbracket=\rho[X \mapsto \alpha]_{W^{\prime \prime \prime} . \Xi_{i}}\left(\left\langle E_{1}, E_{2}\right\rangle\right), \rho[X \mapsto$ $\alpha]\left(G_{1}^{\prime}\right)=\rho\left(G_{1}^{\prime}\right)[\alpha / X], W^{\prime \prime \prime} \in \mathcal{S} \llbracket \Xi \rrbracket$ and $\left(W^{\prime \prime \prime}, \rho[X \mapsto \alpha]\right) \in \mathcal{D} \llbracket \Delta, X \rrbracket$. Then we obtain that:

$$
\left(W^{\prime \prime \prime},\left(\varepsilon_{1}^{\rho} \llbracket \alpha^{E_{1}} \rrbracket\right) v_{1 f}:: \rho\left(G_{1}^{\prime}\right)[\alpha / X],\left(\varepsilon_{2}^{\rho} \llbracket \alpha^{E_{2}} \rrbracket\right) v_{2 f}:: \rho\left(G_{1}^{\prime}\right)[\alpha / X]\right) \in \mathcal{T}_{\rho^{\prime}} \llbracket G_{1}^{\prime} \rrbracket
$$

and

$$
\left(\downarrow_{k} W^{\prime \prime \prime}, v_{1}^{*}, v_{2}^{*}\right) \in \mathcal{T}_{\rho} \llbracket G_{1}^{\prime} \rrbracket
$$

where $\left(\downarrow_{k} W^{\prime \prime \prime}\right) . j+k+k^{*}=W^{\prime \prime} . j$ and $v_{i}^{*}=\left(\varepsilon_{i f} \circ\left(\varepsilon_{1}^{\rho} \llbracket \alpha^{E_{1}} \rrbracket\right)\right) u_{i f}:: \rho\left(G_{1}^{\prime}\right)[\alpha / X]$, and the result follows immediately.
(2) If $G^{\prime} \in \operatorname{TypeName}$ then $\varepsilon=\left\langle H_{3}, \alpha^{E_{4}}\right\rangle$. Notice that as $\alpha^{E_{4}}$ cannot have free type variables therefore H_{3} neither. Then $\varepsilon=\rho_{i}(\varepsilon)$. As α is sync, then let us call $G^{\prime \prime}=W \cdot \Xi_{i}(\alpha)$. We have to prove that:

$$
\left(W,\left\langle H_{3}, \alpha^{E_{4}}\right\rangle u_{1}:: \alpha,\left\langle H_{3}, \alpha^{E_{4}}\right\rangle u_{2}:: \alpha\right) \in \mathcal{V}_{\rho} \llbracket \alpha \rrbracket
$$

which, by definition of $\mathcal{V}_{\rho} \llbracket \alpha \rrbracket$, is equivalent to prove that:

$$
\left(\downarrow W,\left\langle H_{3}, E_{4}\right\rangle u_{1}:: G^{\prime \prime},\left\langle E_{3}, E_{4}\right\rangle u_{2}:: G^{\prime \prime}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime \prime} \rrbracket
$$

Then we proceed by case analysis on ε :

- (Case $\varepsilon=\left\langle H_{3}, \alpha^{\beta^{E_{4}}}\right\rangle$). We know that $\left\langle H_{3}, \alpha^{\beta^{E_{4}}}\right\rangle \vdash \Xi ; \Delta \vdash G^{*} \sim \alpha$, then by Lemma 6.29, $\left\langle H_{3}, \beta^{E_{4}}\right\rangle \vdash \Xi ; \Delta \vdash G^{*} \sim G^{\prime \prime}$. As $\beta^{E_{4}} \sqsubseteq G^{\prime \prime}$, then $G^{\prime \prime}$ can either be ? or β.
If $G^{\prime \prime}=$?, then by definition of $\mathcal{V}_{\rho} \llbracket ? \rrbracket$, we have to prove that the resulting values belong to $\mathcal{V}_{\rho} \llbracket \beta \rrbracket$. Also as $\left\langle H_{3}, \beta^{E_{4}}\right\rangle \vdash \Xi ; \Delta \vdash G^{*} \sim$?, by Lemma 6.27, $\left\langle H_{3}, \beta^{E_{4}}\right\rangle \vdash \Xi ; \Delta \vdash G^{*} \sim \beta$, and then we proceed just like this case once again (this is process is finite as there are no circular references by construction and it ends up in something different to a type name). If $G^{\prime \prime}=\beta$ we use an analogous argument as for $G^{\prime \prime}=$?
- (Case $\left.\varepsilon=\left\langle H_{3}, \alpha^{H_{4}}\right\rangle\right)$. We have to prove that

$$
\left(\downarrow W,\left\langle H_{3}, H_{4}\right\rangle u_{1}:: G^{\prime \prime},\left\langle H_{3}, H_{4}\right\rangle u_{2}:: G^{\prime \prime}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime \prime} \rrbracket
$$

By Lemma 6.29, $\left\langle H_{3}, H_{4}\right\rangle \vdash \Xi ; \Delta \vdash G^{*} \sim G^{\prime \prime}$. Then if $G^{\prime \prime}=$?, we proceed as the case $G^{\prime}=$?, with the evidence $\varepsilon=\left\langle H_{3}, H_{4}\right\rangle$. If $G^{\prime \prime} \in$ HeadType, we proceed as the previous case where $G^{\prime}=\forall X . G$, and the evidence $\varepsilon=\left\langle H_{3}, H_{4}\right\rangle$.
Also, we have to prove that $\left(\forall \Xi^{\prime}, \varepsilon^{\prime}, G_{1}^{*}\right.$, such that $\varepsilon^{\prime} . n=k, \varepsilon^{\prime}=\left\langle\alpha^{E_{1}^{* *}}, E_{2}^{* *}\right\rangle(\downarrow W \in$ $\left.\mathcal{S} \llbracket \Xi^{\prime} \rrbracket \wedge \varepsilon^{\prime} \vdash \Xi^{\prime} \vdash \alpha \sim G_{1}^{*}\right)$, we get that

$$
\left.\left(\downarrow_{1} W, \varepsilon^{\prime}\left(\left\langle H_{3}, \alpha^{H_{4}}\right\rangle u_{1}:: \alpha\right):: G_{1}^{*}, \varepsilon^{\prime}\left(\left\langle H_{4}, \alpha^{E_{22}}\right\rangle u_{2}:: \alpha\right):: G_{1}^{*}\right) \in \mathcal{T}_{\rho} \llbracket G_{1}^{*} \rrbracket\right)
$$

or what is the same $\left(\left(\left\langle H_{3}, \alpha^{H_{4}}\right\rangle ; \varepsilon^{\prime}\right)\right.$ fails the result follows immediately)

$$
\left.\left(\downarrow_{1+k} W,\left(\left\langle H_{3}, \alpha^{H_{4}}\right\rangle ; \varepsilon^{\prime}\right) u_{1}:: G_{1}^{*},\left(\left\langle H_{2}, \alpha^{H_{4}}\right\rangle ; \varepsilon^{\prime}\right) u_{2}:: G_{1}^{*}\right) \in \mathcal{V}_{\rho} \llbracket G_{1}^{*} \rrbracket\right)
$$

By definition of transitivity and Lemma 6.30, we know that

$$
\left\langle H_{3}, \alpha^{H_{4}}\right\rangle \circ\left\langle\alpha^{E_{1}^{* *}}, E_{2}^{* *}\right\rangle=\left\langle H_{3}, H_{4}\right\rangle \circ\left\langle E_{1}^{* *}, E_{2}^{* *}\right\rangle
$$

We know that $\left\langle E_{1}^{* *}, E_{2}^{* *}\right\rangle \vdash \Xi^{\prime} \vdash G^{\prime \prime} \sim G_{1}^{*}$. Since $\left\langle E_{1}^{* *}, E_{2}^{* *}\right\rangle \vdash \Xi \vdash G^{\prime \prime} \sim G_{1}^{*}, \downarrow_{1} W \in \mathcal{S} \llbracket \Xi^{\prime} \rrbracket$, $\left(\downarrow_{1} W,\left\langle H_{3}, H_{4}\right\rangle u_{1}:: G^{\prime \prime},\left\langle H_{1}, H_{4}\right\rangle u_{2}:: G^{\prime \prime}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime \prime} \rrbracket$, by Lemma 6.17, we know that (since $\left(\left\langle H_{3}, \alpha^{H_{4}}\right\rangle \circ \varepsilon^{\prime}\right)$ does not fail then $\left(\left\langle H_{3}, H_{4}\right\rangle \stackrel{\circ}{\circ}\left\langle E_{1}^{* *}, E_{2}^{* *}\right\rangle\right)$ also does not fail by the transitivity rules)

$$
\left.\left(\downarrow_{1+k} W,\left(\left\langle H_{3}, H_{4}\right\rangle \circ\left\langle E_{1}^{* *}, E_{2}^{* *}\right\rangle\right) u_{1}:: G_{1}^{*},\left(\left\langle H_{3}, H_{4}\right\rangle \circ\left\langle E_{1}^{* *}, E_{2}^{* *}\right\rangle\right) u_{2}:: G_{1}^{*}\right) \in \mathcal{V}_{\rho} \llbracket G_{1}^{*} \rrbracket\right)
$$

The result follows immediately.
(3) If $G^{\prime}=$? we have the following cases:

- $\left(G^{\prime}=\right.$?, $\left.\varepsilon=\left\langle H_{3}, H_{4}\right\rangle\right)$. By the definition of $\mathcal{V}_{\rho} \llbracket ? \rrbracket$ in this case we have to prove that:

$$
\left(W, \rho_{1}(\varepsilon) u_{1}:: \rho(G), \rho_{2}(\varepsilon) u_{2}:: \rho(G)\right) \in \mathcal{V}_{\rho} \llbracket \operatorname{const}\left(H_{4}\right) \rrbracket
$$

but as const $\left(H_{4}\right)=\forall X$.?, we proceed just like the case where $G^{\prime}=\forall X . G_{1}^{\prime}$, where $G_{1}^{\prime}=$?.

- $\left(G^{\prime}=\right.$?, $\left.\varepsilon=\left\langle H_{3}, \alpha^{E_{4}}\right\rangle\right)$. Notice that as $\alpha^{E_{4}}$ cannot have free type variables therefore E_{3} neither. Then $\varepsilon=\rho_{i}(\varepsilon)$. By the definition of $\mathcal{V}_{\rho} \llbracket ? \rrbracket$ we have to prove that

$$
\left(W,\left\langle H_{3}, \alpha^{E_{4}}\right\rangle u_{1}:: \alpha,\left\langle H_{3}, \alpha^{E_{4}}\right\rangle u_{2}:: \alpha\right) \in \mathcal{V}_{\rho} \llbracket \alpha \rrbracket
$$

Note that by Lemma 6.27 we know that $\varepsilon \vdash \Xi ; \Delta \vdash G^{*} \sim \alpha$. Then we proceed just like the case $G^{\prime} \in$ Typename.

Proposition 6.5 (Compatibility-EpairU). If $\Xi ; \Delta ; \Gamma \vdash \pi_{1}(\varepsilon) u_{1}:: G_{1} \leq \pi_{1}(\varepsilon) u_{1}^{\prime}:: G_{1}: G_{1}$, $\Xi ; \Delta ; \Gamma \vdash \pi_{2}(\varepsilon) u_{2}^{\prime}:: G_{2} \leq \pi_{2}(\varepsilon) u_{2}^{\prime}:: G_{2}: G_{2}$, and $\varepsilon \Vdash \Xi ; \Delta \vdash G_{1} \times G_{2} \sim G$ then:

$$
\Xi ; \Delta ; \Gamma \vdash \varepsilon\left\langle u_{1}, u_{2}\right\rangle:: G \leq \varepsilon\left\langle u_{1}^{\prime}, u_{2}^{\prime}\right\rangle:: G: G
$$

Proof. Straightforward as the definition of related pairs depends on a weaker property of the premise: $\Xi ; \Delta ; \Gamma \vdash \pi_{1}(\varepsilon) u_{1}:: G_{1} \leq \pi_{1}(\varepsilon) u_{1}^{\prime}:: G_{1}: G_{1}$ and $\Xi ; \Delta ; \Gamma \vdash \pi_{2}(\varepsilon) u_{2}^{\prime}:: G_{2} \leq \pi_{2}(\varepsilon) u_{2}^{\prime}:: G_{2}:$ G_{2}.

Proposition 6.6 (Compatibility-Epair). If $\Xi ; \Delta ; \Gamma \vdash t_{1} \leq t_{1}^{\prime}: G_{1}$ and $\Xi ; \Delta ; \Gamma \vdash t_{2} \leq t_{2}^{\prime}: G_{2}$, then $\Xi ; \Delta ; \Gamma \vdash\left\langle t_{1}, t_{2}\right\rangle \leq\left\langle t_{1}^{\prime}, t_{2}^{\prime}\right\rangle: G_{1} \times G_{2}$.

Proof. We proceed by induction on subterms t_{i}, analogous to the function application case, but using Prop 6.5 instead.

Proposition 6.7 (Compatibility-Ex). If $x: G \in \Gamma$ and $\Xi ; \Delta \vdash \Gamma$ then $\Xi ; \Delta ; \Gamma \vdash x \leq x: G$.
Proof. First, we are required to show $\Xi ; \Delta ; \Gamma \vdash x: G$, which is immediate. Consider arbitrary W, ρ, γ such that $W \in \mathcal{S} \llbracket \Xi \rrbracket,(W, \rho) \in \mathcal{D} \llbracket \Delta \rrbracket$ and $(W, \gamma) \in \mathcal{G}_{\rho} \llbracket \Gamma \rrbracket$. We are required to show that:

$$
\left(W, \rho\left(\gamma_{1}(x)\right), \rho\left(\gamma_{2}(x)\right)\right) \in \mathcal{T}_{\rho} \llbracket G \rrbracket
$$

Consider arbitrary i, v_{1} and Ξ_{1} such that $i<W . j$ and $W \cdot \Xi_{1} \triangleright \rho\left(\gamma_{1}(x)\right) \longrightarrow \Xi_{1} \triangleright v_{1}$. Since $\left.\rho\left(\gamma_{1}(x)\right)\right)=\gamma_{1}(x)$ and $\gamma_{1}(x)$ is already a value, we have $i=0$ and $\gamma_{1}(x)=v_{1}$. We are required to show that exists Ξ_{2}, v_{2} such that $W \cdot \Xi_{2} \triangleright \gamma_{2}(x) \longrightarrow{ }^{*} \Xi_{2} \triangleright v_{2}$ which is immediate (since $\rho\left(\gamma_{2}(x)\right)=$ $\gamma_{2}(x)$ is a value and $\Xi_{2}=W . \Xi_{2}$). Also, we are required to show that $\exists W^{\prime}$, such that $W^{\prime} \cdot j+i=$ $W . j \wedge W^{\prime} \geq W \wedge W^{\prime} . \Xi_{1}=\Xi_{1} \wedge W^{\prime} . \Xi_{2}=\Xi_{2} \wedge\left(W^{\prime}, \gamma_{1}(x), \gamma_{2}(x)\right) \in \mathcal{V}_{\rho} \llbracket G \rrbracket$. Let $W^{\prime}=W$, then $\left(W, \gamma_{1}(x), \gamma_{2}(x)\right) \in \mathcal{V}_{\rho} \llbracket G \rrbracket$ because of the definition of $(W, \gamma) \in \mathcal{G}_{\rho} \llbracket \Gamma \rrbracket$.

Proposition 6.8 (Compatibility-Easc). If $\Xi ; \Delta ; \Gamma \vdash t_{1} \leq t_{2}: G$ and $\varepsilon \vdash \Xi ; \Delta \vdash G \sim G^{\prime}$ then $\Xi ; \Delta ; \Gamma \vdash \varepsilon t_{1}:: G^{\prime} \leq \varepsilon t_{2}:: G^{\prime}: G^{\prime}$.

Proof. First we are required to prove that $\Xi ; \Delta ; \Gamma \vdash \varepsilon t_{i}:: G^{\prime}: G^{\prime}$, but by $\Xi ; \Delta ; \Gamma \vdash t_{1} \leq t_{2}: G$ we already know that $\Xi ; \Delta ; \Gamma \vdash t_{i}: G$, therefore:

$$
\left(\text { Easc) } \frac{\Xi ; \Delta ; \Gamma+t_{i}: G \quad \varepsilon+\Xi ; \Delta \vdash G \sim G^{\prime}}{\Xi ; \Delta ; \Gamma \vdash \varepsilon t_{i}:: G^{\prime}: G^{\prime}}\right.
$$

Consider arbitrary W, ρ, γ such that $W \in \mathcal{S} \llbracket \Xi \rrbracket,(W, \rho) \in \mathcal{D} \llbracket \Delta \rrbracket$ and $(W, \gamma) \in \mathcal{G} \rho \llbracket \Gamma \rrbracket$. We are required to show that:

$$
\left(W, \rho\left(\gamma_{1}\left(\varepsilon t_{1}:: G^{\prime}\right)\right), \rho\left(\gamma_{2}\left(\varepsilon t_{2}:: G^{\prime}\right)\right)\right) \in \mathcal{T}_{\rho} \llbracket G^{\prime} \rrbracket
$$

Let's suppose that $\varepsilon_{1}^{\rho} \cdot n=k$. By definition of substitutions $\rho\left(\gamma_{i}\left(\varepsilon t_{i}:: G^{\prime}\right)\right)=\rho(\varepsilon) \rho\left(\gamma_{i}\left(t_{i}\right)\right):: \rho\left(G^{\prime}\right)$, therefore we have to prove that:

$$
\left(W, \rho(\varepsilon) \rho\left(\gamma_{1}\left(t_{1}\right)\right):: \rho\left(G^{\prime}\right), \rho(\varepsilon) \rho\left(\gamma_{2}\left(t_{2}\right)\right):: \rho\left(G^{\prime}\right)\right) \in \mathcal{T}_{\rho} \llbracket G^{\prime} \rrbracket
$$

First we have to prove that:

$$
W \cdot \Xi_{i} \vdash \rho(\varepsilon) \rho\left(\gamma_{i}\left(t_{i}\right)\right):: \rho\left(G^{\prime}\right): G^{\prime}
$$

As we know that $\Xi ; \Delta ; \Gamma \vdash \varepsilon t_{i}:: G^{\prime}: G^{\prime}$, by Lemma 6.25 the result follows immediately.

Second, consider arbitrary $i<W \cdot j, \Xi_{1}$. Either there exist v_{1} such that:

$$
W \cdot \Xi_{1} \triangleright \rho(\varepsilon) \rho\left(\gamma_{1}\left(t_{1}\right)\right):: \rho\left(G^{\prime}\right) \longmapsto{ }^{i} \Xi_{1} \triangleright v_{1}
$$

or

$$
W \cdot \Xi_{1} \triangleright \rho(\varepsilon) \rho\left(\gamma_{1}\left(t_{1}\right)\right):: \rho\left(G^{\prime}\right) \longmapsto{ }^{i} \text { error }
$$

Let us suppose that $W . \Xi_{1} \triangleright \rho\left(\gamma_{1}\left(t_{1}\right)\right):: \rho\left(G^{\prime}\right) \longmapsto{ }^{i} \Xi_{1} \triangleright v_{1}$. Hence, by inspection of the operational semantics, it follows that there exist $i_{1}+1<i, \Xi_{11}$ and v_{11} such that:

$$
W . \Xi_{1} \triangleright \rho(\varepsilon) \rho\left(\gamma_{1}\left(t_{1}\right)\right):: \rho\left(G^{\prime}\right) \longmapsto{ }^{i_{1}} \Xi_{11} \triangleright \rho(\varepsilon) v_{11}:: \rho\left(G^{\prime}\right) \longmapsto{ }^{k} \Xi_{11} \triangleright v_{1}
$$

We instantiate the hypothesis $\Xi ; \Delta ; \Gamma \vdash t_{1} \leq t_{2}: G$ with W, ρ and γ to obtain that:

$$
\left(W, \rho\left(\gamma_{1}\left(t_{1}\right)\right), \rho\left(\gamma_{2}\left(t_{2}\right)\right)\right) \in \mathcal{T}_{\rho} \llbracket G \rrbracket
$$

We instantiate $\mathcal{T}_{\rho} \llbracket G \rrbracket$ with i_{1}, Ξ_{11} and v_{11} (note that $i_{1}<i<W \cdot j$), hence there exists v_{12} and W_{1}, such that $W_{1} \geq W, W_{1} \cdot j+i_{1}=W . j, W \cdot \Xi_{2} \triangleright \rho\left(\gamma_{2}\left(t_{2}\right)\right) \longmapsto{ }^{*} W_{1} \cdot \Xi_{2} \triangleright v_{12}, W_{1} \cdot \Xi_{1}=\Xi_{11}, v_{12}$ and $\left(W_{1}, v_{11}, v_{12}\right) \in \mathcal{V}_{\rho} \llbracket G \rrbracket$.

Since we have that $\left(W_{1}, v_{11}, v_{12}\right) \in \mathcal{V}_{\rho} \llbracket G \rrbracket$, then it is true that $\left(W_{1}, \rho(\varepsilon) v_{11}:: G^{\prime}, \rho(\varepsilon) v_{12}:: G^{\prime}\right) \in$ $\mathcal{T}_{\rho} \llbracket G^{\prime} \rrbracket$ by the Lemma 6.17.

By the inspection of the operational semantics:

$$
W \cdot \Xi_{1} \triangleright \rho(\varepsilon) \rho\left(\gamma_{1}\left(t_{1}\right)\right):: \rho\left(G^{\prime}\right) \longmapsto{ }^{i_{1}} W_{1} \cdot \Xi_{1} \triangleright \rho(\varepsilon) v_{11}:: \rho\left(G^{\prime}\right) \longmapsto{ }^{k} \Xi_{1} \triangleright v_{1}
$$

We instantiate $\left(W_{1}, \rho(\varepsilon) v_{11}:: G^{\prime}, \rho(\varepsilon) v_{12}:: G^{\prime}\right) \in \mathcal{T}_{\rho} \llbracket G^{\prime} \rrbracket$ with k, v_{1} and Ξ_{1}. Therefore there must exist v_{2} and W^{\prime} such that $W^{\prime} \geq W_{1}$ (note that $W^{\prime} \geq W$), $W^{\prime} . j+i_{1}+k=W^{\prime} . j+i=W . j$.

$$
W_{1} \cdot \Xi_{2} \triangleright \rho(\varepsilon) v_{12}:: \rho\left(G^{\prime}\right) \longmapsto{ }^{*} \Xi_{2} \triangleright v_{2}
$$

and $\left(W^{\prime}, v_{1}, v_{2}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime} \rrbracket$ then the result follows.
Proposition 6.9 (Compatibility-Eop). If $\Xi ; \Delta ; \Gamma \vdash \bar{t} \leq \overline{t^{\prime}}: \bar{G}$ and $t y(o p)=\bar{G} \rightarrow G$ then $\Xi ; \Delta ; \Gamma \vdash o p(\bar{t}) \leq o p\left(\overline{t^{\prime}}\right): G$.

Proof. Similar to the term application.
Proposition 6.10 (Compatibility-EApp). If $\Xi ; \Delta ; \Gamma \vdash t_{1} \leq t_{1}^{\prime}: G_{11} \rightarrow G_{12}$ and $\Xi ; \Delta ; \Gamma \vdash t_{2} \leq$ $t_{2}^{\prime}: G_{11}$ then $\Xi ; \Delta ; \Gamma \vdash t_{1} t_{2} \leq t_{1}^{\prime} t_{2}^{\prime}: G_{12}$.

Proof. First, we are required to show that:

$$
\Xi ; \Delta ; \Gamma \vdash t_{1} t_{2}: G_{12}
$$

which follows directly from (Eapp) as $\Xi ; \Delta ; \Gamma \vdash t_{1}: G_{1}$, and $\Xi ; \Delta ; \Gamma \vdash t_{2}: G_{2}$. Also, we are required to prove that:

$$
\Xi ; \Delta ; \Gamma \vdash t_{1}^{\prime} t_{2}^{\prime}: G_{12}
$$

which follows analogously.
Second, consider arbitrary W, ρ, γ such that $W \in \mathcal{S} \llbracket \Xi \rrbracket,(W, \rho) \in \mathcal{D} \llbracket \Delta \rrbracket$ and $(W, \gamma) \in \mathcal{G}_{\rho} \llbracket \Gamma \rrbracket$. We are required to show that:

$$
\left(W, \rho\left(\gamma_{1}\left(t_{1} t_{2}\right)\right), \rho\left(\gamma_{2}\left(t_{1}^{\prime} t_{2}^{\prime}\right)\right) \in \mathcal{T}_{\rho} \llbracket G_{12} \rrbracket\right.
$$

Consider arbitrary i, v_{1} and Ξ_{1} such that $i<W . j$ and:

$$
W . \Xi_{1} \triangleright \rho\left(\gamma_{1}\left(t_{1} t_{2}\right)\right) \longrightarrow{ }^{i} \Xi_{1} \triangleright v_{1} \vee W . \Xi_{1} \triangleright \rho\left(\gamma_{1}\left(t_{1} t_{2}\right)\right) \longrightarrow{ }^{i} \text { error }
$$

Hence, by inspection of the operational semantics, it follows that there exist $i_{1}<i, \Xi_{11}$ and v_{11} such that:

$$
W . \Xi_{1} \triangleright \rho\left(\gamma_{1}\left(t_{1}\right)\right) \longrightarrow{ }^{i_{1}} \Xi_{11} \triangleright v_{11} \vee W . \Xi_{1} \triangleright \rho\left(\gamma_{1}\left(t_{1}\right)\right) \longrightarrow{ }^{i_{1}} \text { error }
$$

If $W . \Xi_{1} \triangleright \rho\left(\gamma_{1}\left(t_{1}\right)\right) \longrightarrow^{i_{1}}$ error then $W . \Xi_{1} \triangleright \rho\left(\gamma_{2}\left(t_{1}^{\prime}\right)\right) \longrightarrow^{*}$ error and the result holds immediately. Let us assume that the reduction does not fail. We instantiate the hypothesis $\Xi ; \Delta ; \Gamma \vdash t_{1} \leq t_{1}^{\prime}$: $G_{11} \rightarrow G_{12}$ with W, ρ and γ we obtain that:

$$
\left.\left(W, \rho\left(\gamma_{1}\left(t_{1}\right)\right)\right), \rho\left(\gamma_{2}\left(t_{1}^{\prime}\right)\right)\right) \in \mathcal{T}_{\rho} \llbracket G_{11} \rightarrow G_{12} \rrbracket
$$

We instantiate this with i_{1}, Ξ_{11} and v_{11} (note that $i_{1}<i<W . j$), hence there exists v_{11}^{\prime} and W_{1}, such that $W_{1} \geq W, W_{1} \cdot j+i_{1}=W . j$, or what is the same $W_{1} \cdot j+i_{1}=W . j, W . \Xi_{2} \triangleright \rho\left(\gamma_{2}\left(t_{1}^{\prime}\right)\right) \longrightarrow{ }^{*} W_{1} \cdot \Xi_{2} \triangleright v_{11}^{\prime}$, $W_{1} \cdot \Xi_{1}=\Xi_{11}$ and $\left(W_{1}, v_{11}, v_{11}^{\prime}\right) \in \mathcal{V}_{\rho} \llbracket G_{11} \rightarrow G_{12} \rrbracket$.

Note that:

$$
W \cdot \Xi_{1} \triangleright \rho\left(\gamma_{1}\left(t_{1} t_{2}\right)\right) \longrightarrow^{i_{1}} \Xi_{11} \triangleright v_{11}\left(\rho\left(\gamma_{1}\left(t_{2}\right)\right)\right) \longrightarrow^{i-i_{1}} \Xi_{1} \triangleright v_{1}
$$

or

$$
W \cdot \Xi_{1} \triangleright \rho\left(\gamma_{1}\left(t_{1} t_{2}\right)\right) \longrightarrow \longrightarrow^{i_{1}} \Xi_{11} \triangleright v_{11}\left(\rho\left(\gamma_{1}\left(t_{2}\right)\right)\right) \longrightarrow{ }^{i-i_{1}} \text { error }
$$

Hence, by inspection of the operational semantics, it follows that there exist $i_{2}<i-i_{1}, \Xi_{22}$ and v_{22} such that:

$$
\Xi_{11} \triangleright \rho\left(\gamma_{1}\left(t_{2}\right)\right) \longrightarrow{ }^{i_{2}} \Xi_{22} \triangleright v_{22} \vee \Xi_{11} \triangleright \rho\left(\gamma_{1}\left(t_{2}\right)\right) \longrightarrow{ }^{i_{2}} \text { error }
$$

We instantiate the hypothesis $\Xi ; \Delta ; \Gamma \vdash t_{2} \leq t_{2}^{\prime}: G_{11}$ with $\left(W_{1}\right), \rho$ and γ, then we obtain that:

$$
\left(W_{1}, \rho\left(\gamma_{1}\left(t_{2}\right)\right), \rho\left(\gamma_{2}\left(t_{2}^{\prime}\right)\right)\right) \in \mathcal{T}_{\rho} \llbracket G_{11} \rrbracket
$$

If $\Xi_{11} \triangleright \rho\left(\gamma_{1}\left(t_{2}\right)\right) \longrightarrow{ }^{i_{2}}$ error then we instantiate with Ξ_{22} and $\Xi_{22} \triangleright \rho\left(\gamma_{2}\left(t_{2}^{\prime}\right)\right) \longrightarrow^{*}$ error and the result holds immediately. Let us assume that the reduction does not fail. We instantiate this with i_{2} (note that $i_{2}<i-i_{1}<W_{1} \cdot j=W \cdot j-i_{1}$), Ξ_{22} and v_{22}, hence there exists v_{22}^{\prime} and W_{2}, such that $W_{2} \cdot \Xi_{1}=\Xi_{22}, W_{2} \geq W_{1}$, or what is the same, $W_{2} \geq W_{1}, W_{2} . j=W_{1} \cdot j-i_{2}\left(W_{2} \cdot j+i_{2}+i_{1}=W \cdot j\right)$ and

$$
W_{1} \cdot \Xi_{2} \triangleright \rho\left(\gamma_{2}\left(t_{2}^{\prime}\right)\right) \longrightarrow{ }^{*} W_{2} \Xi_{2} \triangleright v_{22}^{\prime}
$$

and $\left(W_{2}, v_{22}, v_{22}^{\prime}\right) \in \mathcal{V}_{\rho} \llbracket G_{11} \rrbracket$.
Note that:

$$
W . \Xi_{1} \triangleright \rho\left(\gamma_{1}\left(t_{1} t_{2}\right)\right) \longrightarrow^{i_{1}} \Xi_{11} \triangleright v_{11}\left(\rho\left(\gamma_{1}\left(t_{2}\right)\right)\right) \longrightarrow^{i_{2}} \Xi_{22} \triangleright v_{11} v_{22} \longrightarrow^{i-i_{1}-i_{2}} \Xi_{1} \triangleright v_{1}
$$

Since $\left(W_{1}, v_{11}, v_{11}^{\prime}\right) \in \mathcal{V}_{\rho} \llbracket G_{11} \rightarrow G_{12} \rrbracket$, we instantiate this with $W_{2}, \rho\left(G_{11} \rightarrow G_{12}\right), v_{22}$ and v_{22}^{\prime} (note that $\left(W_{2}, v_{22}, v_{22}^{\prime}\right) \in \mathcal{V}_{\rho} \llbracket G_{11} \rrbracket,\left(\downarrow_{1} W_{2}, v_{22}, v_{22}^{\prime}\right) \in \mathcal{V}_{\rho} \llbracket G_{11} \rrbracket$ and $\left.W_{2} \geq W_{1}\right)$. Then $\left(W_{2}, v_{11} v_{22}, v_{11}^{\prime} v_{22}^{\prime}\right) \in$ $\mathcal{T}_{\rho} \llbracket G_{2} \rrbracket$.

Since $\left(W_{2}, v_{11} v_{22}, v_{11}^{\prime} v_{22}^{\prime}\right) \in \mathcal{T}_{\rho} \llbracket G_{2} \rrbracket$, we instantiate this with $i-i_{1}-i_{2}$ (note that $i-i_{1}-i_{2}<$ $W_{2} . j=W . j-i_{1}-i_{2}$ since $\left.i<W . j\right), v_{1}$ and Ξ_{1}.

If $W_{2} \cdot \Xi_{1} \triangleright v_{11} v_{22} \longrightarrow{ }^{i-i_{1}-i_{2}}$ error then $W_{2} \cdot \Xi_{2} \triangleright v_{11}^{\prime} v_{22}^{\prime} \longrightarrow{ }^{*}$ error and the result holds. Let us assume that the reduction does not fail. Hence there exists v_{2} and W^{\prime}, such that $W^{\prime} \geq W_{2}$ (note that $\left.W^{\prime} \geq W\right), W^{\prime} . j=W_{2} . j-\left(i-i_{1}-i_{2}\right)=W . j-i, W_{2} \cdot \Xi_{2} \triangleright v_{11}^{\prime} v_{22}^{\prime} \longrightarrow{ }^{*} W^{\prime} \cdot \Xi_{2} \triangleright v_{2}, W^{\prime} . \Xi_{1}=\Xi_{1}$ and $\left(W^{\prime}, v_{1}, v_{2}\right) \in \mathcal{V}_{\rho} \llbracket G_{12} \rrbracket$, then the proof is complete.

Lemma 10.3 (Compatibility-EappG). If $\Xi ; \Delta ; \Gamma \vdash t_{1} \leq t_{2}: \forall X . G$ and $\Xi ; \Delta \vdash G^{\prime}$, then $\Xi ; \Delta ; \Gamma \vdash t_{1}\left[G^{\prime}\right] \leq t_{2}\left[G^{\prime}\right]: G\left[G^{\prime} / X\right]$.

Proof. First we are required to prove that $\Xi ; \Delta ; \Gamma \vdash t_{i}\left[G^{\prime}\right]: G\left[G^{\prime} / X\right]$, but by $\Xi ; \Delta ; \Gamma \vdash t_{1} \leq t_{2}$: $\forall X . G$ we already know that $\Xi ; \Delta ; \Gamma \vdash t_{i}: \forall X . G$, therefore:

$$
(\text { EappG }) \frac{\Xi ; \Delta ; \Gamma \vdash t_{i}: \forall X . G \quad \Xi ; \Delta \vdash G^{\prime}}{\Xi ; \Delta ; \Gamma \vdash t_{i}\left[G^{\prime}\right]: G\left[G^{\prime} / X\right]}
$$

Consider arbitrary W, ρ, γ such that $W \in \mathcal{S} \llbracket \Xi \rrbracket,(W, \rho) \in \mathcal{D} \llbracket \Delta \rrbracket$ and $(W, \gamma) \in \mathcal{G}_{\rho} \llbracket \Gamma \rrbracket$. We are required to show that:

$$
\left(W, \rho\left(\gamma_{1}\left(t_{1}\left[G^{\prime}\right]\right)\right), \rho\left(\gamma_{2}\left(t_{2}\left[G^{\prime}\right]\right)\right)\right) \in \mathcal{T}_{\rho} \llbracket G\left[G^{\prime} / X\right] \rrbracket
$$

But by definition of substitutions $\rho\left(\gamma_{i}\left(t_{i}\left[G^{\prime}\right]\right)\right)=\rho\left(\gamma_{i}\left(t_{i}\right)\right)\left[\rho\left(G^{\prime}\right)\right]$, therefore we have to prove that:

$$
\left(W, \rho\left(\gamma_{1}\left(t_{1}\right)\right)\left[\rho\left(G^{\prime}\right)\right], \rho\left(\gamma_{2}\left(t_{2}\right)\right)\left[\rho\left(G^{\prime}\right)\right]\right) \in \mathcal{T}_{\rho} \llbracket G\left[G^{\prime} / X\right] \rrbracket
$$

First we have to prove that:

$$
W \cdot \Xi_{i} \vdash \rho\left(\gamma_{i}\left(t_{i}\right)\right)\left[\rho\left(G^{\prime}\right)\right]: \rho(G)\left[\rho\left(G^{\prime}\right) / X\right]
$$

As we know that $\Xi ; \Delta ; \Gamma \vdash t_{i}\left[G^{\prime}\right]: G\left[G^{\prime} / X\right]$, by Lemma 6.25 the result follows immediately. Second, consider arbitrary $i<W . j$ and Ξ_{1}. Either there exist v_{1} such that $W . \Xi_{1} \triangleright \rho\left(\gamma_{1}\left(t_{1}\right)\right)\left[\rho\left(G^{\prime}\right)\right] \longmapsto{ }^{i} \Xi_{1} \triangleright v_{1}$ or $W \cdot \Xi_{1} \triangleright \rho\left(\gamma_{1}\left(t_{1}\right)\right)\left[\rho\left(G^{\prime}\right)\right] \longmapsto{ }^{i} \Xi_{1} \triangleright$ error. First, let us suppose that:

$$
W . \Xi_{1} \triangleright \rho\left(\gamma_{1}\left(t_{1}\right)\right)\left[\rho\left(G^{\prime}\right)\right] \longmapsto{ }^{i} \Xi_{1} \triangleright v_{1}
$$

Hence, by inspection of the operational semantics, it follows that there exist $i_{1}<i$, and v_{11} such that

$$
W \cdot \Xi_{1} \triangleright \rho\left(\gamma_{1}\left(t_{1}\right)\right)\left[\rho\left(G^{\prime}\right)\right] \longmapsto{ }^{i_{1}} \Xi_{11} \triangleright v_{11}\left[\rho\left(G^{\prime}\right)\right]
$$

We instantiate the premise $\Xi ; \Delta ; \Gamma \vdash t_{1} \leq t_{2}: \forall X . G$ with W, ρ and γ to obtain that:

$$
\left(W, \rho\left(\gamma_{1}\left(t_{1}\right)\right), \rho\left(\gamma_{2}\left(t_{2}\right)\right)\right) \in \mathcal{T}_{\rho} \llbracket \forall X . G \rrbracket
$$

We instantiate $\mathcal{T}_{\rho} \llbracket \forall X . G \rrbracket$ with i_{1}, Ξ_{11} and v_{11} (note that $i_{1}<i<W \cdot j$), hence there exists v_{12} and W_{1}, such that $W_{1} \geq W, W_{1} . j=W . j-i_{1}, W \cdot \Xi_{2} \triangleright \rho\left(\gamma_{2}\left(t_{2}\right)\right) \longmapsto{ }^{*} W_{1} \cdot \Xi_{2} \triangleright v_{12}, W_{1} \cdot \Xi_{1}=\Xi_{11}, v_{12}$ and:

$$
\left(W_{1}, v_{11}, v_{12}\right) \in \mathcal{V}_{\rho} \llbracket \forall X . G \rrbracket
$$

Then by inspection of the operational semantics:

$$
\begin{aligned}
W \cdot \Xi_{i} \triangleright \rho\left(\gamma_{i}\left(t_{i}\right)\right)\left[\rho\left(G^{\prime}\right)\right] & \longmapsto{ }^{*} W_{1} \cdot \Xi_{i} \triangleright v_{1 i}\left[\rho\left(G^{\prime}\right)\right] \\
& \longmapsto W_{1} \cdot \Xi_{i}, \alpha:=\rho\left(G^{\prime}\right) \triangleright \varepsilon_{i}\left(\varepsilon_{i}^{\prime} t_{i}^{\prime}:: \rho(G)[\alpha / X]\right):: \rho(G)\left[\rho\left(G^{\prime}\right) / X\right]
\end{aligned}
$$

for some $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{1}^{\prime}, \varepsilon_{2}^{\prime}, t_{i}^{\prime}$ and $\alpha \notin \operatorname{dom}\left(W_{1} \cdot \Xi_{i}\right)$. Let us call $t_{i}^{\prime \prime}=\left(\varepsilon_{i}^{\prime} t_{i}^{\prime}:: \rho(G)[\alpha / X]\right)$. We instantiate $\mathcal{V}_{\rho} \llbracket \forall X . G \rrbracket$ with $\alpha, t_{i}^{\prime \prime}, \rho\left(G^{\prime}\right), R=\mathcal{V}_{\rho} \llbracket G^{\prime} \rrbracket, \varepsilon_{1}, \varepsilon_{2}$ and W_{1}.

Then $\left(W_{1}^{\prime}, t_{1}^{\prime \prime}, t_{2}^{\prime \prime}\right) \in \mathcal{T}_{\rho[X \mapsto \alpha]} \llbracket G \rrbracket$, where $W_{1}^{\prime}=\left(\downarrow W_{1}\right) \boxtimes\left(\alpha, \rho\left(G^{\prime}\right), \rho\left(G^{\prime}\right), \mathcal{V}_{\rho} \llbracket G^{\prime} \rrbracket\right)$.
We instantiate $\mathcal{T}_{\rho[X \mapsto \alpha]} \llbracket G \rrbracket$ with $i_{2}, \Xi_{1}, v_{1}^{\prime}$, such that

$$
W_{1} \cdot \Xi_{1} \triangleright\left(\varepsilon_{1}^{\prime} t_{1}^{\prime}:: \rho(G)[\alpha / X]\right) \longmapsto{ }^{i_{2}} \Xi_{1} \triangleright v_{1}^{\prime}
$$

Note that $i_{2}<W_{1}^{\prime} \cdot j=W . j-i_{1}-1$, since $i<W . j$. Therefore there must exist v_{2}^{\prime}, and W^{\prime} such that $W^{\prime} \geq W_{1}^{\prime}$ (note that $W^{\prime} \geq W$), $W^{\prime} . j+i_{1}+1+i_{2}=W . j-i$,

$$
W_{1} \cdot \Xi_{2} \triangleright\left(\varepsilon_{2}^{\prime} t_{2}^{\prime}:: \rho(G)[\alpha / X]\right) \longmapsto{ }^{*} W^{\prime} . \Xi_{2} \triangleright\left(\varepsilon_{2}^{\prime} v_{2}^{\prime \prime}:: \rho(G)[\alpha / X]\right) \longmapsto W^{\prime} . \Xi_{2} \triangleright v_{2}^{\prime}
$$

$W^{\prime} . \Xi_{1}=\Xi_{1}$ and $\left(W^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}\right) \in \mathcal{V}_{\rho[X \mapsto \alpha]} \llbracket G \rrbracket$.
Notice that t_{i} reduce to a type abstraction of the form $v_{1 i}=\left\langle\forall X . E_{i 1}, \forall X . E_{i 2}\right\rangle \Lambda X . t_{i}^{\prime \prime \prime}:: \forall X . \rho(G)$. Let us call $\left.v_{i}^{\prime}=\varepsilon_{i}^{\prime \prime \prime} u_{i}^{\prime \prime \prime}:: \rho(G)[\alpha / X]\right)$, as $\pi_{2}\left(\varepsilon_{1}^{\prime \prime \prime}\right) \equiv \pi_{2}\left(\varepsilon_{2}^{\prime \prime \prime}\right)$, then $G_{p}=\operatorname{unlift}\left(\pi_{2}\left(\varepsilon_{i}^{\prime \prime \prime}\right)\right)$, then $E_{i}=$
$\operatorname{lift}_{W_{2} . \Xi_{i}}\left(G_{p}\right)$, and $E_{i}^{\prime}=\operatorname{lift}_{W_{1} . \Xi_{i}}\left(\rho\left(G^{\prime}\right)\right)$, and $\varepsilon_{i}=\left\langle E_{i}\left[\alpha^{E_{i}^{\prime}} / X\right], E_{i}\left[E_{i}^{\prime} / X\right]\right\rangle$. Then as $\left(W^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}\right) \in$ $\mathcal{V}_{\rho[X \mapsto \alpha]} \llbracket G \rrbracket$ by Lemma 6.15,

$$
\left(\downarrow_{k} W^{\prime},\left(\varepsilon_{1}^{\prime \prime \prime} \circ \varepsilon_{1}\right) u_{1}^{\prime \prime \prime}:: \rho(G)\left[\rho\left(G^{\prime}\right) / X\right],\left(\varepsilon_{2}^{\prime \prime \prime} ; \varepsilon_{2}\right) u_{2}^{\prime \prime \prime}:: \rho(G)\left[\rho\left(G^{\prime}\right) / X\right]\right) \in \mathcal{V}_{\rho} \llbracket G\left[G^{\prime} / X\right] \rrbracket
$$

where $\varepsilon_{1} \cdot n=k$. Let us call $v_{i}=\left(\varepsilon_{i}^{\prime \prime \prime} \circ \varepsilon_{i}\right) u_{1}^{\prime \prime \prime}:: \rho(G)\left[\rho\left(G^{\prime}\right) / X\right]$. Where the lemma holds by instantiating $\mathcal{T}_{\rho} \llbracket G\left[G^{\prime} / X\right] \rrbracket$ with $\Xi_{1}, v_{1}, i=k$ and therefore $W^{\prime} . \Xi_{1} \triangleright \varepsilon_{1} v_{1}^{\prime}:: \rho(G)\left[\rho\left(G^{\prime}\right) / X\right] \longmapsto{ }^{k}$ $W^{\prime} . \Xi_{1} \triangleright v_{1}$. Then there must exists some v_{2} such that $W^{\prime} . \Xi_{2} \triangleright \varepsilon_{2} v_{2}^{\prime}:: \rho(G)\left[\rho\left(G^{\prime}\right) / X\right] \longmapsto W^{\prime} . \Xi_{2} \triangleright v_{2}$, and the result follows.

Proposition 6.11 (Compatibility-Epair1). If $\Xi ; \Delta ; \Gamma \vdash t_{1} \leq t_{2}: G_{1} \times G_{2}$ then $\Xi ; \Delta ; \Gamma \vdash$ $\pi_{1}\left(t_{1}\right) \leq \pi_{1}\left(t_{2}\right): G_{1}$.

Proof. Similar to the function application case, using the definition of related pairs instead.
Proposition 6.12 (Compatibility-Epair2). If $\Xi ; \Delta ; \Gamma \vdash t_{1} \leq t_{2}: G_{1} \times G_{2}$ then $\Xi ; \Delta ; \Gamma \vdash$ $\pi_{2}\left(t_{1}\right) \leq \pi_{2}\left(t_{2}\right): G_{2}$.

Proof. Similar to the function application case, using the definition of related pairs instead.
Lemma 6.13. Let $E_{i}=\operatorname{lift}_{\Xi_{i}}\left(G_{p}\right)$ for some $G_{p} \sqsubseteq G,\left\langle E_{i 1}, E_{i 2}\right\rangle \Vdash \Xi_{i} \vdash G_{u} \sim G$, and $E_{12} \equiv E_{22}$, then $\left\langle E_{11}, E_{12}\right\rangle \circ \stackrel{\left.E_{1}, E_{1}\right\rangle \Longleftrightarrow\left\langle E_{21}, E_{22}\right\rangle \circ\left\langle E_{2}, E_{2}\right\rangle ~}{\text {. }}$

Proof. Note that by definition $E_{1} \equiv E_{2}$. Also, $\forall \alpha^{E} \in F T N\left(E_{i}\right), E=\operatorname{lift}_{\Xi_{i}}\left(\Xi_{i}(\alpha)\right)$. Then we prove the \Rightarrow direction (the other is analogous), by induction on the structure of the evidences $\left\langle E_{i 1}, E_{i 2}\right\rangle$. We skip cases where $E_{i}=$? or $E_{i 1}=$?, as the result is trivial (combination never fails).

Case $\left(\left\langle E_{11}, E_{12}\right\rangle=\left\langle E_{11}, \alpha^{E_{12}^{\prime}}\right\rangle\right)$. Then $\left\langle E_{21}, E_{22}\right\rangle=\left\langle E_{21}, \alpha^{E_{22}^{\prime}}\right\rangle$, and $E_{i}=\left\langle\alpha^{E_{i}^{\prime}}, \alpha^{E_{i}^{\prime}}\right\rangle$, where $E_{i}^{\prime}=$ lift $\Xi_{\Xi_{i}}\left(\Xi_{i}(\alpha)\right)$, and therefore $E_{i 2}^{\prime} \sqsubseteq E_{i}^{\prime}$. And then by Lemma 6.30, the result holds immediately as both combinations are defined.

Case $\left(\left\langle E_{11}, E_{12}\right\rangle=\left\langle E_{11}, B\right\rangle\right)$. Then $\left\langle E_{21}, E_{22}\right\rangle=\left\langle E_{12}, B\right\rangle$, and $\left\langle E_{i}, E_{i}\right\rangle=\langle B, B\rangle$, and the result trivially holds.
Case $\left(\left\langle E_{11}, E_{12}\right\rangle=\left\langle\alpha^{E_{11}^{\prime}}, E_{12}\right\rangle\right)$. The result holds by de inspection of consistent transitivity rule (sealR) and induction on evidence $\left\langle E_{i 1}^{\prime}, E_{i 2}\right\rangle$.
Case $\left(\left\langle E_{11}, E_{12}\right\rangle=\left\langle E_{111} \rightarrow E_{112}, E_{121} \rightarrow E_{122}\right\rangle\right)$. Then $\left\langle E_{11}, E_{12}\right\rangle=\left\langle E_{111} \rightarrow E_{112}, E_{121} \rightarrow E_{122}\right\rangle$, and $\left\langle E_{i}, E_{i}\right\rangle=\left\langle E_{i 1}^{\prime} \rightarrow E_{i 2}^{\prime}, E_{i 1}^{\prime} \rightarrow E_{i 2}^{\prime}\right\rangle$. As consistent transitivity is a symmetric relation, then the result holds by induction hypothesis on combinations of evidence $\left\langle E_{i 11} \rightarrow E_{i 12}\right\rangle \stackrel{\circ}{9}\left\langle E_{i 1}^{\prime}, E_{i 1}^{\prime}\right\rangle$ and $\left\langle E_{i 21} \rightarrow E_{i 22}\right\rangle \stackrel{ }{9}\left\langle E_{i 2}^{\prime}, E_{i 2}^{\prime}\right\rangle$.

For the other cases we proceed analogous to the function case.
Proposition 6.14. If $\left(W, v_{1}, v_{2}\right) \in \mathcal{V}_{\rho} \llbracket G \rrbracket$ and $W^{\prime} \geq W$ then $\left(W, v_{1}, v_{2}\right) \in \mathcal{V}_{\rho} \llbracket G \rrbracket$.
Proposition 6.15 (Compositionality). If

- $W . \Xi_{i}(\alpha)=\rho\left(G^{\prime}\right)$ and $W . \kappa(\alpha)=\mathcal{V}_{\rho} \llbracket G^{\prime} \rrbracket$,
- $E_{i}^{\prime}=$ lift $_{W . \Xi_{i}}\left(\rho\left(G^{\prime}\right)\right)$,
- $E_{i}=$ lift $_{W . \Xi_{i}}\left(G_{p}\right)$ for some $G_{p} \sqsubseteq \rho(G)$,
- $\rho^{\prime}=\rho[X \mapsto \alpha]$,
- $\varepsilon_{i}=\left\langle E_{i}\left[\alpha^{E_{i}^{\prime}} / X\right], E_{i}\left[E_{i}^{\prime} / X\right]\right\rangle$, such that $\varepsilon_{i} \vdash W \cdot \Xi_{i} \vdash \rho(G[\alpha / X]) \sim \rho\left(G\left[G^{\prime} / X\right]\right)$, and
- $\varepsilon_{i}^{-1}=\left\langle E_{i}\left[E_{i}^{\prime} / X\right], E_{i}\left[\alpha^{E_{i}^{\prime}} / X\right]\right\rangle$, such that $\varepsilon_{i}^{-1} \vdash W \cdot \Xi_{i} \vdash \rho\left(G\left[G^{\prime} / X\right]\right) \sim \rho(G[\alpha / X])$, then

$$
\begin{align*}
& \left(W, \varepsilon_{1}^{\prime} u_{1}:: \rho^{\prime}(G), \varepsilon_{2}^{\prime} u_{2}:: \rho^{\prime}(G)\right) \in \mathcal{V}_{\rho^{\prime}} \llbracket G \rrbracket \Rightarrow \tag{1}\\
& \quad\left(W, \varepsilon_{1}\left(\varepsilon_{1}^{\prime} u_{1}:: \rho(G)\right):: \rho\left(G\left[G^{\prime} / X\right]\right), \varepsilon_{2}\left(\varepsilon_{2}^{\prime} u_{2}:: \rho(G)\right):: \rho\left(G\left[G^{\prime} / X\right]\right)\right) \in \mathcal{T}_{\rho} \llbracket G\left[G^{\prime} / X\right] \rrbracket \tag{2}
\end{align*}
$$

$\left(W, \varepsilon_{1}^{\prime} u_{1}:: \rho\left(G\left[G^{\prime} / X\right]\right), \varepsilon_{2}^{\prime} u_{2}:: \rho\left(G\left[G^{\prime} / X\right]\right)\right) \in \mathcal{V}_{\rho} \llbracket G\left[G^{\prime} / X\right] \rrbracket \Rightarrow$

$$
\left(W, \varepsilon_{1}^{-1}\left(\varepsilon_{1}^{\prime} u_{1}:: \rho\left(G\left[G^{\prime} / X\right]\right)\right):: \rho^{\prime}(G), \varepsilon_{2}^{-1}\left(\varepsilon_{2}^{\prime} u_{2}:: \rho\left(G\left[G^{\prime} / X\right]\right)\right):: \rho^{\prime}(G)\right) \in \mathcal{T}_{\rho^{\prime}} \llbracket G \rrbracket
$$

Proof. We proceed by induction on G. Let suppose that $\varepsilon_{1} \cdot n=k, \varepsilon_{1}^{-1} \cdot n=l$ and $\varepsilon_{1}^{\prime} \cdot n=m$. Let $v_{i}=\varepsilon_{i}^{\prime} u_{i}:: \rho^{\prime}(G)$. We prove (1) first.
Case (Type Variable X: $G=X$). Let $v_{i}=\left\langle H_{i 1}, \alpha^{E_{i 2}}\right\rangle u_{i}:: \alpha$. Then we know that

$$
\left(W,\left\langle H_{11}, \alpha^{E_{12}}\right\rangle u_{1}:: \alpha,\left\langle H_{21}, \alpha^{E_{22}}\right\rangle u_{2}:: \alpha\right) \in \mathcal{V}_{\rho[X \mapsto \alpha]} \llbracket X \rrbracket
$$

which is equivalent to

$$
\left(W,\left\langle H_{11}, \alpha^{E_{12}}\right\rangle u_{1}:: \alpha,\left\langle H_{21}, \alpha^{E_{22}}\right\rangle u_{2}:: \alpha\right) \in \mathcal{V}_{\rho[X \mapsto \alpha]} \llbracket \alpha \rrbracket
$$

As $W \cdot \Xi_{i}(\alpha)=\rho\left(G^{\prime}\right)$ and $W \cdot \kappa(\alpha)=\mathcal{V}_{\rho} \llbracket G^{\prime} \rrbracket$, we know that:

$$
\left(\downarrow_{1} W,\left\langle H_{11}, E_{12}\right\rangle u_{1}:: \rho\left(G^{\prime}\right),\left\langle H_{21}, E_{22}\right\rangle u_{2}:: \rho\left(G^{\prime}\right)\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime} \rrbracket
$$

Then $\varepsilon_{i} \vdash W . \Xi_{i} \vdash \alpha \sim \rho\left(G^{\prime}\right)$, and ε_{i} has to have the form $\varepsilon_{i}=\left\langle\alpha^{E_{i}^{\prime}}, E_{i}^{\prime}\right\rangle$. As $E_{i}^{\prime}=\operatorname{lift}_{W . \Xi_{i}}\left(\rho\left(G^{\prime}\right)\right)$ (initial evidence for α), then $E_{i 2} \sqsubseteq E_{i}^{\prime}$, and therefore by Lemma 6.30: $\left\langle H_{i 1}, \alpha^{E_{i 2}}\right\rangle \stackrel{\circ}{\circ}\left\langle\alpha^{E_{i}^{\prime}}, E_{i}^{\prime}\right\rangle=\left\langle H_{i 1}, E_{i 2}\right\rangle$, and then we have to prove that

$$
\left(\downarrow_{k} W,\left\langle H_{11}, E_{12}\right\rangle u_{1}:: \rho\left(G^{\prime}\right),\left\langle H_{21}, E_{22}\right\rangle u_{2}:: \rho\left(G^{\prime}\right)\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime} \rrbracket
$$

which follow by Lemma 6.14 and the fact that $k>0$.
Case (Type Variable Y: $G=Y$). Let $v_{i}=\left\langle H_{i 1}, \beta^{E_{i 2}}\right\rangle u_{i}:: \beta$, where $\rho^{\prime}(Y)=\beta$. Then we know that

$$
\left(W,\left\langle H_{11}, \beta^{E_{12}}\right\rangle u_{1}:: \beta,\left\langle H_{21}, \beta^{E_{22}}\right\rangle u_{2}:: \beta\right) \in \mathcal{V}_{\rho[X \mapsto \alpha]} \llbracket Y \rrbracket
$$

which is equivalent to

$$
\left(W,\left\langle H_{11}, \beta^{E_{12}}\right\rangle u_{1}:: \beta,\left\langle H_{21}, \beta^{E_{22}}\right\rangle u_{2}:: \beta\right) \in \mathcal{V}_{\rho[X \mapsto \alpha]} \llbracket \beta \rrbracket
$$

Then $\varepsilon_{i} \vdash W \cdot \Xi_{i} \vdash \beta \sim \beta$, and ε_{i} has to have the form $\varepsilon_{i}=\left\langle\beta^{E_{i}^{\prime}}, \beta^{E_{i}^{\prime}}\right\rangle$, and $\beta^{E_{i}^{\prime}}=$ lift $_{W \cdot \Xi_{i}}(\beta)$. By Lemma 6.13, we assume that both combinations of evidence are defined (otherwise the result holds immediately). Therefore, by Lemma 6.30, we know that

$$
\left.\left\langle H_{i 1}, \beta^{E_{i 2}}\right\rangle \circ \stackrel{\circ}{\circ} \beta^{E_{i}^{\prime}}, \beta^{E_{i}^{\prime}}\right\rangle=\left\langle H_{i 1}, \beta^{E_{i 2}}\right\rangle
$$

Then we have to prove that

$$
\left(\downarrow_{k} W,\left\langle H_{11}, \beta^{E_{12}}\right\rangle u_{1}:: \beta,\left\langle H_{21}, \beta^{E_{22}}\right\rangle u_{2}:: \beta\right) \in \mathcal{V}_{\rho} \llbracket \beta \rrbracket
$$

which follows Lemma 6.14.
Case (Unknown Type: $G=$?). Let $v_{i}=\left\langle H_{i 1}, E_{i 2}\right\rangle u_{i}::$?. Then by definition of $\mathcal{V}_{\rho} \llbracket$? \rrbracket, let $G^{\prime \prime}=$ $\operatorname{const}\left(E_{i 2}\right)$ (where $G^{\prime \prime} \neq$?). Then we know

$$
\left(W,\left\langle H_{11}, E_{12}\right\rangle u_{1}:: G^{\prime \prime},\left\langle H_{21}, E_{22}\right\rangle u_{2}:: G^{\prime \prime}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime \prime} \rrbracket
$$

We are required to prove that:

$$
\left(W, \varepsilon_{1}\left(\left\langle H_{11}, E_{12}\right\rangle u_{1}:: ~ ?\right):: ~ ?, \varepsilon_{2}\left(\left\langle H_{21}, E_{22}\right\rangle u_{2}:: ~ ?\right):: ~ ?\right) \in \mathcal{T}_{\rho} \llbracket ? \rrbracket
$$

If $\varepsilon_{i}=\langle ?$, ? \rangle, then, $\left\langle H_{i 1}, E_{i 2}\right\rangle \stackrel{\circ}{\circ}\langle ?, ?\rangle=\left\langle H_{i 1}, E_{i 2}\right\rangle$, by Lemma 6.30 , the result holds immediately. If $\varepsilon_{i} \neq\langle$?, ? \rangle. Then we proceed similar to the other cases where $G \neq$?. Note that we know that

$$
\left(W,\left\langle H_{11}, E_{12}\right\rangle u_{1}:: G^{\prime \prime},\left\langle H_{21}, E_{22}\right\rangle u_{2}:: G^{\prime \prime}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime \prime} \rrbracket
$$

where $G^{\prime \prime} \neq$? and we are required to prove that

$$
\left(W, \varepsilon_{1}\left(\left\langle H_{11}, E_{12}\right\rangle u_{1}:: G^{\prime \prime}\right):: G^{\prime \prime}, \varepsilon_{2}\left(\left\langle H_{21}, E_{22}\right\rangle u_{2}:: G^{\prime \prime}\right)\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime \prime} \rrbracket
$$

Case (Function Type: $G=G_{1} \rightarrow G_{2}$). We know that

$$
\left(W, v_{1}, v_{2}\right) \in \mathcal{V}_{\rho^{\prime}} \llbracket G_{1} \rightarrow G_{2} \rrbracket
$$

Then we have to prove that

$$
\begin{aligned}
& \left(\downarrow_{k} W,\left(\varepsilon_{1}^{\prime} ; \varepsilon_{1}\right)\left(\lambda x: G_{1}^{\prime} \cdot t_{1}\right):: \rho\left(G_{1}\left[G^{\prime} / X\right]\right) \rightarrow \rho\left(G_{2}\left[G^{\prime} / X\right]\right),\right. \\
& \left.\quad\left(\varepsilon_{2}^{\prime} ; \varepsilon_{2}\right)\left(\lambda x: G_{2}^{\prime} \cdot t_{2}\right):: \rho\left(G_{1}\left[G^{\prime} / X\right]\right) \rightarrow \rho\left(G_{2}\left[G^{\prime} / X\right]\right)\right) \in \mathcal{V}_{\rho} \llbracket G_{1}\left[G^{\prime} / X\right] \rightarrow G_{2}\left[G^{\prime} / X\right] \rrbracket
\end{aligned}
$$

Let us call $v_{i}^{\prime \prime}=\left(\varepsilon_{i}^{\prime} \circ \varepsilon_{i}\right)\left(\lambda x: G_{i}^{\prime} . t_{i}\right):: \rho^{\prime}\left(G_{1}\right) \rightarrow \rho^{\prime}\left(G_{2}\right)$. By unfolding, we have to prove that

$$
\forall W^{\prime} \geq\left(\downarrow_{k} W\right) \cdot \forall v_{1}^{\prime}, v_{2}^{\prime} \cdot\left(\downarrow_{1} W^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}\right) \in \mathcal{V}_{\rho} \llbracket G_{1}\left[G^{\prime} / X\right] \rrbracket \Rightarrow\left(W^{\prime}, v_{1}^{\prime \prime} v_{1}^{\prime}, v_{2}^{\prime \prime} v_{2}^{\prime}\right) \in \mathcal{T}_{\rho} \llbracket G_{2}\left[G^{\prime} / X\right] \rrbracket
$$

Suppose that $v_{i}^{\prime}=\varepsilon_{i}^{\prime \prime} u_{i}^{\prime}:: \rho\left(G_{1}\left[G^{\prime} / X\right]\right)$, by inspection of the reduction rules, we know that

This is equivalent by Lemma 6.18,
$\left.\left.W^{\prime} . \Xi_{i} \triangleright v_{i}^{\prime \prime} v_{i}^{\prime} \longmapsto{ }^{*} W^{\prime} . \Xi_{i} \triangleright\left(\operatorname{cod}\left(\varepsilon_{i}^{\prime}\right) ; \operatorname{cod}\left(\varepsilon_{i}\right)\right) t_{i}\left[\left(\left(\varepsilon_{i}^{\prime \prime} ; \operatorname{dom}\left(\varepsilon_{i}\right)\right) ; \quad \operatorname{dom}\left(\varepsilon_{i}^{\prime}\right)\right) u_{i}^{\prime}:: G_{i}^{\prime}\right) / x\right]:: \rho\left(G_{2}\left[G^{\prime} / X\right]\right)\right)$
Therefore, we know that

$$
\begin{gathered}
W^{\prime} . \Xi_{1} \triangleright v_{1}^{\prime \prime} v_{1}^{\prime} \longmapsto{ }^{m+k+1} \\
\left.\left.W^{\prime} . \Xi_{1} \triangleright\left(\operatorname{cod}\left(\varepsilon_{1}^{\prime}\right) ; \operatorname{cod}\left(\varepsilon_{1}\right)\right) t_{1}\left[\left(\varepsilon_{1}^{\prime \prime} ;\left(\operatorname{dom}\left(\varepsilon_{1}\right) ; \operatorname{dom}\left(\varepsilon_{i}^{\prime}\right)\right)\right) u_{1}^{\prime}:: G_{i}^{\prime}\right) / x\right]:: \rho\left(G_{2}\left[G^{\prime} / X\right]\right)\right) \longmapsto \longmapsto^{k^{*}} \\
\left.\Xi_{1} \triangleright\left(\operatorname{cod}\left(\varepsilon_{1}^{\prime}\right) ; \operatorname{cod}\left(\varepsilon_{1}\right)\right) v_{1 f}:: \rho\left(G_{2}\left[G^{\prime} / X\right]\right)\right) \longmapsto \longmapsto^{m+k} \\
\Xi_{1} \triangleright v_{1}^{*}
\end{gathered}
$$

where $v_{1 f}=\varepsilon_{1 f} u_{1 f}:: \rho^{\prime}\left(G_{2}\right)$ and $v_{1}^{*}=\varepsilon_{1 f} \circ\left(\operatorname{cod}\left(\varepsilon_{1}^{\prime}\right) ; \operatorname{cod}\left(\varepsilon_{1}\right)\right) u_{1 f}:: \rho\left(G_{2}\left[G^{\prime} / X\right]\right)$.
Notice that $\operatorname{dom}\left(\varepsilon_{i}\right) \vdash W \cdot \Xi_{i} \vdash \rho\left(G_{1}\left[G^{\prime} / X\right]\right) \sim \rho\left(G_{1}[\alpha / X]\right)$, by Lemma 6.13, we assume that both combinations of evidence are defined (otherwise the result holds immediately), then let us assume that $\left(\varepsilon_{i}^{\prime \prime} \circ \operatorname{dom}\left(\varepsilon_{i}\right)\right)$ is defined. We can use induction hypothesis on v_{i}^{\prime}, with evidences $\operatorname{dom}\left(\varepsilon_{i}\right)$. Then we know that $\left(\downarrow_{k+1} W^{\prime},\left(\varepsilon_{1}^{\prime \prime} ; \operatorname{dom}\left(\varepsilon_{1}\right)\right) u_{1}^{\prime}:: \rho^{\prime}\left(G_{1}\right),\left(\varepsilon_{2}^{\prime \prime} \circ \operatorname{dom}\left(\varepsilon_{2}\right)\right) u_{2}^{\prime}:: \rho^{\prime}\left(G_{1}\right)\right) \in \mathcal{V}_{\rho^{\prime}} \llbracket G_{1} \rrbracket$. Let us call $v_{i}^{\prime \prime \prime}=\left(\varepsilon_{i}^{\prime \prime}\right.$; $\left.\operatorname{dom}\left(\varepsilon_{i}\right)\right) u_{i}^{\prime}:: \rho^{\prime}\left(G_{1}\right)$.

Now we instantiate

$$
\left(W, v_{1}, v_{2}\right) \in \mathcal{V}_{\rho^{\prime}} \llbracket G_{1} \rightarrow G_{2} \rrbracket
$$

with $\downarrow_{k} W^{\prime}$ and $v_{i}^{\prime \prime \prime}$ and

$$
\left(\downarrow_{k+1} W^{\prime},\left(\varepsilon_{1}^{\prime \prime} ; \operatorname{dom}\left(\varepsilon_{1}\right)\right) u_{1}^{\prime}:: \rho^{\prime}\left(G_{1}\right),\left(\varepsilon_{2}^{\prime \prime} ; \operatorname{dom}\left(\varepsilon_{2}\right)\right) u_{2}^{\prime}:: \rho^{\prime}\left(G_{1}\right)\right) \in \mathcal{V}_{\rho^{\prime}} \llbracket G_{1} \rrbracket
$$

to obtain that either both executions reduce to an error (then the result holds immediately), or $\exists W^{\prime \prime} \geq \downarrow_{k} W^{\prime}$ such that $W^{\prime \prime} . j+2 m+1+k^{*}+k=W^{\prime} . j$ and $\left(W^{\prime \prime}, v_{f 1}^{\prime}, v_{f 2}^{\prime}\right) \in \mathcal{V}_{\rho^{\prime}} \llbracket G_{2} \rrbracket$

$$
\begin{aligned}
W^{\prime} . \Xi_{i} \triangleright v_{i} v_{i}^{\prime \prime \prime} & \left.\left.\longmapsto{ }^{*} W^{\prime} . \Xi_{i} \triangleright \operatorname{cod}\left(\varepsilon_{i}^{\prime}\right) t\left[\left(\left(\varepsilon_{i}^{\prime \prime} ; \operatorname{dom}\left(\varepsilon_{i}\right)\right) ; \operatorname{dom}\left(\varepsilon_{i}^{\prime}\right)\right) u_{i}^{\prime}:: G_{i}^{\prime}\right) / x\right]:: \rho^{\prime}\left(G_{2}\right)\right) \\
& \longmapsto{ }^{*} W^{\prime \prime} . \Xi_{i} \triangleright v_{f i}^{\prime}
\end{aligned}
$$

Suppose that $v_{f i}^{\prime}=\varepsilon_{f i}^{\prime} u_{f i}:: \rho^{\prime}\left(G_{2}\right)$.

Also, we know that

$$
\begin{gathered}
W^{\prime} . \Xi_{1} \triangleright v_{1} v_{1}^{\prime \prime \prime} \longmapsto{ }^{m+1} \\
\left.W^{\prime} . \Xi_{1} \triangleright \operatorname{cod}\left(\varepsilon_{1}^{\prime}\right) t_{1}\left[\left(\varepsilon_{1}^{\prime \prime} \circ\left(\operatorname{dom}\left(\varepsilon_{1}\right) ; \operatorname{dom}\left(\varepsilon_{i}^{\prime}\right)\right)\right) u_{1}^{\prime}:: G_{i}^{\prime}\right) / x\right]:: \rho^{\prime}\left(G_{2}\right) \longmapsto \longmapsto^{k^{*}} \\
\Xi_{1} \triangleright \operatorname{cod}\left(\varepsilon_{1}^{\prime}\right) v_{1 f}:: \rho^{\prime}\left(G_{2}\right) \longmapsto{ }^{m} \\
\Xi_{1} \triangleright v^{\prime}{ }_{1 f}
\end{gathered}
$$

Then we use induction hypothesis once again using evidences $\operatorname{cod}\left(\varepsilon_{i}\right)$ over $v^{\prime}{ }_{i f}$ (noticing that by Lemma 6.13, the combination of evidence either both fail or both are defined), to obtain that,

$$
\begin{gathered}
\left(\downarrow_{k} W^{\prime \prime},\left(\varepsilon _ { f 1 } \circ \operatorname { c o d } (\varepsilon _ { 1 } ^ { \prime }) \stackrel { \operatorname { c o d } (\varepsilon _ { 1 })) u _ { f 1 } : : \rho (G _ { 2 } [G ^ { \prime } / X]) , } { } \left(\varepsilon_{f 2} \circ \operatorname{cod}\left(\varepsilon_{2}^{\prime}\right) \stackrel{\left.\left.\operatorname{cod}\left(\varepsilon_{2}\right)\right) u_{f 2}:: \rho\left(G_{2}\left[G^{\prime} / X\right]\right)\right) \in \mathcal{V}_{\rho} \llbracket G_{2}\left[G^{\prime} / X\right] \rrbracket}{ } .\right.\right.\right.
\end{gathered}
$$

and the result holds. Note that $\left(\downarrow_{k} W^{\prime \prime}\right) \cdot j+1+2 m+2 k+k^{*}=W^{\prime} . j$
Case (Universal Type: $\forall Y . G_{1}$). We know that

$$
\left(W, v_{1}, v_{2}\right) \in \mathcal{V}_{\rho^{\prime}} \llbracket \forall Y . G_{1} \rrbracket
$$

Then we have to prove that

$$
\begin{aligned}
& \left(\downarrow_{k} W,\left(\varepsilon_{1}^{\prime} \circ \varepsilon_{1}\right)\left(\Lambda Y . t_{1}\right):: \forall Y . \rho\left(G_{1}\left[G^{\prime} / X\right]\right),\right. \\
& \left.\quad\left(\varepsilon_{2}^{\prime} \fallingdotseq \varepsilon_{2}\right)\left(\Lambda Y . t_{2}\right):: \forall Y . \rho\left(G_{1}\left[G^{\prime} / X\right]\right)\right) \in \mathcal{V}_{\rho} \llbracket \forall Y . G_{1}\left[G^{\prime} / X\right] \rrbracket
\end{aligned}
$$

Let $\varepsilon_{i}^{\prime}=\left\langle\forall Y . E_{i 1}, \forall Y . E_{i 2}\right\rangle$ and $\varepsilon_{i}=\left\langle\forall Y . E_{i 1}^{\prime}, \forall Y . E_{i 2}^{\prime}\right\rangle=\left\langle\forall Y . E_{i}^{\prime \prime}\left[\alpha^{E_{i}^{\prime}} / X\right], \forall Y . E_{i}^{\prime \prime}\left[E_{i}^{\prime} / X\right]\right\rangle$, where $E_{i}=\forall Y . E_{i}^{\prime \prime}$. Let us call $v_{i}^{\prime \prime}=\left(\varepsilon_{i}^{\prime} \circ \varepsilon_{i}\right)\left(\Lambda Y . t_{i}\right):: \forall Y . \rho\left(G_{1}\left[G^{\prime} \mid X\right]\right)$. By unfolding, we have to prove that

$$
\begin{aligned}
& \forall W^{\prime} \geq\left(\downarrow_{k} W\right) \cdot \forall t_{1}^{\prime \prime}, t_{2}^{\prime \prime}, G_{1}^{\prime}, G_{2}^{\prime}, \beta, \varepsilon_{1}^{\prime \prime}, \varepsilon_{2}^{\prime \prime} \cdot \forall R \in \operatorname{REL}_{W^{\prime} \cdot j}\left[G_{1}^{\prime}, G_{2}^{\prime}\right] . \\
& \left(W^{\prime} . \Xi_{1} \vdash G_{1}^{\prime} \wedge W^{\prime} . \Xi_{2} \vdash G_{2}^{\prime} \wedge\right. \\
& W^{\prime} . \Xi_{1} \triangleright v_{1}^{\prime \prime}\left[G_{1}^{\prime}\right] \longmapsto W^{\prime} . \Xi_{1}, \beta:=G_{1}^{\prime} \triangleright \varepsilon_{1}^{\prime \prime} t_{1}^{\prime \prime}:: \rho\left(G_{1}\right)\left[G^{\prime} / X\right]\left[G_{1}^{\prime} / Y\right] \wedge \\
& \left.W^{\prime} . \Xi_{2} \triangleright v_{2}^{\prime \prime}\left[G_{2}^{\prime}\right] \longmapsto W^{\prime} . \Xi_{2}, \beta:=G_{2}^{\prime} \triangleright \varepsilon_{2}^{\prime \prime} t_{2}^{\prime \prime}:: \rho\left(G_{1}\right)\left[G^{\prime} / X\right]\left[G_{2} / Y\right]\right) \Rightarrow \\
& \left(W^{*}, t_{1}^{\prime \prime}, t_{2}^{\prime \prime}\right) \in \mathcal{T}_{\rho[Y \mapsto \beta]} \llbracket G_{1}\left[G^{\prime} / X\right] \rrbracket
\end{aligned}
$$

where $E_{i}^{*}=\operatorname{lift}_{W^{\prime} \cdot \Xi_{i}}\left(G_{i}^{\prime}\right)$ and $W^{*}=\downarrow\left(W^{\prime} \otimes\left(\beta, G_{1}^{\prime}, G_{2}^{\prime}, R\right)\right.$
By inspection of the reduction rules we know that

$$
t_{i}^{\prime \prime}=\left(\left\langle E_{i 1}\left[\beta^{E_{i}^{*}} / Y\right], E_{i 2}\left[\beta^{E_{i}^{*}} / Y\right]\right\rangle \circ\left\langle E_{i}^{\prime \prime}\left[\alpha^{E_{i}^{\prime}} / X\right]\left[\beta^{E_{i}^{*}} / Y\right], E_{i}^{\prime \prime}\left[E_{i}^{\prime} / X\right]\left[\beta^{E_{i}^{*}} / Y\right]\right\rangle\right) t_{i}\left[\beta^{E_{i}^{*}} / Y\right]:: \rho\left(G_{1}\left[G^{\prime} / X\right][\beta / Y]\right)
$$

Note that $\left(\left\langle E_{i 1}\left[\beta^{E_{i}^{*}} / Y\right], E_{i 2}\left[\beta^{E_{i}^{*}} / Y\right]\right\rangle \circ\left\langle E_{i}^{\prime \prime}\left[\alpha^{E_{i}^{\prime}} / X\right]\left[\beta^{E_{i}^{*}} / Y\right], E_{i}^{\prime \prime}\left[E_{i}^{\prime} / X\right]\left[\beta^{E_{i}^{*}} / Y\right]\right\rangle\right) . n=m+k$. Therefore, we know that

$$
\begin{gathered}
W^{*} . \Xi_{1} \triangleright t_{1}^{\prime \prime} \longmapsto{ }^{k^{*}} \\
\Xi_{1} \triangleright\left(\left\langle E_{i 1}\left[\beta^{E_{i}^{*}} / Y\right], E_{i 2}\left[\beta^{E_{i}^{*}} / Y\right]\right\rangle \stackrel{\circ}{\langle }\left\langle E_{i}^{\prime \prime}\left[\alpha^{E_{i}^{\prime}} / X\right]\left[\beta^{E_{i}^{*}} / Y\right], E_{i}^{\prime \prime}\left[E_{i}^{\prime} / X\right]\left[\beta^{E_{i}^{*}} / Y\right]\right\rangle\right) \\
v_{m 1}:: \rho\left(G_{1}\left[G^{\prime} / X\right][\beta / Y]\right) \longmapsto{ }^{k+m} \Xi_{1} \triangleright v_{1}^{*}
\end{gathered}
$$

By the reduction rule of the type application we know that:

$$
W^{\prime} . \Xi_{i} \triangleright v_{i}\left[G_{i}^{\prime}\right] \longmapsto W^{\prime} . \Xi_{i}, \beta:=G_{i}^{\prime} \triangleright\left\langle E_{i}^{\#}\left[\beta^{E_{i}^{*}} / Y\right], E_{i}^{\#}\left[E_{i}^{*} / Y\right]\right\rangle t_{i}^{\prime}:: \rho\left(G_{1}\left[G^{\prime} / X\right]\left[G_{i}^{\prime} / Y\right]\right)
$$

where $t_{i}^{\prime}=\left(\left\langle E_{i 1}\left[\beta^{E_{i}^{*}} / Y\right], E_{i 2}\left[\beta^{E_{i}^{*}} / Y\right]\right\rangle t_{i}\left[\beta^{E_{i}^{*}} / Y\right]:: \rho\left(G_{1}\left[G^{\prime} / X\right][\beta / Y]\right)\right)$. Now we instantiate

$$
\left(W, v_{1}, v_{2}\right) \in \mathcal{V}_{\rho^{\prime}} \llbracket \forall Y . G_{1} \rrbracket
$$

with $W^{\prime}, G_{1}^{\prime}, G_{2}^{\prime}, R, t_{1}^{\prime}, t_{2}^{\prime}, \beta$, and evidences $\left\langle E_{i 1}\left[\beta^{E_{i}^{*}} / Y\right], E_{i 2}\left[E_{i}^{*} / Y\right]\right\rangle$, to obtain that

$$
\left(W^{*}, t_{1}^{\prime}, t_{2}^{\prime}\right) \in \mathcal{T}_{\rho^{\prime}[Y \mapsto \beta]} \llbracket G_{1} \rrbracket
$$

then either both executions reduce to an error (then the result holds immediately), or $\exists W^{\prime \prime} \geq$ $W^{*}, v_{f i}$, such that $\left(W^{\prime \prime}, v_{f 1}, v_{f 2}\right) \in \mathcal{V}_{\rho^{\prime}[Y \mapsto \beta]} \llbracket G_{1} \rrbracket$ and

$$
\begin{aligned}
& W^{*} \cdot \Xi_{i} \triangleright\left(\left\langle E_{i 1}\left[\beta^{E_{i}^{*}} / Y\right], E_{i 2}\left[\beta^{E_{i}^{*}} / Y\right]\right\rangle t_{i}\left[\beta^{E_{i}^{*}} / Y\right]:: \rho^{\prime}\left(G_{1}[\beta / Y]\right)\right) \\
\longmapsto & { }^{*} W^{\prime \prime} . \Xi_{i} \triangleright\left(\left\langle E_{i 1}\left[\beta^{E_{i}^{*}} / Y\right], E_{i 2}\left[\beta^{E_{i}^{*}} / Y\right]\right\rangle v_{m i}:: \rho^{\prime}\left(G_{1}[\beta / Y]\right)\right) \\
\longmapsto & W^{\prime \prime} . \Xi_{i} \triangleright v_{f i} \\
& W^{*} \cdot \Xi_{1} \triangleright\left(\left\langle E_{11}\left[\beta^{E_{1}^{*}} / Y\right], E_{i 2}\left[\beta^{E_{1}^{*}} / Y\right]\right\rangle t_{1}\left[\beta^{E_{1}^{*}} / Y\right]:: \rho^{\prime}\left(G_{1}[\beta / Y]\right)\right) \\
\longmapsto & k^{*} W^{\prime \prime} . \Xi_{1} \triangleright\left(\left\langle E_{11}\left[\beta^{E_{1}^{*}} / Y\right], E_{i 2}\left[\beta^{E_{1}^{*}} / Y\right]\right\rangle v_{m 1}:: \rho^{\prime}\left(G_{1}[\beta / Y]\right)\right) \\
\longmapsto & { }^{m} W^{\prime \prime} . \Xi_{1} \triangleright v_{f 1}
\end{aligned}
$$

Suppose that $v_{f i}=\left(\varepsilon_{f i} \circ\left\langle E_{i 1}\left[\beta^{E_{i}^{*}} / Y\right], E_{i 2}\left[\beta^{E_{i}^{*}} / Y\right]\right\rangle\right) u_{f i}:: \rho^{\prime}\left(G_{1}[\beta / Y]\right)$. As $E_{12}\left[\beta^{E_{1}^{*}} / Y\right] \equiv E_{22}\left[\beta^{E_{2}^{*}} / Y\right]$, then $\operatorname{unlift}\left(E_{12}\left[\beta^{E_{1}^{*}} / Y\right]\right)=\operatorname{unlift}\left(E_{22}\left[\beta^{E_{2}^{*}} / Y\right]\right)$. Then we use induction hypothesis using $\rho^{\prime}[Y \mapsto \beta]$, evidences $\left\langle E_{i}^{\prime \prime}\left[E_{i}^{*} / Y\right], E_{i}^{\prime \prime}\left[E_{i}^{*} / Y\right]\right\rangle$, where $E_{i}^{\prime \prime}\left[E_{i}^{*} / Y\right]=\operatorname{lift}_{W^{\prime \prime} . \Xi_{i}}\left(\right.$ unlift $\left.\left(E_{i 2}\left[\beta^{E_{i}^{*}} / Y\right]\right)\right)$ as $E_{i}=\forall Y . E_{i}^{\prime \prime}$,

$$
\mathcal{I}\left(\operatorname{lift}_{W^{\prime \prime} . \Xi_{i}}\left(G_{1}[\beta / Y]\right), \operatorname{lift}_{W^{\prime \prime} . \Xi_{i}}\left(G_{1}[\beta / Y]\right)\right)=\left\langle E_{i}^{\prime \prime}\left[E_{i}^{*} / Y\right], E_{i}^{\prime \prime}\left[E_{i}^{*} / Y\right]\right\rangle
$$

also we know that:

$$
\left\langle E_{i}^{\prime \prime}\left[E_{i}^{*} / Y\right]\left[\alpha^{E_{i}^{\prime}} / X\right], E_{i}^{\prime \prime}\left[E_{i}^{*} / Y\right]\left[E_{i}^{\prime} / X\right]\right\rangle=\left\langle E_{i}^{\prime \prime}\left[\alpha^{E_{i}^{\prime}} / X\right]\left[E_{i}^{*} / Y\right], E_{i}^{\prime \prime}\left[E_{i}^{\prime} / X\right]\left[E_{i}^{*} / Y\right]\right\rangle
$$

Note that $\rho\left(G_{1}[\beta / Y]\right)=\rho[Y \mapsto \beta]\left(G_{1}\right)$. Then we know that

$$
\begin{aligned}
& \left(\downarrow_{k} W^{\prime \prime},\left(\left(\varepsilon_{f 1} \circ\left\langle E_{11}\left[\beta^{E_{1}^{*}} / Y\right], E_{12}\left[\beta^{E_{1}^{*}} / Y\right]\right\rangle\right) \circ\left\langle E_{1}^{\prime \prime}\left[\alpha^{E_{1}^{\prime}} / X\right]\left[E_{1}^{*} / Y\right], E_{1}^{\prime \prime}\left[E_{1}^{\prime} / X\right]\left[E_{1}^{*} / Y\right]\right\rangle\right) u_{f 1}:: \rho[Y \mapsto \beta]\left(G_{1}\left[G^{\prime} / X\right]\right),\right. \\
& \left.\quad\left(\left(\varepsilon_{f 2} \circ\left\langle E_{21}\left[\beta^{E_{2}^{*}} / Y\right], E_{22}\left[\beta^{E_{2}^{*}} / Y\right]\right\rangle\right) \circ\left\langle E_{2}^{\prime \prime}\left[\alpha^{E_{2}^{\prime}} / X\right]\left[E_{2}^{*} / Y\right], E_{2}^{\prime \prime}\left[E_{2}^{\prime} / X\right]\left[E_{2}^{*} / Y\right]\right\rangle\right) u_{f 2}:: \rho[Y \mapsto \beta]\left(G_{1}\left[G^{\prime} / X\right]\right)\right) \\
& \quad \in \mathcal{V}_{\rho[Y \mapsto \beta]} \llbracket G_{1}\left[G^{\prime} / X\right] \rrbracket
\end{aligned}
$$

then by inspection of the reduction rules:

$$
\begin{aligned}
& W^{*} \cdot \Xi_{i} \triangleright t_{i}^{\prime \prime} \\
\longmapsto & { }^{*} W^{\prime \prime} . \Xi_{i} \triangleright\left(\left(\left\langle E_{i 1}\left[\beta^{E_{i}^{*}} / Y\right], E_{i 2}\left[\beta^{E_{i}^{*}} / Y\right]\right\rangle \circ\left\langle E_{i}^{\prime \prime}\left[\alpha^{E_{i}^{\prime}} / X\right]\left[\beta^{E_{i}^{*}} / Y\right], E_{i}^{\prime \prime}\left[E_{i}^{\prime} / X\right]\left[\beta^{E_{i}^{*}} / Y\right]\right\rangle\right) v_{m i}:: \rho^{\prime}\left(G_{1}[\beta / Y]\right)\right) \\
\longmapsto & W^{\prime \prime} . \Xi_{i} \triangleright\left(\varepsilon_{f i} \circ\left(\left\langle E_{i 1}\left[\beta^{E_{i}^{*}} / Y\right], E_{i 2}\left[\beta^{E_{i}^{*}} / Y\right]\right\rangle \circ\left\langle E_{i}^{\prime \prime}\left[\alpha^{E_{i}^{\prime}} / X\right]\left[E_{i}^{*} / Y\right], E_{i}^{\prime \prime}\left[E_{i}^{\prime} / X\right]\left[E_{i}^{*} / Y\right]\right\rangle\right)\right) u_{f i}:: \rho[Y \mapsto \beta]\left(G_{i}\left[G^{\prime} / X\right]\right)
\end{aligned}
$$

and by Lemma 6.18, we know that those two values belong to the interpretation of $\mathcal{V}_{\rho[Y \mapsto \beta]} \llbracket G_{1}\left[G^{\prime} / X\right] \rrbracket$, and the result holds. Note that $\downarrow_{k} W^{\prime \prime} . k+m+k^{*}=W^{*}$.

Case (Pair Type: $G_{1} \times G_{2}$). Analogous to the function case.
Case (Base Type: B). Trivial.
Then we prove as (2):
Case (Type Variable X: $G=X$). Let $v_{i}=\left\langle H_{i 1}, E_{i 2}\right\rangle u_{i}:: X\left[G^{\prime} / X\right]=\left\langle H_{i 1}, E_{i 2}\right\rangle u_{i}:: G^{\prime}$. Then we know that

$$
\left(W,\left\langle H_{11}, E_{12}\right\rangle u_{1}:: G^{\prime},\left\langle H_{21}, E_{22}\right\rangle u_{2}:: G^{\prime}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime} \rrbracket
$$

and $\varepsilon_{i}{ }^{-1}=\left\langle E_{i}^{\prime}, \alpha^{E_{i}^{\prime}}\right\rangle$. Then we have to prove that

$$
\left(\downarrow_{l} W,\left(\left\langle H_{11}, E_{12}\right\rangle \circ\left\langle E_{1}^{\prime}, \alpha^{E_{1}^{\prime}}\right\rangle\right) u_{1}:: \alpha,\left(\left\langle H_{21}, E_{22}\right\rangle \circ\left\langle E_{2}^{\prime}, \alpha^{E_{2}^{\prime}}\right\rangle\right) u_{2}:: \alpha\right) \in \mathcal{V}_{\rho[X \mapsto \alpha]} \llbracket \alpha \rrbracket
$$

By Lemma 6.13, we assume that both combinations of evidence are defined (otherwise the result holds immediately). Then by definition of transitivity and Lemma 6.30, we know that ($\left\langle H_{i 1}, E_{i 2}\right\rangle$; $\left.\left\langle E_{i}^{\prime}, \alpha^{E_{i}^{\prime}}\right\rangle\right)=\left\langle H_{i 1}, \alpha^{E_{i 2}}\right\rangle$. Then we have to prove that

$$
\left(\downarrow_{l} W,\left\langle H_{11}, \alpha^{E_{12}}\right\rangle u_{1}:: \alpha,\left\langle H_{21}, \alpha^{E_{22}}\right\rangle u_{2}:: \alpha\right) \in \mathcal{V}_{\rho[X \mapsto \alpha]} \llbracket \alpha \rrbracket
$$

but as α is sync, then that is equivalent to

$$
\left(\downarrow_{l-1} W,\left\langle H_{11}, E_{12}\right\rangle u_{1}:: G^{\prime},\left\langle H_{21}, E_{22}\right\rangle u_{2}:: G^{\prime}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime} \rrbracket
$$

which follows by the premise and Lemma 6.14.
Also, we have to prove that $\left(\forall \Xi^{\prime}, \varepsilon^{\prime}, G^{*}\right.$ such that $\left(\downarrow_{l-1} W \in \mathcal{S} \llbracket \Xi^{\prime} \rrbracket \wedge \varepsilon^{\prime} \vdash \Xi^{\prime} \vdash \alpha \sim G^{*}\right)$, we get that

$$
\left.\left(\downarrow_{l-1} W, \varepsilon^{\prime}\left(\left\langle H_{11}, \alpha^{E_{12}}\right\rangle u_{1}:: \alpha\right):: G^{*}, \varepsilon^{\prime}\left(\left\langle H_{21}, \alpha^{E_{22}}\right\rangle u_{2}:: \alpha\right):: G^{*}\right) \in \mathcal{T}_{\rho} \llbracket G^{*} \rrbracket\right)
$$

or what is the same $\left(\left(\left\langle H_{11}, \alpha^{E_{12}}\right\rangle ; \varepsilon^{\prime}\right)\right.$ fails the result follows immediately $)$

$$
\left.\left(\downarrow_{l-1-k^{\prime}} W,\left(\left\langle H_{11}, \alpha^{E_{12}}\right\rangle ; \varepsilon^{\prime}\right) u_{1}:: G^{*},\left(\left\langle H_{21}, \alpha^{E_{22}}\right\rangle ; \varepsilon^{\prime}\right) u_{2}:: G^{*}\right) \in \mathcal{V}_{\rho} \llbracket G^{*} \rrbracket\right)
$$

where $\varepsilon^{\prime}=\left\langle\alpha^{E_{1}^{*}}, E_{2}^{*}\right\rangle$ and $\varepsilon^{\prime} . n=k^{\prime}$. By definition of transitivity and Lemma 6.30, we know that

We know that $\left\langle E_{1}^{*}, E_{2}^{*}\right\rangle \vdash \Xi^{\prime} \vdash G^{\prime} \sim G^{*}$. Since $\left\langle E_{1}^{*}, E_{2}^{*}\right\rangle \vdash \Xi \vdash G^{\prime} \sim G^{*}, \downarrow_{l-1} W \in \mathcal{S} \llbracket \Xi^{\prime} \rrbracket$, $\left(\downarrow_{l-1} W,\left\langle H_{11}, E_{12}\right\rangle u_{1}:: G^{\prime},\left\langle H_{21}, E_{22}\right\rangle u_{2}:: G^{\prime}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime} \rrbracket$, by Lemma 6.17, we know that (since $\left(\left\langle H_{11}, \alpha^{E_{12}}\right\rangle \circ \varepsilon^{\prime}\right)$ does not fail then $\left.\left(\left\langle H_{11}, E_{12}\right\rangle \circ \stackrel{\circ}{\circ} E_{1}^{*}, E_{2}^{*}\right\rangle\right)$ also does not fail by the transitivity rules)

$$
\left.\left(\downarrow_{l-1-k^{\prime}} W,\left(\left\langle H_{11}, E_{12}\right\rangle \circ\left\langle E_{1}^{*}, E_{2}^{*}\right\rangle\right) u_{1}:: G^{*},\left(\left\langle H_{21}, E_{22}\right\rangle \circ\left\langle E_{1}^{*}, E_{2}^{*}\right\rangle\right) u_{2}:: G^{*}\right) \in \mathcal{V}_{\rho} \llbracket G^{*} \rrbracket\right)
$$

The result follows immediately.
Case (Type Variable Y: $G=Y$). Let $v_{i}=\left\langle H_{i 1}, \beta^{E_{i 2}}\right\rangle u_{i}:: \rho\left(Y\left[G^{\prime} / X\right]\right)=\left\langle H_{i 1}, \beta^{E_{i 2}}\right\rangle u_{i}:: \beta$ (where $\rho(Y)=\beta$). Then we know that

$$
\left(W,\left\langle H_{11}, \beta^{E_{12}}\right\rangle u_{1}:: \beta,\left\langle H_{21}, \beta^{E_{22}}\right\rangle u_{2}:: \beta\right) \in \mathcal{V}_{\rho} \llbracket \beta \rrbracket
$$

We know that $\varepsilon_{i}^{-1} \vdash W \cdot \Xi_{i} \vdash \beta \sim \beta$, therefore ε_{i}^{-1} has to have the form $\varepsilon_{i}^{-1}=\left\langle\beta^{E_{i}^{\prime}}, \beta^{E_{i}^{\prime}}\right\rangle=$ $\mathcal{I}\left(\right.$ lift $_{W . \Xi_{i}}(\beta)$, lift $\left.{ }_{W . \Xi_{i}}(\beta)\right)$. As ε_{i}^{-1} is the initial evidence for β, then $E_{i 2} \sqsubseteq E_{i}^{\prime}$, and therefore by definition of the transitivity and Lemma 6.30:

$$
\left\langle H_{i 1}, \beta^{E_{i 2}}\right\rangle \stackrel{\circ}{\circ}\left\langle\beta^{E_{i}^{\prime}}, \beta^{E_{i}^{\prime}}\right\rangle=\left\langle H_{i 1}, \beta^{E_{i 2}}\right\rangle
$$

Then we have to prove that:

$$
\left(\downarrow_{l} W,\left(\left\langle H_{11}, \beta^{E_{12}}\right\rangle \circ\left\langle\left\langle\beta^{E_{1}^{\prime}}, \beta^{E_{1}^{\prime}}\right\rangle\right) u_{1}:: \beta,\left(\left\langle H_{21}, \beta^{E_{22}}\right\rangle \stackrel{\circ}{;}\left\langle E_{2}^{\prime}, \beta^{E_{2}^{\prime}}\right\rangle\right) u_{2}:: \beta\right) \in \mathcal{V}_{\rho[X \mapsto \alpha]} \llbracket \beta \rrbracket\right.
$$

or what is the same

$$
\left(\downarrow_{l} W,\left\langle H_{11}, \beta^{E_{12}}\right\rangle u_{1}:: \beta,\left\langle H_{21}, \beta^{E_{22}}\right\rangle u_{2}:: \beta\right) \in \mathcal{V}_{\rho} \llbracket \beta \rrbracket
$$

which follows by the premise and Lemma 6.14.
Case (Unknown Type: $G=$?). Let $v_{i}=\left\langle H_{i 1}, E_{i 2}\right\rangle u_{i}::$?. Then by definition of $\mathcal{V}_{\rho} \llbracket ? \rrbracket$, let $G^{\prime \prime}=\operatorname{const}\left(E_{i 2}\right)$ (where $G^{\prime \prime} \neq$?). Then we know

$$
\left(W,\left\langle H_{11}, E_{12}\right\rangle u_{1}:: G^{\prime \prime},\left\langle H_{21}, E_{22}\right\rangle u_{2}:: G^{\prime \prime}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime \prime} \rrbracket
$$

If $\varepsilon_{i}{ }^{-1}=\langle$?, ? \rangle, then, $\left\langle H_{i 1}, E_{i 2}\right\rangle \stackrel{\circ}{\circ}\langle ?, ?\rangle=\left\langle H_{i 1}, E_{i 2}\right\rangle$, by Lemma 6.30, the result holds immediately. If $\varepsilon_{i}^{-1} \neq\langle ?, ?\rangle$. Then we proceed similar to the other cases where $G \neq$?. Note that we know that

$$
\left(W,\left\langle H_{11}, E_{12}\right\rangle u_{1}:: G^{\prime \prime},\left\langle H_{21}, E_{22}\right\rangle u_{2}:: G^{\prime \prime}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime \prime} \rrbracket
$$

where $G^{\prime \prime} \neq$? and we are required to prove that

$$
\left(W, \varepsilon_{1}\left(\left\langle H_{11}, E_{12}\right\rangle u_{1}:: G^{\prime \prime}\right):: G^{\prime \prime}, \varepsilon_{2}\left(\left\langle H_{21}, E_{22}\right\rangle u_{2}:: G^{\prime \prime}\right)\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime \prime} \rrbracket
$$

Case (Function Type: $\left.G=G_{1} \rightarrow G_{2}\right)$. Let $v_{i}=\varepsilon_{i}^{\prime}\left(\lambda x: G_{i}^{\prime} \cdot t_{i}\right):: \rho\left(G\left[G^{\prime} / X\right]\right)$ We know that

$$
\left(W, v_{1}, v_{2}\right) \in \mathcal{V}_{\rho} \llbracket G_{1}\left[G^{\prime} / X\right] \rightarrow G_{2}\left[G^{\prime} / X\right] \rrbracket
$$

Then we have to prove that

$$
\begin{aligned}
& \left(\downarrow_{l} W,\left(\varepsilon_{1}^{\prime} \circ \varepsilon_{1}^{-1}\right)\left(\lambda x: G_{1}^{\prime} \cdot t_{1}\right):: \rho^{\prime}\left(G_{1}\right) \rightarrow \rho^{\prime}\left(G_{2}\right),\right. \\
& \left.\quad\left(\varepsilon_{2}^{\prime} \circ \varepsilon_{2}^{-1}\right)\left(\lambda x: G_{2}^{\prime} \cdot t_{2}\right):: \rho^{\prime}\left(G_{1}\right) \rightarrow \rho^{\prime}\left(G_{2}\right)\right) \in \mathcal{V}_{\rho^{\prime}} \llbracket G_{1} \rightarrow G_{2} \rrbracket
\end{aligned}
$$

Let us call $v_{i}^{\prime \prime}=\left(\varepsilon_{i}^{\prime}{ }_{9} \varepsilon_{i}^{-1}\right)\left(\lambda x: G_{i}^{\prime} . t_{i}\right):: \rho^{\prime}\left(G_{1}\right) \rightarrow \rho^{\prime}\left(G_{2}\right)$. By unfolding, we have to prove that

$$
\forall W^{\prime} \geq\left(\downarrow_{l} W\right) . \forall v_{1}^{\prime}, v_{2}^{\prime} \cdot\left(\downarrow_{1} W^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}\right) \in \mathcal{V}_{\rho^{\prime}} \llbracket G_{1} \rrbracket \Rightarrow\left(W^{\prime}, v_{1}^{\prime \prime} v_{1}^{\prime}, v_{2}^{\prime \prime} v_{2}^{\prime}\right) \in \mathcal{T}_{\rho^{\prime}} \llbracket G_{2} \rrbracket
$$

Suppose that $v_{i}^{\prime}=\varepsilon_{i}^{\prime \prime} u_{i}^{\prime}:: \rho^{\prime}\left(G_{1}\right)$, by inspection of the reduction rules, we know that
$\left.\left.W^{\prime} . \Xi_{i} \triangleright v_{i}^{\prime \prime} v_{i}^{\prime} \longmapsto{ }^{*} W^{\prime} . \Xi_{i} \triangleright\left(\operatorname{cod}\left(\varepsilon_{i}^{\prime}\right) ; \operatorname{cod}\left(\varepsilon_{i}^{-1}\right)\right) t_{i}\left[\left(\varepsilon_{i}^{\prime \prime} \circ\left(\operatorname{dom}\left(\varepsilon_{i}{ }^{-1}\right) ; \operatorname{dom}\left(\varepsilon_{i}^{\prime}\right)\right)\right) u_{i}^{\prime}:: G_{i}^{\prime}\right) / x\right]:: \rho^{\prime}\left(G_{2}\right)\right)$
This is equivalent by Lemma 6.18,
$\left.\left.W^{\prime} . \Xi_{i} \triangleright v_{i}^{\prime \prime} v_{i}^{\prime} \longmapsto{ }^{*} W^{\prime} . \Xi_{i} \triangleright\left(\operatorname{cod}\left(\varepsilon_{i}^{\prime}\right) ; \operatorname{cod}\left(\varepsilon_{i}^{-1}\right)\right) t_{i}\left[\left(\left(\varepsilon_{i}^{\prime \prime} \circ \operatorname{dom}\left(\varepsilon_{i}^{-1}\right)\right) ; \operatorname{dom}\left(\varepsilon_{i}^{\prime}\right)\right) u_{i}^{\prime}:: G_{i}^{\prime}\right) / x\right]:: \rho^{\prime}\left(G_{2}\right)\right)$
Also, we know that

$$
\begin{gathered}
W^{\prime} . \Xi_{1} \triangleright v_{1}^{\prime \prime} v_{1}^{\prime} \longmapsto{ }^{l+m+1} \\
\left.\left.W^{\prime} . \Xi_{1} \triangleright\left(\operatorname{cod}\left(\varepsilon_{1}^{\prime}\right) ; \operatorname{cod}\left(\varepsilon_{1}^{-1}\right)\right) t_{1}\left[\left(\left(\varepsilon_{1}^{\prime \prime} ; \operatorname{dom}\left(\varepsilon_{1}^{-1}\right)\right) ; \operatorname{dom}\left(\varepsilon_{1}^{\prime}\right)\right) u_{1}^{\prime}:: G_{1}^{\prime}\right) / x\right]:: \rho^{\prime}\left(G_{2}\right)\right) \longmapsto ط^{k^{*}} \\
\left.\Xi_{1} \triangleright\left(\operatorname{cod}\left(\varepsilon_{1}^{\prime}\right) ; \operatorname{cod}\left(\varepsilon_{1}^{-1}\right)\right) v_{1 f}:: \rho^{\prime}\left(G_{2}\right)\right) \longmapsto{ }^{l+m} \\
\Xi_{1} \triangleright v_{1}^{*}
\end{gathered}
$$

where $v_{1 f}=\varepsilon_{1 f} u_{1 f}:: \rho\left(G_{2}\left[G^{\prime} / X\right]\right)$ and $v_{1}^{*}=\left(\varepsilon_{1 f} \circ \operatorname{cod}\left(\varepsilon_{1}^{\prime}\right) ; \operatorname{cod}\left(\varepsilon_{1}^{-1}\right)\right) u_{1 f}:: \rho^{\prime}\left(G_{2}\right)$.
Notice that $\operatorname{dom}\left(\varepsilon_{i}^{-1}\right) \vdash W \cdot \Xi_{i} \vdash \rho\left(G_{1}[\alpha / X]\right) \sim \rho\left(G_{1}\left[G^{\prime} / X\right]\right)$, and as $\operatorname{dom}\left(\varepsilon_{i}^{-1}\right)$ is constructed using the interior (and thus $\pi_{2}\left(\varepsilon_{i}^{\prime \prime}\right) \sqsubseteq \pi_{1}\left(\operatorname{dom}\left(\varepsilon_{i}^{-1}\right)\right)$), then by definition of evidence $\left(\varepsilon_{i}^{\prime \prime} \circ \operatorname{dom}\left(\varepsilon_{i}^{-1}\right)\right.$) is always defined. We can use induction hypothesis on v_{i}^{\prime}, with evidences $\operatorname{dom}\left(\varepsilon_{i}{ }^{-1}\right)$.

Then we know that

$$
\left(\downarrow_{l+1} W^{\prime},\left(\varepsilon_{1}^{\prime \prime} \circ \operatorname{dom}\left(\varepsilon_{1}^{-1}\right)\right) u_{1}^{\prime}:: \rho\left(G_{1}\left[G^{\prime} / X\right]\right),\left(\varepsilon_{2}^{\prime \prime} \circ \operatorname{dom}\left(\varepsilon_{2}^{-1}\right)\right) u_{2}^{\prime}:: \rho\left(G_{1}\left[G^{\prime} / X\right]\right)\right) \in \mathcal{V}_{\rho} \llbracket G_{1}\left[G^{\prime} / X\right] \rrbracket
$$

Let us call $v_{i}^{\prime \prime \prime}=\left(\varepsilon_{i}^{\prime \prime}\right.$; $\left.\operatorname{dom}\left(\varepsilon_{i}^{-1}\right)\right) u_{i}^{\prime}:: \rho\left(G_{1}\left[G^{\prime} / X\right]\right)$.
Now we instantiate

$$
\left(W, v_{1}, v_{2}\right) \in \mathcal{V}_{\rho} \llbracket G_{1}\left[G^{\prime} / X\right] \rightarrow G_{2}\left[G^{\prime} / X\right] \rrbracket
$$

with $\left(\downarrow_{l} W^{\prime}\right)$ and $v_{i}^{\prime \prime \prime}$, to obtain that either both executions reduce to an error (then the result holds immediately), or $\exists W^{\prime \prime} \geq\left(\downarrow_{l} W^{\prime}\right)$ such that $\left(W^{\prime \prime}, v^{\prime}{ }_{f 1}, v^{\prime}{ }_{f 2}\right) \in \mathcal{V}_{\rho} \llbracket G_{2}\left[G^{\prime} / X\right] \rrbracket, W^{\prime \prime} . j+2 m+k^{*}=\left(\downarrow_{l}\right.$ $\left.W^{\prime}\right) . j\left(W^{\prime \prime} . j+1+l+2 m+k^{*}=W^{\prime} \cdot j\right)$ and

$$
\begin{aligned}
W^{\prime} . \Xi_{i} \triangleright v_{i} v_{i}^{\prime \prime \prime} & \longmapsto W^{\prime} . \Xi_{i} \triangleright \operatorname{cod}\left(\varepsilon_{i}^{\prime}\right) t_{i}\left[\left(\left(\varepsilon_{i}^{\prime \prime} \circ \operatorname{dom}\left(\varepsilon_{i}^{-1}\right)\right) \dot{\left.\left.\left.\left.\operatorname{dom}\left(\varepsilon_{i}^{\prime}\right)\right) u_{i}^{\prime}:: G_{i}^{\prime}\right) / x\right]:: \rho\left(G_{2}\left[G^{\prime} / X\right]\right)\right)}\right.\right. \\
& \longmapsto W^{\prime \prime} . \Xi_{i} \triangleright v_{f i}^{\prime}
\end{aligned}
$$

Therefore, we know that

$$
\begin{gathered}
W^{\prime} . \Xi_{1} \triangleright v_{1} v_{1}^{\prime \prime \prime} \longmapsto^{m+1} \\
\left.\left.W^{\prime} . \Xi_{1} \triangleright \operatorname{cod}\left(\varepsilon_{1}^{\prime}\right) t_{1}\left[\left(\left(\varepsilon_{1}^{\prime \prime} \circ \operatorname{dom}\left(\varepsilon_{1}^{-1}\right)\right) ; \operatorname{dom}\left(\varepsilon_{1}^{\prime}\right)\right) u_{1}^{\prime}:: G_{1}^{\prime}\right) / x\right]:: \rho\left(G_{2}\left[G^{\prime} / X\right]\right)\right) \longmapsto^{k^{*}} \\
\left.\Xi_{1} \triangleright \operatorname{cod}\left(\varepsilon_{1}^{\prime}\right) v_{f 1}:: \rho\left(G_{2}\left[G^{\prime} / X\right]\right)\right) \longmapsto^{m} \\
W^{\prime \prime} . \Xi_{1} \triangleright v_{f 1}^{\prime}
\end{gathered}
$$

Suppose that $v_{f i}^{\prime}=\varepsilon_{f i}^{\prime} u_{f i}:: \rho\left(G_{2}\left[G^{\prime} / X\right]\right)$ and $\varepsilon_{f 1}^{\prime}=\varepsilon_{f 1} \circ \operatorname{cod}\left(\varepsilon_{1}^{\prime}\right)$. Then we use induction hypothesis once again using evidences $\operatorname{cod}\left(\varepsilon_{i}^{-1}\right)$ and $\left(W^{\prime \prime}, v_{f 1}^{\prime}, v_{f 2}^{\prime}\right) \in \mathcal{V}_{\rho} \llbracket G_{2}\left[G^{\prime} / X\right] \rrbracket$, (noticing
that the combination of evidence does not fail as the evidence is obtained via the interior function i.e. the less precise evidence possible), to obtain that,

$$
\left(\downarrow_{l} W^{\prime \prime},\left(\varepsilon_{f 1} ; \operatorname{cod}\left(\varepsilon_{1}^{\prime}\right) ; \operatorname{cod}\left(\varepsilon_{1}^{-1}\right)\right) u_{f 1}:: \rho^{\prime}\left(G_{2}\right),\left(\varepsilon_{f 2} ; \operatorname{cod}\left(\varepsilon_{2}^{\prime}\right) ; \operatorname{cod}\left(\varepsilon_{2}^{-1}\right)\right) u_{f 2}:: \rho^{\prime}\left(G_{2}\right)\right) \in \mathcal{V}_{\rho^{\prime}} \llbracket G_{2} \rrbracket
$$

Note that $\left(\downarrow_{l} W^{\prime \prime}\right) \cdot j+1+2 l+2 m+k^{*}=W^{\prime} . j$, and the result holds.
The remaining cases are similar.

Lemma 10.4 (Compositionality). If

- $W \cdot \Xi_{i}(\alpha)=\rho\left(G^{\prime}\right)$ and $W . \kappa(\alpha)=\mathcal{V}_{\rho} \llbracket G^{\prime} \rrbracket$,
- $E_{i}^{\prime}=$ lift $_{W . \Xi_{i}}\left(\rho\left(G^{\prime}\right)\right)$,
- $E_{i}=$ lift $_{W . \Xi_{i}}\left(G_{p}\right)$ for some $G_{p} \sqsubseteq \rho(G)$,
- $\rho^{\prime}=\rho[X \mapsto \alpha]$,
- $\varepsilon_{i}=\left\langle E_{i}\left[\alpha^{E_{i}^{\prime}} / X\right], E_{i}\left[E_{i}^{\prime} / X\right]\right\rangle$, such that $\varepsilon_{i} \vdash W \cdot \Xi_{i} \vdash \rho(G[\alpha / X]) \sim \rho\left(G\left[G^{\prime} / X\right]\right)$, and
- $\varepsilon_{i}{ }^{-1}=\left\langle E_{i}\left[E_{i}^{\prime} / X\right], E_{i}\left[\alpha^{E_{i}^{\prime}} / X\right]\right\rangle$, such that $\varepsilon_{i}^{-1} \vdash W \cdot \Xi_{i} \vdash \rho\left(G\left[G^{\prime} / X\right]\right) \sim \rho(G[\alpha / X])$, then
(1) $\left(W, v_{1}, v_{2}\right) \in \mathcal{V}_{\rho^{\prime}} \llbracket G \rrbracket \Rightarrow\left(W, \varepsilon_{1} v_{1}:: \rho\left(G\left[G^{\prime} / X\right]\right), \varepsilon_{2} v_{2}:: \rho\left(G\left[G^{\prime} / X\right]\right)\right) \in \mathcal{T}_{\rho} \llbracket G\left[G^{\prime} / X\right] \rrbracket$
(2) $\left(W, v_{1}, v_{2}\right) \in \mathcal{V}_{\rho} \llbracket G\left[G^{\prime} / X\right] \rrbracket \Rightarrow\left(W, \varepsilon_{1}^{-1} v_{1}:: \rho^{\prime}(G), \varepsilon_{2}^{-1} v_{2}:: \rho^{\prime}(G)\right) \in \mathcal{T}_{\rho^{\prime}} \llbracket G \rrbracket$

Proof. Direct by Prop. 10.4.
Definition 6.16. $\rho \vdash \varepsilon_{1} \equiv \varepsilon_{2}$ if $\operatorname{unlift}\left(\pi_{2}\left(\varepsilon_{1}\right)\right)=\operatorname{unlift}\left(\pi_{2}\left(\varepsilon_{2}\right)\right)$
Proposition 6.17. If
$-\left(W, v_{1}, v_{2}\right) \in \mathcal{V}_{\rho} \llbracket G \rrbracket$
$-\varepsilon \Vdash \Xi ; \Delta \vdash G \sim G^{\prime}$

- $W \in \mathcal{S} \llbracket \Xi \rrbracket$ and $(W, \rho) \in \mathcal{D} \llbracket \Delta \rrbracket$
$-\forall \alpha \in \operatorname{dom}(\Xi) \cdot \operatorname{sync}(\alpha, W)$
then:

$$
\left(W, \rho_{1}(\varepsilon) v_{1}:: \rho\left(G^{\prime}\right), \rho_{2}(\varepsilon) v_{2}:: \rho\left(G^{\prime}\right)\right) \in \mathcal{T}_{\rho} \llbracket G^{\prime} \rrbracket
$$

where sync $(\alpha, W) \Longleftrightarrow W \cdot \Xi_{1}(\alpha)=W \cdot \Xi_{2}(\alpha) \wedge W . \kappa(\alpha)=\left\lfloor\mathcal{V}_{\emptyset} \llbracket W \cdot \Xi_{i}(\alpha) \rrbracket\right\rfloor_{W . j}$.
Proof. We proceed by induction on G and $W . j$. We know that $u_{i} \in G_{i}$ for some G_{i}, notice that $G_{i} \in \operatorname{HeadType} \cup T y p e V a r$. In every case we apply Lemma 6.26 to show that $\left(\varepsilon_{1} \rho \varepsilon_{1}^{\rho}\right) \Longleftrightarrow\left(\varepsilon_{2} \circ \varepsilon_{2}^{\rho}\right)$, so in all cases we assume that the transitivity does not fail (otherwise the proof holds immediately). Let us call $\varepsilon_{1}^{\rho}=\rho_{1}(\varepsilon)$ and $\varepsilon_{2}^{\rho}=\rho_{2}(\varepsilon)$. Let's suppose that $\varepsilon_{1}^{\rho} \cdot n=k$ and $\varepsilon_{1} \cdot n=l$.

Case (Base type: $G=B$ and $G^{\prime}=B$). We know that v_{i} has the form $\langle B, B\rangle u:: B$, and we know that $(W,\langle B, B\rangle u:: B,\langle B, B\rangle u:: B) \in \mathcal{V}_{\rho} \llbracket B \rrbracket$. Also as $\varepsilon \vdash \Xi ; \Delta \vdash B \sim B$, then $\varepsilon=\langle B, B\rangle$, then as $\rho_{i}(B)=B, \varepsilon_{i} \circ \rho_{i}(\varepsilon)=\varepsilon_{i}$, and we have to prove that $\left(\downarrow_{k} W,\langle B, B\rangle u:: B,\langle B, B\rangle u:: B\right) \in \mathcal{V}_{\rho} \llbracket B \rrbracket$, which follows immediately because the premise and Lemma 6.14.
Case (Function type: $G=G_{1}^{\prime \prime} \rightarrow G_{2}^{\prime \prime}$, and $G^{\prime}=G_{1}^{\prime} \rightarrow G_{2}^{\prime}$). We know that:

$$
\left(W, v_{1}, v_{2}\right) \in \mathcal{V}_{\rho} \llbracket G_{1}^{\prime \prime} \rightarrow G_{2}^{\prime \prime} \rrbracket
$$

Where $v_{i}=\varepsilon_{i}\left(\lambda x: G_{1 i} . t_{i}\right):: \rho\left(G_{1}^{\prime \prime} \rightarrow G_{2}^{\prime \prime}\right)$ and $\varepsilon_{i} \vdash W . \Xi_{i} \vdash G_{i} \sim \rho\left(G_{1}^{\prime \prime} \rightarrow G_{2}^{\prime \prime}\right)$.
We have to prove that:

$$
\left(W, \varepsilon_{1}^{\rho} v_{1}:: \rho\left(G_{1}^{\prime} \rightarrow G_{2}^{\prime}\right), \varepsilon_{2}^{\rho} v_{2}:: \rho\left(G_{1}^{\prime} \rightarrow G_{2}^{\prime}\right)\right) \in \mathcal{T}_{\rho} \llbracket G_{1}^{\prime} \rightarrow G_{2}^{\prime} \rrbracket
$$

Or what is the same:

$$
\left(\downarrow_{l} W,\left(\varepsilon_{1} ; \varepsilon_{1}^{\rho}\right)\left(\lambda x: G_{11} . t_{1}\right):: \rho\left(G_{1}^{\prime} \rightarrow G_{2}^{\prime}\right),\left(\varepsilon_{2} ; \varepsilon_{2}^{\rho}\right)\left(\lambda x: G_{12} . t_{2}\right):: \rho\left(G_{1}^{\prime} \rightarrow G_{2}^{\prime}\right)\right) \in \mathcal{T}_{\rho} \llbracket G_{1}^{\prime} \rightarrow G_{2}^{\prime} \rrbracket
$$

First we suppose that $\left(\varepsilon_{i} \circ \varepsilon_{i}^{\rho}\right)$ does not fail and $\left(\varepsilon_{i} \circ \varepsilon_{i}^{\rho}\right) . n=k+l$, then we have to prove that:

$$
\forall W^{\prime} \geq \downarrow_{l} W \cdot \forall v_{1}^{\prime}, v_{2}^{\prime} \cdot\left(\downarrow_{1} W^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}\right) \in \mathcal{V}_{\rho} \llbracket G_{1}^{\prime} \rrbracket \Rightarrow
$$

$$
\left(W^{\prime},\left[\left(\varepsilon_{1} \circ \varepsilon_{1}^{\rho}\right)\left(\lambda x: G_{11} \cdot t_{1}\right):: \rho\left(G_{1}^{\prime} \rightarrow G_{2}^{\prime}\right)\right] v_{1}^{\prime},\left[\left(\varepsilon_{2} \circ \varepsilon_{2}^{\rho}\right)\left(\lambda x: G_{12} \cdot t_{2}\right):: \rho\left(G_{1}^{\prime} \rightarrow G_{2}^{\prime}\right]\right) v_{2}^{\prime}\right) \in \mathcal{T}_{\rho} \llbracket G_{2}^{\prime} \rrbracket
$$

where $v_{i}^{\prime}=\varepsilon_{i}^{\prime} u_{i}^{\prime}:: \rho\left(G_{1}^{\prime}\right)$. Note that by the reduction rule of application terms, we obtain that:

$$
\begin{aligned}
& W^{\prime} . \Xi_{i} \triangleright\left(\left(\varepsilon_{i} \circ \varepsilon_{i}^{\rho}\right)\left(\lambda x: G_{1 i} . t_{i}\right):: \rho\left(G_{1}^{\prime} \rightarrow G_{2}^{\prime}\right)\left(\varepsilon_{i}^{\prime} u_{i}^{\prime}:: \rho\left(G_{1}^{\prime}\right) \longrightarrow \longrightarrow^{*}\right.\right. \\
& \left.W^{\prime} . \Xi_{i} \triangleright \operatorname{cod}\left(\varepsilon_{i}, \varepsilon_{i}^{\rho}\right)\left(\left[\left(\varepsilon_{i}^{\prime} \circ \operatorname{dom}\left(\varepsilon_{i} \circ \varepsilon_{i}^{\rho}\right)\right) u_{i}^{\prime}:: G_{1 i}\right) / x\right] t_{i}\right):: \rho\left(G_{2}^{\prime}\right)
\end{aligned}
$$

We know by the Proposition 6.20 that $\operatorname{dom}\left(\varepsilon_{i} \circ \varepsilon_{i}^{\rho}\right)=\operatorname{dom}\left(\varepsilon_{i}^{\rho}\right) \circ \operatorname{dom}\left(\varepsilon_{i}\right)$. Then by the Proposition 6.18 we know that:

$$
\varepsilon_{i}^{\prime} \circ\left(\operatorname{dom}\left(\varepsilon_{i} \circ \varepsilon_{i}^{\rho}\right)\right)=\varepsilon_{i}^{\prime} \circ\left(\operatorname{dom}\left(\varepsilon_{i}^{\rho}\right) ; \operatorname{dom}\left(\varepsilon_{i}\right)\right)=\left(\varepsilon_{i}^{\prime} \circ \operatorname{dom}\left(\varepsilon_{i}^{\rho}\right)\right) \varsubsetneqq \operatorname{dom}\left(\varepsilon_{i}\right)
$$

Also, by the Proposition 6.21 it is follows that: $\operatorname{cod}\left(\varepsilon_{i} \circ \varepsilon_{i}^{\rho}\right)=\operatorname{cod}\left(\varepsilon_{i}\right) \circ \operatorname{cod}\left(\varepsilon_{i}^{\rho}\right)$.
Then the following result is true:

$$
\begin{gathered}
\left.W^{\prime} \cdot \Xi_{i} \triangleright \operatorname{cod}\left(\varepsilon_{i} \circ \varepsilon_{i}^{\rho}\right)\left(\left[\left(\varepsilon_{i}^{\prime} ; \operatorname{dom}\left(\varepsilon_{i} \circ \varepsilon_{i}^{\rho}\right)\right) u_{i}^{\prime}:: G_{1 i}\right) / x\right] t_{i}\right):: \rho\left(G_{2}^{\prime}\right)= \\
\left.W^{\prime} . \Xi_{i} \triangleright \operatorname{cod}\left(\left(\varepsilon_{i}\right) ; \operatorname{cod}\left(\varepsilon_{i}^{\rho}\right)\right)\left(\left[\left(\left(\varepsilon_{i}^{\prime} ; \operatorname{dom}\left(\varepsilon_{i}^{\rho}\right)\right) ; \operatorname{dom}\left(\varepsilon_{i}\right)\right) u_{i}^{\prime}:: G_{1 i}\right) / x\right] t_{i}\right):: \rho\left(G_{2}^{\prime}\right)
\end{gathered}
$$

So, we know that:

$$
\begin{gathered}
W^{\prime} \cdot \Xi_{1} \triangleright\left(\left(\varepsilon_{1} ; \varepsilon_{i}^{\rho}\right)\left(\lambda x: G_{11} \cdot t_{1}\right):: \rho\left(G_{1}^{\prime} \rightarrow G_{2}^{\prime}\right)\left(\varepsilon_{1}^{\prime} u_{1}^{\prime}:: \rho\left(G_{1}^{\prime}\right) \longrightarrow \longrightarrow^{l+k+1}\right.\right. \\
\left.W^{\prime} . \Xi_{1} \triangleright \operatorname{cod}\left(\varepsilon_{1} ; \varepsilon_{i}^{\rho}\right)\left(\left[\left(\varepsilon_{1}^{\prime} ; \operatorname{dom}\left(\varepsilon_{1} ; \varepsilon_{i}^{\rho}\right)\right) u_{1}^{\prime}:: G_{11}\right) / x\right] t_{1}\right):: \rho\left(G_{2}^{\prime}\right)= \\
\left.W^{\prime} . \Xi_{1} \triangleright \operatorname{cod}\left(\left(\varepsilon_{1}\right) ; \operatorname{cod}\left(\varepsilon_{i}^{\rho}\right)\right)\left(\left[\left(\left(\varepsilon_{1}^{\prime} ; \operatorname{dom}\left(\varepsilon_{i}^{\rho}\right)\right) ; \operatorname{dom}\left(\varepsilon_{1}\right)\right) u_{1}^{\prime}:: G_{11}\right) / x\right] t_{1}\right):: \rho\left(G_{2}^{\prime}\right) \longrightarrow k^{*} \\
\Xi_{1} \triangleright\left(\operatorname{cod}\left(\varepsilon_{1}\right) ; \operatorname{cod}\left(\varepsilon_{i}^{\rho}\right)\right) v_{1}^{*}:: \rho\left(G_{2}^{\prime}\right) \longrightarrow l^{l+k} \\
\Xi_{1} \triangleright\left(\varepsilon_{1}^{\prime \prime} ;\left(\operatorname{cod}\left(\varepsilon_{1}\right) ; \operatorname{cod}\left(\varepsilon_{i}^{\rho}\right)\right)\right) u_{1 f}:: \rho\left(G_{2}^{\prime}\right)
\end{gathered}
$$

where $v_{1}^{*}=\varepsilon_{1}^{\prime \prime} u_{1 f}:: \rho\left(G_{2}^{\prime \prime}\right)$ and $v_{1 f}=\left(\varepsilon_{1}^{\prime \prime} \circ\left(\operatorname{cod}\left(\varepsilon_{1}\right) ; \operatorname{cod}\left(\varepsilon_{i}^{\rho}\right)\right)\right) u_{1 f}:: \rho\left(G_{2}^{\prime}\right)$.
We instantiate the induction hypothesis in $\left(\downarrow_{1} W^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}\right) \in \mathcal{V}_{\rho} \llbracket G_{1}^{\prime} \rrbracket$ with the type $G_{1}^{\prime \prime}$ and the evidences $\operatorname{dom}(\varepsilon) \vdash \Xi ; \Delta \vdash G_{1}^{\prime} \sim G_{1}^{\prime \prime}$, where $\operatorname{dom}(\varepsilon) . n=l$. We obtain that:

$$
\left(\downarrow_{1} W^{\prime}, \operatorname{dom}\left(\varepsilon_{1}^{\rho}\right) v_{1}^{\prime}:: G_{1}^{\prime \prime}, \operatorname{dom}\left(\varepsilon_{2}^{\rho}\right) v_{2}^{\prime}:: G_{1}^{\prime \prime}\right) \in \mathcal{T}_{\rho} \llbracket G_{1}^{\prime \prime} \rrbracket
$$

In particular we focus on a pair of values such that $\left(\varepsilon_{i}^{\prime} \circ \operatorname{dom}\left(\varepsilon_{i}^{\rho}\right)\right)$ does not fail (otherwise the result follows immediately). Then it is true that:

$$
\left(\downarrow_{l+1} W^{\prime},\left(\varepsilon_{1}^{\prime} \circ \operatorname{dom}\left(\varepsilon_{1}^{\rho}\right)\right) u_{1}^{\prime}:: G_{1}^{\prime \prime},\left(\varepsilon_{2}^{\prime} \circ \operatorname{dom}\left(\varepsilon_{2}^{\rho}\right)\right) u_{2}^{\prime}:: G_{1}^{\prime \prime}\right) \in \mathcal{V}_{\rho} \llbracket G_{1}^{\prime \prime} \rrbracket
$$

By the definition of $\mathcal{V}_{\rho} \llbracket G_{1}^{\prime \prime} \rightarrow G_{2}^{\prime \prime} \rrbracket$ we know that:

$$
\forall W^{\prime \prime} \geq W \cdot \forall v_{1}^{\prime \prime}, v_{2}^{\prime \prime} \cdot\left(\downarrow_{1} W^{\prime \prime}, v_{1}^{\prime \prime}, v_{2}^{\prime \prime}\right) \in \mathcal{V}_{\rho} \llbracket G_{1}^{\prime \prime} \rrbracket \Rightarrow\left(W^{\prime \prime}, v_{1} v_{1}^{\prime \prime}, v_{2} v_{2}^{\prime \prime}\right) \in \mathcal{T}_{\rho} \llbracket G_{2}^{\prime \prime} \rrbracket
$$

We instantiate $v_{i}^{\prime \prime}=\left(\varepsilon_{i}^{\prime} ; \operatorname{dom}\left(\varepsilon_{i}^{\rho}\right)\right) u_{i}^{\prime}:: \rho\left(G_{1}^{\prime \prime}\right)$ and $W^{\prime \prime}=\downarrow_{l} W^{\prime}$. Then we obtain that:

$$
\begin{aligned}
&\left(\downarrow_{l} W^{\prime},\left(\left(\varepsilon_{1}\left(\lambda x: G_{11} \cdot t_{1}\right):: \rho\left(G_{1}^{\prime \prime} \rightarrow G_{2}^{\prime \prime}\right)\right)\left(\left(\varepsilon_{1}^{\prime} \circ \operatorname{dom}\left(\varepsilon_{i}^{\rho}\right)\right) u_{i}^{\prime}:: \rho\left(G_{1}^{\prime \prime}\right)\right),\right.\right. \\
&\left.\left(\varepsilon_{2}\left(\lambda x: G_{12} \cdot t_{2}\right):: \rho\left(G_{1}^{\prime \prime} \rightarrow G_{2}^{\prime \prime}\right)\right)\left(\left(\varepsilon_{2}^{\prime} \circ \operatorname{dom}\left(\varepsilon_{i}^{\rho}\right)\right) u_{i}^{\prime}:: \rho\left(G_{1}^{\prime \prime}\right)\right)\right) \in \mathcal{T}_{\rho} \llbracket G_{2}^{\prime \prime} \rrbracket
\end{aligned}
$$

Then by Lemma 6.18, as $\left.\left(\varepsilon_{1}^{\prime} ; \operatorname{dom}\left(\varepsilon_{1}^{\rho}\right)\right) ; \operatorname{dom}\left(\varepsilon_{1}\right)=\varepsilon_{1}^{\prime} ;\left(\operatorname{dom}\left(\varepsilon_{1}^{\rho}\right)\right) ; \operatorname{dom}\left(\varepsilon_{1}\right)\right)$, then if $\left(\operatorname{dom}\left(\varepsilon_{1}^{\rho}\right)\right)$; $\left.\operatorname{dom}\left(\varepsilon_{1}\right)\right)$ is not defined and $\left.\left(\operatorname{dom}\left(\varepsilon_{2}^{\rho}\right)\right) ; \operatorname{dom}\left(\varepsilon_{2}\right)\right)$ is defined, we get a contradiction as both must behave uniformly as the terms belong to $\mathcal{T}_{\rho} \llbracket G_{2}^{\prime \prime} \rrbracket$. Then if both combination of evidence fail, then the result follows immediately. Let us suppose that the combination does not fail, then

$$
\begin{gathered}
W^{\prime} . \Xi_{i} \triangleright\left(\varepsilon_{i}\left(\lambda x: G_{1 i} \cdot t_{i}\right):: \rho\left(G_{1}^{\prime \prime} \rightarrow G_{2}^{\prime \prime}\right)\right)\left(\left(\varepsilon_{i}^{\prime} ; \operatorname{dom}\left(\varepsilon_{i}^{\rho}\right)\right) u_{i}^{\prime}:: \rho\left(G_{1}^{\prime \prime}\right)\right) \longrightarrow^{*} \\
\left.W^{\prime} . \Xi_{i} \triangleright \operatorname{cod}\left(\varepsilon_{i}\right)\left(\left[\left(\left(\varepsilon_{i}^{\prime} ; \operatorname{dom}\left(\varepsilon_{i}^{\rho}\right)\right) ; \operatorname{dom}\left(\varepsilon_{i}\right)\right) u_{i}^{\prime}:: G_{1 i}\right) / x\right] t_{i}\right):: \rho\left(G_{2}^{\prime \prime}\right)
\end{gathered}
$$

So, we know that:

$$
\begin{gathered}
W^{\prime} \cdot \Xi_{1} \triangleright\left(\left(\varepsilon_{1}\left(\lambda x: G_{11} \cdot t_{1}\right):: \rho\left(G_{1}^{\prime \prime} \rightarrow G_{2}^{\prime \prime}\right)\right)\left(\left(\varepsilon_{1}^{\prime} ; \operatorname{dom}\left(\varepsilon_{i}^{\rho}\right)\right) u_{i}^{\prime}:: \rho\left(G_{1}^{\prime \prime}\right)\right) \longrightarrow^{k+1}\right. \\
\left.W^{\prime} \cdot \Xi_{1} \triangleright \operatorname{cod}\left(\varepsilon_{1}\right)\left(\left[\left(\varepsilon_{1}^{\prime} ; \operatorname{dom}\left(\varepsilon_{i}^{\rho}\right) ; \operatorname{dom}\left(\varepsilon_{1}\right)\right) u_{1}^{\prime}:: G_{11}\right) / x\right] t_{1}\right):: \rho\left(G_{2}^{\prime}\right) \longrightarrow k^{*} \\
\Xi_{1} \triangleright \operatorname{cod}\left(\varepsilon_{1}\right) v_{1}^{*}:: \rho\left(G_{2}^{\prime}\right) \longrightarrow^{k} \\
\Xi_{1} \triangleright\left(\varepsilon_{1}^{\prime \prime} ; \operatorname{cod}\left(\varepsilon_{1}\right)\right) u_{1 f}:: \rho\left(G_{2}^{\prime}\right)
\end{gathered}
$$

where $v_{1}^{\prime *}=\left(\varepsilon_{1}^{\prime \prime} ; \operatorname{cod}\left(\varepsilon_{1}\right)\right) u_{1 f}:: \rho\left(G_{2}^{\prime}\right)$.
Thus, we know that $\exists W^{\prime \prime \prime} \geq \downarrow_{l} W^{\prime}$ such that $\left(W^{\prime \prime \prime}, v_{1}^{\prime *}, v_{2}^{\prime *}\right) \in \mathcal{V}_{\rho} \llbracket G_{2}^{\prime \prime} \rrbracket, W^{\prime \prime \prime} . \Xi_{1}=\Xi_{1}$ and $W^{\prime \prime \prime} . j+1+2 k+k^{*}=\left(\downarrow_{l} W^{\prime}\right) . j$, or what is the same $W^{\prime \prime \prime} . j+1+2 k+k^{*}+l=W^{\prime} . j$. Then, we know that

$$
\left.W^{\prime} \cdot \Xi_{i} \triangleright \operatorname{cod}\left(\varepsilon_{i}\right)\left(\left[\left(\left(\varepsilon_{i}^{\prime} ;, \operatorname{dom}\left(\varepsilon_{i}^{\rho}\right)\right) ; \operatorname{dom}\left(\varepsilon_{i}\right)\right) u_{i}^{\prime}:: G_{1 i}\right) / x\right] t_{i}\right):: \rho\left(G_{2}^{\prime \prime}\right) \longrightarrow{ }^{*} W^{\prime \prime \prime} . \Xi_{i} \triangleright v_{i}^{\prime *}
$$

We instantiate the induction hypothesis in the previous result $\left(\left(W^{\prime \prime \prime}, v_{1}^{\prime *}, v_{2}^{\prime *}\right) \in \mathcal{V}_{\rho} \llbracket G_{2}^{\prime \prime} \rrbracket\right)$ with the type G_{2}^{\prime} and the evidence $\operatorname{cod}(\varepsilon) \vdash \Xi ; \Delta \vdash G_{2}^{\prime \prime} \sim G_{2}^{\prime}$, where $\operatorname{cod}\left(\varepsilon_{1}^{\rho}\right) . n=l$, then we obtain that:

$$
\left(W^{\prime \prime \prime}, \operatorname{cod}\left(\varepsilon_{1}^{\rho}\right) v_{1}^{\prime *}:: \rho\left(G_{2}^{\prime}\right), \operatorname{cod}\left(\varepsilon_{2}^{\rho}\right) v_{2}^{\prime *}:: \rho\left(G_{2}^{\prime}\right)\right)^{\prime} \in \mathcal{T}_{\rho} \llbracket G_{2}^{\prime} \rrbracket
$$

Then $v_{i}^{\prime *}$ has to have the form: $v_{i}^{\prime *}=\left(\varepsilon_{i}^{\prime \prime} \circ \operatorname{cod}\left(\varepsilon_{i}\right)\right) u_{i f}:: \rho\left(G_{2}^{\prime \prime}\right)$ form some $\varepsilon_{i}^{\prime \prime}, u_{i f}$. Then as $\left(\varepsilon_{1}^{\prime \prime} \rho \operatorname{cod}\left(\varepsilon_{1}\right)\right) \rho \operatorname{cod}\left(\varepsilon_{1}^{\rho}\right)=\varepsilon_{1}^{\prime \prime}{ }_{\rho}\left(\operatorname{cod}\left(\varepsilon_{1}\right) \subsetneq \operatorname{cod}\left(\varepsilon_{1}^{\rho}\right)\right)$, then $\left(\operatorname{cod}\left(\varepsilon_{1}\right) \rho \operatorname{cod}\left(\varepsilon_{1}^{\rho}\right)\right)$ must behave uniformly (either the two of them fail, or the two of them does not fail). Thus, we get that $\left(\downarrow_{l} W^{\prime \prime \prime}, v_{1 f}, v_{2 f}\right) \in \mathcal{V}_{\rho} \llbracket G_{2}^{\prime} \rrbracket$ where $v_{i f}=\left(\varepsilon_{i}^{\prime \prime} \circ\left(\operatorname{cod}\left(\varepsilon_{i}\right) \circ \operatorname{cod}\left(\varepsilon_{i}^{\rho}\right)\right)\right) u_{i f}:: \rho\left(G_{2}^{\prime}\right)$ and $W^{\prime \prime \prime} . j+1+2 k+2 l+k=W^{\prime} . j$. Therefore, the result immediately.

Case (Universal Type: $G=\forall X . G_{1}^{\prime \prime}$ and $G^{\prime}=\forall X . G_{1}^{\prime}$). We know that:

$$
\left(W, v_{1}, v_{2}\right) \in \mathcal{V}_{\rho} \llbracket \forall X . G_{1}^{\prime \prime} \rrbracket
$$

Where $v_{i}=\varepsilon_{i}\left(\Lambda X . t_{i}\right):: \forall X . \rho\left(G_{1}^{\prime \prime}\right)$ and $\varepsilon_{i} \vdash W . \Xi_{i} \vdash G_{i} \sim \forall X . \rho\left(G_{1}^{\prime \prime}\right)$.
We have to prove that:

$$
\left(W, \varepsilon_{1}^{\rho} v_{1}:: \forall X . \rho\left(G_{1}^{\prime}\right), \varepsilon_{2}^{\rho} v_{2}:: \forall X . \rho\left(G_{1}^{\prime}\right)\right) \in \mathcal{T}_{\rho} \llbracket \forall X . G_{1}^{\prime} \rrbracket
$$

As $\left(\varepsilon_{i} \circ \varepsilon_{i}^{\rho}\right)$ does not fail, then by the definition of $\mathcal{T}_{\rho} \llbracket \forall X . G_{1}^{\prime} \rrbracket$ we have to prove that:

$$
\left(\downarrow_{k} W,\left(\varepsilon_{1} \circ \varepsilon_{1}^{\rho}\right)\left(\Lambda X . t_{1}\right):: \forall X . \rho\left(G_{1}^{\prime}\right),\left(\varepsilon_{2} \circ \varepsilon_{2}^{\rho}\right)\left(\Lambda X . t_{2}\right):: \forall X . \rho\left(G_{1}^{\prime}\right)\right) \in \mathcal{V}_{\rho} \llbracket \forall X . G_{1}^{\prime} \rrbracket
$$

or what is the same:

$$
\begin{aligned}
& \forall W^{\prime \prime} \geq\left(\downarrow_{k} W\right) \cdot \forall t_{1}^{\prime}, t_{2}^{\prime}, G_{1}^{*}, G_{2}^{*}, \alpha, \varepsilon_{11}, \varepsilon_{21} \cdot \forall R \in \operatorname{ReL}_{W^{\prime \prime} . j}\left[G_{1}^{*}, G_{2}^{*}\right] . \\
& \left(W^{\prime \prime} \cdot \Xi_{1} \vdash G_{1}^{*} \wedge W^{\prime \prime} \cdot \Xi_{2} \vdash G_{2}^{*} \wedge\right. \\
& W^{\prime \prime} . \Xi_{1} \triangleright\left(\left(\varepsilon_{1} \circ \varepsilon_{1}^{\rho}\right) u_{1}:: \forall X . G_{1}^{\prime}\right)\left[G_{1}^{*}\right] \longrightarrow W^{\prime \prime} . \Xi_{1}, \alpha:=G_{1}^{*} \triangleright \varepsilon_{11} t_{1}^{\prime}:: G_{1}^{\prime}\left[G_{1}^{*} / X\right] \wedge \\
& \left.W^{\prime \prime} . \Xi_{2} \triangleright\left(\left(\varepsilon_{2} \circ, \varepsilon_{2}^{\rho}\right) u_{2}:: \forall X . G_{1}^{\prime}\right)\left[G_{2}^{*}\right] \longrightarrow W^{\prime \prime} . \Xi_{2}, \alpha:=G_{2}^{*} \triangleright \varepsilon_{21} t_{2}^{\prime}:: G_{1}^{\prime}\left[G_{2}^{*} / X\right]\right) \Rightarrow \\
& \left(W^{\prime \prime \prime}, t_{1}^{\prime}, t_{2}^{\prime}\right) \in \mathcal{T}_{\rho[X \mapsto \alpha]} \llbracket G_{1}^{\prime} \rrbracket
\end{aligned}
$$

where $W^{\prime \prime \prime}=\downarrow\left(W^{\prime \prime} \boxtimes\left(\alpha, G_{1}^{*}, G_{2}^{*}, R\right)\right)$. Note that by the reduction rule of type application, we obtain that:

$$
\begin{aligned}
& W^{\prime \prime} . \Xi_{i} \triangleright\left(\left(\varepsilon_{i} \circ \varepsilon_{i}^{\rho}\right) \Lambda X . t_{i}:: \forall X . \rho\left(G_{1}^{\prime}\right)\right)\left[G_{i}^{*}\right] \longrightarrow \\
& W^{\prime \prime} . \Xi_{i}, \alpha:=G_{i}^{*} \triangleright \varepsilon_{\forall X . \rho\left(G_{1}^{\prime}\right)}^{E_{i} / \alpha_{i}}\left(\left(\varepsilon_{i} \circ \varepsilon_{i}^{\rho}\right)\left[\alpha^{E_{i}}\right] t_{i}\left[\alpha^{E_{i}} / X\right]:: \rho\left(G_{1}^{\prime}\right)[\alpha / X]\right):: \rho\left(G_{1}^{\prime}\right)\left[G_{i}^{*} / X\right]
\end{aligned}
$$

where $E_{i}=\operatorname{lift}_{\left(W^{\prime \prime}: \Xi_{i}\right)}\left(G_{i}^{*}\right)$. The resulting evidences $\varepsilon_{i}{ }_{9}^{\circ} \varepsilon_{i}^{\rho}$ have the form: $\left\langle\forall X . E_{i 1}, \forall X . E_{i 2}\right\rangle$, then:

$$
\begin{gathered}
\varepsilon_{\forall X . \rho\left(G_{1}^{\prime}\right)}^{E_{i} / \alpha^{E_{i}}}\left(\left(\varepsilon_{i} \circ{ }_{9} \varepsilon_{i}^{\rho}\right)\left[\alpha^{E_{i}}\right] t_{i}\left[\alpha^{E_{i}} / X\right]:: \rho\left(G_{1}^{\prime}\right)[\alpha / X]\right):: \rho\left(G_{1}^{\prime}\right)\left[G_{i}^{*} / X\right]= \\
\quad \varepsilon_{\varepsilon_{\forall X . \rho\left(G_{1}^{\prime}\right)}^{E_{i} / \alpha^{E_{i}}}}\left(\left\langle E_{i 1}\left[\alpha^{E_{i}} / X\right], E_{i 2}\left[\alpha^{E_{i}} / X\right]\right\rangle t_{i}\left[\alpha^{E_{i}} / X\right]:: \rho\left(G_{1}^{\prime}\right)[\alpha / X]\right)
\end{gathered}
$$

Then we have to prove that:

$$
\begin{aligned}
\left(W^{\prime \prime \prime},\left(\left\langle E_{11}\left[\alpha^{E_{1}} / X\right], E_{12}\left[\alpha^{E_{1}} / X\right]\right\rangle t_{1}\left[\alpha^{E_{1}} / X\right]::\right.\right. & \left.\left.\rho\left(G_{1}^{\prime}\right)[\alpha / X]\right),\left(\left\langle E_{21}\left[\alpha^{E_{2}} / X\right], E_{22}\left[\alpha^{E_{2}} / X\right]\right\rangle t_{2}\left[\alpha^{E_{2}} / X\right]:: \rho\left(G_{1}^{\prime}\right)[\alpha / X]\right)\right) \\
& \in \mathcal{T}_{\rho[X \mapsto \alpha]} \llbracket G_{1}^{\prime} \rrbracket
\end{aligned}
$$

Also by the Proposition 6.22 we know that:

$$
\left(\varepsilon_{i} \circ \varepsilon_{i}^{\rho}\right)\left[\alpha^{E_{i}}\right]=\left(\varepsilon_{i}\left[\alpha^{E_{i}}\right]\right) \stackrel{\left(\varepsilon_{i}^{\rho}\left[\alpha^{E_{i}}\right]\right)}{ }
$$

Note that:

$$
\left(\varepsilon_{i} \circ \varepsilon_{i}^{\rho}\right)\left[\alpha^{E_{i}}\right]=\left\langle E_{i 1}\left[\alpha^{E_{i}} / X\right], E_{i 2}\left[\alpha^{E_{i}} / X\right]\right\rangle=\left(\varepsilon_{i}\left[\alpha^{E_{i}}\right]\right) \stackrel{\left(\varepsilon_{i}^{\rho}\left[\alpha^{E_{i}}\right]\right)}{ }
$$

Then we have to prove that:

$$
\begin{aligned}
\left(W^{\prime \prime \prime},\left(\varepsilon_{1}\left[\alpha^{E_{1}}\right] ; \varepsilon_{1}^{\rho}\left[\alpha^{E_{1}}\right]\right) t_{1}\left[\alpha^{E_{1}} / X\right]::\right. & \left.\left.\left.G_{1}^{\prime}[\alpha / X]\right),\left(\varepsilon_{2}\left[\alpha^{E_{2}}\right] ; \varepsilon_{2}^{\rho}\left[\alpha^{E_{2}}\right]\right) t_{2}\left[\alpha^{E_{2}} / X\right]:: \rho\left(G_{1}^{\prime}\right)[\alpha / X]\right)\right) \\
& \in \mathcal{T}_{\rho[X \mapsto \alpha]} \llbracket G_{1}^{\prime} \rrbracket
\end{aligned}
$$

We know that

$$
\begin{gathered}
\left.W^{\prime \prime \prime} . \Xi_{1} \triangleright\left(\varepsilon_{1}\left[\alpha^{E_{1}}\right] ; \varepsilon_{1}^{\rho}\left[\alpha^{E_{1}}\right]\right) t_{1}:: G_{1}^{\prime}[\alpha / X]\right) \longmapsto \longmapsto^{k^{*}} \\
\left.\Xi_{1} \triangleright\left(\varepsilon_{1}\left[\alpha^{E_{1}}\right] ; \varepsilon_{1}^{\rho}\left[\alpha^{E_{1}}\right]\right) v_{1 f}:: G_{1}^{\prime}[\alpha / X]\right) \longmapsto{ }^{k+l} \\
\Xi_{1} \triangleright v_{1}^{*}
\end{gathered}
$$

Note that by the reduction rule of type application, we obtain that:

$$
\begin{aligned}
& W^{\prime \prime} . \Xi_{i} \triangleright\left(\varepsilon_{i} \Lambda X . t_{i}:: \forall X . \rho\left(G_{1}^{\prime \prime}\right)\right)\left[G_{i}^{*}\right] \longrightarrow \\
& \qquad W^{\prime \prime} . \Xi_{i}, \alpha:=G_{i}^{*} \triangleright \varepsilon_{\forall X . \rho\left(G_{1}^{\prime \prime}\right)}^{E_{i}\left(\varepsilon_{i}\left[\alpha^{E_{i}}\right] t_{i}\left[\alpha^{E_{i}} / X\right]:: \rho\left(G_{1}^{\prime \prime}\right)[\alpha / X]\right):: \rho\left(G_{1}^{\prime \prime}\right)\left[G_{i}^{*} / X\right]}
\end{aligned}
$$

Note that the evidence ε_{i} has the form: $\left\langle\forall X . E_{i 1}^{\prime \prime}, \forall X . E_{i 2}^{\prime \prime}\right\rangle$, then:

$$
\begin{aligned}
& \varepsilon_{\forall X . \rho\left(G_{1}^{\prime \prime}\right)}^{\varepsilon_{i} / \alpha_{i}^{E_{i}}}\left(\varepsilon_{i}\left[\alpha^{E_{i}}\right] t_{i}\left[\alpha^{E_{i}} / X\right]:: \rho\left(G_{1}^{\prime \prime}\right)[\alpha / X]\right):: \rho\left(G_{1}^{\prime \prime}\right)\left[G_{i}^{*} / X\right]= \\
& \varepsilon_{\varepsilon_{\forall X . \rho\left(G_{1}^{\prime \prime}\right)}^{E_{i} / \alpha^{E_{i}}}}\left(\left\langle E_{i 1}^{\prime \prime}\left[\alpha^{E_{i}} / X\right], E_{i 2}^{\prime \prime}\left[\alpha^{E_{i}} / X\right]\right\rangle t_{i}\left[\alpha^{E_{i}} / X\right]:: \rho\left(G_{1}^{\prime \prime}\right)[\alpha / X]\right)
\end{aligned}
$$

As we know that $\left(W, v_{1}, v_{2}\right) \in \mathcal{V}_{\rho} \llbracket \forall X . G_{1}^{\prime \prime} \rrbracket$, then we can instantiate with $\forall W^{\prime \prime} \geq W, G_{1}^{*}, G_{2}^{*}, R$, $\varepsilon_{1}\left[\alpha^{E_{1}}\right] t_{1}\left[\alpha^{E_{1}} / X\right]:: \rho\left(G_{1}^{\prime \prime}\right)[\alpha / X], \varepsilon_{2}\left[\alpha^{E_{2}}\right] t_{2}\left[\alpha^{E_{2}} / X\right]:: \rho\left(G_{1}^{\prime \prime}\right)[\alpha / X], \varepsilon_{\varepsilon_{\forall X . \rho\left(G_{1}^{\prime \prime}\right)}^{E_{1} / \alpha^{E_{1}}}}$ and $\varepsilon_{\varepsilon_{\forall X . \rho\left(G_{1}^{\prime \prime}\right)}^{E_{2} / \alpha^{E_{2}}} .}$.

Then we know that:

$$
\left.\left.\left(W^{\prime \prime \prime}, \varepsilon_{1}\left[\alpha^{E_{1}}\right] t_{1}\left[\alpha^{E_{1}} / X\right]:: \rho\left(G_{1}^{\prime \prime}\right)[\alpha / X]\right), \varepsilon_{2}\left[\alpha^{E_{2}}\right] t_{2}\left[\alpha^{E_{2}} / X\right]:: \rho\left(G_{1}^{\prime \prime}\right)[\alpha / X]\right)\right) \in \mathcal{T}_{\rho[X \mapsto \alpha]} \llbracket G_{1}^{\prime \prime} \rrbracket
$$

If the following term reduces to error, then the result follows immediately.

$$
\left.W^{\prime \prime \prime} . \Xi_{1} \triangleright \varepsilon_{1}\left[\alpha^{E_{1}}\right] t_{1}\left[\alpha^{E_{1}} / X\right]:: \rho\left(G_{1}^{\prime \prime}\right)[\alpha / X]\right)
$$

If the above is not true, then the following terms reduce to values $\left(v^{\prime}{ }_{i f}\right)$ and $\exists W^{\prime \prime \prime \prime} \geq W^{\prime \prime \prime}$ such that $\left(W^{\prime \prime \prime \prime}, v^{\prime}{ }_{1 f}, v^{\prime}{ }_{2 f}\right) \in \mathcal{V}_{\rho[X \mapsto \alpha]} \llbracket G_{1}^{\prime \prime} \rrbracket$ and $W^{\prime \prime \prime \prime} . j+k^{*}+m=W^{\prime \prime \prime} . j$.

$$
\left.W^{\prime \prime \prime} . \Xi_{i} \triangleright \varepsilon_{i}\left[\alpha^{E_{i}}\right] t_{i}\left[\alpha^{E_{i}} / X\right]:: \rho\left(G_{1}^{\prime \prime}\right)[\alpha / X]\right) \longrightarrow{ }^{*} W^{\prime \prime \prime \prime} . \Xi_{i} \triangleright v_{i f}^{\prime}
$$

Note that

$$
\begin{gathered}
\left.W^{\prime \prime \prime} \cdot \Xi_{1} \triangleright \varepsilon_{1}\left[\alpha^{E_{1}}\right] t_{1}\left[\alpha^{E_{1}} / X\right]:: \rho\left(G_{1}^{\prime \prime}\right)[\alpha / X]\right) \longrightarrow \longrightarrow^{*} \\
\left.W^{\prime \prime \prime \prime} \cdot \Xi_{1} \triangleright \varepsilon_{1}\left[\alpha^{E_{1}}\right] v_{1 f}:: \rho\left(G_{1}^{\prime \prime}\right)[\alpha / X]\right) \longrightarrow{ }^{m} \\
W^{\prime \prime \prime} . \Xi_{i} \triangleright v_{1 f}^{\prime}
\end{gathered}
$$

By definition of consistency and the evidence we know that $\varepsilon[X] \vdash W^{\prime \prime \prime \prime} . \Xi ; \Delta, X \vdash G_{1}^{\prime \prime} \sim G_{1}^{\prime}$. Then we instantiate the induction hypothesis in the previous result with $G=G_{1}^{\prime}$ and $\varepsilon=\varepsilon[X]$. Calling $\rho^{\prime}=\rho[X \mapsto \alpha]$, then we obtain that:

$$
\left(W^{\prime \prime \prime \prime}, \rho_{1}^{\prime}(\varepsilon[X]) v_{1 f}:: \rho^{\prime}\left(G_{1}^{\prime}\right), \rho_{2}^{\prime}(\varepsilon[X]) v_{2 f}:: \rho^{\prime}\left(G_{1}^{\prime}\right)\right) \in \mathcal{T}_{\rho^{\prime}} \llbracket G_{1}^{\prime} \rrbracket
$$

but as $\rho_{1}^{\prime}(\varepsilon[X])=\varepsilon_{i}^{\rho}\left[\alpha^{E_{i}}\right]$ which is equivalent to

$$
\left(W^{\prime \prime \prime \prime},\left(\varepsilon_{1}^{\rho}\left[\alpha^{E_{1}}\right]\right) v_{1 f}:: \rho\left(G_{1}^{\prime}\right)[\alpha / X],\left(\varepsilon_{2}^{\rho}\left[\alpha^{E_{2}}\right]\right) v_{2 f}:: \rho\left(G_{1}^{\prime}\right)[\alpha / X]\right) \in \mathcal{T}_{\rho^{\prime}} \llbracket G_{1}^{\prime} \rrbracket
$$

Therefore,

$$
\left(\downarrow_{k} W^{\prime \prime \prime \prime}, v_{1}^{*}, v_{2}^{*}\right) \in \mathcal{T}_{\rho^{\prime}} \llbracket G_{1}^{\prime} \rrbracket
$$

where $\left(\downarrow_{k} W^{\prime \prime \prime \prime}\right) . j+k^{*}+k+m=W^{\prime \prime \prime} . j$, and the result follows immediately.
Case (Pairs: $G=G_{1} \times G 2$). Similar to function case.
Case (A)(Type Names: $G=\alpha$). This means that $\alpha \in \operatorname{dom}(\Xi)$. We know that ($W, \varepsilon_{1} u_{1}:: \alpha, \varepsilon_{2} u_{2}::$ $\alpha) \in \mathcal{V}_{\rho} \llbracket \alpha \rrbracket$ and $\varepsilon_{i} \vdash W \cdot \Xi_{i} \vdash G_{i} \sim \alpha$, then $\varepsilon_{i}=\left\langle E_{i}, \alpha^{E_{i}^{\prime}}\right\rangle$. Also we know that $\varepsilon \vdash \Xi ; \Delta \vdash \alpha \sim G^{\prime}$, therefore $\varepsilon=\left\langle\alpha^{E_{1}^{*}}, E_{2}^{*}\right\rangle$, and $\varepsilon_{i}^{\rho}=\left\langle\alpha^{E_{1}^{*}}, E_{2}^{*}\right\rangle=\varepsilon$, because ε can not have free type variable, so $\varepsilon \vdash \Xi \vdash \alpha \sim G^{\prime}$. Since $\left(W, v_{1}, v_{2}\right) \in \mathcal{V}_{\rho} \llbracket \alpha \rrbracket$, we instantiate its definition with $\varepsilon \vdash \Xi \vdash \alpha \sim G^{\prime}$, Ξ, such that $W \in \mathcal{S} \llbracket \Xi \rrbracket$ and G^{\prime}. Therefore, we know that ($W, \varepsilon v_{1}:: G^{\prime}, \varepsilon v_{2}:: G^{\prime}$), and the results follows immediately.

Case $(\mathrm{B})($ Type Variables: $G=X)$. Suppose that $\rho(X)=\alpha$. We know that $\alpha \notin \Xi$, i.e. α may not be in sync, that $\left(W, \varepsilon_{1} u_{1}:: \alpha, \varepsilon_{2} u_{2}:: \alpha\right) \in \mathcal{V}_{\rho} \llbracket X \rrbracket$ and that $\varepsilon_{i} \vdash W \cdot \Xi_{i} \vdash G_{i} \sim \alpha$, then $\varepsilon_{i}=\left\langle E_{i}, \alpha^{E_{i}^{\prime}}\right\rangle$.

Then by construction of evidences, ε must be either $\langle X, X\rangle$ or \langle ?, ? \rangle (any other case will fail when the meet is computed).

- $(\varepsilon=\langle X, X\rangle)$. Then $\varepsilon_{i}^{\rho}=\left\langle\rho_{i}(X), \rho_{i}(X)\right\rangle$. But $\rho_{i}(X)$ is the type that contains the initial precision for α. Therefore $\alpha^{E_{i}^{\prime}} \sqsubseteq \rho_{i}(X)$, and by Lemma 6.30, $\varepsilon_{i}{ }_{9} \varepsilon_{i}^{\rho}=\varepsilon_{i}$ and the result holds immediately by Lemma 6.14 (notice that if $G^{\prime}=$? then we have to show that they are related to α which is part of the premise).
- $(\varepsilon=\langle ?, ?\rangle)$. By Lemma $6.30\left(\varepsilon_{i}^{\rho}=\langle ?, ?\rangle\right), \varepsilon_{i} \circ\langle ?, ?\rangle=\varepsilon_{i}$ and the result holds immediately by Lemma 6.14.

Case $(\mathrm{C})\left(\right.$ Unknown: $G=$?). We know that $\left(W, \varepsilon_{1} u_{1}:: ~ ?, \varepsilon_{2} u_{2}:: ~ ?\right) \in \mathcal{V}_{\rho} \llbracket ? \rrbracket$ and $\varepsilon_{i} \vdash W^{\prime} \Xi_{i} \vdash G_{i} \sim$?. We are going to proceed by case analysis on ε_{i} :
(C.i) $\left(\varepsilon_{i}=\left\langle E_{i}, \alpha^{E_{i}^{\prime}}\right\rangle\right)$. Then this means we know that

$$
\left(W, \varepsilon_{1} u_{1}:: \alpha, \varepsilon_{2} u_{2}:: \alpha\right) \in \mathcal{V}_{\rho} \llbracket \alpha \rrbracket
$$

and $\varepsilon_{i} \vdash W \cdot \Xi_{i} \vdash G_{i} \sim \alpha$, then $\varepsilon_{i}=\left\langle E_{i}, \alpha^{E_{i}^{\prime}}\right\rangle$.
(a) (Case $\left.\varepsilon=\left\langle\alpha^{E_{3}}, E_{4}\right\rangle\right)$. Then as $\left\langle E_{i}, \alpha^{E_{i}^{\prime}}\right\rangle \Vdash \Xi ; \Delta \vdash G_{i} \sim$?, then by Lemma $6.27\left\langle E_{i}, \alpha^{E_{i}^{\prime}}\right\rangle \Vdash$ $\Xi ; \Delta \vdash G_{i} \sim \alpha$. Also we know that ? $\sqsubseteq G$, then $G=$?, and $\alpha \sqsubseteq G$. Finally, we reduce this case to the Case A if $\alpha \in \Xi$ or Case B if $\alpha \notin \Xi$.
(b) $(\varepsilon=\langle ?$, ? $\rangle)$. Then $G^{\prime}=$?, and does $\varepsilon_{i} \circ \stackrel{\circ}{ }=\varepsilon_{i}$. Then we have to prove that $\left(\downarrow_{k} W, \varepsilon_{1} u_{1}::\right.$?, $\left.\varepsilon_{2} u_{2}:: ?\right) \in \mathcal{V}_{\rho} \llbracket ? \rrbracket$, and as $\operatorname{const}\left(\alpha^{E_{i}^{\prime}}\right)=\alpha$ that is equivalent to prove that $\left(\downarrow_{k} W, \varepsilon_{1} u_{1}::\right.$ $\left.\alpha, \varepsilon_{2} u_{2}:: \alpha\right) \in \mathcal{V}_{\rho} \llbracket \alpha \rrbracket$ which follows by the premise and Lemma 6.14.
(c) $\left(\varepsilon=\left\langle ?, \beta^{\beta^{\prime \cdots}}\right\rangle\right)$. Where β cannot transitively point to some unsync variable. Then by definition of the transitivity operator, $\varepsilon_{i} \circ \varepsilon=\left\langle E_{i}^{\prime \prime}, \beta^{E_{i}^{\prime \prime \prime}}\right\rangle$ (where $\left\langle E_{i}, \alpha^{E_{i}^{\prime}}\right\rangle \circ$;?, $\left.\beta^{\prime \cdots}{ }^{?}\right\rangle=$ $\left.\left\langle E_{i}^{\prime \prime}, E_{i}^{\prime \prime \prime}\right\rangle\right)$. Then we have to prove that

$$
\left(\downarrow_{k} W,\left\langle E_{1}^{\prime \prime}, \beta^{E_{1}^{\prime \prime \prime}}\right\rangle u_{1}:: G^{\prime},\left\langle E_{2}^{\prime \prime}, \beta^{E_{2}^{\prime \prime \prime}}\right\rangle u_{2}:: G^{\prime}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime} \rrbracket
$$

where G^{\prime} is either ? or β. In any case this is equivalent to prove that

$$
\left(\downarrow_{k} W,\left\langle E_{1}^{\prime \prime}, \beta^{E_{1}^{\prime \prime \prime}}\right\rangle u_{1}:: \beta,\left\langle E_{2}^{\prime \prime}, \beta^{E_{2}^{\prime \prime \prime}}\right\rangle u_{2}:: \beta\right) \in \mathcal{V}_{\rho} \llbracket \beta \rrbracket
$$

Therefore, we have to prove

$$
\left(\downarrow_{k-1} W,\left\langle E_{1}^{\prime \prime}, E_{1}^{\prime \prime \prime}\right\rangle u_{1}:: G^{\prime \prime},\left\langle E_{2}^{\prime \prime}, E_{2}^{\prime \prime \prime}\right\rangle u_{2}:: G^{\prime \prime}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime \prime} \rrbracket
$$

where $G^{\prime \prime}=W \cdot \Xi_{1}(\beta)=W \cdot \Xi_{2}(\beta)$ (note that β is sync). As $\left\langle E_{i}, \alpha^{E_{i}^{\prime}}\right\rangle \circ\left\langle\right.$?, $\left.\beta^{\prime} \ldots{ }^{?}\right\rangle=\left\langle E_{i}^{\prime \prime}, E_{i}^{\prime \prime \prime}\right\rangle$, then we can reduce the demonstration to prove that:

$$
\left(\downarrow_{k-1} W,\left(\left\langle E_{1}, \alpha^{E_{1}^{\prime}}\right\rangle \circ\left\langle ?, \beta^{\prime \cdots}\right\rangle\right) u_{1}:: G^{\prime \prime},\left(\left\langle E_{2}, \alpha^{E_{2}^{\prime}}\right\rangle \circ\left\langle ?, \beta^{\prime \cdots}\right\rangle\right) u_{2}:: G^{\prime \prime}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime \prime} \rrbracket
$$

Thus, we reduce this case to this same case (note that we have base case because the sequence ends in ?).
Also, we have to prove that $\left(\forall \Xi^{\prime}, \varepsilon^{\prime}, G^{*}\right.$ such that $\left(\downarrow_{k-1} W \in \mathcal{S} \llbracket \Xi^{\prime} \rrbracket \wedge \varepsilon^{\prime} \vdash \Xi^{\prime} \vdash \beta \sim G^{*}\right)$, we get that

$$
\left.\left(\downarrow_{k-1} W, \varepsilon^{\prime}\left(\left\langle E_{1}^{\prime \prime}, \beta^{E_{1}^{\prime \prime \prime}}\right\rangle u_{1}:: \beta\right):: G^{*}, \varepsilon^{\prime}\left(\left\langle E_{2}^{\prime \prime}, \beta^{E_{2}^{\prime \prime \prime}}\right\rangle u_{2}:: \beta\right):: G^{*}\right) \in \mathcal{T}_{\rho} \llbracket G^{*} \rrbracket\right)
$$

or what is the same $\left(\left(\left\langle E_{1}^{\prime \prime}, \beta^{E_{1}^{\prime \prime \prime}}\right\rangle ; \varepsilon^{\prime}\right)\right.$ fails the result follows immediately)

$$
\left.\left(\downarrow_{k-1-k^{\prime}} W,\left(\left\langle E_{1}^{\prime \prime}, \beta^{E_{1}^{\prime \prime \prime}}\right\rangle ; \varepsilon^{\prime}\right) u_{1}:: G^{*},\left(\left\langle E_{2}^{\prime \prime}, \beta^{E_{2}^{\prime \prime \prime}}\right\rangle ; \varepsilon^{\prime}\right) u_{2}:: G^{*}\right) \in \mathcal{V}_{\rho} \llbracket G^{*} \rrbracket\right)
$$

where $\varepsilon^{\prime}=\left\langle\beta^{E_{1}^{*}}, E_{2}^{*}\right\rangle, \varepsilon^{\prime} . n=k^{\prime}$ and $G^{\prime \prime}=W^{\prime} . \Xi_{1}(\beta)=W^{\prime} . \Xi_{2}(\beta)$. By definition of transitivity and Lemma 6.30, we know that

$$
\begin{gathered}
\left\langle E_{i}^{\prime \prime}, \beta^{E_{i}^{\prime \prime \prime}}\right\rangle \circ\left\langle\beta^{E_{1}^{*}}, E_{2}^{*}\right\rangle=\left\langle E_{i}^{\prime \prime}, E_{i}^{\prime \prime \prime}\right\rangle \circ\left\langle E_{1}^{*}, E_{2}^{*}\right\rangle \\
\left.\left\langle E_{i}, \alpha^{E_{i}^{\prime}}\right\rangle \circ \stackrel{\circ}{9}, \beta^{\prime \cdots}\right\rangle=\left\langle E_{1 i}^{*}, \beta^{E_{2 i}^{*}}\right\rangle=\left\langle E_{i}^{\prime \prime}, E_{i}^{\prime \prime \prime}\right\rangle
\end{gathered}
$$

Thus $G^{\prime \prime}=\beta^{\prime}$ or $G^{\prime \prime}=?$, in any case we know that $\left(\downarrow_{k-1} W,\left\langle E_{1}^{\prime \prime}, E_{1}^{\prime \prime \prime}\right\rangle u_{1}:: \beta^{\prime},\left\langle E_{2}^{\prime \prime}, E_{2}^{\prime \prime \prime}\right\rangle u_{2}::\right.$ $\left.\beta^{\prime}\right) \in \mathcal{V}_{\rho} \llbracket \beta^{\prime} \rrbracket$.
We know that $\left\langle E_{1}^{*}, E_{2}^{*}\right\rangle \vdash \Xi^{\prime} \vdash G^{\prime \prime} \sim G^{*}$. Since $\left\langle E_{1}^{*}, E_{2}^{*}\right\rangle \vdash \Xi \vdash G^{\prime \prime} \sim G^{*}, \downarrow_{k-1} W \in \mathcal{S} \llbracket \Xi^{\prime} \rrbracket$, $\left(\downarrow_{k-1} W,\left\langle E_{1}^{\prime \prime}, E_{1}^{\prime \prime \prime}\right\rangle u_{1}:: \beta^{\prime},\left\langle E_{2}^{\prime \prime}, E_{2}^{\prime \prime \prime}\right\rangle u_{2}:: \beta^{\prime}\right) \in \mathcal{V}_{\rho} \llbracket \beta^{\prime} \rrbracket$, by the definition of $\mathcal{V}_{\rho} \llbracket \beta^{\prime} \rrbracket$, we know that (since $\left(\left\langle E_{1}^{\prime \prime}, E_{1}^{\prime \prime \prime}\right\rangle \circ \varepsilon^{\prime}\right)$ does not fail then $\left.\left(\left\langle E_{1}^{\prime \prime}, E_{1}^{\prime \prime \prime}\right\rangle \circ ; E_{1}^{*}, E_{2}^{*}\right\rangle\right)$ also does not fail by the transitivity rules and $\left.\left\langle E_{1}^{*}, E_{2}^{*}\right\rangle \vdash \Xi^{\prime} \vdash \beta^{\prime} \sim G^{*}\right)$

$$
\left.\left(\downarrow_{k-1-k^{\prime}} W,\left(\left\langle E_{1}^{\prime \prime}, E_{1}^{\prime \prime \prime}\right\rangle \circ\left\langle E_{1}^{*}, E_{2}^{*}\right\rangle\right) u_{1}:: G^{*},\left(\left\langle E_{2}^{\prime \prime}, E_{2}^{\prime \prime \prime}\right\rangle \circ\left\langle E_{1}^{*}, E_{2}^{*}\right\rangle\right) u_{2}:: G^{*}\right) \in \mathcal{V}_{\rho} \llbracket G^{*} \rrbracket\right)
$$

The result follows immediately.
(d) $\left(\varepsilon=\left\langle\right.\right.$?, $\left.\left.\beta^{?}\right\rangle\right)$. Then by definition of the transitivity operator, $\varepsilon_{i} \circ q=\left\langle E_{i}, \beta^{\alpha^{E_{i}^{\prime}}}\right\rangle$. Then we have to prove that

$$
\left(\downarrow_{k} W,\left\langle E_{1}, \beta^{\alpha^{E_{1}^{\prime}}}\right\rangle u_{1}:: G^{\prime},\left\langle E_{2}, \beta^{\alpha^{E_{2}^{\prime}}}\right\rangle u_{2}:: G^{\prime}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime} \rrbracket
$$

where G^{\prime} is either ? or β. In any case this is equivalent to prove that
$\left(\downarrow_{k} W,\left\langle E_{1}, \beta^{\alpha^{E_{1}^{\prime}}}\right\rangle u_{1}:: \beta,\left\langle E_{2}, \beta^{\alpha^{E_{2}^{\prime}}}\right\rangle u_{2}:: \beta\right) \in \mathcal{V}_{\rho} \llbracket \beta \rrbracket$
Therefore, we have to prove that
$\left(\downarrow_{k-1} W,\left\langle E_{1}, \alpha^{E_{1}^{\prime}}\right\rangle u_{1}:: G^{\prime \prime},\left\langle E_{2}, \alpha^{E_{2}^{\prime}}\right\rangle u_{2}:: G^{\prime \prime}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime \prime} \rrbracket$ where $G^{\prime \prime}=W \cdot \Xi_{1}(\beta)=W \cdot \Xi_{2}(\beta)=$? (note that β is sync). Therefore, we have to prove that $\left(\downarrow_{k-1} W,\left\langle E_{1}, \alpha^{E_{1}^{\prime}}\right\rangle u_{1}:: \alpha,\left\langle E_{2}, \alpha^{E_{2}^{\prime}}\right\rangle u_{2}::\right.$ $\alpha) \in \mathcal{V}_{\rho} \llbracket \alpha \rrbracket$ which follows immediately by premise and Lemma 6.14.
Also, we have to prove that $\left(\forall \Xi^{\prime}, \varepsilon^{\prime}, G^{*}\right.$ such that $\left(\downarrow_{k-1} W \in \mathcal{S} \llbracket \Xi^{\prime} \rrbracket \wedge \varepsilon^{\prime} \vdash \Xi^{\prime} \vdash \beta \sim G^{*}\right)$, we get that

$$
\left.\left(\downarrow_{k-1} W, \varepsilon^{\prime}\left(\left\langle E_{1}, \beta^{\alpha^{E_{1}^{\prime}}}\right\rangle u_{1}:: \beta\right):: G^{*}, \varepsilon^{\prime}\left(\left\langle E_{2}, \beta^{\alpha^{E_{2}^{\prime}}}\right\rangle u_{2}:: \beta\right):: G^{*}\right) \in \mathcal{T}_{\rho} \llbracket G^{*} \rrbracket\right)
$$

or what is the same $\left(\left(\left\langle E_{1}, \beta^{\alpha_{1}^{E_{1}^{\prime}}}\right\rangle ; \varepsilon^{\prime}\right)\right.$ fails the result follows immediately $)$

$$
\left.\left(\downarrow_{k-1-k^{\prime}} W,\left(\left\langle E_{1}, \beta^{\alpha^{E_{1}^{\prime}}}\right\rangle ; \varepsilon^{\prime}\right) u_{1}:: G^{*},\left(\left\langle E_{2}, \beta^{\alpha^{E_{2}^{\prime}}}\right\rangle ; \varepsilon^{\prime}\right) u_{2}:: G^{*}\right) \in \mathcal{V}_{\rho} \llbracket G^{*} \rrbracket\right)
$$

where $\varepsilon^{\prime}=\left\langle\beta^{E_{1}^{*}}, E_{2}^{*}\right\rangle, \varepsilon^{\prime} . n=k^{\prime}$ and $G^{\prime \prime}=W^{\prime} . \Xi_{1}(\beta)=W^{\prime} . \Xi_{2}(\beta)=$?. By definition of transitivity and Lemma 6.30, we know that

$$
\left\langle E_{i}, \beta^{\alpha^{E_{i}^{\prime}}}\right\rangle \circ\left\langle\beta^{E_{1}^{*}}, E_{2}^{*}\right\rangle=\left\langle E_{i}, \alpha^{E_{i}^{\prime}}\right\rangle \circ\left\langle E_{1}^{*}, E_{2}^{*}\right\rangle
$$

We know that $\left\langle E_{1}^{*}, E_{2}^{*}\right\rangle \vdash \Xi^{\prime} \vdash G^{\prime \prime} \sim G^{*}$. Since $\left\langle E_{1}^{*}, E_{2}^{*}\right\rangle \vdash \Xi \vdash G^{\prime \prime} \sim G^{*}, \downarrow_{k-1} W \in \mathcal{S} \llbracket \Xi^{\prime} \rrbracket$, $\left(\downarrow_{k-1} W,\left\langle E_{1}, \alpha^{E_{1}^{\prime}}\right\rangle u_{1}:: \alpha,\left\langle E_{2}, \alpha^{E_{2}^{\prime}}\right\rangle u_{2}:: \alpha\right) \in \mathcal{V}_{\rho} \llbracket \alpha \rrbracket$, by the definition of $\mathcal{S} \llbracket \Xi \rrbracket \alpha$, we know that (since $\left(\left\langle E_{1}, \alpha^{E_{1}^{\prime}}\right\rangle ; \varepsilon^{\prime}\right)$ does not fail then $\left(\left\langle E_{1}, \alpha^{E_{1}^{\prime}}\right\rangle \circ\left\langle E_{1}^{*}, E_{2}^{*}\right\rangle\right)$ also does not fail by the transitivity rules and $\left.\left\langle E_{1}^{*}, E_{2}^{*}\right\rangle \vdash \Xi^{\prime} \vdash \alpha \sim G^{*}\right)$

$$
\left.\left(\downarrow_{k-1-k^{\prime}} W,\left(\left\langle E_{1}, \alpha^{E_{1}^{\prime}}\right\rangle \circ\left\langle E_{1}^{*}, E_{2}^{*}\right\rangle\right) u_{1}:: G^{*},\left(\left\langle E_{2}, \alpha^{E_{2}^{\prime}}\right\rangle \circ\left\langle E_{1}^{*}, E_{2}^{*}\right\rangle\right) u_{2}:: G^{*}\right) \in \mathcal{V}_{\rho} \llbracket G^{*} \rrbracket\right)
$$

The result follows immediately.
(C.ii) $\left(\varepsilon_{i}=\left\langle H_{i 1}, H_{i 2}\right\rangle\right)$. Let $G^{\prime \prime}=\operatorname{const}\left(H_{i 2}\right)$, and we know that $G^{\prime \prime} \in$ HeadType. By unfolding of the logical relation for ?, we also know that

$$
\left(W,\left\langle H_{11}, H_{12}\right\rangle u_{1}:: G^{\prime \prime},\left\langle H_{21}, H_{22}\right\rangle u_{2}:: G^{\prime \prime}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime \prime} \rrbracket
$$

and we have to prove that

$$
\left(\downarrow_{k} W,\left(\left\langle H_{11}, H_{12}\right\rangle ; \varepsilon_{1}^{\rho}\right) u_{1}:: G^{\prime},\left(\left\langle H_{21}, H_{22}\right\rangle ; \varepsilon_{2}^{\rho}\right) u_{2}:: G^{\prime}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime} \rrbracket
$$

Note that for consistent transitivity to hold, then ε has to take the following forms:
(a) $\varepsilon=\left\langle H_{3}, E_{4}\right\rangle$. Then as $\varepsilon \Vdash \Xi$; $\Delta \vdash$? $\sim G^{\prime}$, by Lemma 6.27, $\varepsilon \Vdash \Xi ; \Delta \vdash \operatorname{const}\left(H_{3}\right) \sim G^{\prime}$, and we proceed just like Case D, where $G \in \operatorname{HeadType}\left(G=G^{\prime \prime}\right)$.
(b) $\varepsilon=\langle$?, ? \rangle. Then $G^{\prime}=$? and $\left\langle H_{i 1}, H_{i 2}\right\rangle \circ\langle ?, ?\rangle=\left\langle H_{i 1}, H_{i 2}\right\rangle$. The result follows immediately by premise and Lemma 6.14.
(c) $\varepsilon=\left\langle\right.$?, $\left.\alpha^{?}\right\rangle$. Then we know that $W \cdot \Xi_{i}(\alpha)=$?, and by inspection of the consistent transitivity rules, $\left\langle H_{i 1}, H_{i 2}\right\rangle \circ\left\langle\right.$?, $\left.\alpha^{?}\right\rangle=\left\langle H_{i 1}, \alpha^{H_{i 2}}\right\rangle$. Then by definition of the interpretation of G^{\prime}, which may be ? or α), in any case, we have to prove that
$\left(\downarrow_{k} W,\left\langle H_{11}, \alpha^{H_{12}}\right\rangle u_{1}:: \alpha,\left\langle H_{21}, \alpha^{H_{22}}\right\rangle u_{2}:: \alpha\right) \in \mathcal{V}_{\rho} \llbracket \alpha \rrbracket$
Therefore, we have to prove that $\left(\downarrow_{k-1} W,\left\langle H_{11}, H_{12}\right\rangle u_{1}:: ?,\left\langle H_{21}, H_{22}\right\rangle u_{2}:: ~ ?\right) \in \mathcal{V}_{\rho} \llbracket ? \rrbracket$ which follows by premise and Lemma 6.14.

Also, we have to prove that $\left(\forall \Xi^{\prime}, \varepsilon^{\prime}, G^{*}\right.$ such that $\left(\downarrow_{k-1} W \in \mathcal{S} \llbracket \Xi^{\prime} \rrbracket \wedge \varepsilon^{\prime} \vdash \Xi^{\prime} \vdash \beta \sim G^{*}\right)$, we get that

$$
\left.\left(\downarrow_{k-1} W, \varepsilon^{\prime}\left(\left\langle H_{11}, \alpha^{H_{12}}\right\rangle u_{1}:: \alpha\right):: G^{*}, \varepsilon^{\prime}\left(\left\langle H_{21}, \alpha^{H_{22}}\right\rangle u_{2}:: \alpha\right):: G^{*}\right) \in \mathcal{T}_{\rho} \llbracket G^{*} \rrbracket\right)
$$

or what is the same $\left(\left(\left\langle H_{11}, \alpha^{H_{12}}\right\rangle ; \varepsilon^{\prime}\right)\right.$ fails the result follows immediately $)$

$$
\left.\left(\downarrow_{k-1-k^{\prime}} W,\left(\left\langle H_{11}, \alpha^{H_{12}}\right\rangle ; \varepsilon^{\prime}\right) u_{1}:: G^{*},\left(\left\langle H_{21}, \alpha^{H_{22}}\right\rangle ; \varepsilon^{\prime}\right) u_{2}:: G^{*}\right) \in \mathcal{V}_{\rho} \llbracket G^{*} \rrbracket\right)
$$

where $\varepsilon^{\prime}=\left\langle\alpha^{H_{1}^{*}}, E_{2}^{*}\right\rangle, \varepsilon^{\prime} . n=k^{\prime}$. By definition of transitivity and Lemma 6.30, we know that

$$
\left\langle H_{i 1}, \alpha^{H_{i 2}}\right\rangle \circ\left\langle\alpha^{H_{1}^{*}}, E_{2}^{*}\right\rangle=\left\langle H_{i 1}, H_{i 2}\right\rangle \circ\left\langle H_{1}^{*}, E_{2}^{*}\right\rangle
$$

Therefore, we have to prove that
$\left.\left(\downarrow_{k-1-k^{\prime}} W,\left(\left\langle H_{11}, H_{12}\right\rangle \circ\left\langle H_{1}^{*}, E_{2}^{*}\right\rangle\right) u_{1}:: G^{*},\left(\left\langle H_{21}, H_{22}\right\rangle \circ\left\langle H_{1}^{*}, E_{2}^{*}\right\rangle\right) u_{2}:: G^{*}\right) \in \mathcal{V}_{\rho} \llbracket G^{*} \rrbracket\right)$
We know that $\left\langle E_{1}^{*}, E_{2}^{*}\right\rangle \vdash \Xi^{\prime} \vdash ? \sim G^{*}$. Since $\left\langle E_{1}^{*}, E_{2}^{*}\right\rangle \vdash \Xi \vdash ? \sim G^{*}, \downarrow_{k-1} W \in \mathcal{S} \llbracket \Xi^{\prime} \rrbracket$, we follow by this Case(a), but with evidence $\left\langle H_{1}^{*}, E_{2}^{*}\right\rangle$. The result follows immediately.
(d) $\varepsilon=\left\langle\right.$?, $\left.\alpha^{\beta^{E_{4}}}\right\rangle$. Then we know that $W . \Xi_{i}(\alpha) \in\{\beta, ?\}\left(W \cdot \Xi_{i}(\alpha)=G_{123}\right)$ and by inspection of the consistent transitivity rules, $\left\langle H_{i 1}, H_{i 2}\right\rangle \circ \circ\left\langle\right.$?, $\left.\alpha^{\beta^{E_{i 4}}}\right\rangle=\left\langle H_{i 1}^{\prime}, \alpha^{\beta^{E_{i 4}^{\prime}}}\right\rangle$, where $\left\langle H_{i 1}, H_{i 2}\right\rangle$; $\left\langle ?, E_{i 4}\right\rangle=\left\langle H_{i 1}, E_{i 4}^{\prime}\right\rangle$.
Then by definition of the interpretation of α (after one or two unfolding of $G^{\prime}=$?), we have to prove that
$\left.\left(\downarrow_{k-1} W,\left(\left\langle H_{11}^{\prime}, \beta^{E_{14}^{\prime}}\right\rangle u_{1}:: G_{123}\right),\left(\left\langle H_{21}^{\prime}, \beta^{E_{24}^{\prime}}\right\rangle u_{2}:: G_{123}\right)\right) \in \mathcal{T}_{\rho} \llbracket G_{123} \rrbracket\right)$
or what is the same

$$
\begin{aligned}
& \left(\downarrow_{k-1} W,\left(\left\langle H_{11}, H_{12}\right\rangle ;\left\langle ?, \beta^{E_{14}}\right\rangle\right) u_{1}:: \beta,\right. \\
& \left.\left(\left\langle H_{21}, H_{22}\right\rangle ;\left\langle ?, \beta^{E_{24}}\right\rangle\right) u_{2}:: \beta\right) \in \mathcal{V}_{\rho} \llbracket \beta \rrbracket
\end{aligned}
$$

and then we proceed to the same case one more time (notice that the recursion is finite, until we get to the previous sub case).
Also, we have to prove that $\left(\forall \Xi^{\prime}, \varepsilon^{\prime}, G^{*}\right.$ such that $\left(\downarrow_{k-1} W \in \mathcal{S} \llbracket \Xi^{\prime} \rrbracket \wedge \varepsilon^{\prime} \vdash \Xi^{\prime} \vdash \alpha \sim G^{*}\right)$, we get that
or what is the same $\left(\left(\left\langle H_{11}^{\prime}, \alpha^{E_{14}^{\prime}}\right\rangle ; \varepsilon^{\prime}\right)\right.$ fails the result follows immediately $)$
where $\varepsilon^{\prime}=\left\langle\alpha^{E_{1}^{*}}, E_{2}^{*}\right\rangle, \varepsilon^{\prime} . n=k^{\prime}$. By definition of transitivity and Lemma 6.30, we know that

$$
\left.\left\langle H_{i 1}^{\prime}, \alpha^{\beta^{E_{i 4}^{\prime}}}\right\rangle \circ ; \alpha^{E_{1}^{*}}, E_{2}^{*}\right\rangle=\left\langle H_{i 1}^{\prime}, \beta^{E_{i 2}^{\prime}}\right\rangle \circ\left\langle E_{1}^{*}, E_{2}^{*}\right\rangle
$$

Therefore, we have to prove that
$\left.\left(\downarrow_{k-1-k^{\prime}} W,\left(\left\langle H_{11}^{\prime}, \beta^{E_{14}^{\prime}}\right\rangle \circ\left\langle E_{1}^{*}, E_{2}^{*}\right\rangle\right) u_{1}:: G^{*},\left(\left\langle H_{21}, \beta^{E_{24}}\right\rangle \circ\left\langle E_{1}^{*}, E_{2}^{*}\right\rangle\right) u_{2}:: G^{*}\right) \in \mathcal{V}_{\rho} \llbracket G^{*} \rrbracket\right)$
We know that $\left\langle E_{1}^{*}, E_{2}^{*}\right\rangle \vdash \Xi^{\prime} \vdash G_{123} \sim G^{*}$. Since $\left\langle E_{1}^{*}, E_{2}^{*}\right\rangle \vdash \Xi \vdash G_{123} \sim G^{*}, \downarrow_{k-1} W \in \mathcal{S} \llbracket \Xi^{\prime} \rrbracket$, and $\left.\left(\downarrow_{k-1} W,\left(\left\langle H_{11}^{\prime}, \beta^{E_{14}^{\prime}}\right\rangle u_{1}:: G_{123}\right),\left(\left\langle H_{21}^{\prime}, \beta^{E_{24}^{\prime}}\right\rangle u_{2}:: G_{123}\right)\right) \in \mathcal{T}_{\rho} \llbracket G_{123} \rrbracket\right)$, by instantiating the definition of $\mathcal{V}_{\rho} \llbracket \beta \rrbracket$, the result follows immediately.

Case (D) (Head Types: $G \in$ HeadType). We know that ($\left.W, \varepsilon_{1} u_{1}:: \rho(G), \varepsilon_{2} u_{2}:: \rho(G)\right) \in \mathcal{V}_{\rho} \llbracket G \rrbracket$ and $\varepsilon_{i} \vdash W . \Xi_{i} \vdash G_{i} \sim G$. Also $\varepsilon_{i}=\left\langle H_{i 1}, H_{i 2}\right\rangle$, for some $H_{i 1}, H_{i 2}$. We proceed by case analysis on G^{\prime} and ε.
(D.i) $\left(\varepsilon=\left\langle H_{3}, \alpha^{E_{4}}\right\rangle\right)$. Then $G^{\prime}=\alpha$, or $G^{\prime}=$?. Notice that as $\alpha^{E_{4}}$ cannot have free type variables therefore H_{3} neither. Then $\varepsilon=\rho_{i}(\varepsilon)$. As α is sync, then let us call $G^{\prime \prime}=W . \Xi_{i}(\alpha)$. In either case $G^{\prime}=\alpha$, or $G^{\prime}=$?, what we have to prove boils down to

$$
\left(\downarrow_{k} W,\left(\varepsilon_{1} \circ\left\langle H_{3}, \alpha^{E_{4}}\right\rangle\right) u_{1}:: \alpha,\left(\varepsilon_{2} \circ\left\langle H_{3}, \alpha^{E_{4}}\right\rangle\right) u_{2}:: \alpha\right) \in \mathcal{V}_{\rho} \llbracket \alpha \rrbracket
$$

Therefore, we have to prove that

$$
\left(\downarrow_{k-1} W,\left(\varepsilon_{1} \circ\left\langle H_{3}, E_{4}\right\rangle\right) u_{1}:: G^{\prime \prime},\left(\varepsilon_{2} \circ\left\langle H_{3}, E_{4}\right\rangle\right) u_{2}:: G^{\prime \prime}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime \prime} \rrbracket
$$

Then we proceed by case analysis on ε :

- (Case $\varepsilon=\left\langle H_{3}, \alpha^{\beta^{E_{4}}}\right\rangle$). We know that $\alpha \sqsubseteq G^{\prime}$ and that $\left\langle H_{3}, \alpha^{\beta^{E_{4}}}\right\rangle \Vdash \Xi ; \Delta \vdash G \sim G^{\prime}$, then by Lemma 6.27, we know that $\left\langle H_{3}, \alpha^{\beta^{E_{4}}}\right\rangle \vdash \Xi ; \Delta \vdash G \sim \alpha$. Also by Lemma 6.29, $\left\langle H_{3}, \beta^{E_{4}}\right\rangle \vdash \Xi ; \Delta \vdash G \sim G^{\prime \prime}$. As $\beta^{E_{4}} \sqsubseteq G^{\prime \prime}$, then $G^{\prime \prime}$ can either be ? or β.
If $G^{\prime \prime}=$?, then by definition of $\mathcal{V}_{\rho} \llbracket ? \rrbracket$, we have to prove that the resulting values belong to $\mathcal{V}_{\rho} \llbracket \beta \rrbracket$. Also as $\left\langle H_{3}, \beta^{E_{4}}\right\rangle \vdash \Xi ; \Delta \vdash G \sim$?, by Lemma 6.27, $\left\langle H_{3}, \beta^{E_{4}}\right\rangle \vdash \Xi ; \Delta \vdash G \sim \beta$, and then we proceed just like this case once again (this is process is finite as there are no circular references by construction and it ends up in something different to a type name).
If $G^{\prime \prime}=\beta$ we use an analogous argument as for $G^{\prime \prime}=$?.
- (Case $\left.\varepsilon=\left\langle H_{3}, \alpha^{H_{4}}\right\rangle\right)$. Then we have to prove that

$$
\left(\downarrow_{k-1} W,\left(\varepsilon_{1} \circ\left\langle H_{3}, H_{4}\right\rangle\right) u_{1}:: G^{\prime \prime},\left(\varepsilon_{2} \circ\left\langle H_{3}, H_{4}\right\rangle\right) u_{2}:: G^{\prime \prime}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime \prime} \rrbracket
$$

By Lemma 6.29, $\left\langle H_{3}, H_{4}\right\rangle \vdash \Xi ; \Delta \vdash G \sim G^{\prime \prime}$. Then if $G^{\prime \prime}=$?, we proceed as the case $G \in \operatorname{HeadType}, G^{\prime}=$? with $\varepsilon=\left\langle H_{3}, H_{4}\right\rangle$ (Case (D.ii)). If $G^{\prime \prime} \in$ HeadType, we proceed as the case $G \in$ HeadType, $G^{\prime} \in \operatorname{HeadType}$ with $\varepsilon=\left\langle H_{3}, H_{4}\right\rangle$, where $H_{3}, H_{4} \in$ HeadType (Case (D.iii)).
Also, we have to prove that $\left(\forall \Xi^{\prime}, \varepsilon^{\prime}, G^{*}\right.$ such that $\left(\downarrow_{k} W \in \mathcal{S} \llbracket \Xi^{\prime} \rrbracket \wedge \varepsilon^{\prime} \vdash \Xi^{\prime} \vdash \alpha \sim G^{*}\right) \wedge \varepsilon^{\prime}=$ $\left\langle\alpha^{E_{5}}, E_{6}\right\rangle \wedge \varepsilon^{\prime} . n=k^{\prime}$, we get that

$$
\left.\left(\downarrow_{k} W, \varepsilon^{\prime}\left(\left(\varepsilon_{1} \circ\left\langle H_{3}, \alpha^{H_{4}}\right\rangle\right) u_{1}:: \alpha\right):: G^{*}, \varepsilon^{\prime}\left(\left(\varepsilon_{2} \circ\left\langle H_{3}, \alpha^{H_{4}}\right\rangle\right) u_{2}:: \alpha\right):: G^{*}\right) \in \mathcal{T}_{\rho} \llbracket G^{*} \rrbracket\right)
$$

or what is the same $\left(\left(\left(\varepsilon_{1} \circ\left\langle H_{3}, H_{4}\right\rangle\right) \%\left\langle E_{5}, E_{6}\right\rangle\right)\right.$ fails the result follows immediately)
$\left.\left(\downarrow_{k-k^{\prime}} W,\left(\varepsilon_{1} \circ\left(\left\langle H_{3}, H_{4}\right\rangle \circ\left\langle E_{5}, E_{6}\right\rangle\right)\right) u_{1}:: G^{*},\left(\varepsilon_{2} \circ\left(\left\langle H_{3}, H_{4}\right\rangle \circ\left\langle E_{5}, E_{6}\right\rangle\right)\right) u_{2}:: G^{*}\right) \in \mathcal{V}_{\rho} \llbracket G^{*} \rrbracket\right)$
where $\left(\left\langle H_{3}, H_{4}\right\rangle \circ\left\langle E_{5}, E_{6}\right\rangle\right) . n=\left(k+k^{\prime}\right)$ We know that $\left(W, \varepsilon_{1} u_{1}:: \rho(G), \varepsilon_{2} u_{2}:: \rho(G)\right) \in \mathcal{V}_{\rho} \llbracket G \rrbracket$, therefore $\left(\downarrow_{k} W, \varepsilon_{1} u_{1}:: \rho(G), \varepsilon_{2} u_{2}:: \rho(G)\right) \in \mathcal{V}_{\rho} \llbracket G \rrbracket$, by Lemma 6.14, where now $\varepsilon_{1} \cdot n=l+k$. Then we apply the induction hypothesis on $\left(\downarrow_{k} W, \varepsilon_{1} u_{1}:: \rho(G), \varepsilon_{2} u_{2}:: \rho(G)\right) \in \mathcal{V}_{\rho} \llbracket G \rrbracket$ and the evidence $\left(\left\langle H_{3}, H_{4}\right\rangle \circ \stackrel{ }{\circ}\left\langle G_{5}, G_{6}\right\rangle\right)$, but where $\left(\left\langle H_{3}, H_{4}\right\rangle \stackrel{\circ}{\circ}\left\langle G_{5}, G_{6}\right\rangle\right) . n=k^{\prime}$. Therefore the results follows immediately:
$\left.\left(\downarrow_{k-k^{\prime}} W,\left(\varepsilon_{1} \circ\left(\left\langle H_{3}, H_{4}\right\rangle \circ\left\langle G_{5}, G_{6}\right\rangle\right)\right) u_{1}:: G^{*},\left(\varepsilon_{2} \circ\left(\left\langle H_{3}, H_{4}\right\rangle \stackrel{\circ}{\circ}\left\langle G_{5}, G_{6}\right\rangle\right)\right) u_{2}:: G^{*}\right) \in \mathcal{V}_{\rho} \llbracket G^{*} \rrbracket\right)$
(D.ii) $\left(G^{\prime}=?, \varepsilon=\left\langle H_{3}, H_{4}\right\rangle\right)$. We have to prove that

$$
\left(\downarrow_{k} W,\left(\varepsilon_{1} \circ \rho_{1}(\varepsilon)\right) u_{1}:: ?,\left(\varepsilon_{2} \circ \rho_{2}(\varepsilon)\right) u_{2}:: ?\right) \in \mathcal{V}_{\rho} \llbracket ? \rrbracket
$$

which is equivalent to prove that

$$
\left(\downarrow_{k} W,\left(\varepsilon_{1} \circ \rho_{1}(\varepsilon)\right) u_{1}:: H,\left(\varepsilon_{2} \circ \rho_{2}(\varepsilon)\right) u_{2}:: H\right) \in \mathcal{V}_{\rho} \llbracket H \rrbracket
$$

for $H=\operatorname{const}\left(H_{i 2}\right)$ (and $\left.H \in \operatorname{HeadType}\right) . ~ B u t ~ n o t i c e ~ t h a t ~ a s ~_{\varepsilon}^{\vdash} \Xi ; \Delta \vdash G \sim$?, then as $H_{4} \sqsubseteq H \sqsubseteq$?, then by Lemma 6.27, $\varepsilon \vdash \Xi ; \Delta \vdash G \sim H$, then we proceed just like the case $G \in \operatorname{HeadType}$ and $G^{\prime} \in \operatorname{HeadType}$ (Case (D.iii)).
(D.iii) ($\left.G^{\prime} \in \operatorname{HeadType}\right)$. These cases are already analyzed, by structural analysis of types (Case $G=G_{1}^{\prime \prime} \rightarrow G_{2}^{\prime \prime}$ and $\left.G^{\prime}=G_{1}^{\prime} \rightarrow G_{2}^{\prime}\right),\left(\right.$ Case $G=\forall X . G_{1}^{\prime \prime}$ and $\left.G^{\prime}=\forall X . G_{1}^{\prime}\right)$, (Case $G=\left\langle G_{1}^{\prime \prime}, G_{2}^{\prime \prime}\right\rangle$ and $\left.G^{\prime}=\left\langle G_{1}^{\prime}, G_{2}^{\prime}\right\rangle\right)$ and (Case $G=B$ and $G^{\prime}=B$).

Lemma 10.5 (Ascriptions Preserve Relations). If $\left(W, v_{1}, v_{2}\right) \in \mathcal{V}_{\rho} \llbracket G \rrbracket, \varepsilon \Vdash \Xi ; \Delta \vdash G \sim G^{\prime}$, $W \in \mathcal{S} \llbracket \Xi \rrbracket$, and $(W, \rho) \in \mathcal{D} \llbracket \Delta \rrbracket$, then $\left(W, \rho_{1}(\varepsilon) v_{1}:: \rho\left(G^{\prime}\right), \rho_{2}(\varepsilon) v_{2}:: \rho\left(G^{\prime}\right)\right) \in \mathcal{T}_{\rho} \llbracket G^{\prime} \rrbracket$.

Proof. Direct by Prop. 6.17.
Lemma 6.18 (Associativity of the evidence).

$$
\left(\varepsilon_{1} \circ \varepsilon_{2}\right) \stackrel{q}{9}=\varepsilon_{3} \circ\left(\varepsilon_{2} \circ \varepsilon_{3}\right)
$$

Proof. By induction on the structure of evidences.
$\operatorname{Case}\left(\varepsilon_{1}=\left\langle E_{11}, \alpha^{E_{12}}\right\rangle, \varepsilon_{2}=\left\langle\alpha^{E_{21}}, E_{22}\right\rangle, \varepsilon_{3}=\left\langle E_{31}, E_{32}\right\rangle\right)$. By definition of consistent transitivity, we know that

- $\left(\varepsilon_{1} \circ \varepsilon_{2}\right) \stackrel{\circ}{\circ} \varepsilon_{3}=\left(\left\langle E_{11}, E_{12}\right\rangle \stackrel{\circ}{\circ}\left\langle E_{21}, E_{22}\right\rangle\right) \stackrel{\circ}{\circ}\left\langle E_{31}, E_{32}\right\rangle$
- $\varepsilon_{1} \circ\left(\varepsilon_{2} \circ \varepsilon_{3}\right)=\left\langle E_{11}, E_{12}\right\rangle \circ\left(\left\langle E_{21}, E_{22}\right\rangle \circ\left\langle E_{31}, E_{32}\right\rangle\right)$

Then by the induction hypothesis $\left(\left\langle E_{11}, E_{12}\right\rangle \circ\left\langle E_{21}, E_{22}\right\rangle\right) \circ\left\langle E_{31}, E_{32}\right\rangle=\left\langle E_{11}, E_{12}\right\rangle \circ$ $\left(\left\langle E_{21}, E_{22}\right\rangle\right.$ \% $\left\langle E_{31}, E_{32}\right\rangle$), and the result follows immediately.
$\operatorname{Case}\left(\varepsilon_{1}=\left\langle E_{11}, E_{12}\right\rangle, \varepsilon_{2}=\left\langle E_{21}, \alpha^{E_{22}}\right\rangle, \varepsilon_{3}=\left\langle\alpha^{E_{31}}, E_{32}\right\rangle\right)$. Similar to the previous.
Case $\left(\varepsilon_{1}=\left\langle\alpha^{E_{11}}, E_{12}\right\rangle, \varepsilon_{2}=\left\langle E_{21}, E_{22}\right\rangle, \varepsilon_{3}=\left\langle E_{31}, E_{32}\right\rangle\right)$. By definition of consistent transitivity, we know that

- $\left(\varepsilon_{1} \circ \varepsilon_{2}\right) \stackrel{\circ}{\circ} \varepsilon_{3}=\left\langle\alpha^{E_{1}}, E_{2}\right\rangle \stackrel{\circ}{\circ}\left\langle E_{31}, E_{32}\right\rangle=\left\langle\alpha^{E_{1}^{\prime}}, E_{2}^{\prime}\right\rangle$, where $\left.\left\langle E_{1}, E_{2}\right\rangle=\left(\left\langle E_{11}, E_{12}\right\rangle \circ \stackrel{E_{21}}{ }, E_{22}\right\rangle\right)$, $\left\langle E_{1}^{\prime}, E_{2}^{\prime}\right\rangle=\left(\left\langle E_{11}, E_{12}\right\rangle \stackrel{\circ}{\circ}\left\langle E_{21}, E_{22}\right\rangle\right) \circ\left\langle E_{31}, E_{32}\right\rangle$.
- $\varepsilon_{1} \stackrel{\circ}{9}\left(\varepsilon_{2} \circ \varepsilon_{3}\right)=\left\langle\alpha^{E_{11}}, E_{12}\right\rangle \stackrel{\circ}{\circ}\left(\left\langle E_{21}, E_{22}\right\rangle \circ\left\langle E_{31}, E_{32}\right\rangle\right)$
- Note that by the induction hypothesis $\left\langle E_{1}^{\prime}, E_{2}^{\prime}\right\rangle=\left(\left\langle E_{11}, E_{12}\right\rangle \stackrel{ }{9}\left\langle E_{21}, E_{22}\right\rangle\right) \stackrel{\circ}{\circ}\left\langle E_{31}, E_{32}\right\rangle=$ $\left.\left\langle E_{11}, E_{12}\right\rangle \circ \stackrel{\left(\left\langle E_{21}, E_{22}\right\rangle \circ\right.}{9}\left\langle E_{31}, E_{32}\right\rangle\right)$
Then, the result follows immediately because $\left\langle\alpha^{E_{11}}, E_{12}\right\rangle \circ\left(\left\langle E_{21}, E_{22}\right\rangle \circ\left\langle E_{31}, E_{32}\right\rangle\right)=\left\langle\alpha^{E_{1}^{\prime}}, E_{2}^{\prime}\right\rangle$.
$\operatorname{Case}\left(\varepsilon_{1}=\left\langle E_{11}, E_{12}\right\rangle, \varepsilon_{2}=\left\langle E_{21}, E_{22}\right\rangle, \varepsilon_{3}=\left\langle E_{31}, \alpha^{E_{32}}\right\rangle\right)$. Similar to the previous.
$\operatorname{Case}\left(\varepsilon_{1}=\langle ?, ?\rangle, \varepsilon_{2}=\left\langle E_{21}, E_{22}\right\rangle, \varepsilon_{3}=\left\langle E_{31}, E_{32}\right\rangle\right)$. Trivially, by definition of consistent transitivity.
Case $\left(\varepsilon_{1}=\left\langle E_{11}, E_{12}\right\rangle, \varepsilon_{2}=\langle ?, ?\rangle, \varepsilon_{3}=\left\langle E_{31}, E_{32}\right\rangle\right)$. Trivially, by definition of consistent transitivity.
Case $\left(\varepsilon_{1}=\left\langle E_{11}, E_{12}\right\rangle, \varepsilon_{2}=\left\langle E_{21}, E_{22}\right\rangle, \varepsilon_{3}=\langle ?, ?\rangle\right)$. Trivially, by definition of consistent transitivity.
Case $\left(\varepsilon_{1}=\left\langle E_{11}, E_{12}\right\rangle, \varepsilon_{2}=\left\langle E_{21}, E_{22}\right\rangle, \varepsilon_{3}=\langle ?, ?\rangle\right)$. Trivially, by definition of consistent transitivity.
The other cases are pretty similar.

Lemma 6.19. If $\left(W, t_{1}, t_{2}\right) \in \mathcal{T}_{\rho} \llbracket G \rrbracket$, then $\left(\downarrow W, t_{1}, t_{2}\right) \in \mathcal{T}_{\rho} \llbracket G \rrbracket$
Proof. By definition of $\mathcal{T} \Omega \llbracket G \rrbracket$.
$\operatorname{Proposition}$ 6.20. $\operatorname{dom}\left(\varepsilon_{1}{ }_{9} \varepsilon_{2}\right)=\operatorname{dom}\left(\varepsilon_{2}\right) ~ ๆ \operatorname{dom}\left(\varepsilon_{1}\right)$
Proof. Direct by inspection on the inductive definition of consistent transitivity.

Proposition 6.21. $\operatorname{cod}\left(\varepsilon_{1} \circ \varepsilon_{2}\right)=\operatorname{cod}\left(\varepsilon_{1}\right) \circ \operatorname{cod}\left(\varepsilon_{2}\right)$
Proof. Direct by inspection on the inductive definition of consistent transitivity.
Proposition 6.22. $\left(\varepsilon_{1} ; \varepsilon_{2}\right)[E]=\varepsilon_{1}[E] ; \varepsilon_{2}[E]$.
Proof. Direct by inspection on the inductive definition of consistent transitivity.
Lemma 6.23. (Optimality of consistent transitivity).
If $\varepsilon_{3}=\varepsilon_{1}{ }_{9} \varepsilon_{2}$ is defined, then $\pi_{1}\left(\varepsilon_{3}\right) \sqsubseteq \pi_{1}\left(\varepsilon_{1}\right)$ and $\pi_{2}\left(\varepsilon_{3}\right) \sqsubseteq \pi_{2}\left(\varepsilon_{2}\right)$.
Proof. Direct by inspection on the inductive definition of consistent transitivity.
Lemma 6.24. If $\varepsilon \vdash \Xi ; \Delta \vdash G_{1} \sim G_{2}, W \in \mathcal{S} \llbracket \Xi \rrbracket$ and $(W, \rho) \in \mathcal{D} \llbracket \Delta \rrbracket$ then $\varepsilon_{i}^{\rho} \vdash W . \Xi_{i} ; \Delta \vdash \rho\left(G_{1}\right) \sim$ $\rho\left(G_{2}\right)$, where $\varepsilon_{i}^{\rho}=\rho_{i}(\varepsilon)$.

Proof. Direct by induction on the structure of the types G_{1} and G_{2}.

Lemma 6.25. If $\Xi ; \Delta ; \Gamma \vdash t: G, W \in \mathcal{S} \llbracket \Xi \rrbracket,(W, \rho) \in \mathcal{D} \llbracket \Delta \rrbracket$ and $(W, \gamma) \in \mathcal{G}_{\rho} \llbracket \Gamma \rrbracket$ then $W . \Xi_{i} \vdash$ $\rho\left(\gamma_{i}((t)): \rho(G)\right.$.

Proof. Direct by induction on the structure of the term.

Lemma 6.26. If
$-\varepsilon_{i} \Vdash W^{\prime} \Xi_{i} \vdash G_{i} \sim \rho(G), \varepsilon_{1} \equiv \varepsilon_{2}$
$-\varepsilon \Vdash \Xi ; \Delta \vdash G \sim G^{\prime}$

- $W \in \mathcal{S} \llbracket \Xi \rrbracket,(W, \rho) \in \mathcal{D} \llbracket \Delta \rrbracket$
$-\forall \alpha \in \Xi . \alpha^{E_{i}^{*}} \in p_{2}\left(\varepsilon_{i}\right) \Rightarrow E_{1}^{*} \equiv E_{2}^{*}$
then $\varepsilon_{1} \circ \rho_{1}(\varepsilon) \Longleftrightarrow \varepsilon_{2} \circ \rho_{2}(\varepsilon)$.
Proof. We proceed by induction on the judgment $\varepsilon_{i} \vdash W_{i} \Xi_{i} \vdash G_{i} \sim G$.
Case $\left(\varepsilon_{i}=\left\langle B_{i}, B_{i}\right\rangle\right)$. Then the result is trivial as by definition of $\varepsilon_{1} \equiv \varepsilon_{2}, B_{1}=B_{2}$, therefore $\varepsilon_{1}=\varepsilon_{2}$. As ε cannot have free type variables (otherwise the result holds immediately), proving that $\varepsilon_{1} \circ \varepsilon \Longleftrightarrow \varepsilon_{1} \circ \varepsilon$ is trivial.

Case ($\varepsilon_{i}=\langle$?, ? \rangle). As the combination with $\langle ?$, ? \rangle never produce runtime errors, the result follows immediately as both operation never fail.
Case $\left(\varepsilon_{i}=\left\langle E_{1 i}, \alpha^{E_{2 i}}\right\rangle\right)$. We branch on two sub cases:

- Case $\alpha \in \Xi$. Then ε has to have the form $\left\langle\alpha^{E_{3}}, E_{4}\right\rangle,\langle$?, ? \rangle or $\left\langle\right.$?, $\left.\beta \cdots^{?}\right\rangle$ (otherwise the transitivity operator will always fails in both branches). Also E_{4} cannot be a type variable X for instance, because X is consistent with only X or ?, and in either case the evidence gives you X on both sides of the evidence. And α cannot point to a type variable by construction (e.g, type α^{X} does not exists). Then ε cannot have free type variables, therefore $\rho_{i}(\varepsilon)=\varepsilon$, and therefore we have to prove: $\varepsilon_{1} \circ \varepsilon \Longleftrightarrow \varepsilon_{2} \circ q$. For cases where $\varepsilon=\langle$?, ? \rangle or $\varepsilon=\left\langle ?, \beta \cdots{ }^{?}\right\rangle$, then as they never produce runtime errors, the result follows immediately as both operation never fail. The interesting case is $\varepsilon=\left\langle\alpha^{E_{3}}, E_{4}\right\rangle$. By definition of transitivity $\left.\left\langle E_{1 i}, \alpha^{E_{2 i}}\right\rangle \circ \stackrel{\circ}{9} \alpha^{E_{3}}, E_{4}\right\rangle=$ $\left\langle E_{1 i}, E_{2 i}\right\rangle \circ\left\langle E_{3}, E_{4}\right\rangle$. By Lemma 6.29, $\left\langle E_{1 i}, E_{2 i}\right\rangle \vdash W . \Xi_{i} \vdash G_{i} \sim \Xi(\alpha)$ and $\left\langle E_{3}, E_{4}\right\rangle \vdash W . \Xi_{i} \vdash$ $\Xi(\alpha) \sim G^{\prime}$. Also we know by premise that $E_{2 i} \equiv E_{2 i}$, then by induction hypothesis $\left\langle E_{11}, E_{21}\right\rangle$ \% $\left.\left\langle E_{3}, E_{4}\right\rangle \Longleftrightarrow\left\langle E_{12}, E_{22}\right\rangle \circ \stackrel{E_{3}}{ }, E_{4}\right\rangle$, and the result follows immediately.
- Case $\alpha \notin \Xi$. In this case ε has to have the form $\langle X, X\rangle$ (where $\rho_{i}(\varepsilon)=\left\langle\right.$ lift $_{W . \Xi_{i}}(\alpha)$, lift $\left.{ }_{W . \Xi_{i}}(\alpha)\right\rangle$), $\langle ?, ?\rangle$ or $\left\langle ?, \beta^{\cdots}\right\rangle$, (otherwise the transitivity always fail in both cases). For cases where $\varepsilon=\langle$?, ? \rangle or $\varepsilon=\left\langle\right.$?, $\left.\beta \cdots^{?}\right\rangle$, by the definition of transitivity, they never produce runtime errors, then the result follows immediately as both operation never fail.
If $\varepsilon=\langle X, X\rangle$, by construction of evidence, $\alpha^{E_{2 i}} \sqsubseteq \operatorname{lift}_{W . \Xi_{i}}(\alpha) \sqsubseteq$?, then by Lemma 6.30, we know that $\varepsilon_{i}{ }_{9} \rho_{i}(\varepsilon)=\varepsilon_{i}$, and the result holds.
$\operatorname{Case}\left(\varepsilon_{i}=\left\langle\alpha^{E_{i 1}}, E_{i 2}\right\rangle\right)$. Then ε has the form $\left\langle E_{3}, E_{4}\right\rangle$, where $\rho_{i}(\varepsilon)=\left\langle E_{i 3}, E_{i 4}\right\rangle$. By the definition of transitivity we know that:

$$
\left\langle\alpha^{E_{i 1}, E_{i 2}}\right\rangle \circ \stackrel{\circ}{\circ}\left\langle E_{i 3}, E_{i 4}\right\rangle \Longleftrightarrow\left\langle E_{i 1}, E_{i 2}\right\rangle \circ \stackrel{\circ}{,}\left\langle E_{i 3}, E_{i 4}\right\rangle
$$

Then by the induction hypothesis with:

$$
\begin{gathered}
\left\langle E_{i 1}, E_{i 2}\right\rangle \Vdash W \cdot \Xi_{i} \vdash W \cdot \Xi_{i}(\alpha) \sim \rho(G) \\
\varepsilon \Vdash \Xi ; \Delta \vdash G \sim G^{\prime}
\end{gathered}
$$

we know that:

$$
\left\langle E_{11}, E_{22}\right\rangle \circ\left\langle E_{13}, E_{14}\right\rangle \Longleftrightarrow\left\langle E_{21}, E_{22}\right\rangle \circ\left\langle E_{23}, E_{24}\right\rangle
$$

Then the result follows immediately.
Case $\left(\varepsilon_{i}=\left\langle E_{11 i} \rightarrow E_{12 i}, E_{21 i} \rightarrow E_{22 i}\right\rangle\right)$. We analyze cases for ε :

- Case $\varepsilon=\langle$?, ? \rangle or $\varepsilon=\left\langle\right.$?, $\left.\beta^{\cdots}{ }^{?}\right\rangle$, then transitivity never fails as explained in previous cases.
- Case $\varepsilon=\left\langle E_{31} \rightarrow E_{32}, E_{41} \rightarrow E_{42}\right\rangle$. Then $\rho_{i}(\varepsilon)=\left\langle E_{31 i} \rightarrow E_{32 i}, E_{41 i} \rightarrow E_{42 i}\right\rangle$. By definition of interior and meet, the definition of transitivity for functions, can be rewritten like this:

$$
\frac{\left\langle E_{41 i}, E_{31 i}\right\rangle \circ \stackrel{\circ}{\circ}\left\langle E_{21 i}, E_{11 i}\right\rangle=\left\langle E_{i 3}, E_{i 1}\right\rangle \quad\left\langle E_{12 i}, E_{22 i}\right\rangle \circ\left\langle E_{32 i}, E_{42 i}\right\rangle=\left\langle E_{i 2}, E_{i 4}\right\rangle}{\left\langle E_{11 i} \rightarrow E_{12 i}, E_{21 i} \rightarrow E_{22 i}\right\rangle \stackrel{\circ}{\circ}\left\langle E_{31 i} \rightarrow E_{32 i}, E_{41 i} \rightarrow E_{42 i}\right\rangle=\left\langle E_{i 1} \rightarrow E_{i 2}, E_{i 3} \rightarrow E_{i 4}\right\rangle}
$$

Also notice as the definition of interior is symmetrical (as consistency is symmetric), $\left\langle E_{41 i}, E_{31 i}\right\rangle$ g $\left\langle E_{21 i}, E_{11 i}\right\rangle=\left\langle E_{i 3}, E_{i 1}\right\rangle$ can be computed as $\left\langle E_{11 i}, E_{21 i}\right\rangle \circ\left\langle E_{31 i}, E_{41 i}\right\rangle=\left\langle E_{i 1}, E_{i 3}\right\rangle$. Also $\varepsilon_{1} \equiv \varepsilon_{2}$ implies that $\operatorname{dom}\left(\varepsilon_{1}\right) \equiv \operatorname{dom}\left(\varepsilon_{2}\right)$ and $\operatorname{cod}\left(\varepsilon_{1}\right) \equiv \operatorname{cod}\left(\varepsilon_{2}\right)$. And that $\operatorname{dom}(\varepsilon) \Vdash \Xi ; \Delta \vdash \operatorname{dom}\left(G^{\prime}\right) \sim$ $\operatorname{dom}(G)$ is equivalent to:

$$
\left\langle\pi_{2}(\operatorname{dom}(\varepsilon)), \pi_{1}(\operatorname{dom}(\varepsilon))\right\rangle \Vdash \Xi ; \Delta \vdash \operatorname{dom}(G) \sim \operatorname{dom}\left(G^{\prime}\right)
$$

where $\operatorname{cod}(\varepsilon) \Vdash \Xi ; \Delta \vdash \operatorname{cod}(G) \sim \operatorname{cod}\left(G^{\prime}\right)$. The result holds by applying induction hypothesis on:

$$
\begin{gathered}
\left\langle E_{11 i}, E_{21 i}\right\rangle \Vdash \Xi ; \Delta \vdash \operatorname{dom}\left(G_{i}\right) \sim \operatorname{dom}(\rho(G)) \\
\left\langle\pi_{2}(\operatorname{dom}(\varepsilon)), \pi_{1}(\operatorname{dom}(\varepsilon))\right\rangle \Vdash \Xi ; \Delta \vdash \operatorname{dom}(G) \sim \operatorname{dom}\left(G^{\prime}\right)
\end{gathered}
$$

and

$$
\begin{gathered}
\left\langle E_{12 i}, E_{22 i}\right\rangle \Vdash \Xi ; \Delta \vdash \operatorname{cod}\left(G_{i}\right) \sim \operatorname{cod}(\rho(G)) \\
\operatorname{cod}(\varepsilon) \Vdash \Xi ; \Delta \vdash \operatorname{cod}(G) \sim \operatorname{cod}\left(G^{\prime}\right)
\end{gathered}
$$

- Case $\varepsilon=\left\langle E_{31} \rightarrow E_{32}, \alpha^{E_{41} \rightarrow E_{42}}\right\rangle$. Then $\rho_{i}(\varepsilon)=\left\langle E_{31 i} \rightarrow E_{32 i}, \alpha^{E_{41 i} \rightarrow E_{42 i}}\right\rangle$. We use a similar argument to the previous item noticing that

$$
\frac{\left\langle E_{41 i}, E_{31 i}\right\rangle \circ\left\langle E_{21 i}, E_{11 i}\right\rangle=\left\langle E_{i 3}, E_{i 1}\right\rangle \quad\left\langle E_{12 i}, E_{22 i}\right\rangle \circ\left\langle E_{32 i}, E_{42 i}\right\rangle=\left\langle E_{i 2}, E_{i 4}\right\rangle}{\left\langle E_{11 i} \rightarrow E_{12 i}, E_{21 i} \rightarrow E_{22 i}\right\rangle \circ\left\langle E_{31 i} \rightarrow E_{32 i}, E_{41 i} \rightarrow E_{42 i}\right\rangle=\left\langle E_{i 1} \rightarrow E_{i 2}, E_{i 3} \rightarrow E_{i 4}\right\rangle}
$$

and that if $G^{\prime}=\alpha$ by Lemma 6.29

$$
\frac{\left\langle E_{31} \rightarrow E_{32}, E_{41} \rightarrow E_{42}\right\rangle \vdash \Xi ; \Delta \vdash G \sim \Xi(\alpha)}{\left\langle E_{31} \rightarrow E_{32}, \alpha^{E_{41} \rightarrow E_{42}}\right\rangle \vdash \Xi ; \Delta \vdash G \sim \alpha}
$$

and if $G^{\prime}=$? by Lemma 6.29

$$
\frac{\left\langle E_{31} \rightarrow E_{32}, E_{41} \rightarrow E_{42}\right\rangle \vdash \Xi ; \Delta \vdash G \sim ?}{\left\langle E_{31} \rightarrow E_{32}, \alpha^{E_{41} \rightarrow E_{42}}\right\rangle \vdash \Xi ; \Delta \vdash G \sim ?}
$$

Case $\left(\varepsilon_{i}=\left\langle\forall X . E_{1 i}, \forall X . E_{2 i}\right\rangle\right)$.
We proceed similar to the function case using induction hypothesis on the subtypes.
$\operatorname{Case}\left(\varepsilon_{i}=\left\langle E_{1 i} \times E_{2 i}, E_{3 i} \times E_{4 i}\right\rangle\right)$.
We proceed similar to the function case using induction hypothesis on the subtypes.
Lemma 6.27. If $\left\langle E_{1}, E_{2}\right\rangle \vdash \Xi ; \Delta \vdash G_{1} \sim G_{2}$, then
(1) $\forall G_{3}$, unlift $\left(E_{2}\right) \sqsubseteq G_{3} \sqsubseteq G_{2},\left\langle E_{1}, E_{2}\right\rangle \vdash \Xi$; $\Delta \vdash G_{1} \sim G_{3}$, and
(2) $\forall G_{3}$, unlift $\left(E_{1}\right) \sqsubseteq G_{3} \sqsubseteq G_{1},\left\langle E_{1}, E_{2}\right\rangle \vdash \Xi ; \Delta \vdash G_{3} \sim G_{2}$

Proof. By definition of evidence and interior noticing that always $E_{i} \sqsubseteq G_{i}$.
Lemma 6.28. If $\left\langle\alpha^{E_{1}}, E_{2}\right\rangle \vdash \Xi ; \Delta \vdash \alpha \sim G$, then $\left\langle E_{1}, E_{2}\right\rangle \vdash \Xi ; \Delta \vdash \Xi(\alpha) \sim G$.
Proof. Direct by definition of interior and evidence.
Lemma 6.29. If $\left\langle E_{1}, \alpha^{E_{2}}\right\rangle \vdash \Xi ; \Delta \vdash G \sim \alpha$, then $\left\langle E_{1}, E_{2}\right\rangle \vdash \Xi ; \Delta \vdash G \sim \Xi(\alpha)$.
Proof. Direct by definition of interior and evidence.
Lemma 6.30. If $E_{2} \sqsubseteq E_{3}$ then $\left\langle E_{1}, E_{2}\right\rangle \circ\left\langle E_{3}, E_{3}\right\rangle=\left\langle E_{1}, E_{2}\right\rangle$.
Proof. We proceed by induction on $\left\langle E_{1}, E_{2}\right\rangle$. If $\left\langle E_{3}, E_{3}\right\rangle=\langle$?, ? \rangle by definition of transitivity the result holds immediately so we do not consider this case in the following.

Case $\left(\left\langle E_{1}, E_{2}\right\rangle=\langle ?, ?\rangle\right)$. Then we know that $E_{3}=$?, and the result follows immediately.
Case $\left(\left\langle E_{1}, E_{2}\right\rangle=\left\langle E_{1}, \alpha^{E_{2}^{\prime}}\right\rangle\right)$. Then $\left\langle E_{3}, E_{3}\right\rangle=\left\langle\alpha^{E_{3}^{\prime}}, \alpha^{E_{3}^{\prime}}\right\rangle$. Then $\left.\left\langle E_{1}, \alpha^{E_{2}^{\prime}}\right\rangle \circ \stackrel{E^{\prime \prime}}{E^{E_{3}^{\prime}}}, \alpha^{E_{3}^{\prime}}\right\rangle$ boils down to $\left\langle E_{1}, E_{2}^{\prime}\right\rangle \circ \circ\left\langle E_{3}^{\prime}, E_{3}^{\prime}\right\rangle$, if $E_{2}^{\prime}=\beta^{E_{2}^{\prime \prime}}$, then E_{3}^{\prime} has to be $\beta^{E_{3}^{\prime \prime}}$ and we repeat this process. Let us assume that $E_{2}^{\prime} \notin$ SITypeName, then by definition of meet $E_{3}^{\prime} \notin$ SITypeName. By definition of precision if $\alpha^{E_{2}^{\prime}} \sqsubseteq \alpha^{E_{3}^{\prime}}$, then $E_{2}^{\prime} \sqsubseteq E_{3}^{\prime}$. Then by induction hypothesis $\left\langle E_{1}, E_{2}^{\prime}\right\rangle \circ \circ\left\langle E_{3}^{\prime}, E_{3}^{\prime}\right\rangle=\left\langle E_{1}, E_{2}^{\prime}\right\rangle$, then $\left\langle E_{1}, \alpha^{E_{2}^{\prime}}\right\rangle \stackrel{\circ}{9}\left\langle\alpha^{E_{3}^{\prime}}, \alpha^{E_{3}^{\prime}}\right\rangle=\left\langle E_{1}, \alpha^{E_{2}^{\prime}}\right\rangle$ and the result holds.
Case $\left(\left\langle E_{1}, E_{2}\right\rangle=\left\langle\alpha^{E_{1}^{\prime}}, E_{2}\right\rangle\right)$. Then $\left\langle\alpha^{E_{1}^{\prime}}, E_{2}\right\rangle \circ\left\langle E_{3}, E_{3}\right\rangle$ boils down to $\left\langle E_{1}^{\prime}, E_{2}\right\rangle \circ\left\langle E_{3}, E_{3}\right\rangle$. We know that $E_{2} \underset{E_{3}}{\sqsubseteq}$. Then by induction hypothesis $\left\langle E_{1}^{\prime}, E_{2}\right\rangle \stackrel{\circ}{\circ}\left\langle E_{3}, E_{3}\right\rangle=\left\langle E_{1}, E_{2}^{\prime}\right\rangle$, then $\left\langle\alpha^{E_{1}^{\prime}}, E_{2}\right\rangle \stackrel{\circ}{\circ}\left\langle E_{3}, E_{3}\right\rangle=$ $\left\langle\alpha^{E_{1}^{\prime}}, E_{2}\right\rangle$ and the result holds.
Case $\left(\left\langle E_{1}, E_{2}\right\rangle=\langle B, B\rangle\right)$. Then by definition of precision E_{3} is either? (case we wont analyze) or B. But $\langle B, B\rangle \stackrel{\circ}{\circ}\langle B, B\rangle=\langle B, B\rangle$ and the result holds.
Case $\left(\left\langle E_{1}, E_{2}\right\rangle=\left\langle E_{11} \rightarrow E_{12}, E_{21} \rightarrow E_{22}\right\rangle\right)$. Then E_{3} has to have the form $E_{31} \rightarrow E_{32}$. By definition of precision, if $E_{21} \rightarrow E_{22} \sqsubseteq E_{31} \rightarrow E_{32}$ then $E_{21} \sqsubseteq E_{31}$ and $E_{22} \sqsubseteq E_{32}$. As $\left\langle E_{31}, E_{31}\right\rangle$; $\left\langle E_{21}, E_{11}\right\rangle=\left(\left\langle E_{11}, E_{21}\right\rangle \circ\left\langle E_{31}, E_{31}\right\rangle\right)^{-1}$. By induction hypothesis $\left\langle E_{11}, E_{21}\right\rangle \circ\left\langle E_{31}, E_{31}\right\rangle=\left\langle E_{11}, E_{21}\right\rangle$ and $\left\langle E_{12}, E_{22}\right\rangle \circ\left\langle E_{32}, E_{32}\right\rangle=\left\langle E_{12}, E_{22}\right\rangle$. Therefore $\left\langle E_{11} \rightarrow E_{12}, E_{21} \rightarrow E_{22}\right\rangle \circ \stackrel{ }{\circ}\left\langle E_{31} \rightarrow E_{32}, E_{31} \rightarrow E_{32}\right\rangle=$ $\left\langle E_{11} \rightarrow E_{12}, E_{21} \rightarrow E_{22}\right\rangle$ and the result holds.


```
Cu ::= \lambdax:G.C | \LambdaX.C | <C Cu,u\rangle| \langleu,Cu
Cs ::= C C Cu
```

$\vdash C:(\Xi ; \Delta ; \Gamma \vdash G) \rightsquigarrow\left(\Xi^{\prime} ; \Delta^{\prime} ; \Gamma^{\prime} \vdash G^{\prime}\right)$ Well-typed contexts

$$
\begin{aligned}
& \text { (Cid) } \frac{\Xi \subseteq \Xi^{\prime} \quad \Delta \subseteq \Delta^{\prime} \quad \Gamma \subseteq \Gamma^{\prime} \quad \Xi ; \Delta \vdash \Gamma \quad \Xi^{\prime} ; \Delta^{\prime}+\Gamma^{\prime}}{\vdash[\cdot]:(\Xi ; \Delta ; \Gamma \vdash G) \rightsquigarrow\left(\Xi^{\prime} ; \Delta^{\prime} ; \Gamma^{\prime}+G\right)} \\
& \text { (C } \lambda) \frac{\vdash C:\left(\Xi ; \Delta ; \Gamma, x: G_{1} \vdash G\right) \rightsquigarrow\left(\Xi^{\prime} ; \Delta^{\prime} ; \Gamma^{\prime}, x: G_{1} \vdash G_{2}\right)}{\vdash \lambda x: G_{1} \cdot C:\left(\Xi ; \Delta ; \Gamma, x: G_{1} \vdash G\right) \rightsquigarrow\left(\Xi^{\prime} ; \Delta^{\prime} ; \Gamma^{\prime} \vdash G_{1} \rightarrow G_{2}\right)} \\
& (С \Lambda) \frac{\vdash C:(\Xi ; \Delta, X ; \Gamma \vdash G) \rightsquigarrow\left(\Xi^{\prime} ; \Delta^{\prime}, X ; \Gamma^{\prime} \vdash G^{\prime}\right) \quad \Xi ; \Delta \vdash \Gamma \quad \Xi^{\prime} ; \Delta^{\prime} \vdash \Gamma^{\prime}}{\vdash \Lambda X . C:(\Xi ; \Delta, X ; \Gamma \vdash G) \rightsquigarrow\left(\Xi^{\prime} ; \Delta^{\prime} ; \Gamma^{\prime}+\forall X . G^{\prime}\right)} \\
& \text { (CpairL) } \frac{\vdash C:(\Xi ; \Delta ; \Gamma \vdash G) \rightsquigarrow\left(\Xi^{\prime} ; \Delta^{\prime} ; \Gamma^{\prime} \vdash G_{1}\right) \quad \Xi^{\prime} ; \Delta^{\prime} ; \Gamma^{\prime} \vdash t: G_{2}}{\vdash\langle C, t\rangle:(\Xi ; \Delta ; \Gamma \vdash G) \rightsquigarrow\left(\Xi^{\prime} ; \Delta^{\prime} ; \Gamma^{\prime} \vdash G_{1} \times G_{2}\right)} \\
& \text { (CpairR) } \frac{\Xi^{\prime} ; \Delta^{\prime} ; \Gamma^{\prime} \vdash t: G_{1} \quad \vdash C:(\Xi ; \Delta ; \Gamma \vdash G) \rightsquigarrow\left(\Xi^{\prime} ; \Delta^{\prime} ; \Gamma^{\prime} \vdash G_{2}\right)}{\vdash\langle t, C\rangle:(\Xi ; \Delta ; \Gamma \vdash G) \rightsquigarrow\left(\Xi^{\prime} ; \Delta^{\prime} ; \Gamma^{\prime} \vdash G_{1} \times G_{2}\right)} \\
& (\text { Casc }) \frac{\vdash C_{s}:(\Xi ; \Delta ; \Gamma \vdash G) \rightsquigarrow\left(\Xi^{\prime} ; \Delta^{\prime} ; \Gamma^{\prime} \vdash G^{\prime}\right) \quad \varepsilon \Vdash \Xi ; \Delta \vdash G^{\prime} \sim G^{\prime \prime}}{\vdash \varepsilon C_{s}:: G^{\prime \prime}:(\Xi ; \Delta ; \Gamma \vdash G) \rightsquigarrow\left(\Xi^{\prime} ; \Delta^{\prime} ; \Gamma^{\prime} \vdash G^{\prime \prime}\right)} \\
& \Xi^{\prime} ; \Delta^{\prime} ; \Gamma^{\prime}+\overline{t_{1}}: \overline{G_{1}} \quad \vdash C:(\Xi ; \Delta ; \Gamma \vdash G) \rightsquigarrow\left(\Xi^{\prime} ; \Delta^{\prime} ; \Gamma^{\prime} \vdash G_{3}\right) \\
& \begin{array}{c}
\Xi^{\prime} ; \Delta^{\prime} ; \Gamma^{\prime}+\overline{t_{2}}: \overline{G_{2}} \quad t y(o p)=\left(\overline{G_{1}}, G_{3}, \overline{G_{2}}\right) \rightarrow G^{\prime \prime} \\
\vdash o p\left(\overline{t_{1}}, C, \overline{t_{2}}\right):(\Xi ; \Delta ; \Gamma \vdash G) \rightsquigarrow\left(\Xi^{\prime} ; \Delta^{\prime} ; \Gamma^{\prime}+G^{\prime \prime}\right)
\end{array} \\
& (\mathrm{CappL}) \frac{\vdash C:(\Xi ; \Delta ; \Gamma+G) \rightsquigarrow\left(\Xi^{\prime} ; \Delta^{\prime} ; \Gamma^{\prime}+G_{1} \rightarrow G_{2}\right) \quad \Xi^{\prime} ; \Delta^{\prime} ; \Gamma^{\prime}+t: G_{1}}{\vdash C t:(\Xi ; \Delta ; \Gamma+G) \rightsquigarrow\left(\Xi^{\prime} ; \Delta^{\prime} ; \Gamma^{\prime}+G_{2}\right)} \\
& (\mathrm{CappR}) \frac{\Xi^{\prime} ; \Delta^{\prime} ; \Gamma^{\prime}+t: G_{1} \rightarrow G_{2} \quad \vdash C:(\Xi ; \Delta ; \Gamma \vdash G) \rightsquigarrow\left(\Xi^{\prime} ; \Delta^{\prime} ; \Gamma^{\prime}+G_{1}\right)}{\vdash t C:(\Xi ; \Delta ; \Gamma \vdash G) \rightsquigarrow\left(\Xi^{\prime} ; \Delta^{\prime} ; \Gamma^{\prime} \vdash G_{2}\right)} \\
& (\mathrm{CappG}) \frac{\vdash C:(\Xi ; \Delta ; \Gamma \vdash G) \rightsquigarrow\left(\Xi^{\prime} ; \Delta^{\prime} ; \Gamma^{\prime}+\forall X \cdot G^{\prime}\right) \quad \Xi^{\prime} ; \Delta^{\prime}+G^{\prime \prime}}{\vdash C\left[G^{\prime \prime}\right]:(\Xi ; \Delta ; \Gamma \vdash G) \rightsquigarrow\left(\Xi^{\prime} ; \Delta^{\prime} ; \Gamma^{\prime}+G^{\prime}\left[G^{\prime \prime} / X\right]\right)} \\
& (\text { Cpair } i) \frac{\vdash C:(\Xi ; \Delta ; \Gamma \vdash G) \leadsto\left(\Xi^{\prime} ; \Delta^{\prime} ; \Gamma^{\prime} \vdash G_{1} \times G_{2}\right)}{\vdash \pi_{i}(C):(\Xi ; \Delta ; \Gamma \vdash G) \rightsquigarrow\left(\Xi^{\prime} ; \Delta^{\prime} ; \Gamma^{\prime} \vdash G_{i}\right)}
\end{aligned}
$$

Fig. 24. GSF ε : Syntax and Static Semantics - Contexts

Case $\left(\left\langle E_{1}, E_{2}\right\rangle=\left\langle\forall X . E_{11}, \forall X . E_{21}\right\rangle\right.$ or $\left.\left\langle E_{1}, E_{2}\right\rangle=\left\langle E_{11} \times E_{12}, E_{21} \times E_{22}\right\rangle\right)$. Analogous to function case.

6.3 Contextual Equivalence

In this section we show that the logical relation is sound with respect to contextual approximation (and therefore contextual equivalence). Figure 24 presents the syntax and static semantics of contexts.

Definition 6.31 (Contextual Approximation and Equivalence).

$$
\begin{aligned}
& \Xi ; \Delta ; \Gamma \vdash t_{1} \unlhd^{c t x} t_{2}: G \triangleq \Xi ; \Delta ; \Gamma \vdash t_{1}: G \wedge \Xi ; \Delta ; \Gamma \vdash t_{2}: G \wedge \forall C, \Xi^{\prime}, G^{\prime} . \\
& \vdash C:(\Xi ; \Delta ; \Gamma \vdash G) \leadsto\left(\Xi^{\prime} ; \cdot ; \vdash G^{\prime}\right) \Rightarrow\left(\left(\Xi^{\prime} \triangleright t_{1} \Downarrow \Longrightarrow \Xi^{\prime} \triangleright t_{2} \Downarrow\right) \wedge\right. \\
&\left.\left(\exists \Xi_{1} \cdot \Xi^{\prime} \triangleright C\left[t_{1}\right] \longmapsto{ }^{*} \Xi_{1} \triangleright \text { error } \Rightarrow \exists \Xi_{2} \cdot \Xi^{\prime} \triangleright C\left[t_{2}\right] \longmapsto{ }^{*} \Xi_{2} \triangleright \text { error }\right)\right) \\
& \Xi ; \Delta ; \Gamma \vdash t_{1} \approx^{c t x} t_{2}: G \triangleq \Xi ; \Delta ; \Gamma \vdash t_{1} \leq^{c t x} t_{2}: G \wedge \Xi ; \Delta ; \Gamma \vdash t_{2} \leq^{c t x} t_{1}: G
\end{aligned}
$$

Theorem 6.32 (Soundness w.r.t. Contextual Approximation). If $\Xi ; \Delta ; \Gamma \vdash t_{1} \leq t_{2}$: G then $\Xi ; \Delta ; \Gamma \vdash t_{1} \leq^{c t x} t_{2}: G$.

Proof. The proof follows the usual route of going through congruence and adequacy.

7 PARAMETRICITY VS. THE DGG IN GSF

In this section, we present the proofs of the auxiliary Lemmas need to show that the definition of parametricity for GSF is incompatible with the DGG.

Lemma 10.6. Let $\vdash(\Lambda X . \lambda x:$?.t $) \leadsto v_{a}: \forall X . ? \rightarrow X$ and $\vdash v \leadsto v_{b}:$?. For any G_{1} and G_{2}, such that const $\left(G_{1}\right) \neq \operatorname{const}\left(G_{2}\right)$, if. $\triangleright v_{a}\left[G_{i}\right] \longmapsto \alpha:=G_{i} \triangleright \varepsilon_{i} v_{i}:: ? \rightarrow G_{i}, \varepsilon_{i} \Vdash ? \rightarrow \alpha \sim ? \rightarrow G_{i}$
then $\forall W \in \mathcal{S} \llbracket \cdot \rrbracket, \forall R \in \operatorname{REL} L_{. j}\left[G_{1}, G_{2}\right],\left(W \boxtimes\left(\alpha, G_{1}, G_{2}, R\right), \operatorname{dom}\left(\varepsilon_{1}\right) v_{b}:: ?, \operatorname{dom}\left(\varepsilon_{2}\right) v_{b}:: ~ ?\right) \in \mathcal{T}_{X \mapsto \alpha} \llbracket ? \rrbracket$
Proof. Notice that v_{a} has to be of the form $\left(\varepsilon^{\prime}\left(\Lambda X . \varepsilon^{\prime \prime}\left(\lambda x: ? . t^{\prime}\right):: ? \rightarrow X\right):: \forall X . ? \rightarrow X\right)$, where $\varepsilon^{\prime}=\langle\forall X . ? \rightarrow X, \forall X . ? \rightarrow X\rangle$ and $\varepsilon^{\prime \prime}=\langle ? \rightarrow X, ? \rightarrow X\rangle$. Then $\cdot \Delta v_{a}\left[G_{i}\right] \longmapsto\left\langle ? \rightarrow \hat{\alpha_{i}}, ? \rightarrow E_{i}\right\rangle t^{\prime}$ for some t^{\prime}, where $\hat{\alpha_{i}}=\operatorname{lift}_{\alpha \mapsto G_{i}}(\alpha)$ and $E_{i}=$ lift. $\left(G_{i}\right)$. We know that $\cdot ; \cdot ; \cdot \vdash v_{b}:$? then as $X \notin F T V(v)$, $\cdot ; X ; \cdot v_{b}:$?, therefore by the fundamental property (Thm 10.1), $\cdot ; X ; \cdot \vdash v_{b} \leq v_{b}:$?, therefore as $W \in \mathcal{S} \llbracket \cdot \rrbracket$, we can pick $W^{\prime}=W \boxtimes\left(\alpha, G_{1}, G_{2}, R\right) \in \mathcal{S} \llbracket \cdot \rrbracket$, and $\left(W^{\prime}, X \mapsto \alpha\right) \in \mathcal{D} \llbracket X \rrbracket$ and thus conclude that $\left(W^{\prime}, v_{b}, v_{b}\right) \in \mathcal{T}_{X \mapsto \alpha} \llbracket ? \rrbracket$. Now notice that $\operatorname{dom}\left(\varepsilon_{i}\right)=\langle ?, ?\rangle$, but $\varepsilon \circ\langle ?, ?\rangle=\varepsilon$ for any evidence ε, therefore $\alpha:=G_{i} \triangleright \operatorname{dom}\left(\varepsilon_{i}\right) v_{b}:: ? \longmapsto \alpha:=G_{i} \triangleright v_{b}$, then we have to prove that $\left(\downarrow W^{\prime}, v_{b}, v_{b}\right) \in \mathcal{T}_{X \mapsto \alpha} \llbracket ? \rrbracket$ which follows directly from the weakening lemma.

Lemma 10.7. For any $\vdash v:$? and $\vdash G$, we have $(\Lambda X . \lambda x: ? . x:: X)[G] v \Downarrow$ error.
Proof. Let $i d$? $\triangleq \Lambda X . \lambda x:$?. $x:: X, \vdash i d ? \leadsto v_{a}: \forall X . ? \rightarrow X$, and v s.t. $\vdash v \leadsto v_{b}:$?.
By the fundamental property (Th. 10.1), $\vdash v_{a} \leq v_{a}: \forall X . ? \rightarrow X$ so for any $W_{0} \in \mathcal{S} \llbracket \cdot \rrbracket$, $\left(W_{0}, v_{a}, v_{a}\right) \in \mathcal{T}_{\emptyset} \llbracket \forall X . ? \rightarrow X \rrbracket$. Because v_{a} is a value, $\left(W_{0}, v_{a}, v_{a}\right) \in \mathcal{V}_{\emptyset} \llbracket \forall X . ? \rightarrow X \rrbracket$. By reduction, $\cdot \triangleright v_{a}\left[G_{i}\right] \longmapsto^{*} \Xi_{i}^{\prime} \triangleright \varepsilon_{i}^{\prime} v_{i}:: ? \rightarrow G_{i}$ for some $\varepsilon_{i}^{\prime}, \varepsilon_{i}$ and $\varepsilon_{i \alpha}$, where $\Xi_{i}^{\prime}=\left\{\alpha:=G_{i}\right\}$ and $v_{i}=\varepsilon_{i}\left(\lambda x: ? .\left(\varepsilon_{i \alpha} x:: \alpha\right)\right):: ? \rightarrow \alpha$. We can instantiate the definition of $\mathcal{V}_{\emptyset} \llbracket \forall X . ? \rightarrow X \rrbracket$ with W_{0}, $G_{1}=G$ and G_{2} structurally different (and different from ?), some $R \in \operatorname{ReL}_{W_{0} . j}\left[G_{1}, G_{2}\right], v_{1}, v_{2}, \varepsilon_{1}^{\prime}$ and ε_{2}^{\prime}, then we have that $\left(W_{1}, v_{1}, v_{2}\right) \in \mathcal{T}_{X \mapsto \alpha} \llbracket ? \rightarrow X \rrbracket$, where $W_{1}=\left(\downarrow\left(W_{0} \boxtimes\left(\alpha, G_{1}, G_{2}, R\right)\right)\right.$. As v_{1} and v_{2} are values, $\left(W_{1}, v_{1}, v_{2}\right) \in \mathcal{V}_{X \mapsto \alpha} \llbracket$? $\rightarrow X \rrbracket$. Also, by associativity of consistent transitivity, the reduction of $\Xi_{i}^{\prime} \triangleright\left(\varepsilon_{i}^{\prime} v_{i}:: ? \rightarrow G_{i}\right) v_{\text {? }}$ is equivalent to that of $\Xi_{i}^{\prime} \triangleright \operatorname{cod}\left(\varepsilon_{i}^{\prime}\right)\left(v_{i}\left(\operatorname{dom}\left(\varepsilon_{i}^{\prime}\right) v_{\text {? }}:: ~ ?\right)\right):: G_{i}$.

By the fundamental property (Th. 10.1) we know that $\vdash v_{b} \leq v_{b}$: ?; we can instantiate this definition with W_{0}, and we have that $\left.\left(W_{0}, v_{b}, v_{b}\right) \in \mathcal{V}_{\emptyset} \llbracket ?\right]$. By Lemma 10.6, $\left(W_{1}, \operatorname{dom}\left(\varepsilon_{1}^{\prime}\right) v_{\text {? }}::\right.$?, $\left.\operatorname{dom}\left(\varepsilon_{2}^{\prime}\right) v_{\text {? }}:: ~ ?\right) \in \mathcal{T}_{X \mapsto \alpha} \llbracket ?$?. If $\operatorname{dom}\left(\varepsilon_{1}^{\prime}\right) v_{\text {? }}:: ~ ? ~ r e d u c e s ~ t o ~ e r r o r ~ t h e n ~ t h e ~ r e s u l t ~ f o l l o w s ~ i m m e d i a t e l y . ~$ Otherwise, $\Xi_{i}^{\prime} \triangleright \operatorname{dom}\left(\varepsilon_{1}^{\prime}\right) v_{\text {? }}:: ? \longmapsto{ }^{*} \Xi_{i}^{\prime} \triangleright v_{i}^{\prime \prime}$, and $\left(W_{2}, v_{1}^{\prime \prime}, v_{2}^{\prime \prime}\right) \in \mathcal{V}_{X \mapsto \alpha} \llbracket ? \rrbracket$, where $W_{2}=\downarrow W_{1}$, and some $v_{1}^{\prime \prime}$ and $v_{2}^{\prime \prime}$. We can instantiate the definition of $\mathcal{V}_{X \mapsto \alpha} \llbracket ? \rightarrow X \rrbracket$ with $W_{2}, v_{1}^{\prime \prime}$ and $v_{2}^{\prime \prime}$, obtaining that $\left(W_{2}, v_{1} v_{1}^{\prime \prime}, v_{2} v_{2}^{\prime \prime}\right) \in \mathcal{T}_{X \mapsto \alpha} \llbracket X \rrbracket$. We then proceed by contradiction. Suppose that $\Xi_{i}^{\prime} \triangleright v_{i} v_{i}^{\prime \prime} \longmapsto{ }^{*} \Xi_{i}^{\prime \prime} \triangleright v_{i}^{\prime}$ (for a big-enough step index). If $v_{i}^{\prime \prime}=\varepsilon_{i v}^{\prime \prime} u::$?, then by evaluation $v_{i}^{\prime}=\varepsilon_{i v}^{\prime} u:: \alpha$, for some $\varepsilon_{i v}^{\prime}$. But by definition of $\mathcal{V}_{X \mapsto \alpha} \llbracket X \rrbracket$, it must be the case that for some $W_{3} \geq W_{2},\left(W_{3}, \varepsilon_{1 v}^{\prime} u:: G_{1}, \varepsilon_{2 v}^{\prime} u:: G_{2}\right) \in R$, which is impossible because u cannot be ascribed to structurally different types G_{1} and G_{2}. Therefore $v_{1} v_{1}^{\prime \prime}$ cannot reduce to a value, and hence the term $v_{a}[G] v_{b}$ cannot reduce to a value either. Because v_{a} is non-diverging, its application must produce error.

8 A CHEAP THEOREM IN GSF

This section shows the proof of the cheap theorem presented in the paper and some auxiliary results.

Definition 8.1. Let $\mathcal{X}(t, \alpha)$ a predicate that holds if and only if in each evidence of term t, if α is present, then it appears on both sides of the evidence and in the same structural position. This predicate is defined inductively as follows:

$$
\frac{\forall \varepsilon \in t, \mathcal{X}(\varepsilon, \alpha)}{\mathcal{X}(t, \alpha)}
$$

where

$$
\begin{aligned}
& \frac{\alpha \notin F T N\left(E_{1}\right) \cup F T N\left(E_{2}\right)}{\mathcal{X}\left(\left\langle\alpha^{E}, \alpha^{E}\right\rangle, \alpha\right)} \quad \frac{X\left(\left\langle E_{1}, E_{2}\right\rangle, \alpha\right)}{X} \quad \frac{\left.\left.E_{3}\right\rangle, \alpha\right) \quad \mathcal{X}\left(\left\langle E_{2}, E_{4}\right\rangle, \alpha\right)}{\mathcal{X}\left(\left\langle E_{1} \rightarrow E_{2}, E_{3} \rightarrow E_{4}\right\rangle, \alpha\right)} \\
& \frac{X\left(\left\langle E_{1}, E_{3}\right\rangle, \alpha\right) \quad \mathcal{X}\left(\left\langle E_{2}, E_{4}\right\rangle, \alpha\right)}{\mathcal{X}\left(\left\langle E_{1} \times E_{2}, E_{3} \times E_{4}\right\rangle, \alpha\right)} \quad \frac{\mathcal{X}\left(\left\langle E_{1}, E_{2}\right\rangle, \alpha\right)}{\mathcal{X}\left(\left\langle\forall X . E_{1}, \forall X . E_{2}\right\rangle, \alpha\right)}
\end{aligned}
$$

Corollary 10.9. Let t and v be static terms such that $\vdash t: \forall X . T, \vdash v: T^{\prime}$, and $t\left[T^{\prime}\right] v \Downarrow v^{\prime}$.
(1) If $\forall X . T \sqsubseteq \forall X . X \rightarrow$? then $\left(t:: \forall X . X \rightarrow\right.$?) $\left[T^{\prime}\right] v \Downarrow v^{\prime \prime}$, and $v^{\prime} \leqslant v^{\prime \prime}$.
(2) If $\forall X . T \sqsubseteq \forall X . ? \rightarrow X$ then $(t:: \forall X . ? \rightarrow X)\left[T^{\prime}\right] v \Downarrow v^{\prime \prime}$, and $v^{\prime} \leqslant v^{\prime \prime}$.

Proof. Direct by Lemmas 9.4 and 9.7.
Lemma 8.2. $\forall W \in \mathcal{S} \llbracket \Xi \rrbracket, \rho, \gamma .\left((W, \rho) \in \mathcal{D} \llbracket \Delta \rrbracket \wedge(W, \gamma) \in \mathcal{G}_{\rho} \llbracket \Gamma \rrbracket\right)$, such that $\forall v \in \operatorname{cod}\left(\gamma_{i}\right), \mathcal{X}(v, \alpha)$. If $\mathcal{X}\left(\rho\left(\gamma_{i}\left(t_{i}\right)\right), \alpha\right)$, then $\Xi \triangleright \rho\left(\gamma_{i}\left(t_{i}\right)\right) \longmapsto \Xi^{\prime} \triangleright t_{i}^{\prime}$ and $\mathcal{X}\left(t^{\prime}, \alpha\right)$

Proof. By induction on the structure of t_{i}. The proof is direct by looking at the inductive definition of construction of evidences (interior), noticing that $\forall G, \mathcal{I}(X, G)=\mathcal{I}(G, X)=\langle X, X\rangle$. Then by inspection of consistent transitivity we know that, for any evidence of a value $\left\langle E_{1}, E_{2}\right\rangle$

$$
\left.\left\langle E_{1}, E_{2}\right\rangle \circ ; \alpha^{E}, \alpha^{E}\right\rangle=\left\langle E_{1}^{\prime}, \alpha^{E^{\prime}}\right\rangle \wedge E_{1}^{\prime} \neq \alpha^{*} \Longleftrightarrow E_{2}=\alpha^{E^{\prime \prime}} \wedge E_{1} \neq \alpha^{*}
$$

but if that is the case $\neg\left(\mathcal{X}\left(\left\langle E_{1}, E_{2}\right\rangle, \alpha\right)\right)$, which contradicts the premise.
Theorem 10.10. Let $v \triangleq \Lambda X . \lambda x:$?.t for some t, such that $\vdash v: \forall X . ? \rightarrow X$. Then for any $\vdash v^{\prime}: G$, we either have $v[G] v^{\prime} \Downarrow$ error or $v[G] v^{\prime} \Uparrow$.

Proof. Let $\vdash v \leadsto v_{\forall}: \forall X . ? \rightarrow X, \vdash v^{\prime} \leadsto v_{?}:$?. Because $\vdash v_{\forall}: \forall X . ? \rightarrow X$ and $\vdash v_{?}:$?, by the fundamental property (Theorem 10.1) we know that

$$
\begin{gathered}
\left(W_{0}, v_{\forall}, v_{\forall}\right) \in \mathcal{V}_{\emptyset} \llbracket \forall X . ? \rightarrow X \rrbracket \\
\left(W_{0}, v_{?}, v_{?}\right) \in \mathcal{V}_{\emptyset} \llbracket ? \rrbracket
\end{gathered}
$$

Let $v_{\forall}=\varepsilon(\Lambda X .(\lambda x: ? . t)):: \forall X . ? \rightarrow X$, where $\varepsilon \Vdash \because \cdot \vdash \forall X . ? \rightarrow X \sim \forall X . ? \rightarrow X$, and therefore $\varepsilon=\langle\forall X . ? \rightarrow X, \forall X . ? \rightarrow X\rangle$.

Note that by the reduction rules we know that

$$
\Xi \triangleright v_{\forall}[G] \longmapsto{ }^{*} \Xi_{1}^{\prime} \triangleright \varepsilon_{1}\left(\varepsilon_{2}\left(\lambda x: ? . t^{\prime}\right):: ? \rightarrow \alpha\right):: ? \rightarrow G
$$

for some t^{\prime}, where $\varepsilon_{1}=\left\langle ? \rightarrow \alpha^{E}, ? \rightarrow E\right\rangle, \varepsilon_{2}=\left\langle ? \rightarrow \alpha^{E}, ? \rightarrow \alpha^{E}\right\rangle, E=$ lift. $(G), \Xi_{1}^{\prime}=\Xi, \alpha=G$.
By definition of $\mathcal{V}_{\emptyset} \llbracket \forall X . ? \rightarrow X \rrbracket$ if we pick $G_{1}=G_{2}=G$, and some R, then for some W_{1} we know that $\left(W_{1}, v_{1}, v_{2}\right) \in \mathcal{V}_{X \mapsto \alpha} \llbracket ? \rightarrow X \rrbracket$, where $v_{i}=\varepsilon_{2}(\lambda x:$?.t') :: ? $\rightarrow \alpha$.

Also, by the reduction rules we know that $\Xi_{i}^{\prime} \triangleright\left(\varepsilon_{1} v_{i}:: ? \rightarrow G\right) v_{\text {? }} \Longleftrightarrow \Xi_{i}^{\prime} \triangleright \operatorname{cod}\left(\varepsilon_{1}\right)\left(v_{i}\left(\operatorname{dom}\left(\varepsilon_{1}\right) v_{\text {? }}::\right.\right.$?)) :: G. As $\operatorname{dom}\left(\varepsilon_{1}\right)=\langle$?, ? \rangle, then $\Xi^{\prime} \triangleright \operatorname{dom}\left(\varepsilon_{1}\right) v_{\text {? }}:: ? \longmapsto \Xi^{\prime} \triangleright v_{\text {? }}::$?. As $\alpha \notin \operatorname{FTN}\left(v_{\text {? }}\right)$, then $\mathcal{X}\left(v_{?}, \alpha\right)$.

Also we know that $\mathcal{X}\left(v_{i}, \alpha\right)$. Then by Lemma 8.2, if $\Xi^{\prime} \triangleright t^{\prime}\left[v_{?}\right] \longmapsto{ }^{*} v^{\prime}$, then $\mathcal{X}\left(v^{\prime}, \alpha\right)$, but that is a contradiction because if $\left(W_{4}, v^{\prime}, v^{\prime}\right) \in \mathcal{V}_{\rho} \llbracket \alpha \rrbracket$, then $\neg \mathcal{X}\left(v^{\prime}, \alpha\right)$ and the result holds.

9 EMBEDDING DYNAMIC SEALING IN GSF

In this section, we prove Theorem 11.1, using the simulation relation \approx between $\lambda_{\text {seal }}$ and GSF ε, defined in Figure 15. We also define a direct embedding of $\lambda_{\text {seal }}$ into GSF ε to make the proof simpler.

$$
\begin{aligned}
& \lceil x\rceil_{\varepsilon}=x \\
& \lceil\sigma\rceil_{\varepsilon}=s u_{\varepsilon}^{\sigma} \\
& \lceil b\rceil_{\varepsilon}=\varepsilon_{B}\left(\varepsilon_{B} b:: B\right):: ? \\
& \lceil\lambda x . t\rceil_{\varepsilon}=\varepsilon_{? \rightarrow ?}\left(\varepsilon_{? \rightarrow ?} \lambda x .\lceil t\rceil_{\varepsilon}:: ? \rightarrow ?\right):: ? \\
& \left\lceil\left\langle t_{1}, t_{2}\right\rangle\right\rceil_{\varepsilon}=\varepsilon_{? \times \times}\left\langle\left\langle\left\lceil t_{1}\right\rceil_{\varepsilon},\left\lceil t_{2}\right\rceil_{\varepsilon}\right\rangle:: ?\right. \\
& \left\lceil\pi_{i}(t)\right]_{\varepsilon}=\pi_{i}\left(\varepsilon_{? \times ?}\left\lceil\lceil t\rceil_{\varepsilon}:: ? \times ?\right)\right. \\
& \lceil o p(\bar{t})\rceil_{\varepsilon}=\text { let } \bar{x}: ?=\lceil\bar{t}\rceil \text { in } \varepsilon_{B} o p\left(\varepsilon_{\bar{B}} \bar{x}:: \bar{B}\right):: \text { ? } \\
& \lceil v x . t\rceil_{\varepsilon}=\text { let } x=s u_{\varepsilon} \text { in }\lceil t\rceil_{\varepsilon} \\
& \left\lceil t_{1} t_{2}\right\rceil_{\varepsilon}=\text { let } x=\left\lceil t_{1}\right\rceil_{\varepsilon} \text { in let } y=\left\lceil t_{2}\right\rceil_{\varepsilon} \text { in }\left(\varepsilon_{? \rightarrow ?} x:: ? \rightarrow \text { ?) } y\right. \\
& \left\lceil\left\{t_{1}\right\}_{t_{2}}\right\rceil_{\varepsilon}=\text { let } x=\left\lceil t_{1}\right\rceil_{\varepsilon} \text { in let } y=\left\lceil t_{2}\right\rceil_{\varepsilon} \text { in }\left(\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{7 \times ?} y:: ? \times ?\right):: ? \rightarrow ?\right) x \\
& \text { 「let } \left.\{z\}_{t_{1}}=t_{2} \text { in } t_{3}\right\rceil_{\varepsilon}=\text { let } x=\left\lceil t_{1}\right\rceil_{\varepsilon} \text { in let } y=\left\lceil t_{2}\right\rceil_{\varepsilon} \text { in let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon \varepsilon_{? \times ?} x:: ? \times ?\right):: ? \rightarrow ? y \text { in }\left\lceil t_{3}\right\rceil_{\varepsilon}
\end{aligned}
$$

Fig. 25. Compilation from $\lambda_{\text {seal }}$ to GSF ε

Definition 9.1. We said that μ and Ξ are synchronized, denoted $\mu \equiv \Xi$, if and only if $\sigma \in \mu \Longleftrightarrow$ $\sigma:=$? $\in \Xi$.

Lemma 9.2. Let t be a $\lambda_{\text {seal }}$ term. If $\Xi ; \Gamma \vdash\lceil t\rceil \leadsto t_{\varepsilon}:$? then $\lceil t\rceil_{\varepsilon}=t_{\varepsilon}$.
Proof. The proof is straightforward by induction on the syntax of t, and following definitions of $\lceil t\rceil, \Xi ; \Gamma \vdash\lceil t\rceil \sim t_{\varepsilon}: ?$ and $\lceil t\rceil_{\varepsilon}$.

Lemma 9.3. If $\Xi ; \Gamma \vdash\lceil t\rceil \sim t_{\varepsilon}:$?, then $\mu ; \Xi ; \Gamma \vdash t \approx t_{\varepsilon}:$?, for some $\mu \equiv \Xi$.
Proof. By Lemma 9.2, we know that $t_{\varepsilon}=\lceil t\rceil_{\varepsilon}$. Therefore, we are required to prove that $\mu ; \Xi ; \Gamma \vdash t \approx\lceil t\rceil_{\varepsilon}:$?. We follow by induction on the syntax of t. Since translation preserves typing (Theorem ??), we know that $\Xi ; \Gamma \vdash\lceil t\rceil_{\varepsilon}:$?.
Case (x). Then, we know that

$$
\lceil x\rceil_{\varepsilon}=x
$$

We have $t=x$. By premise we know that $\Xi ; \Gamma \vdash x:$? which implies that $x: ? \in \Gamma$ and $\Xi ; \vdash \Gamma$. Therefore, $\mu ; \Xi ; \Gamma \vdash t \approx\lceil t\rceil_{\varepsilon}:$? by Rule (Rx) and the result follows immediately.

Case (b). Then, we know that

$$
\lceil b\rceil_{\varepsilon}=\varepsilon_{B}\left(\varepsilon_{B} b:: B\right):: ?
$$

We have $t=b$. Then, we have to prove that $\mu ; \Xi ; \Gamma \vdash b \approx \varepsilon_{B}\left(\varepsilon_{B} b:: B\right)::$? : ?. We know by the Rule (Rb) that $\mu ; \Xi ; \Gamma \vdash b \approx \varepsilon_{B} b::$? : ?. Therefore, by the Rule (Ru) the result follows immediately.
Case ($\lambda x . t^{\prime}$). Then, we know that

$$
\left\lceil\lambda x . t^{\prime}\right\rceil_{\varepsilon}=\varepsilon_{? \rightarrow ?}\left(\varepsilon_{? \rightarrow ?} \lambda x .\left\lceil t^{\prime}\right\rceil_{\varepsilon}:: ? \rightarrow ?\right):: ?
$$

We have $t=\lambda x . t^{\prime}$. Then, we have to prove that $\mu ; \Xi ; \Gamma \vdash \lambda x . t^{\prime} \approx \varepsilon_{? \rightarrow ?}\left(\varepsilon_{? \rightarrow ?} \lambda x .\left\lceil t^{\prime}\right\rceil_{\varepsilon}:: ? \rightarrow\right.$?) :: ? : ?. Since $\Xi ; \Gamma \vdash\lceil t\rceil_{\varepsilon}$: ? and by Lemma 9.13, we know that $\Xi ; \Gamma, x:$? $\vdash\left\lceil t^{\prime}\right\rceil_{\varepsilon}:$?, thus by the induction hypothesis $\mu ; \Xi ; \Gamma, x:$? $\vdash t^{\prime} \approx\left\lceil t^{\prime}\right\rceil_{\varepsilon}:$?. Therefore, by the Rule $(\mathrm{R} \lambda)$ that $\mu ; \Xi ; \Gamma \vdash \lambda x . t^{\prime} \approx$ $\varepsilon_{? \rightarrow ?} \lambda x .\left\lceil t^{\prime}\right\rceil_{\varepsilon}::$? : ?. Therefore, by the Rule (Ru) the result follows immediately.

Case (σ). Then, we know that

$$
\lceil\sigma\rceil_{\varepsilon}=s u_{\varepsilon}^{\sigma}
$$

We have $t=\sigma$. Then, we have to prove that $\mu ; \Xi ; \Gamma \vdash \sigma \approx s u_{\varepsilon}^{\sigma}$: ?. By premise we know that $\Xi ; \Gamma \vdash s u_{\varepsilon}^{\sigma}:$? which implies that $\sigma:=$? $\in \Xi$ and $\Xi \vdash \Gamma$. Therefore, by the Rule (Rs) the result follows immediately.

Case ($t_{1} t_{2}$). Then, we know that

$$
\left\lceil t_{1} t_{2}\right\rceil_{\varepsilon}=\text { let } x=\left\lceil t_{1}\right\rceil_{\varepsilon} \text { in let } y=\left\lceil t_{2}\right\rceil_{\varepsilon} \text { in }\left(\varepsilon_{? \rightarrow ?} x:: ? \rightarrow ?\right) y
$$

We have $t=t_{1} t_{2}$. Then, we have to prove that

$$
\mu ; \Xi ; \Gamma \vdash t_{1} t_{2} \approx \text { let } x=\left\lceil t_{1}\right\rceil_{\varepsilon} \text { in let } y=\left\lceil t_{2}\right\rceil_{\varepsilon} \text { in }(\varepsilon ? \rightarrow ? x:: ? \rightarrow ?) y: ?
$$

Since $\Xi ; \Gamma \vdash\lceil t\rceil_{\varepsilon}:$? and by Lemma 9.13, we know that $\Xi ; \Gamma \vdash\left\lceil t_{1}\right\rceil_{\varepsilon}:$? and $\Xi ; \Gamma \vdash\left\lceil t_{2}\right\rceil_{\varepsilon}:$?. By the induction hypothesis, we know that $\mu ; \Xi ; \Gamma \vdash t_{1} \approx\left\lceil t_{1}\right\rceil_{\varepsilon}:$? and $\mu ; \Xi ; \Gamma \vdash t_{2} \approx\left\lceil t_{2}\right\rceil_{\varepsilon}$: ?. Therefore, by the Rule (RappL) the result follows immediately.

Case $\left(\pi_{i}\left(t^{\prime}\right)\right)$. Then, we know that

$$
\left\lceil\pi_{i}\left(t^{\prime}\right)\right\rceil_{\varepsilon}=\pi_{i}\left(\varepsilon_{? \times ?}\left\lceil t^{\prime}\right\rceil_{\varepsilon}:: ? \times ?\right)
$$

We have $t=\pi_{i}\left(t^{\prime}\right)$. Then, we have to prove that $\mu ; \Xi ; \Gamma \vdash \pi_{i}\left(t^{\prime}\right) \approx \pi_{i}\left(\varepsilon_{? \times \times}\left\lceil t^{\prime}\right\rceil_{\varepsilon}::\right.$? \times ? $)$: ?. Since $\Xi ; \Gamma \vdash\lceil t\rceil_{\varepsilon}:$? and by Lemma 9.13, we know that $\Xi ; \Gamma \vdash\left\lceil t^{\prime}\right\rceil_{\varepsilon}:$?. By the induction hypothesis, we know that $\mu ; \Xi ; \Gamma \vdash t^{\prime} \approx\left\lceil t^{\prime}\right\rceil_{\varepsilon}:$?. Therefore, by the Rule (Rpi) the result follows immediately.

Case $\left(\left\{t_{1}\right\}_{t_{2}}\right)$. Then, we know that

$$
\left\lceil\left\{t_{1}\right\}_{t_{2}}\right\rceil_{\varepsilon}=\text { let } x=\left\lceil t_{1}\right\rceil_{\varepsilon} \text { in let } y=\left\lceil t_{2}\right\rceil_{\varepsilon} \text { in }\left(\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times ?} y:: ? \times ?\right):: ? \rightarrow \text { ?) } x\right.
$$

We have $t=\left\{t_{1}\right\}_{t_{2}}$. Then, we have to prove that

$$
\mu ; \Xi ; \Gamma \vdash\left\{t_{1}\right\}_{t_{2}} \approx \text { let } x=\left\lceil t_{1}\right\rceil_{\varepsilon} \text { in let } y=\left\lceil t_{2}\right\rceil_{\varepsilon} \text { in }\left(\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times ?} y:: ? \times ?\right):: ? \rightarrow ?\right) x: ?
$$

Since $\Xi ; \Gamma \vdash\lceil t\rceil_{\varepsilon}:$? and by Lemma 9.13, we know that $\Xi ; \Gamma \vdash\left\lceil t_{1}\right\rceil_{\varepsilon}:$? and $\Xi ; \Gamma \vdash\left\lceil t_{2}\right\rceil_{\varepsilon}:$?.By the induction hypothesis, we know that $\mu ; \Xi ; \Gamma \vdash t_{1} \approx\left\lceil t_{1}\right\rceil_{\varepsilon}:$? and $\mu ; \Xi ; \Gamma \vdash t_{2} \approx\left\lceil t_{2}\right\rceil_{\varepsilon}:$?. Therefore, by the Rule (Rsed1L) the result follows immediately.

Case (let $\{x\}_{t_{1}}=t_{2}$ in t_{3}). Then, we know that
Гlet $\{x\}_{t_{1}}=t_{2}$ in $\left.t_{3}\right\rceil_{\varepsilon}=$ let $x=\left\lceil t_{1}\right\rceil_{\varepsilon}$ in let $y=\left\lceil t_{2}\right\rceil_{\varepsilon}$ in let $z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times ?} x:: ? \times ?\right):: ? \rightarrow ? y$ in $\left\lceil t_{3}\right\rceil_{\varepsilon}$
We have $t=$ let $\{x\}_{t_{1}}=t_{2}$ in t_{3}. Then, we have to prove that
$\mu ; \Xi ; \Gamma \vdash$ let $\{x\}_{t_{1}}=t_{2}$ in $t_{3} \approx$ let $x=\left\lceil t_{1}\right\rceil_{\varepsilon}$ in let $y=\left\lceil t_{2}\right\rceil_{\varepsilon}$ in let $z=\varepsilon_{? \rightarrow ?} \pi_{2}(\varepsilon$? $\times ? x:: ? \times ?):: ? \rightarrow ? y$ in $\left\lceil t_{3}\right\rceil_{\varepsilon}:$?
Since $\Xi ; \Gamma \vdash\lceil t\rceil_{\varepsilon}:$? and by Lemma 9.13, we know that $\Xi ; \Gamma \vdash\left\lceil t_{1}\right\rceil_{\varepsilon}:$?, $\Xi ; \Gamma \vdash\left\lceil t_{2}\right\rceil_{\varepsilon}:$? and $\Xi ; \Gamma, x:$? $\vdash\left\lceil t_{3}\right\rceil_{\varepsilon}:$?. By the induction hypothesis, we know that $\mu ; \Xi ; \Gamma \vdash t_{1} \approx\left\lceil t_{1}\right\rceil_{\varepsilon}:$?, $\mu ; \Xi ; \Gamma \vdash t_{2} \approx\left\lceil t_{2}\right\rceil_{\varepsilon}:$? and $\mu ; \Xi ; \Gamma, x:$? $\vdash t_{3} \approx\left\lceil t_{3}\right\rceil_{\varepsilon}:$?. Therefore, by the Rule (RunsL) the result follows immediately.

Case $\left(\left\langle t_{1}, t_{2}\right\rangle\right)$. Then, we know that

$$
\left\lceil\left\langle t_{1}, t_{2}\right\rangle\right\rceil_{\varepsilon}=\varepsilon_{? \times x ?}\left\langle\left\lceil t_{1}\right\rceil_{\varepsilon},\left\lceil t_{2}\right\rceil_{\varepsilon}\right\rangle:: ?
$$

We have $t=\left\langle t_{1}, t_{2}\right\rangle$. Then, we have to prove that $\mu ; \Xi ; \Gamma \vdash\left\langle t_{1}, t_{2}\right\rangle \approx \varepsilon_{\text {? } \times ?}\left\langle\left\lceil t_{1}\right\rceil_{\varepsilon},\left\lceil t_{2}\right\rceil_{\varepsilon}\right\rangle::$? : ?. Since $\Xi ; \Gamma \vdash\lceil t\rceil_{\varepsilon}$: ? and by Lemma 9.13, we know that $\Xi ; \Gamma \vdash\left\lceil t_{1}\right\rceil_{\varepsilon}:$? and $\Xi ; \Gamma \vdash\left\lceil t_{2}\right\rceil_{\varepsilon}:$?. By the induction hypothesis, we know that $\mu ; \Xi ; \Gamma \vdash t_{1} \approx\left\lceil t_{1}\right\rceil_{\varepsilon}:$? and $\mu ; \Xi ; \Gamma \vdash t_{2} \approx\left\lceil t_{2}\right\rceil_{\varepsilon}:$?. Therefore, by the Rule (Rpt) the result follows immediately.

Case $\left(o p\left(\overline{t^{\prime}}\right)\right)$. Then, we know that

$$
\left\lceil o p\left(\overline{t^{\prime}}\right)\right\rceil_{\varepsilon}=\text { let } \bar{x}: ?=\left\lceil\overline{t^{\prime}}\right\rceil \text { in } \varepsilon_{B} o p\left(\varepsilon_{\bar{B}} \bar{x}:: \bar{B}\right):: ?
$$

We have $t=o p\left(\overline{t^{\prime}}\right)$. Then, we have to prove that

$$
\mu ; \Xi ; \Gamma \vdash o p\left(\overline{t^{\prime}}\right) \approx \text { let } \bar{x}: ?=\left\lceil\overline{t^{\prime}}\right\rceil \text { in } \varepsilon_{B} o p(\varepsilon \bar{B} \bar{x}:: \bar{B}):: ?: ?
$$

Since $\Xi ; \Gamma \vdash\lceil t\rceil_{\varepsilon}$: ? and by Lemma 9.13, we know that $\Xi ; \Gamma \vdash\left\lceil\overline{t^{\prime}}\right\rceil_{\varepsilon}:$?. By the induction hypothesis, we know that $\mu ; \Xi ; \Gamma \vdash \overline{t^{\prime}} \approx\left\lceil\overline{t^{\prime}}\right\rceil_{\varepsilon}$: ?. Therefore, by the Rule (Rop) the result follows immediately.

Case ($v x . t^{\prime}$). Then, we know that

$$
\left\lceil v x \cdot t^{\prime}\right\rceil_{\varepsilon}=\text { let } x=s u_{\varepsilon} \text { in }\left\lceil t^{\prime}\right\rceil_{\varepsilon}
$$

We have $t=v x . t^{\prime}$. Then, we have to prove that $\mu ; \Xi ; \Gamma \vdash v x . t^{\prime} \approx$ let $x=s u_{\varepsilon}$ in $\left\lceil t^{\prime}\right\rceil_{\varepsilon}$: ?. Since $\Xi ; \Gamma \vdash$ let $x=s u_{\varepsilon}$ in $\left\lceil t^{\prime}\right\rceil_{\varepsilon}:$?, we know that $\Xi ; \Gamma, x:$? $\vdash\left\lceil t^{\prime}\right\rceil_{\varepsilon}:$?. By the induction hypothesis, we know that $\mu ; \Xi ; \Gamma, x:$? $\vdash t^{\prime} \approx\left\lceil t^{\prime}\right\rceil_{\varepsilon}:$?. Therefore, by the Rule (RsG) the result follows immediately.

Lemma 11.7. If $\vdash\lceil t\rceil \sim t_{\varepsilon}:$?, then $\vdash t \approx t_{\varepsilon}:$?.
Proof. Direct by 9.3.
Lemma 9.4. If $\mu ; \Xi \vdash v \approx t:$?, then $\Xi \triangleright t \longmapsto{ }^{*} \Xi \triangleright v^{\prime}$, and $\mu ; \Xi \vdash v \approx v^{\prime}:$?, for some v^{\prime}.
Proof. The proof is a straightforward induction on the derivation of the rule $\mu ; \Xi \vdash v \approx t:$?. We only take into account rule cases where the term on the left can be a value.

Case (Rb). Trivial case because both terms in the relation are values.

$$
(\mathrm{Rb}) \frac{\operatorname{ty}(b)=B}{\mu ; \Xi \vdash b \approx \varepsilon_{B} b:: ?: ?}
$$

Case (Rs). Trivial case because both terms in the relation are values.

$$
\text { (Rs) } \frac{\sigma:=? \in \Xi}{\mu ; \Xi \vdash \sigma \approx s u^{\sigma}: ?}
$$

Case (Ru).

$$
(\mathrm{Ru}) \frac{\mu ; \Xi \vdash v \approx \varepsilon_{D} u:: ?: ?}{\mu ; \Xi \vdash v \approx \varepsilon_{D}\left(\varepsilon_{D} u:: D\right):: ?: ?}
$$

If $t=\varepsilon_{D}\left(\varepsilon_{D} u:: D\right)::$?, then we know by the reduction rules of $\operatorname{GSF} \varepsilon$ that:

$$
\Xi \triangleright t \longmapsto \Xi \triangleright \varepsilon_{D} u:: ?
$$

Note that $\varepsilon_{D} ; \varepsilon_{D}=\varepsilon_{D}$ by Lemma 9.12. Then, we have to prove that $\mu ; \Xi \vdash v \approx \varepsilon_{D} u:: ?:$?, which is a premise. Therefore, the result follows immediately.
Case (Rp). Trivial case because both terms in the relation are values.

$$
(\mathrm{Rp}) \frac{\mu ; \Xi \vdash v_{1} \approx \varepsilon_{D_{1}} u_{1}:: ?: ? \quad \mu ; \Xi \vdash v_{2} \approx \varepsilon_{D_{2}} u_{2}:: ?: ?}{\mu ; \Xi \vdash\left\langle v_{1}, v_{2}\right\rangle \approx \varepsilon_{D_{1} \times D_{2}}\left\langle u_{1}, u_{2}\right\rangle:: ?: ?}
$$

Case ($\mathrm{R} \lambda$). Trivial case because both terms in the relation are values.

$$
(\mathrm{R} \lambda) \frac{\mu ; \Xi ; x: ? \vdash t_{1} \approx t_{2}: ?}{\mu ; \Xi \vdash\left(\lambda x \cdot t_{1}\right) \approx \varepsilon_{?} \rightarrow ?\left(\lambda x . t_{2}\right):: ?: ?}
$$

Case (Rpt).

$$
(\mathrm{Rpt}) \frac{\mu ; \Xi \vdash t_{1} \approx t_{1}^{\prime}: ? \quad \mu ; \Xi \vdash t_{2} \approx t_{2}^{\prime}: ?}{\mu ; \Xi \vdash\left\langle t_{1}, t_{2}\right\rangle \approx \varepsilon_{? \times \times}\left\langle t_{1}^{\prime}, t_{2}^{\prime}\right\rangle:: ?: ?}
$$

We have $t=\varepsilon_{\text {? } \times \text { ? }}\left\langle t_{1}^{\prime}, t_{2}^{\prime}\right\rangle::$?. We know that $\left\langle t_{1}, t_{2}\right\rangle=\left\langle v_{1}, v_{2}\right\rangle$ for some v_{1} and v_{2}. Also, we know by premise that $\mu ; \Xi \vdash v_{1} \approx t_{1}^{\prime}:$? and $\mu ; \Xi \vdash v_{2} \approx t_{2}^{\prime}:$?. Then, by the induction hypothesis, we know that exists v_{1}^{\prime} and v_{2}^{\prime} such that $\Xi \triangleright t_{1}^{\prime} \longmapsto{ }^{*} \Xi \triangleright v_{1}^{\prime}, \Xi \triangleright t_{2}^{\prime} \longmapsto^{*} \Xi \triangleright v_{2}^{\prime}, \mu ; \Xi \vdash v_{1} \approx v_{1}^{\prime}:$? and $\mu ; \Xi \vdash v_{2} \approx v_{2}^{\prime}:$?. Now, we have to prove that $\mu ; \Xi \vdash\left\langle v_{1}, v_{2}\right\rangle \approx \varepsilon_{? \times ?}\left\langle v_{1}^{\prime}, v_{2}^{\prime}\right\rangle::$? : ?. But the result follows immediately by the rule (Rpt).
Case (Rsed1).

$$
(\text { Rsed } 1) \frac{\mu ; \Xi \vdash t_{1} \approx t_{1}^{\prime}: ? \quad \mu ; \Xi \vdash t_{2} \approx t_{2}^{\prime}: ?}{\mu ; \Xi \vdash\left\{t_{1}\right\}_{t_{2}} \approx \varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times ?} t_{1}^{\prime}:: ? \times ?\right):: ? \rightarrow ? t_{2}^{\prime}: ?}
$$

We have $t=\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times ?} t_{1}^{\prime}:: ? \times\right.$?) :: ? \rightarrow ? t_{2}^{\prime}. Also, we know that $\left\{t_{1}\right\}_{t_{2}}=\{v\}_{\sigma}$, for some v and σ. Then, we know that $\mu ; \Xi \vdash v \approx t_{2}^{\prime}:$? and $\mu ; \Xi \vdash \sigma \approx t_{1}^{\prime}:$?. Then, by the induction hypothesis, we know that exists v_{1}^{\prime} and v_{2}^{\prime} and such that $\Xi \triangleright t_{1}^{\prime} \longmapsto{ }^{*} \Xi \triangleright v_{1}^{\prime}, \Xi \triangleright t_{2}^{\prime} \longmapsto{ }^{*} \Xi \triangleright v_{2}^{\prime}, \mu ; \Xi \vdash \sigma \approx v_{1}^{\prime}:$? and $\mu ; \Xi \vdash v \approx v_{2}^{\prime}$: ?. By the rule (Rs), we know that $v_{1}^{\prime}=s u_{\varepsilon}^{\sigma}$. By the dynamic semantics of GSF ε, we know that

$$
\Xi \triangleright t \longmapsto{ }^{*} \Xi \triangleright \varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times ?} s u_{\varepsilon}^{\sigma}:: ? \times ?\right):: ? \rightarrow ? v_{2}^{\prime} \longmapsto{ }^{*}
$$

$\Xi \triangleright\left\langle\sigma^{?} \rightarrow ?, ? \rightarrow\right.$? $\rangle\left(\lambda x: \sigma \cdot \varepsilon_{\sigma^{\prime}} x:: ?\right):: ? v_{2}^{\prime} \longmapsto \Xi \triangleright \varepsilon_{\sigma^{2}}\left(\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u:: ?\right):: ? \longmapsto \Xi \triangleright\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u::$?
where $v_{2}^{\prime}=\left\langle E_{1}, E_{2}\right\rangle u::$?. Therefore, we have to prove that $\mu ; \Xi \vdash\{v\}_{\sigma} \approx\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u::$? : ?. As we know that $\mu ; \Xi \vdash v \approx v_{2}^{\prime}:$? or what is the same $\mu ; \Xi \vdash v \approx\left\langle E_{1}, E_{2}\right\rangle u::$? : ?, by the Rule (Rsed2), the result follows immediately.

Case (Rsed1).

$$
(\text { Rsed } 1) \frac{\mu ; \Xi ; \Gamma \vdash v_{1} \approx v_{1}^{\prime}: ? \quad \mu ; \Xi ; \Gamma \vdash v_{2} \approx v_{2}^{\prime}: ?}{\mu ; \Xi ; \Gamma \vdash\left\{v_{1}\right\}_{v_{2}} \approx \varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times \times} v_{2}^{\prime}:: ? \times ?\right):: ? \rightarrow ? v_{1}^{\prime}: ?}
$$

We have $t=\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times ?} v_{2}^{\prime}:: ? \times ?\right):: ? \rightarrow ? v_{1}^{\prime}$. Also, we know that $\left\{v_{1}\right\}_{v_{2}}=\{v\}_{\sigma}$, for some v and σ. Then, we know that $\mu ; \Xi \vdash v \approx v_{1}^{\prime}:$? and $\mu ; \Xi \vdash \sigma \approx v_{2}^{\prime}:$?. By the rule (Rs), we know that $v_{2}^{\prime}=s u_{\varepsilon}^{\sigma}$. By the dynamic semantics of GSF ε, we know that

$$
\begin{gathered}
\Xi \triangleright t \longmapsto{ }^{*} \Xi \triangleright \varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times ?} s u_{\varepsilon}^{\sigma}:: ? \times ?\right):: ? \rightarrow ? v_{1}^{\prime} \longmapsto{ }^{*} \\
\Xi \triangleright\left\langle\sigma^{?} \rightarrow ?, ? \rightarrow ?\right\rangle\left(\lambda x: \sigma \cdot \varepsilon_{\sigma^{?}} x:: ?\right):: ? v_{1}^{\prime} \longmapsto \Xi \triangleright \varepsilon_{\sigma^{?}}\left(\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u:: ?\right):: ? \longmapsto \Xi \triangleright\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u:: ?
\end{gathered}
$$

where $v_{1}^{\prime}=\left\langle E_{1}, E_{2}\right\rangle u::$?. Therefore, we have to prove that $\mu ; \Xi \vdash\{v\}_{\sigma} \approx\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u::$? : ?. As we know that $\mu ; \Xi \vdash v \approx v_{1}^{\prime}:$? or what is the same $\mu ; \Xi \vdash v \approx\left\langle E_{1}, E_{2}\right\rangle u::$? : ?, by the Rule (Rsed2), the result follows immediately.

Case (Rsed1L).

$$
\text { (Rsed1L) } \frac{\mu ; \Xi ; \Gamma \vdash t_{1} \approx t_{1}^{\prime}: ? \quad \mu ; \Xi ; \Gamma \vdash t_{2} \approx t_{2}^{\prime}: ?}{\mu ; \Xi ; \Gamma \vdash\left\{t_{1}\right\}_{t_{2}} \approx \text { let } x=t_{1}^{\prime} \text { in let } y=t_{2}^{\prime} \text { in }\left(\varepsilon_{?} \rightarrow ? \pi_{1}\left(\varepsilon_{? \times ?} y:: ? \times ?\right):: ? \rightarrow ?\right) x: ?}
$$

We have

$$
t=\text { let } x=t_{1}^{\prime} \text { in let } y=t_{2}^{\prime} \text { in }\left(\varepsilon_{?} \rightarrow ? \pi_{1}\left(\varepsilon_{? \times \times} y:: ? \times ?\right):: ? \rightarrow \text { ?) } x\right.
$$

Also, we know that $\left\{t_{1}\right\}_{t_{2}}=\{v\}_{\sigma}$, for some v and σ. Then, we know that $\mu ; \Xi \vdash v \approx t_{1}^{\prime}:$? and $\mu ; \Xi \vdash \sigma \approx t_{2}^{\prime}:$?. Then, by the induction hypothesis, we know that exists v_{1}^{\prime} and v_{2}^{\prime} such that $\Xi \triangleright t_{1}^{\prime} \longmapsto{ }^{*} \Xi \triangleright v_{1}^{\prime}, \Xi \triangleright t_{2}^{\prime} \longmapsto{ }^{*} \Xi \triangleright v_{2}^{\prime}, \mu ; \Xi \vdash \sigma \approx v_{2}^{\prime}:$? and $\mu ; \Xi \vdash v \approx v_{1}^{\prime}$: ?. By the rule (Rs), we know that $v_{2}^{\prime}=s u_{\varepsilon}^{\sigma}$. By the dynamic semantics of GSF ε, we know that

$$
\Xi \triangleright t \longmapsto{ }^{*} \Xi \triangleright \varepsilon_{?} \varepsilon_{?}\left(\varepsilon_{?} \rightarrow ? \pi_{1}\left(\varepsilon_{? \times ?} s u_{\varepsilon}^{\sigma}:: ? \times ?\right):: ? \rightarrow ? v_{2}^{\prime}\right):: ?:: ? \longmapsto{ }^{*}
$$

$$
\begin{aligned}
& \Xi \triangleright \varepsilon_{?}\left(\varepsilon_{?}\left\langle\sigma^{?} \rightarrow ?, ? \rightarrow ?\right\rangle\left(\lambda x: \sigma \cdot \varepsilon_{\sigma^{2}} x:: ?\right):: ~ ? ~ v_{2}^{\prime}\right):: ?:: ? \longmapsto \\
& \Xi \triangleright \varepsilon_{?} \varepsilon_{?}\left(\varepsilon_{\sigma^{?}}\left(\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u:: ?\right):: ?\right):: ?:: ? \longmapsto \Xi \triangleright\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u:: ?
\end{aligned}
$$

where $v_{1}^{\prime}=\left\langle E_{1}, E_{2}\right\rangle u::$?. Therefore, we have to prove that $\mu ; \Xi \vdash\{v\}_{\sigma} \approx\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u::$? : ?. As we know that $\mu ; \Xi \vdash v \approx v_{1}^{\prime}:$? or what is the same $\mu ; \Xi \vdash v \approx\left\langle E_{1}, E_{2}\right\rangle u::$? : ?, by the Rule (Rsed2), the result follows immediately.

Case (Rsed1R).

$$
(\text { Rsed } 1 \mathrm{R}) \frac{\mu ; \Xi ; \Gamma \vdash v_{1} \approx v_{1}^{\prime}: ? \quad \mu ; \Xi ; \Gamma \vdash t_{2} \approx t_{2}^{\prime}: ?}{\mu ; \Xi ; \Gamma \vdash\left\{v_{1}\right\}_{t_{2}} \approx \text { let } y=t_{2}^{\prime} \operatorname{in}\left(\varepsilon_{?} \rightarrow ? \pi_{1}\left(\varepsilon_{? \times ?} y:: ? \times ?\right):: ? \rightarrow ?\right) v_{1}^{\prime}: ?}
$$

We have

$$
t=\text { let } y=t_{2}^{\prime} \text { in }\left(\varepsilon_{? \rightarrow ?} \pi_{1}(\varepsilon ? \times ? y:: ? \times ?):: ? \rightarrow \text { ?) } v_{1}^{\prime}\right.
$$

Also, we know that $\left\{v_{1}\right\}_{t_{2}}=\{v\}_{\sigma}$, for some v and σ. Then, we know that $\mu ; \Xi \vdash v \approx v_{1}^{\prime}$: ? and $\mu ; \Xi \vdash \sigma \approx t_{2}^{\prime}$: ?. Then, by the induction hypothesis, we know that exists v_{2}^{\prime} such that $\Xi \triangleright t_{2}^{\prime} \longmapsto{ }^{*} \Xi \triangleright v_{2}^{\prime}$ and $\mu ; \Xi \vdash \sigma \approx v_{2}^{\prime}:$?. By the rule (Rs), we know that $v_{2}^{\prime}=s u_{\varepsilon}^{\sigma}$. By the dynamic semantics of GSFE, we know that

$$
\begin{aligned}
& \Xi \triangleright t \longmapsto^{*} \Xi \triangleright \varepsilon_{?}\left(\varepsilon_{?} \rightarrow ? \pi_{1}\left(\varepsilon_{? \times ?} s u_{\varepsilon}^{\sigma}:: ? \times ?\right):: ? \rightarrow ? v_{2}^{\prime}\right):: ? \longmapsto{ }^{*} \\
& \quad \Xi \triangleright \varepsilon_{?}\left(\left\langle\sigma^{?} \rightarrow ?, ? \rightarrow ?\right\rangle\left(\lambda x: \sigma \cdot \varepsilon_{\sigma^{?}} x:: ?\right):: ? v_{2}^{\prime}\right):: ? \longmapsto \\
& \left.\quad \Xi \triangleright \varepsilon_{?}\left(\varepsilon_{\sigma^{?}}\left(\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u:: ?\right):: ?\right):: ? \longmapsto \Xi \triangleright E_{1}, \sigma^{E_{2}}\right\rangle u:: ?
\end{aligned}
$$

where $v_{1}^{\prime}=\left\langle E_{1}, E_{2}\right\rangle u::$?. Therefore, we have to prove that $\mu ; \Xi \vdash\{v\}_{\sigma} \approx\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u::$? : ?. As we know that $\mu ; \Xi \vdash v \approx v_{1}^{\prime}:$? or what is the same $\mu ; \Xi \vdash v \approx\left\langle E_{1}, E_{2}\right\rangle u::$? : ?, by the Rule (Rsed2), the result follows immediately.

Case (Rsed2). Trivial case because both terms in the relation are values.

$$
(\operatorname{Rsed} 2) \frac{\mu ; \Xi \vdash v \approx\left\langle E_{1}, E_{2}\right\rangle u:: ?: ? \quad \sigma:=? \in \Xi}{\mu ; \Xi \vdash\{v\}_{\sigma} \approx\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u:: ?: ?}
$$

Case (R?).

$$
\text { (R?) } \frac{\mu ; \Xi ; \Gamma \vdash v \approx t^{\prime}: ?}{\mu ; \Xi ; \Gamma \vdash v \approx \varepsilon_{?} t^{\prime}:: ?: ?}
$$

We have $t=\varepsilon_{?} t^{\prime}::$?, where $\mu ; \Xi ; \Gamma \vdash v \approx t^{\prime}:$?. Then, by the induction hypothesis, we have that $\Xi \triangleright t^{\prime} \longmapsto{ }^{*} v^{\prime \prime}$ and $\mu ; \Xi ; \Gamma \vdash v \approx v^{\prime \prime}$: ?. By the dynamic semantics of GSF ε, we know that

$$
\Xi \triangleright \varepsilon_{?} t^{\prime}:: ? \longmapsto{ }^{*} \Xi \triangleright \varepsilon_{?} v^{\prime \prime}:: ? \longmapsto \Xi \triangleright v^{\prime \prime}
$$

Therefore, the result follows immediately.

Lemma 11.3. If $\mu ; \Xi \vdash v \approx t_{\varepsilon}:$? , then there exists v_{ε} s.t. $\Xi \triangleright t_{\varepsilon} \longmapsto{ }^{*} \Xi \triangleright v_{\varepsilon}$, and $\mu ; \Xi \vdash v \approx v_{\varepsilon}:$?.
Proof. Direct by Lemma 9.4.

Lemma 9.5. If $\mu ; \Xi \vdash t \approx t_{*}:$? and $t\left\|\mu \longrightarrow t^{\prime}\right\| \mu^{\prime}$, then $\Xi \triangleright t_{*} \longmapsto^{*} \Xi^{\prime} \triangleright t_{*}^{\prime}$ and $\mu^{\prime} ; \Xi^{\prime} \vdash t^{\prime} \approx t_{*}^{\prime}:$?, for some t_{*}^{\prime}.

Proof. The proof is a straightforward induction on $\mu ; \Xi \vdash t \approx t_{*}$: ? and case analysis on $t\left\|\mu \longrightarrow t^{\prime}\right\| \mu^{\prime}$. The following rules are the only ones that can be applied in this case.

Case (RsG).

$$
(\mathrm{RsG}) \frac{\mu ; \Xi ; x: ? \vdash t_{1} \approx t_{1}^{\prime}: ?}{\mu ; \Xi \vdash v x \cdot t_{1} \approx \text { let } x=s u_{\varepsilon} \text { in } t_{1}^{\prime}: ?}
$$

Since $t\left\|\mu \longrightarrow t^{\prime}\right\| \mu^{\prime}$, we know that $t=v x . t_{1}$. By the reduction rules of $\lambda_{\text {seal }}$, we know that $t\left\|\mu \longrightarrow t_{1}[\sigma / x]\right\| \mu, \sigma$. By Lemma 9.15, we know that $\Xi \triangleright s u_{\varepsilon} \longmapsto^{*} \Xi, \sigma:=$? $\triangleright s u_{\varepsilon}^{\sigma}$. By Rule (Rs), we know that $\mu, \sigma ; \Xi, \sigma:=$? $\vdash \sigma \approx s u_{\varepsilon}^{\sigma}$? ?. By the reduction rules of $\operatorname{GSF} \varepsilon$, we know that

$$
\Xi \triangleright \text { let } x=s u_{\varepsilon} \text { in } t_{1}^{\prime} \longmapsto{ }^{*} \Xi, \sigma:=? \triangleright \text { let } x=s u_{\varepsilon}^{\sigma} \text { in } t_{1}^{\prime} \longmapsto \Xi, \sigma:=? \triangleright \varepsilon_{?}\left(t_{1}^{\prime}\left[s u_{\varepsilon}^{\sigma} / x\right]\right):: ?
$$

Then, we are required to show that $\mu, \sigma ; \Xi, \sigma:=? \vdash t_{1}[\sigma / x] \approx \varepsilon_{?}\left(t_{1}^{\prime}\left[s u_{\varepsilon}^{\sigma} / x\right]\right):: ?: ?$. We know by the premise that $\mu ; \Xi ; x:$? $\vdash t_{1} \approx t_{1}^{\prime}:$?, or what is the same $\mu, \sigma ; \Xi, \sigma:=$?; $x:$? $\vdash t_{1} \approx t_{1}^{\prime}:$?. Since $\mu, \sigma ; \Xi, \sigma:=$?; $x: ? \vdash t_{1} \approx t_{1}^{\prime}:$? and $\mu, \sigma ; \Xi, \sigma:=$? $\vdash \sigma \approx s u_{\varepsilon}^{\sigma}:$?, by the Lemma 9.16 and Rule (R?) the result follows immediately.
Case (Runs).

$$
\text { (Runs) } \frac{\mu ; \Xi \vdash v_{1} \approx v_{1}^{\prime}: ? \quad \mu ; \Xi \vdash v_{2} \approx v_{2}^{\prime}: ? \quad \mu ; \Xi ; z: ? \vdash t_{3} \approx t_{3}^{\prime}: ?}{\mu ; \Xi \vdash \text { let }\{z\}_{v_{1}}=v_{2} \text { in } t_{3} \approx \operatorname{let} z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times \times} v_{1}^{\prime}:: ? \times ?\right):: ? \rightarrow ? v_{2}^{\prime} \text { in } t_{3}^{\prime}: ?}
$$

Since $t\left\|\mu \longrightarrow t^{\prime}\right\| \mu^{\prime}$, we know that $t=\operatorname{let}\{z\}_{\sigma}=\{v\}_{\sigma}$ in t_{3}. By the reduction rules of $\lambda_{\text {seal }}$, we know that $t\left\|\mu \longrightarrow t_{3}[v / z]\right\| \mu$. We know by the premises that μ; $\Xi \vdash \sigma \approx v_{1}^{\prime}:$? and $\mu ; \Xi \vdash$ $\{v\}_{\sigma} \approx v_{2}^{\prime}:$?. Therefore, by Rules (Rs) and (Rsed2), we know that $v_{1}=s u_{\varepsilon}^{\sigma}$ and $v_{2}=\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u::$?, for some u, E_{1} and E_{2}. By the reduction rules of $\mathrm{GSF} \varepsilon$, we know that

$$
\begin{gathered}
\Xi \triangleright \text { let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times ?} s u_{\varepsilon}^{\sigma}:: ? \times ?\right):: ? \rightarrow ?\left(\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u:: ?\right) \text { in } t_{3}^{\prime} \longmapsto^{*} \\
\Xi \triangleright \text { let } z=\left(\left\langle ? \rightarrow \sigma^{?}, ? \rightarrow ?\right\rangle\left(\lambda x: ? . \varepsilon_{\sigma^{?}} x:: \sigma\right):: ?\right)\left(\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u:: ?\right) \text { in } t_{3}^{\prime} \longmapsto^{*} \\
\Xi \triangleright \text { let } z=\left(\left\langle E_{1}, E_{2}\right\rangle u:: ?\right) \text { in } t_{3}^{\prime} \longmapsto^{*} \Xi \triangleright t_{3}^{\prime}\left[\left\langle E_{1}, E_{2}\right\rangle u:: ? / x\right]
\end{gathered}
$$

We are required to show that $\mu ; \Xi \vdash t_{3}[v / z] \approx t_{3}^{\prime}\left[\left\langle E_{1}, E_{2}\right\rangle u::\right.$?/z]: ?, but we know that μ; $\Xi \vdash$ $\{v\}_{\sigma} \approx\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u::$? : ?, therefore we know by the rule (Rsed2) that $\mu ; \Xi \vdash v \approx\left\langle E_{1}, E_{2}\right\rangle u::$? : ?. Finally, by the Lemma 9.16, the result follows immediately.

Case (Rop).

$$
(\mathrm{Rop}) \frac{\mu ; \Xi ; \Gamma \vdash \overline{t_{1}} \approx \overline{t_{2}}: \bar{B} \quad t y(o p)=\bar{B} \rightarrow B^{\prime}}{\mu ; \Xi ; \Gamma \vdash o p\left(\overline{t_{1}}\right) \approx o p\left(\varepsilon_{\bar{B}} \overline{t_{2}}:: \bar{B}\right):: ?: B^{\prime}}
$$

Applying the induction hypothesis, reduction rules of $\lambda_{\text {seal }}$ and GSF ε, and Rule (R δ).
Case (RunsL).
(RunsL) $\frac{\mu ; \Xi \vdash t_{1} \approx t_{1}^{\prime}: ? \quad \mu ; \Xi \vdash t_{2} \approx t_{2}^{\prime}: ? \quad \mu ; \Xi ; z: ? \vdash t_{3} \approx t_{3}^{\prime}: ?}{\mu ; \Xi \vdash \text { let }\{z\}_{t_{1}}=t_{2} \text { in } t_{3} \approx \text { let } x=t_{1}^{\prime} \text { in let } y=t_{2}^{\prime} \text { in let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times ?} x:: ? \times ?\right):: ? \rightarrow ? y \text { in } t_{3}^{\prime}: ?}$
Since $t\left\|\mu \longrightarrow t^{\prime}\right\| \mu^{\prime}$, we know that $t=$ let $\{z\}_{\sigma}=\{v\}_{\sigma}$ in t_{3}. By the reduction rules of $\lambda_{\text {seal }}$, we know that $t\left\|\mu \longrightarrow t_{3}[v / z]\right\| \mu$. We know by the premises that $\mu ; \Xi \vdash \sigma \approx t_{1}^{\prime}:$? and $\mu ; \Xi \vdash$ $\{v\}_{\sigma} \approx t_{2}^{\prime}$: ?. Therefore, by Lemma 9.4, we know that $\Xi \triangleright t_{1}^{\prime} \longmapsto{ }^{*} \Xi_{1} \triangleright v_{1}, \Xi \triangleright t_{2}^{\prime} \longmapsto{ }^{*} \Xi \triangleright v_{2}$, $\mu ; \Xi \vdash \sigma \approx v_{1}:$? and $\mu ; \Xi \vdash\{v\}_{\sigma} \approx v_{2}:$?, for some v_{1} and v_{2}. By Rules (Rs) and (Rsed2), we know that $v_{1}=s u_{\varepsilon}^{\sigma}$ and $v_{2}=\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u::$?, for some u, E_{1} and E_{2}. By the reduction rules of GSF ε, we know that

$$
\begin{gathered}
\Xi \triangleright \text { let } x=t_{1}^{\prime} \text { in let } y=t_{2}^{\prime} \text { in let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times} x::: \times \times\right):: ? \rightarrow ? y \text { in } t_{3}^{\prime} \longmapsto^{*} \\
\Xi \triangleright \varepsilon_{?} \varepsilon_{?}\left(\text { let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times \times} s u_{\varepsilon}^{\sigma}:: ? \times ?\right):: ? \rightarrow ?\left(\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u:: ?\right) \text { in } t_{3}^{\prime}\right):: ?:: ? \longmapsto^{*} \\
\Xi \triangleright \varepsilon_{?} \varepsilon_{?}\left(\text { let } z=\left(\left\langle ? \rightarrow \sigma^{?}, ? \rightarrow ?\right\rangle\left(\lambda x: ? . \varepsilon_{\sigma^{?} x} x:: \sigma\right):: ?\right)\left(\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u:: ?\right) \text { in } t_{3}^{\prime}\right):: ?:: ? \mapsto^{*}
\end{gathered}
$$

$$
\Xi \triangleright \varepsilon_{?} \varepsilon_{?}\left(\text { let } z=\left(\left\langle E_{1}, E_{2}\right\rangle u:: \text { ?) in } t_{3}^{\prime}\right):: ?:: ? \longmapsto{ }^{*} \Xi \triangleright \varepsilon_{?} \varepsilon_{?} \varepsilon_{?}\left(t _ { 3 } ^ { \prime } \left[\left\langle E_{1}, E_{2}\right\rangle u::\right.\right. \text { ?/x]) :: ? :: ? :: ? }\right.
$$

We are required to show that $\mu ; \Xi \vdash t_{3}[v / z] \approx \varepsilon_{?} \varepsilon_{?} \varepsilon_{?}\left(t_{3}^{\prime}\left[\left\langle E_{1}, E_{2}\right\rangle u::\right.\right.$?/z]) :: ? :: ? :: ? : ?, but we know that $\mu ; \Xi \vdash\{v\}_{\sigma} \approx\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u::$? : ?, therefore we know by the rule (Rsed2) that $\mu ; \Xi \vdash v \approx\left\langle E_{1}, E_{2}\right\rangle u::$? : ?. Finally, by the Lemma 9.16 and the Rule (R?), the result follows immediately.

Case (RunsR).
(RunsR) $\frac{\mu ; \Xi \vdash v_{1} \approx v_{1}^{\prime}: ? \quad \mu ; \Xi \vdash t_{2} \approx t_{2}^{\prime}: ? \quad \mu ; \Xi ; z: ? \vdash t_{3} \approx t_{3}^{\prime}: ?}{\mu ; \Xi \vdash \text { let }\{z\}_{v_{1}}=t_{2} \text { in } t_{3} \approx \text { let } y=t_{2}^{\prime} \text { in let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times ?} v_{1}^{\prime}:: ? \times ?\right):: ? \rightarrow ? y \text { in } t_{3}^{\prime}: ?}$
Since $t\left\|\mu \longrightarrow t^{\prime}\right\| \mu^{\prime}$, we know that $t=$ let $\{z\}_{\sigma}=\{v\}_{\sigma}$ in t_{3}. By the reduction rules of $\lambda_{\text {seal }}$, we know that $t\left\|\mu \longrightarrow t_{3}[v / z]\right\| \mu$. We know by the premises that $\mu ; \Xi \vdash \sigma \approx v_{1}^{\prime}:$? and $\mu ; \Xi \vdash$ $\{v\}_{\sigma} \approx t_{2}^{\prime}:$?. Therefore, by Lemma 9.4, we know that $\Xi \triangleright t_{2}^{\prime} \longmapsto^{*} \Xi \triangleright v_{2}$ and $\mu ; \Xi \vdash\{v\}_{\sigma} \approx v_{2}:$?, for some v_{2}. By Rules (Rs) and (Rsed2), we know that $v_{1}=s u_{\varepsilon}^{\sigma}$ and $v_{2}=\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u::$?, for some u, E_{1} and E_{2}. By the reduction rules of GSF ε, we know that

$$
\begin{gathered}
\Xi \triangleright \text { let } y=t_{2}^{\prime} \text { in let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times \times} v_{1}^{\prime}:: ? \times ?\right):: ? \rightarrow ? y \text { in } t_{3}^{\prime} \longmapsto{ }^{*} \\
\Xi \triangleright \varepsilon_{?}\left(\text { let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times ?} s u_{\varepsilon}^{\sigma}:: ? \times ?\right):: ? \rightarrow ?\left(\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u:: ?\right) \text { in } t_{3}^{\prime}\right):: ? \longmapsto^{*} \\
\Xi \triangleright \varepsilon_{?}\left(\text { let } z=\left(\left\langle ? \rightarrow \sigma^{?}, ? \rightarrow ?\right\rangle\left(\lambda x: ? . \varepsilon_{\sigma}{ }^{2} x:: \sigma\right):: ?\right)\left(\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u:: ?\right) \text { in } t_{3}^{\prime}\right):: ? \longmapsto{ }^{*} \\
\Xi \triangleright \varepsilon_{?}\left(\text { let } z=\left(\left\langle E_{1}, E_{2}\right\rangle u:: ?\right) \text { in } t_{3}^{\prime}\right):: ? \longmapsto \Xi \triangleright \varepsilon_{?} \varepsilon_{?}\left(t_{3}^{\prime}\left[\left\langle E_{1}, E_{2}\right\rangle u:: ? / x\right]\right):: ?:: ?
\end{gathered}
$$

We are required to show that $\mu ; \Xi \vdash t_{3}[v / z] \approx \varepsilon_{?} \varepsilon_{?}\left(t_{3}^{\prime}\left[\left\langle E_{1}, E_{2}\right\rangle u:: ~ ? / z\right]\right)::$? :: ? : ?, but we know that $\mu ; \Xi \vdash\{v\}_{\sigma} \approx\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u::$? : ?, therefore we know by the rule (Rsed2) that $\mu ; \Xi \vdash v \approx$ $\left\langle E_{1}, E_{2}\right\rangle u$:: ? : ?. Finally, by the Lemma 9.16 and the Rule (R?), the result follows immediately.

Case (Rapp).

$$
\text { (Rapp) } \frac{\mu ; \Xi \vdash v_{1} \approx v_{1}^{\prime}: ? \quad \mu ; \Xi \vdash v_{2} \approx v_{2}^{\prime}: ?}{\mu ; \Xi \vdash v_{1} v_{2} \approx\left(\varepsilon_{? \rightarrow ?} v_{1}^{\prime}:: ? \rightarrow ?\right) v_{2}^{\prime}: ?}
$$

Since $t\left\|\mu \longrightarrow t^{\prime}\right\| \mu^{\prime}$, we know that $t=\left(\lambda x . t_{1}^{\prime \prime}\right) v_{2}$, where $v_{1}=\left(\lambda x . t_{1}^{\prime \prime}\right)$. Therefore, we know that $\mu ; \Xi \vdash\left(\lambda x . t_{1}^{\prime \prime}\right) \approx v_{1}^{\prime}:$? and $\mu ; \Xi \vdash v_{2} \approx v_{2}^{\prime}:$?. By the rule $(\mathrm{R} \lambda)$, we know that $v_{1}^{\prime}=\varepsilon_{?} \rightarrow$? $\lambda x . t_{1}^{\prime \prime \prime}::$?, where $\Xi ; x:$? $\vdash t_{1}^{\prime \prime} \approx t_{1}^{\prime \prime \prime}$: ?.

By the dynamic semantics of $\lambda_{\text {seal }}$, we know that

$$
\left(\lambda x \cdot t_{1}^{\prime \prime}\right) v_{2}\left\|\mu \longrightarrow t_{1}^{\prime \prime}\left[v_{2} / x\right]\right\| \mu
$$

By the dynamic semantics of $\operatorname{GSF} \varepsilon$, we know that

$$
\begin{gathered}
\Xi \triangleright\left(\varepsilon_{? \rightarrow ?}\left(\varepsilon_{? \rightarrow ?} \lambda x . t_{1}^{\prime \prime \prime}:: ?\right):: ? \rightarrow ?\right) v_{2}^{\prime} \longmapsto{ }^{*} \\
\Xi \triangleright\left(\varepsilon_{? \rightarrow ?}\left(\lambda x . t_{1}^{\prime \prime \prime}\right):: ? \rightarrow ?\right) v_{2}^{\prime} \longmapsto \Xi \triangleright \varepsilon_{?}\left(t_{1}^{\prime \prime \prime}\left[v_{2}^{\prime} / x\right]\right):: ?
\end{gathered}
$$

Since $\mu ; \Xi ; x:$? $\vdash t_{1}^{\prime \prime} \approx t_{1}^{\prime \prime \prime}:$? and $\mu ; \Xi \vdash v_{2} \approx v_{2}^{\prime}:$?, we know by Lemma 9.16 that $\mu ; \Xi \vdash$ $t_{1}^{\prime \prime}\left[v_{2} / x\right] \approx\left(t_{1}^{\prime \prime \prime}\left[v_{2}^{\prime} / x\right]\right):$?. By the Rule (R?), we know that $\mu ; \Xi \vdash t_{1}^{\prime \prime}\left[v_{2} / x\right] \approx \varepsilon_{?}\left(t_{1}^{\prime \prime \prime}\left[v_{2}^{\prime} / x\right]\right):: ?: ?$, thus the result follows.

Case (RappL).

$$
(\text { RappL }) \frac{\mu ; \Xi \vdash t_{1} \approx t_{1}^{\prime}: ? \quad \mu ; \Xi \vdash t_{2} \approx t_{2}^{\prime}: ?}{\mu ; \Xi \vdash t_{1} t_{2} \approx \text { let } x=t_{1}^{\prime} \text { in let } y=t_{2}^{\prime} \text { in }\left(\varepsilon_{? \rightarrow ?} x:: ? \rightarrow ?\right) y: ?}
$$

Since $t\left\|\mu \longrightarrow t^{\prime}\right\| \mu^{\prime}$, we know that $t=\left(\lambda x . t_{1}^{\prime \prime}\right) v_{2}$, where $t_{1}=\left(\lambda x . t_{1}^{\prime \prime}\right)$ and $t_{2}=v_{2}$. Therefore, we know that $\mu ; \Xi \vdash\left(\lambda x . t_{1}^{\prime \prime}\right) \approx t_{1}^{\prime}:$? and $\mu ; \Xi \vdash v_{2} \approx t_{2}^{\prime}$: ?. By Lemma 9.4, we know that
$\Xi \triangleright t_{1}^{\prime} \longmapsto^{*} \Xi \triangleright v_{1}^{\prime}, \Xi \triangleright t_{2}^{\prime} \longmapsto^{*} \Xi \triangleright v_{2}^{\prime}, \mu ; \Xi \vdash\left(\lambda x . t_{1}^{\prime \prime}\right) \approx v_{1}^{\prime}: ?$ and $\mu ; \Xi \vdash v_{2} \approx v_{2}^{\prime}:$?, for some v_{1}^{\prime} and v_{2}^{\prime}. By the rule (R λ), we know that $v_{1}^{\prime}=\varepsilon_{? \rightarrow ?} \lambda x . t_{1}^{\prime \prime \prime}::$?, where $\Xi ; x: ? \vdash t_{1}^{\prime \prime} \approx t_{1}^{\prime \prime \prime}:$?.

By the dynamic semantics of $\lambda_{\text {seal }}$, we know that

$$
\left(\lambda x . t_{1}^{\prime \prime}\right) v_{2}\left\|\mu \longrightarrow t_{1}^{\prime \prime}\left[v_{2} / x\right]\right\| \mu
$$

By the dynamic semantics of GSFe, we know that

$$
\begin{gathered}
\left.\left.\Xi \triangleright \text { let } x=t_{1}^{\prime} \text { in let } y=t_{2}^{\prime} \text { in }\left(\varepsilon_{? \rightarrow ?} x:: ? \rightarrow ?\right) y \mapsto^{*} \Xi \triangleright \varepsilon_{?} \varepsilon_{?} \varepsilon_{? \rightarrow ?}\left(\lambda x . t_{1}^{\prime \prime \prime}\right):: ? \rightarrow ?\right) v_{2}^{\prime}\right):: ?:: \text { ? } \\
\Xi \triangleright \varepsilon_{?} \varepsilon_{?}\left(\varepsilon_{?}\left(t_{1}^{\prime \prime \prime}\left[v_{2}^{\prime} / x\right]\right):: ?\right):: ?:: ?
\end{gathered}
$$

Since $\mu ; \Xi ; x:$? $\vdash t_{1}^{\prime \prime} \approx t_{1}^{\prime \prime \prime}:$? and $\mu ; \Xi \vdash v_{2} \approx v_{2}^{\prime}:$?, we know by Lemma 9.16 that $\mu ; \Xi \vdash$ $t_{1}^{\prime \prime}\left[v_{2} / x\right] \approx\left(t_{1}^{\prime \prime \prime}\left[v_{2}^{\prime} / x\right]\right):$?. By the Rule (R?), we know that $\mu ; \Xi \vdash t_{1}^{\prime \prime}\left[v_{2} / x\right] \approx \varepsilon_{?}\left(t_{1}^{\prime \prime \prime}\left[v_{2}^{\prime} / x\right]\right):: ?: ?$, therefore we have $\mu ; \Xi \vdash t_{1}^{\prime \prime}\left[v_{2} / x\right] \approx \varepsilon_{?} \varepsilon_{?}\left(\varepsilon_{?}\left(t_{1}^{\prime \prime \prime}\left[v_{2}^{\prime} / x\right]\right):: ?\right)::$? :: ? : ?, thus the result follows.

Case (RappR).

$$
(\operatorname{RappR}) \frac{\mu ; \Xi \vdash v_{1} \approx v_{1}^{\prime}: ? \quad \mu ; \Xi \vdash t_{2} \approx t_{2}^{\prime}: ?}{\mu ; \Xi \vdash v_{1} t_{2} \approx \text { let } y=t_{2}^{\prime} \operatorname{in}\left(\varepsilon_{? \rightarrow ?} v_{1}^{\prime}:: ? \rightarrow ?\right) y: ?}
$$

Since $t\left\|\mu \longrightarrow t^{\prime}\right\| \mu^{\prime}$, we know that $t=\left(\lambda x . t_{1}^{\prime \prime}\right) v_{2}$, where $v_{1}=\left(\lambda x . t_{1}^{\prime \prime}\right)$ and $t_{2}=v_{2}$. Therefore, we know that $\mu ; \Xi \vdash\left(\lambda x . t_{1}^{\prime \prime}\right) \approx v_{1}^{\prime}:$? and $\mu ; \Xi \vdash v_{2} \approx t_{2}^{\prime}:$?. By Lemma 9.4, we know that $\Xi \triangleright t_{2}^{\prime} \longmapsto{ }^{*} \Xi \triangleright v_{2}^{\prime}$ and $\mu ; \Xi \vdash v_{2} \approx v_{2}^{\prime}:$?, for some v_{2}^{\prime}. By the rule $(\mathrm{R} \lambda)$, we know that $v_{1}^{\prime}=\varepsilon_{\text {? }} \rightarrow$? $\lambda x . t_{1}^{\prime \prime \prime}::$?, where $\Xi ; x: ? \vdash t_{1}^{\prime \prime} \approx t_{1}^{\prime \prime \prime}:$?.

By the dynamic semantics of $\lambda_{\text {seal }}$, we know that

$$
\left(\lambda x . t_{1}^{\prime \prime}\right) v_{2}\left\|\mu \longrightarrow t_{1}^{\prime \prime}\left[v_{2} / x\right]\right\| \mu
$$

By the dynamic semantics of GSFe, we know that

$$
\begin{gathered}
\left.\left.\Xi \triangleright \text { let } y=t_{2}^{\prime} \text { in }\left(\varepsilon_{? \rightarrow ?} v_{1}^{\prime}:: ? \rightarrow ?\right) y \longmapsto{ }^{*} \Xi \triangleright \varepsilon_{?} \varepsilon_{? \rightarrow ?}\left(\lambda x . t_{1}^{\prime \prime \prime}\right):: ? \rightarrow ?\right) v_{2}^{\prime}\right):: ? \\
\Xi \triangleright \varepsilon_{?}\left(\varepsilon_{?}\left(t_{1}^{\prime \prime \prime}\left[v_{2}^{\prime} / x\right]\right):: ?\right):: ?
\end{gathered}
$$

Since $\mu ; \Xi ; x:$? $\vdash t_{1}^{\prime \prime} \approx t_{1}^{\prime \prime}:$? and $\mu ; \Xi \vdash v_{2} \approx v_{2}^{\prime}:$?, we know by Lemma 9.16 that $\mu ; \Xi \vdash$ $t_{1}^{\prime \prime}\left[v_{2} / x\right] \approx\left(t_{1}^{\prime \prime \prime}\left[v_{2}^{\prime} / x\right]\right): ?$. By the Rule (R?), we know that $\mu ; \Xi \vdash t_{1}^{\prime \prime}\left[v_{2} / x\right] \approx \varepsilon_{?}\left(t_{1}^{\prime \prime \prime}\left[v_{2}^{\prime} / x\right]\right):: ?: ?$, therefore we have $\mu ; \Xi \vdash t_{1}^{\prime \prime}\left[v_{2} / x\right] \approx \varepsilon_{?}\left(\varepsilon_{?}\left(t_{1}^{\prime \prime \prime}\left[v_{2}^{\prime} / x\right]\right):: ?\right)::$? : ?, thus the result follows.
Case (Rpi).

$$
(\mathrm{Rpi}) \frac{\mu ; \Xi \vdash t \approx t^{\prime}: ?}{\mu ; \Xi \vdash \pi_{i}(t) \approx \pi_{i}\left(\varepsilon_{? \times ?} t^{\prime}:: ? \times ?\right): ?}
$$

Applying the induction hypothesis, reduction rules of $\lambda_{\text {seal }}$ and $\mathrm{GSF} \varepsilon$, and Rules (Rp) and (Rpt).
Case (R?). We have that

$$
\text { (R?) } \frac{\mu ; \Xi \vdash t \approx t_{*}^{\prime \prime}: ?}{\mu ; \Xi \vdash t \approx \varepsilon_{?} t_{*}^{\prime \prime}:: ?: ?}
$$

We have $t_{*}=\varepsilon_{?} t_{*}^{\prime \prime}::$?, where $\mu ; \Xi \vdash t \approx t_{*}^{\prime \prime}:$?. Then, by the induction hypothesis, we have that $\Xi \triangleright t_{*}^{\prime \prime} \longmapsto^{*} \Xi^{\prime} \triangleright t_{*}^{\prime \prime \prime}$ and $\mu^{\prime} ; \Xi^{\prime} \vdash t^{\prime} \approx t_{*}^{\prime \prime \prime}:$?. We are required to show that $\mu^{\prime} ; \Xi^{\prime} \vdash t^{\prime} \approx \varepsilon_{?} t_{*}^{\prime \prime \prime}::$? : ?. But the result follows immediately by the Rule (R?).

Lemma 9.6. Let $\mu ; \Xi \vdash v_{1} \approx \varepsilon u::$? : ?. Then, $v_{1}=\lambda x . t_{1}$ if and only if $u=\lambda x:$?.t. t_{2} and $\varepsilon=\varepsilon_{?} \rightarrow$?.
Proof. The proof follow by the exploration of rules in $\mu ; \Xi \vdash v_{1} \approx \varepsilon u::$? : ? and the definition of the evidence.

Corollary 9.7. Let $\mu ; \Xi \vdash v_{1} \approx \varepsilon u::$? : ?. Then, $v_{1} \neq \lambda x$. t_{1} then $u \neq \lambda x:$?.t t_{2} and $\varepsilon \neq \varepsilon_{G_{1} \rightarrow G_{2}}$.
Proof. By Lemma 9.6.
Lemma 9.8. If $\mu ; \Xi \vdash t \approx t_{*}:$? and $t \| \mu \longrightarrow$ error, then $\Xi \triangleright t_{*} \longmapsto{ }^{*}$ error.
Proof. The proof is a straightforward induction on $\mu ; \Xi \vdash t \approx t_{*}$: ?. The following rule is the only one that can be applied in this case $(t \| \mu \longrightarrow$ error).
Case (Rapp).

$$
(\text { Rapp }) \frac{\mu ; \Xi \vdash v_{1} \approx v_{1}^{\prime}: ? \quad \mu ; \Xi \vdash v_{2} \approx v_{2}^{\prime}: ?}{\mu ; \Xi \vdash v_{1} v_{2} \approx\left(\varepsilon_{? \rightarrow ?} v_{1}^{\prime}:: ? \rightarrow ?\right) v_{2}^{\prime}: ?}
$$

Since $t \| \mu \longrightarrow$ type_error, we know that v_{1} is not a function, and by Corollary 9.7 and $\mu ; \Xi \vdash$ $v_{1} \approx v_{1}^{\prime}$: ?, we know that v_{1}^{\prime} also can not be a function and its evidence, syntactically, can not be a function. Let suppose that $v_{1}^{\prime}=\varepsilon_{1} u_{1}::$?. Then, we know that $\varepsilon_{1} \circ \varepsilon_{?} \rightarrow$? fails, and the result holds.

$$
\Xi \triangleright\left(\varepsilon_{? \rightarrow ?}\left(\varepsilon_{1} u_{1}:: ?\right):: ? \rightarrow \text { ? }\right) v_{2}^{\prime} \longmapsto^{*} \text { error }
$$

Case (RappL).

$$
(\mathrm{RappL}) \frac{\mu ; \Xi \vdash t_{1} \approx t_{1}^{\prime}: ? \quad \mu ; \Xi \vdash t_{2} \approx t_{2}^{\prime}: ?}{\mu ; \Xi \vdash t_{1} t_{2} \approx \operatorname{let} x=t_{1}^{\prime} \text { in let } y=t_{2}^{\prime} \text { in }\left(\varepsilon_{? \rightarrow ?} x:: ? \rightarrow ?\right) y: ?}
$$

By Lemma 9.4, $\mu ; \Xi \vdash t_{1} \approx t_{1}^{\prime}:$? and $\mu ; \Xi \vdash t_{2} \approx t_{2}^{\prime}:$?, we know that $\Xi \triangleright t_{1}^{\prime} \longmapsto{ }^{*} \Xi \triangleright v_{1}^{\prime}, \Xi \triangleright t_{2}^{\prime} \longmapsto{ }^{*} \Xi \triangleright v_{2}^{\prime}$, $\mu ; \Xi \vdash v_{1} \approx v_{1}^{\prime}:$? and $\mu ; \Xi \vdash v_{2} \approx v_{2}^{\prime}:$?, for some v_{1}^{\prime} and v_{2}^{\prime}. Since $t \| \mu \longrightarrow$ type_error, we know that v_{1} is not a function, and by Corollary 9.7 and $\mu ; \Xi \vdash v_{1} \approx v_{1}^{\prime}:$?, we know that v_{1}^{\prime} also can not be a function and its evidence, syntactically, can not be a function. Let suppose that $v_{1}^{\prime}=\varepsilon_{1} u_{1}::$?. Then, we know that $\varepsilon_{1} \circ \varepsilon_{?} \rightarrow$? fails, and the result holds.

$$
\begin{aligned}
& \Xi \triangleright \text { let } x=t_{1}^{\prime} \text { in let } y=t_{2}^{\prime} \text { in }\left(\varepsilon_{? \rightarrow ?} x:: ? \rightarrow \text { ?) } y \longmapsto{ }^{*}\right. \\
& \Xi \triangleright \varepsilon_{?} \varepsilon_{?}\left(\varepsilon_{?} \rightarrow ?\left(\varepsilon_{1} u_{1}:: ?\right):: ? \rightarrow \text { ?) } v_{2}^{\prime}\right):: ?:: ? \longmapsto \text { error }
\end{aligned}
$$

Case (RappR).

$$
(\mathrm{RappR}) \frac{\mu ; \Xi \vdash v_{1} \approx v_{1}^{\prime}: ? \quad \mu ; \Xi \vdash t_{2} \approx t_{2}^{\prime}: ?}{\mu ; \Xi \vdash v_{1} t_{2} \approx \text { let } y=t_{2}^{\prime} \text { in }\left(\varepsilon_{? \rightarrow ?} v_{1}^{\prime}:: ? \rightarrow ?\right) y: ?}
$$

By Lemma 9.4 and $\mu ; \Xi \vdash t_{2} \approx t_{2}^{\prime}:$?, we know that $\Xi \triangleright t_{2}^{\prime} \longmapsto{ }^{*} \Xi \triangleright v_{2}^{\prime}$ and $\mu ; \Xi \vdash v_{2} \approx v_{2}^{\prime}:$?, for some v_{2}^{\prime}. Since $t \| \mu \longrightarrow$ type_error, we know that v_{1} is not a function, and by Corollary 9.7 and $\mu ; \Xi \vdash v_{1} \approx v_{1}^{\prime}:$?, we know that v_{1}^{\prime} also can not be a function and its evidence, syntactically, can not be a function. Let suppose that $v_{1}^{\prime}=\varepsilon_{1} u_{1}::$?. Then, we know that $\varepsilon_{1} \circ \varepsilon_{? \rightarrow \text { ? }}$ fails, and the result holds.

$$
\begin{gathered}
\Xi \triangleright \text { let } y=t_{2}^{\prime} \text { in }\left(\varepsilon_{? \rightarrow ?} v_{1}^{\prime}:: ? \rightarrow ?\right) y \longmapsto{ }^{*} \\
\left.\Xi \triangleright \varepsilon_{?} \varepsilon_{? \rightarrow ?}\left(\varepsilon_{1} u_{1}:: ?\right):: ? \rightarrow \text { ?) } v_{2}^{\prime}\right):: ? \longmapsto \text { error }
\end{gathered}
$$

Case (TRpi). (TRpi) $\frac{\mu ; \Xi ; \Gamma \vdash t \approx t^{\prime}: ?}{\mu ; \Xi ; \Gamma \vdash \pi_{i}(t) \approx \pi_{i}\left(\varepsilon_{? \times ?} t^{\prime}:: ? \times ?\right): ?}$ Similar to the function application case.
Case (Runs).

$$
\text { (Runs) } \frac{\mu ; \Xi \vdash v_{1} \approx v_{1}^{\prime}: ? \quad \mu ; \Xi \vdash v_{2} \approx v_{2}^{\prime}: ? \quad \Xi ; z: ? \vdash t_{3} \approx t_{3}^{\prime}: ?}{\mu ; \Xi \vdash \text { let }\{z\}_{v_{1}}=v_{2} \text { in } t_{3} \approx \operatorname{let} z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times ?} v_{1}^{\prime}:: ? \times ?\right):: ? \rightarrow ? v_{2}^{\prime} \text { in } t_{3}^{\prime}: ?}
$$

Since $t \| \mu \longrightarrow$ unseal_error, we know that $t=$ let $\{z\}_{\sigma}=\{v\}_{\sigma^{\prime}}$ in t_{3}, where $\sigma \neq \sigma^{\prime}$. We know by the premises that $\mu ; \Xi \vdash \sigma \approx v_{1}^{\prime}:$? and $\mu ; \Xi \vdash\{v\}_{\sigma^{\prime}} \approx v_{2}^{\prime}$: ?.Therefore, by Rules (Rs) and (Rsed2), we know that $v_{1}=s u_{\varepsilon}^{\sigma}$ and $v_{2}=\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u::$?, for some u, E_{1} and E_{2}. By the reduction rules of $\mathrm{GSF} \varepsilon$, we know that

$$
\begin{gathered}
\Xi \triangleright \text { let } x=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times ?} s u_{\varepsilon}^{\sigma}:: ? \times ?\right):: ? \rightarrow ?\left(\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u:: ?\right) \text { in } t_{3}^{\prime} \longmapsto{ }^{*} \\
\Xi \triangleright \text { let } x=\left(\left\langle ? \rightarrow \sigma^{?}, ? \rightarrow ?\right\rangle\left(\lambda x: ? . \varepsilon_{\sigma^{?}} x:: \sigma\right):: ?\right)\left(\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u:: ?\right) \text { in } t_{3}^{\prime} \longmapsto{ }^{*} \\
\Xi \triangleright \text { let } x=\left(\left\langle\sigma^{?}, ?\right\rangle\left(\varepsilon_{\sigma^{?}}\left(\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u:: ?\right):: \sigma\right):: ?\right) \text { in } t_{3}^{\prime} \longmapsto \text { error }
\end{gathered}
$$

Note that the transitivity between $\left\langle E_{1}, \sigma^{E_{2}}\right\rangle \stackrel{\circ}{q} \varepsilon_{\sigma^{\text {? }}}$ fails because $\sigma^{\prime} \neq \sigma$. Thus the results follows immediately.
Case (RunsL).
(RunsL) $\frac{\mu ; \Xi \vdash t_{1} \approx t_{1}^{\prime}: ? \quad \mu ; \Xi \vdash t_{2} \approx t_{2}^{\prime}: ? \quad \mu ; \Xi ; z: ? \vdash t_{3} \approx t_{3}^{\prime}: ?}{\mu ; \Xi \vdash \text { let }\{z\}_{t_{1}}=t_{2} \text { in } t_{3} \approx \text { let } x=t_{1}^{\prime} \text { in let } y=t_{2}^{\prime} \text { in let } z=\varepsilon ? \rightarrow ? \pi_{2}\left(\varepsilon_{? \times \times} x:: ? \times ?\right):: ? \rightarrow ? y \text { in } t_{3}^{\prime}: ?}$
Since $t \| \mu \longrightarrow$ unseal_error, we know that $t=$ let $\{z\}_{\sigma}=\{v\}_{\sigma^{\prime}}$ in t_{3}, where $\sigma \neq \sigma^{\prime}$. We know by the premises that $\mu ; \Xi \vdash \sigma \approx t_{1}^{\prime}:$? and $\mu ; \Xi \vdash\{v\}_{\sigma^{\prime}} \approx t_{2}^{\prime}:$?. Therefore, by Lemma 9.4, we know that $\Xi \triangleright t_{1}^{\prime} \longmapsto^{*} \Xi_{1} \triangleright v_{1}, \Xi \triangleright t_{2}^{\prime} \longmapsto^{*} \Xi \triangleright v_{2}, \mu ; \Xi \vdash \sigma \approx v_{1}:$? and $\mu ; \Xi \vdash\{v\}_{\sigma^{\prime}} \approx v_{2}:$?, for some v_{1} and v_{2}. By Rules (Rs) and (Rsed2), we know that $v_{1}=s u_{\varepsilon}^{\sigma}$ and $v_{2}=\left\langle E_{1}, \sigma^{\prime E_{2}}\right\rangle u$:: ?, for some u, E_{1} and E_{2}. By the reduction rules of $\mathrm{GSF} \varepsilon$, we know that

$$
\begin{gathered}
\Xi \triangleright \text { let } x=t_{1}^{\prime} \text { in let } y=t_{2}^{\prime} \text { in let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times ?} x:: ? \times ?\right):: ? \rightarrow ? y \text { in } t_{3}^{\prime} \longmapsto{ }^{*} \\
\Xi \triangleright \varepsilon_{?} \varepsilon_{?}\left(\text { let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times ?} s u_{\varepsilon}^{\sigma}:: ? \times ?\right):: ? \rightarrow ?\left(\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u:: ?\right) \text { in } t_{3}^{\prime}\right):: ?:: \longmapsto^{*} \\
\Xi \triangleright \varepsilon_{?} \varepsilon_{?}\left(\text { let } z=\left(\left\langle ? \rightarrow \sigma^{?}, ? \rightarrow ?\right\rangle\left(\lambda x: ? . \varepsilon_{\sigma^{?}} x:: \sigma\right):: ?\right)\left(\left\langle E_{1}, \sigma^{\prime E_{2}}\right\rangle u:: \text { ?) in } t_{3}^{\prime}\right):: ?:: ? \longmapsto^{*}\right. \\
\Xi \triangleright \varepsilon_{?} \varepsilon_{?}\left(\text { let } x=\left(\left\langle\sigma^{?}, ?\right\rangle\left(\varepsilon_{\sigma^{2}}\left(\left\langle E_{1}, \sigma^{\prime E_{2}}\right\rangle u:: ?\right):: \sigma\right):: ?\right) \text { in } t_{3}^{\prime}\right):: ?:: ? \longmapsto \text { error }
\end{gathered}
$$

Note that the transitivity between $\left\langle E_{1}, \sigma^{\prime E_{2}}\right\rangle \stackrel{\circ}{9} \varepsilon_{\sigma^{?}}$ fails because $\sigma^{\prime} \neq \sigma$. Thus the results follows immediately.

Case (RunsR).
(RunsR) $\frac{\mu ; \Xi \vdash v_{1} \approx v_{1}^{\prime}: ? \quad \mu ; \Xi \vdash t_{2} \approx t_{2}^{\prime}: ? \quad \mu ; \Xi ; z: ? \vdash t_{3} \approx t_{3}^{\prime}: ?}{\mu ; \Xi \vdash \text { let }\{z\}_{v_{1}}=t_{2} \text { in } t_{3} \approx \text { let } y=t_{2}^{\prime} \text { in let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times ?} v_{1}^{\prime}:: ? \times ?\right):: ? \rightarrow ? y \text { in } t_{3}^{\prime}: ?}$
Since $t \| \mu \longrightarrow$ unseal_error, we know that $t=$ let $\{z\}_{\sigma}=\{v\}_{\sigma^{\prime}}$ in t_{3}, where $\sigma \neq \sigma^{\prime}$. We know by the premises that $\mu ; \Xi \vdash \sigma \approx v_{1}^{\prime}:$? and $\mu ; \Xi \vdash\{v\}_{\sigma^{\prime}} \approx t_{2}^{\prime}:$?. Therefore, by Lemma 9.4, we know that $\Xi \triangleright t_{2}^{\prime} \longmapsto{ }^{*} \Xi \triangleright v_{2}$ and $\mu ; \Xi \vdash\{v\}_{\sigma^{\prime}} \approx v_{2}:$?, for some v_{2}. By Rules (Rs) and (Rsed2), we know that $v_{1}=s u_{\varepsilon}^{\sigma}$ and $v_{2}=\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u::$?, for some u, E_{1} and E_{2}. By the reduction rules of GSF ε, we know that

$$
\begin{gathered}
\Xi \triangleright \text { let } y=t_{2}^{\prime} \text { in let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times ?} v_{1}^{\prime}:: ? \times ?\right):: ? \rightarrow ? y \text { in } t_{3}^{\prime} \longmapsto^{*} \\
\Xi \triangleright \varepsilon_{?}\left(\text { let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times ?} s u_{\varepsilon}^{\sigma}:: ? \times ?\right):: ? \rightarrow ?\left(\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u:: ?\right) \text { in } t_{3}^{\prime}\right):: ? \mapsto^{*} \\
\Xi \triangleright \varepsilon_{?}\left(\text { let } z=\left(\left\langle ? \rightarrow \sigma^{?}, ? \rightarrow ?\right\rangle\left(\lambda x: ? . \varepsilon_{\sigma^{?}} x:: \sigma\right):: ?\right)\left(\left\langle E_{1}, \sigma^{\prime E_{2}}\right\rangle u:: ?\right) \text { in } t_{3}^{\prime}\right):: ? \mapsto^{*} \\
\Xi \triangleright \varepsilon_{?}\left(\text { let } x=\left(\left\langle\sigma^{?}, ?\right\rangle\left(\varepsilon_{\sigma^{?}}\left(\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u:: ?\right):: \sigma\right):: ?\right) \text { in } t_{3}^{\prime}\right):: ? \longmapsto \text { error }
\end{gathered}
$$

Note that the transitivity between $\left\langle E_{1}, \sigma^{E_{2}}\right\rangle \stackrel{\circ}{q} \varepsilon_{\sigma^{?}}$ fails because $\sigma^{\prime} \neq \sigma$. Thus the results follows immediately.

Case (R?).

$$
(\mathrm{R} ?) \frac{\mu ; \Xi \vdash t \approx t_{1^{*}}: ?}{\mu ; \Xi \vdash t \approx \varepsilon_{?} t_{1^{*}}:: ?: ?}
$$

Since $t \| \mu \longrightarrow$ error, we know by the induction hypothesis on $\mu ; \Xi \vdash t \approx t_{1^{*}}$: ? that $\Xi \triangleright t_{1^{*}} \longmapsto$ error. Thus the result follows immediately.

Lemma 9.9. If $\mu ; \Xi \vdash t \approx t_{*}:$? and $t\left\|\mu \longmapsto t^{\prime}\right\| \mu^{\prime}$, then $\Xi \triangleright t_{*} \longmapsto{ }^{*} \Xi^{\prime} \triangleright t_{*}^{\prime}$ and $\mu^{\prime} ; \Xi^{\prime} \vdash t^{\prime} \approx t_{*}^{\prime}:$?, for some t_{*}^{\prime}.

Proof. The proof is a straightforward induction on $\mu ; \Xi \vdash t_{1} \approx t_{2}$: ?. We only take into account the rules that can be applied.
Case (Rpt).

$$
(\mathrm{Rpt}) \frac{\mu ; \Xi \vdash t_{1} \approx t_{1^{*}}: ? \quad \mu ; \Xi \vdash t_{2} \approx t_{2^{*}}: ?}{\mu ; \Xi \vdash\left\langle t_{1}, t_{2}\right\rangle \approx \varepsilon_{? \times ?}\left\langle t_{1^{*}}, t_{2^{*}}\right\rangle:: ?: ?}
$$

If $t\left\|\mu \longrightarrow t^{\prime}\right\| \mu^{\prime}$, then by Lemma 9.5, the result follows immediately. Else, if $t\left\|\mu \longmapsto t^{\prime}\right\| \mu^{\prime}$, we have the following two cases:

- $t=\left\langle t_{1}, t_{2}\right\rangle=f\left[t_{1}\right]$, where $f=\left\langle[], t_{2}\right\rangle$.

Therefore, we have that $t_{1}\left\|\mu \longmapsto t_{1}^{\prime}\right\| \mu^{\prime}$.
By the induction hypothesis, we get that $\Xi \triangleright t_{1^{*}} \longmapsto^{*} \Xi^{\prime} \triangleright t_{1^{*}}^{\prime}$ and $\mu^{\prime} ; \Xi^{\prime} \vdash t_{1}^{\prime} \approx t_{1^{*}}^{\prime}:$?. Thus, we know that

$$
\Xi \triangleright \varepsilon_{? \times ?}\left\langle t_{1^{*}}, t_{2^{*}}\right\rangle:: ? \longmapsto^{*} \Xi^{\prime} \triangleright \varepsilon_{? \times ?}\left\langle t_{1^{*}}^{\prime}, t_{2^{*}}\right\rangle:: ?
$$

Therefore, the result follows immediately by Rule (Rpt).

- $t=\left\langle t_{1}, t_{2}\right\rangle=\left\langle v_{1}, t_{2}\right\rangle=f\left[t_{2}\right]$, where $f=\left\langle v_{1},[]\right\rangle$. Therefore, we have that $t_{2}\left\|\mu \longmapsto t_{2}^{\prime}\right\| \mu^{\prime}$. By the induction hypothesis, we get that $\Xi \triangleright t_{2^{*}} \longmapsto^{*} \Xi^{\prime} \triangleright t_{2^{*}}^{\prime}$ and $\mu^{\prime} ; \Xi^{\prime} \vdash t_{2}^{\prime} \approx t_{2^{*}}^{\prime}$: ?. Since $\mu ; \Xi \vdash v_{1} \approx t_{1^{*}}:$?, by Lemma 9.4, we know that $\Xi \triangleright t_{1^{*}} \longmapsto{ }^{*} \Xi \triangleright v_{1^{*}}$ and $\mu ; \Xi \vdash v_{1} \approx v_{1^{*}}:$?. Thus, we know that

$$
\Xi \triangleright \varepsilon_{? \times ?}\left\langle t_{1^{*}}, t_{2^{*}}\right\rangle:: ? \longmapsto{ }^{*} \Xi \triangleright \varepsilon_{? \times ?}\left\langle v_{1^{*}}^{\prime}, t_{2^{*}}\right\rangle:: ? \longmapsto{ }^{*} \Xi^{\prime} \triangleright \varepsilon_{? \times x}\left\langle v_{1^{*}}^{\prime}, t_{2^{*}}^{\prime}\right\rangle:: ?
$$

Therefore, the result follows immediately by Rule (Rpt).
Case (R?).

$$
(\mathrm{R} ?) \frac{\mu ; \Xi \vdash t_{1} \approx t_{1^{*}}: ?}{\mu ; \Xi \vdash t_{1} \approx \varepsilon_{?} t_{1^{*}}:: ?: ?}
$$

If $t\left\|\mu \longrightarrow t^{\prime}\right\| \mu^{\prime}$, then by Lemma 9.5, the result follows immediately. Else, if $t\left\|\mu \longmapsto t^{\prime}\right\| \mu^{\prime}$, we have that $t_{1}\left\|\mu \longmapsto t_{1}^{\prime}\right\| \mu^{\prime}$.

By the induction hypothesis, we get that $\Xi \triangleright t_{1^{*}} \longmapsto{ }^{*} \Xi^{\prime} \triangleright t_{1^{*}}^{\prime}$ and $\mu^{\prime} ; \Xi^{\prime} \vdash t_{1}^{\prime} \approx t_{1^{*}}^{\prime}:$?. Thus, we know that

$$
\Xi \triangleright \varepsilon_{?} t_{1^{*}}:: ? \longmapsto^{*} \Xi^{\prime} \triangleright \varepsilon_{?} t_{1^{*}}^{\prime}:: ?
$$

Therefore, the result follows immediately by Rule (R?).
Case (RappL).

$$
(\mathrm{RappL}) \frac{\mu ; \Xi \vdash t_{1} \approx t_{1^{*}}: ? \quad \mu ; \Xi \vdash t_{2} \approx t_{2^{*}}: ?}{\mu ; \Xi \vdash t_{1} t_{2} \approx \text { let } x=t_{1^{*}} \text { in let } y=t_{2^{*}} \text { in }\left(\varepsilon_{? \rightarrow ?} x:: ? \rightarrow ?\right) y: ?}
$$

If $t\left\|\mu \longrightarrow t^{\prime}\right\| \mu^{\prime}$, then by Lemma 9.5, the result follows immediately. Else, if $t\left\|\mu \longmapsto t^{\prime}\right\| \mu^{\prime}$, we have the following two cases:

- $t=t_{1} t_{2}=f\left[t_{1}\right]$, where $f=[] t_{2}$. Therefore, we have that $t_{1}\left\|\mu \longmapsto t_{1}\right\| \mu^{\prime}$.

By the induction hypothesis, we get that $\Xi \triangleright t_{1^{*}} \longmapsto^{*} \Xi^{\prime} \triangleright t_{1^{*}}^{\prime}$ and $\mu^{\prime} ; \Xi^{\prime} \vdash t_{1}^{\prime} \approx t_{1^{*}}^{\prime}:$?. Thus, we know that

$$
\begin{aligned}
& \Xi \triangleright \text { let } x=t_{1^{*}} \text { in let } y=t_{2^{*}} \text { in }\left(\varepsilon_{? \rightarrow ?} x:: ? \rightarrow ?\right) y \longmapsto{ }^{*} \\
& \quad \Xi^{\prime} \triangleright \text { let } x=t_{1^{*}}^{\prime} \text { in let } y=t_{2^{*}} \text { in }\left(\varepsilon_{? \rightarrow ?} x:: ? \rightarrow ?\right) y
\end{aligned}
$$

Therefore, the result follows immediately by Rule (RappL).

- $t=t_{1} t_{2}=v_{1} t_{2}=f\left[t_{2}\right]$, where $f=v_{1}[]$. Therefore, we have that $t_{2}\left\|\mu \longmapsto t_{2}^{\prime}\right\| \mu^{\prime}$. By the induction hypothesis, we get that $\Xi \triangleright t_{2^{*}} \longmapsto^{*} \Xi^{\prime} \triangleright t_{2^{*}}^{\prime}$ and $\mu^{\prime} ; \Xi^{\prime} \vdash t_{2}^{\prime} \approx t_{2^{*}}^{\prime}$: ?. Since $\mu ; \Xi \vdash$ $v_{1} \approx t_{1^{*}}:$?, by Lemma 9.4, we know that $\Xi \triangleright t_{1^{*}} \longmapsto{ }^{*} \Xi \triangleright v_{1^{*}}$ and $\mu ; \Xi \vdash v_{1} \approx v_{1^{*}}$: ?. Thus, we know that

$$
\begin{aligned}
& \Xi \triangleright \text { let } x=t_{1^{*}} \text { in let } y=t_{2^{*}} \text { in }\left(\varepsilon_{? \rightarrow ?} x:: ? \rightarrow ?\right) y{ }^{*} \\
& \Xi \triangleright \text { let } x=v_{1^{*}} \text { in let } y=t_{2^{*}} \text { in }\left(\varepsilon_{? \rightarrow ?} x:: ? \rightarrow ?\right) y \longmapsto \\
& \quad \Xi \triangleright \varepsilon_{?}\left(\text { let } y=t_{2^{*}} \text { in }\left(\varepsilon_{? \rightarrow ?} v_{1^{*}}:: ? \rightarrow ?\right) y\right):: ? \longmapsto^{*} \\
& \quad \Xi^{\prime} \triangleright \varepsilon_{?}\left(\text { let } y=t_{2^{*}}^{\prime} \text { in }\left(\varepsilon_{? \rightarrow ?} v_{1^{*}}:: ? \rightarrow \text { ?) } y\right):: ?\right.
\end{aligned}
$$

Therefore, the result follows immediately by Rules (RappR) and (R?).
Case (RappR).

$$
(\text { RappR }) \frac{\mu ; \Xi \vdash v_{1} \approx v_{1^{*}}: ? \quad \mu ; \Xi \vdash t_{2} \approx t_{2^{*}}: ?}{\mu ; \Xi \vdash v_{1} t_{2} \approx \operatorname{let} y=t_{2^{*}} \text { in }\left(\varepsilon_{?} \rightarrow ? v_{1^{*}}:: ? \rightarrow ?\right) y: ?}
$$

If $t\left\|\mu \longrightarrow t^{\prime}\right\| \mu^{\prime}$, then by Lemma 9.5, the result follows immediately. Else, if $t\left\|\mu \longmapsto t^{\prime}\right\| \mu^{\prime}$, we know that $t=v_{1} t_{2}=f\left[t_{2}\right]$, where $f=v_{1}[]$. Therefore, we have that $t_{2}\left\|\mu \longmapsto t_{2}^{\prime}\right\| \mu^{\prime}$. By the induction hypothesis, we get that $\Xi \triangleright t_{2^{*}} \longmapsto^{*} \Xi^{\prime} \triangleright t_{2^{*}}^{\prime}$ and $\mu^{\prime} ; \Xi^{\prime} \vdash t_{2}^{\prime} \approx t_{2^{*}}^{\prime}$: ?. Thus, we know that

$$
\begin{gathered}
\Xi \triangleright \text { let } y=t_{2^{*}} \text { in }\left(\varepsilon_{? \rightarrow ?} v_{1^{*}}:: ? \rightarrow ?\right) y \longmapsto{ }^{*} \\
\Xi^{\prime} \triangleright \text { let } y=t_{2^{*}}^{\prime} \text { in }\left(\varepsilon_{? \rightarrow ?} v_{1^{*}}:: ? \rightarrow ?\right) y
\end{gathered}
$$

Therefore, the result follows immediately by Rule (RappR).
Case (Rpi).

$$
\text { (Rpi) } \frac{\mu ; \Xi \vdash t_{1} \approx t_{1^{*}}: ?}{\mu ; \Xi \vdash \pi_{i}\left(t_{1}\right) \approx \pi_{i}\left(\varepsilon_{? \times ?} t_{1^{*}}:: ? \times ?\right): ?}
$$

If $t\left\|\mu \longrightarrow t^{\prime}\right\| \mu^{\prime}$, then by Lemma 9.5, the result follows immediately. Else, if $t\left\|\mu \longmapsto t^{\prime}\right\| \mu^{\prime}$, we know that $t=\pi_{i}\left(t_{1}\right)=f\left[t_{1}\right]$, where $\pi_{i}([])$.

Therefore, we have that $t_{1}\left\|\mu \longmapsto t_{1}^{\prime}\right\| \mu^{\prime}$.
By the induction hypothesis, we get that $\Xi \triangleright t_{1^{*}} \longmapsto^{*} \Xi^{\prime} \triangleright t_{1^{*}}^{\prime}$ and $\mu^{\prime} ; \Xi^{\prime} \vdash t_{1}^{\prime} \approx t_{1^{*}}^{\prime}:$?. Thus, we know that

$$
\Xi \triangleright \pi_{i}\left(\varepsilon_{? \times ?} t_{1^{*}}:: ? \times ?\right) \longmapsto^{*} \Xi^{\prime} \triangleright \pi_{i}\left(\varepsilon_{? \times ?} t_{1^{*}}^{\prime}:: ? \times ?\right)
$$

Therefore, the result follows immediately by Rule (Rpi).
Case (Rsed1L).

$$
\text { (Rsed1L) } \frac{\mu ; \Xi \vdash t_{1} \approx t_{1^{*}}: ? \quad \mu ; \Xi \vdash t_{2} \approx t_{2^{*}}: ?}{\mu ; \Xi \vdash\left\{t_{1}\right\}_{t_{2}} \approx \text { let } x=t_{1^{*}} \text { in let } y=t_{2^{*}} \text { in }\left(\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times ?} y:: ? \times ?\right):: ? \rightarrow ?\right) x: ?}
$$

If $t\left\|\mu \longrightarrow t^{\prime}\right\| \mu^{\prime}$, then by Lemma 9.5, the result follows immediately. Else, if $t\left\|\mu \longmapsto t^{\prime}\right\| \mu^{\prime}$, we have the following two cases:

- $t=\left\{t_{1}\right\}_{t_{2}}=f\left[t_{1}\right]$, where $f=\{[]\}_{t_{2}}$.

Therefore, we have that $t_{1}\left\|\mu \longmapsto t_{1}^{\prime}\right\| \mu^{\prime}$.
By the induction hypothesis, we get that $\Xi \triangleright t_{1^{*}} \longmapsto^{*} \Xi^{\prime} \triangleright t_{1^{*}}^{\prime}$ and $\mu^{\prime} ; \Xi^{\prime} \vdash t_{1}^{\prime} \approx t_{1^{*}}^{\prime}$: ?. Thus, we know that

$$
\begin{aligned}
& \Xi \triangleright \text { let } x=t_{1^{*}} \text { in let } y=t_{2^{*}} \text { in }\left(\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times ?} y:: ? \times ?\right):: ? \rightarrow \text { ?) } x \longmapsto^{*}\right. \\
& \quad \Xi^{\prime} \triangleright \text { let } x=t_{1^{*}}^{\prime} \text { in let } y=t_{2^{*}} \text { in }\left(\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times \times} y:: ? \times ?\right):: ? \rightarrow \text { ?) } x\right.
\end{aligned}
$$

Therefore, the result follows immediately by Rule (Rsed1L).

- $t=\left\{t_{1}\right\}_{t_{2}}=\left\{v_{1}\right\}_{t_{2}}=f\left[t_{2}\right]$, where $f=\left\{v_{1}\right\}_{[]}$. Therefore, we have that $t_{2}\left\|\mu \longmapsto t_{2}^{\prime}\right\| \mu^{\prime}$. By the induction hypothesis, we get that $\Xi \triangleright t_{2^{*}} \longmapsto{ }^{*} \Xi^{\prime} \triangleright t_{2^{*}}^{\prime}$ and $\mu^{\prime} ; \Xi^{\prime} \vdash t_{2}^{\prime} \approx t_{2^{*}}^{\prime}$: ?. Since $\mu ; \Xi \vdash v_{1} \approx t_{1^{*}}:$?, by Lemma 9.4, we know that $\Xi \triangleright t_{1^{*}} \longmapsto{ }^{*} \Xi \triangleright v_{1^{*}}$ and $\mu ; \Xi \vdash v_{1} \approx v_{1^{*}}$: ?. Thus, we know that

$$
\begin{aligned}
& \Xi \triangleright \text { let } x=t_{1^{*}} \text { in let } y=t_{2^{*}} \text { in }\left(\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times \times ?} y:: ? \times ?\right):: ? \rightarrow \text { ?) } x \longmapsto *\right. \\
& \Xi \triangleright \text { let } x=v_{1^{*}}^{\prime} \text { in let } y=t_{2^{*}} \text { in }\left(\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times ?} y:: ? \times ?\right):: ? \rightarrow \text { ?) } x \longmapsto\right. \\
& \quad \Xi \triangleright \varepsilon_{?}\left(\text { let } y=t_{2^{*}} \text { in }\left(\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times ?} y:: ? \times ?\right):: ? \rightarrow \text { ?) } v_{1^{*}}^{\prime}\right):: ? \longmapsto{ }^{*}\right. \\
& \quad \Xi^{\prime} \triangleright \varepsilon_{?}\left(\text { let } y=t_{2^{*}}^{\prime} \text { in }\left(\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times ?} y:: ? \times ?\right):: ? \rightarrow \text { ?) } v_{1^{*}}^{\prime}\right):: ?\right.
\end{aligned}
$$

Therefore, the result follows immediately by Rules (Rsed1R) and (R?).
Case (Rsed1R).

$$
(\text { Rsed1R }) \frac{\mu ; \Xi \vdash v_{1} \approx v_{1^{*}}: ? \quad \mu ; \Xi \vdash t_{2} \approx t_{2^{*}}: ?}{\mu ; \Xi \vdash\left\{v_{1}\right\}_{t_{2}} \approx \operatorname{let} y=t_{2^{*}} \text { in }\left(\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times ?} y:: ? \times ?\right):: ? \rightarrow ?\right) v_{1^{*}}: ?}
$$

If $t\left\|\mu \longrightarrow t^{\prime}\right\| \mu^{\prime}$, then by Lemma 9.5, the result follows immediately. Else, if $t\left\|\mu \longmapsto t^{\prime}\right\| \mu^{\prime}$, we know that $t=\left\{t_{1}\right\}_{t_{2}}=\left\{v_{1}\right\}_{t_{2}}=f\left[t_{2}\right]$, where $f=\left\{v_{1}\right\}_{\square}$. Therefore, we have that $t_{2}\left\|\mu \longmapsto t_{2}^{\prime}\right\| \mu^{\prime}$. By the induction hypothesis, we get that $\Xi \triangleright t_{2^{*}} \longmapsto^{*} \Xi^{\prime} \triangleright t_{2^{*}}^{\prime}$ and $\mu^{\prime} ; \Xi^{\prime} \vdash t_{2}^{\prime} \approx t_{2^{*}}^{\prime}$: ?. Thus, we know that

$$
\begin{gathered}
\Xi \triangleright \text { let } y=t_{2^{*}} \text { in }\left(\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times \times ?} y:: ? \times ?\right):: ? \rightarrow ?\right) v_{1^{*}}^{\prime} \longmapsto^{*} \\
\Xi^{\prime} \triangleright \text { let } y=t_{2^{*}}^{\prime} \text { in }\left(\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times ?} y:: ? \times ?\right):: ? \rightarrow ?\right) v_{1^{*}}^{\prime}
\end{gathered}
$$

Therefore, the result follows immediately by Rule (Rsed1R).
Case (RunsL).
(RunsL) $\frac{\mu ; \Xi \vdash t_{1} \approx t_{1^{*}}: ? \quad \mu ; \Xi \vdash t_{2} \approx t_{2^{*}}: ? \quad \mu ; \Xi ; z: ? \vdash t_{3} \approx t_{3^{*}}: ?}{\mu ; \Xi \vdash \text { let }\{z\}_{t_{1}}=t_{2} \text { in } t_{3} \approx \text { let } x=t_{1^{*}} \text { in let } y=t_{2^{*}} \text { in let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{\text {? } \times ? ~} x:: ? \times \text { ?) :: ? } \rightarrow \text { ? } y \text { in } t_{3^{*}}: ?\right.}$
If $t\left\|\mu \longrightarrow t^{\prime}\right\| \mu^{\prime}$, then by Lemma 9.5, the result follows immediately. Else, if $t\left\|\mu \longmapsto t^{\prime}\right\| \mu^{\prime}$, we have the following two cases:

- $t=$ let $\{z\}_{t_{1}}=t_{2}$ in $t_{3}=f\left[t_{1}\right]$, where $f=$ let $\{z\}_{[]}=t_{2}$ in t_{3}.

Therefore, we have that $t_{1}\left\|\mu \longmapsto t_{1}^{\prime}\right\| \mu^{\prime}$.
By the induction hypothesis, we get that $\Xi \triangleright t_{1^{*}} \longmapsto^{*} \Xi^{\prime} \triangleright t_{1^{*}}^{\prime}$ and $\mu^{\prime} ; \Xi^{\prime} \vdash t_{1}^{\prime} \approx t_{1^{*}}^{\prime}:$?. Thus, we know that

$$
\begin{aligned}
& \Xi \triangleright \text { let } x=t_{1^{*}} \text { in let } y=t_{2^{*}} \text { in let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times ?} x:: ? \times ?\right):: ? \rightarrow ? y \text { in } t_{3^{*}} \longmapsto^{*} \\
& \Xi^{\prime} \triangleright \text { let } x=t_{1^{*}}^{\prime} \text { in let } y=t_{2^{*}} \text { in let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times ?} x:: ? \times ?\right):: ? \rightarrow ? y \text { in } t_{3^{*}}
\end{aligned}
$$

Therefore, the result follows immediately by Rule (RunsL).

- $t=$ let $\{z\}_{t_{1}}=t_{2}$ in $t_{3}=$ let $\{z\}_{v_{1}}=t_{2}$ in $t_{3}=f\left[t_{2}\right]$, where $f=$ let $\{z\}_{v_{1}}=[]$ in t_{3}. Therefore, we have that $t_{2}\left\|\mu \longmapsto t_{2}^{\prime}\right\| \mu^{\prime}$. By the induction hypothesis, we get that $\Xi \triangleright t_{2^{*}} \longmapsto^{*} \Xi^{\prime} \triangleright t_{2^{*}}^{\prime}$ and $\mu^{\prime} ; \Xi^{\prime} \vdash t_{2}^{\prime} \approx t_{2^{*}}^{\prime}:$?. Since $\mu ; \Xi \vdash v_{1} \approx t_{1^{*}}:$?, by Lemma 9.4, we know that $\Xi \triangleright t_{1^{*}} \longmapsto{ }^{*} \Xi \triangleright v_{1^{*}}$ and $\mu ; \Xi \vdash v_{1} \approx v_{1^{*}}:$?. Thus, we know that

$$
\begin{aligned}
& \Xi \triangleright \text { let } x=t_{1^{*}} \text { in let } y=t_{2^{*}} \text { in let } z=\varepsilon_{? \rightarrow ?} \rightarrow \pi_{2}\left(\varepsilon_{? \times ?} x::: \times ?\right):: ? \rightarrow ? y \text { in } t_{3^{*}}{ }^{*} \\
& \Xi \triangleright \text { let } x=v_{1^{*}} \text { in let } y=t_{2^{*}} \text { in let } z=\varepsilon_{? \rightarrow ?} \rightarrow \pi_{2}\left(\varepsilon_{? \times ?} x:: ? \times ?\right):: ? \rightarrow ? y \text { in } t_{3^{*}} \longmapsto \\
& \quad \Xi \triangleright \varepsilon_{?}\left(\text { let } y=t_{2^{*}} \text { in let } z=\varepsilon_{? \rightarrow ?} \rightarrow \pi_{2}\left(\varepsilon_{? \times ?} v_{1^{*}}:: ? \times ?\right):: ? \rightarrow ? y \text { in } t_{3^{*}}\right):: ? \longmapsto{ }^{*} \\
& \quad \Xi^{\prime} \triangleright \varepsilon_{?}\left(\text { let } y=t_{2^{*}}^{\prime} \text { in let } z=\varepsilon_{? \rightarrow \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times ?} v_{1^{*}}:: ? \times ?\right):: ? \rightarrow ? y \text { in } t_{3^{*}}\right):: ?
\end{aligned}
$$

Therefore, the result follows immediately by Rules (RunsR) and (R?).
Case (RunsR).

$$
\text { (RunsR) } \frac{\mu ; \Xi \vdash v_{1} \approx v_{1^{*}}: ? \quad \mu ; \Xi \vdash t_{2} \approx t_{2^{*}}: ? \quad \mu ; \Xi ; z: ? \vdash t_{3} \approx t_{3^{*}}: ?}{\mu ; \Xi \vdash \text { let }\{z\}_{v_{1}}=t_{2} \text { in } t_{3} \approx \text { let } y=t_{2^{*}} \text { in let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times ?} v_{1^{*}}:: ? \times ?\right): ? \rightarrow \text { ? } y \text { in } t_{3^{*}}: ?}
$$

If $t\left\|\mu \longrightarrow t^{\prime}\right\| \mu^{\prime}$, then by Lemma 9.5, the result follows immediately. Else, if $t\left\|\mu \longmapsto t^{\prime}\right\| \mu^{\prime}$, then we know that $t=$ let $\{z\}_{t_{1}}=t_{2}$ in $t_{3}=$ let $\{z\}_{v_{1}}=t_{2}$ in $t_{3}=f\left[t_{2}\right]$, where $f=$ let $\{z\}_{v_{1}}=[]$ in t_{3}. Therefore, we have that $t_{2}\left\|\mu \longmapsto t_{2}^{\prime}\right\| \mu^{\prime}$. By the induction hypothesis, we get that $\Xi \triangleright t_{2^{*}} \longmapsto{ }^{*} \Xi^{\prime} \triangleright t_{2^{*}}^{\prime}$ and $\mu^{\prime} ; \Xi^{\prime} \vdash t_{2}^{\prime} \approx t_{2^{*}}^{\prime}:$?. Thus, we know that

$$
\begin{aligned}
& \Xi \triangleright \text { let } y=t_{2^{*}} \text { in let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times ?} v_{1^{*}}:: ? \times ?\right):: ? \rightarrow ? y \text { in } t_{3^{*}} \longmapsto * \\
& \quad \Xi^{\prime} \triangleright \text { let } y=t_{2^{*}}^{\prime} \text { in let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times ?} v_{1^{*}}:: ? \times ?\right):: ? \rightarrow ? y \text { in } t_{3^{*}}
\end{aligned}
$$

Therefore, the result follows immediately by Rule (RunsR).
Case (RsG).

$$
(\mathrm{RsG}) \frac{\Xi ; \Gamma, x: ? \vdash t_{1} \approx t_{1}^{\prime}: ?}{\mu ; \Xi \vdash v x \cdot t_{1} \approx \text { let } x=s u_{\varepsilon} \text { in } t_{1}^{\prime}: ?}
$$

Since $t=v x . t_{1}$, we know that $t\left\|\mu \longrightarrow t^{\prime}\right\| \mu^{\prime}$. Therefore, by Lemma 9.5, the result follows immediately.

Case (Runs).

$$
\text { (Runs) } \frac{\mu ; \Xi \vdash v_{1} \approx v_{1}^{\prime}: ? \quad \mu ; \Xi \vdash v_{2} \approx v_{2}^{\prime}: ? \quad \mu ; \Xi ; z: ? \vdash t_{3} \approx t_{3}^{\prime}: ?}{\mu ; \Xi \vdash \text { let }\{z\}_{v_{1}}=v_{2} \text { in } t_{3} \approx \text { let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times ?} v_{1}^{\prime}:: ? \times ?\right):: ? \rightarrow ? v_{2}^{\prime} \text { in } t_{3}^{\prime}: ?}
$$

Since $t=$ let $\{z\}_{v_{1}}=v_{2}$ in t_{3}, we know that $t\left\|\mu \longrightarrow t^{\prime}\right\| \mu^{\prime}$. Therefore, by Lemma 9.5, the result follows immediately.

Case (Rapp).

$$
\text { (Rapp) } \frac{\mu ; \Xi \vdash v_{1} \approx v_{1}^{\prime}: ? \quad \mu ; \Xi \vdash v_{2} \approx v_{2}^{\prime}: ?}{\mu ; \Xi \vdash v_{1} v_{2} \approx\left(\varepsilon_{? \rightarrow ?} v_{1}^{\prime}:: ? \rightarrow ?\right) v_{2}^{\prime}: ?}
$$

Since $t=v_{1} v_{2}$, we know that $t\left\|\mu \longrightarrow t^{\prime}\right\| \mu^{\prime}$. Therefore, by Lemma 9.5, the result follows immediately.

Lemma 9.10. If $\mu ; \Xi \vdash t_{1} \approx t_{2}:$?, $\Xi \subseteq \Xi^{\prime}$ and $\Gamma \subseteq \Gamma^{\prime}$, then $\Xi^{\prime} ; \Gamma^{\prime} \vdash t_{1} \approx t_{2}:$?.
Proof. The proof is a straightforward induction on $\mu ; \Xi \vdash t_{1} \approx t_{2}$? ?.

Lemma 9.11. If $\mu ; \Xi \vdash t \approx t_{*}:$? and $t \| \mu \longmapsto$ error, then $\Xi \triangleright t \longmapsto{ }^{*}$ error.

Proof. The proof is a straightforward induction on $\mu ; \Xi \vdash t_{1} \approx t_{2}$: ?. We only take into account the rules that can be applied ($t \| \mu \longmapsto$ error).
Case (Rpt).

$$
(\mathrm{Rpt}) \frac{\mu ; \Xi \vdash t_{1} \approx t_{1^{*}}: ? \quad \mu ; \Xi \vdash t_{2} \approx t_{2^{*}}: ?}{\mu ; \Xi \vdash\left\langle t_{1}, t_{2}\right\rangle \approx \varepsilon_{? \times ?}\left\langle t_{1^{*}}, t_{2^{*}}\right\rangle:: ?: ?}
$$

If $t \| \mu \longrightarrow$ error, then by Lemma 9.8, the result follows immediately. Else, if

$$
t \| \mu \longmapsto \text { error }
$$

, we have the following two cases:

- $t=\left\langle t_{1}, t_{2}\right\rangle=f\left[t_{1}\right]$, where $f=\left\langle[], t_{2}\right\rangle$. Therefore, we have that $t_{1} \| \mu \longmapsto$ error. By the induction hypothesis, we get that $\Xi \triangleright t_{1^{*}} \longmapsto^{*}$ error. Therefore, the result follows immediately.
- $t=\left\langle t_{1}, t_{2}\right\rangle=\left\langle v_{1}, t_{2}\right\rangle=f\left[t_{2}\right]$, where $f=\left\langle v_{1},[]\right\rangle$.

Therefore, we have that $t_{2} \| \mu \longmapsto$ error. By the induction hypothesis, we get that $\Xi \triangleright t_{2^{*}} \longmapsto^{*}$ error. Since $\mu ; \Xi \vdash v_{1} \approx t_{1^{*}}:$?, by Lemma 9.4, we know that $\Xi \triangleright t_{1^{*}} \longmapsto^{*} \Xi \triangleright v_{1^{*}}$ and $\mu ; \Xi \vdash v_{1} \approx$ $v_{1^{*}}$: ?. Thus, we know that

$$
\Xi \triangleright \varepsilon_{? \times ?}\left\langle t_{1^{*}}, t_{2^{*}}\right\rangle:: ? \longmapsto{ }^{*} \Xi \triangleright \varepsilon_{? \times \times ?}\left\langle v_{1^{*}}^{\prime}, t_{2^{*}}\right\rangle:: ? \longmapsto^{*} \text { error }
$$

Therefore, the result follows immediately.
Case (R?).

$$
\text { (R?) } \frac{\mu ; \Xi \vdash t_{1} \approx t_{1^{*}}: ?}{\mu ; \Xi \vdash t_{1} \approx \varepsilon_{?} t_{1^{*}}:: ?: ?}
$$

If $t \| \mu \longrightarrow$ error, then by Lemma 9.8, the result follows immediately. Else, if

$$
t \| \mu \longmapsto \text { error }
$$

, we have that $t_{1} \| \mu \longmapsto$ error. By the induction hypothesis, we get that $\Xi \triangleright t_{1^{*}} \longmapsto{ }^{*}$ error. Thus, we know that

$$
\Xi \triangleright \varepsilon_{?} t_{1^{*}}:: ? \longmapsto{ }^{*} \text { error }
$$

Therefore, the result follows immediately.
Case (RappL).

$$
(\text { RappL }) \frac{\mu ; \Xi \vdash t_{1} \approx t_{1^{*}}: ? \quad \mu ; \Xi \vdash t_{2} \approx t_{2^{*}}: ?}{\mu ; \Xi \vdash t_{1} t_{2} \approx \text { let } x=t_{1^{*}} \text { in let } y=t_{2^{*}} \text { in }\left(\varepsilon_{? \rightarrow ?} x:: ? \rightarrow ?\right) y: ?}
$$

If $t \| \mu \longrightarrow$ error, then by Lemma 9.8, the result follows immediately. Else, if

$$
t \| \mu \longmapsto \text { error }
$$

, we have the following two cases:

- $t=t_{1} t_{2}=f\left[t_{1}\right]$, where $f=[] t_{2}$. Therefore, we have that $t_{1} \| \mu \longmapsto$ error. By the induction hypothesis, we get that $\Xi \triangleright t_{1^{*}} \longmapsto^{*}$ error. Thus, we know that

$$
\Xi \triangleright \text { let } x=t_{1^{*}} \text { in let } y=t_{2^{*}} \text { in }\left(\varepsilon_{? \rightarrow ?} x:: ? \rightarrow \text { ?) } y \longmapsto^{*}\right. \text { error }
$$

Therefore, the result follows immediately by Rule (RappL).

- $t=t_{1} t_{2}=v_{1} t_{2}=f\left[t_{2}\right]$, where $f=v_{1}[]$.

Therefore, we have that $t_{2} \| \mu \longmapsto$ error. By the induction hypothesis, we get that $\Xi \triangleright t_{2^{*}} \longmapsto^{*}$ error. Since $\mu ; \Xi \vdash v_{1} \approx t_{1^{*}}:$?, by Lemma 9.4, we know that $\Xi \triangleright t_{1^{*}} \longmapsto^{*} \Xi \triangleright v_{1^{*}}$ and $\mu ; \Xi \vdash v_{1} \approx$ $v_{1^{*}}$: ?. Thus, we know that

$$
\Xi \triangleright \text { let } x=t_{1^{*}} \text { in let } y=t_{2^{*}} \text { in }\left(\varepsilon_{? \rightarrow ?} x:: ? \rightarrow \text { ?) } y \longmapsto^{*}\right.
$$

$$
\begin{aligned}
& \Xi \triangleright \text { let } x=v_{1^{*}} \text { in let } y=t_{2^{*}} \text { in }\left(\varepsilon_{? \rightarrow ?} x:: ? \rightarrow \text { ?) } y \longmapsto\right. \\
& \Xi \triangleright \varepsilon_{?}\left(\text { let } y=t_{2^{*}} \text { in }\left(\varepsilon_{? \rightarrow ?} v_{1^{*}}:: ? \rightarrow \text { ?) } y\right):: ? \longmapsto{ }^{*}\right. \text { error }
\end{aligned}
$$

Therefore, the result follows immediately.
Case (RappR).

$$
(\text { RappR }) \frac{\mu ; \Xi \vdash v_{1} \approx v_{1^{*}}: ? \quad \mu ; \Xi \vdash t_{2} \approx t_{2^{*}}: ?}{\mu ; \Xi \vdash v_{1} t_{2} \approx \operatorname{let} y=t_{2^{*}} \text { in }\left(\varepsilon_{? \rightarrow ?} v_{1^{*}}:: ? \rightarrow ?\right) y: ?}
$$

If $t \| \mu \longrightarrow$ error, then by Lemma 9.8, the result follows immediately. Else, if

$$
t \| \mu \longmapsto \text { error }
$$

, we know that $t=v_{1} t_{2}=f\left[t_{2}\right]$, where $f=v_{1}[]$.
Therefore, we have that $t_{2} \| \mu \longmapsto$ error. By the induction hypothesis, we get that $\Xi \triangleright t_{2^{*}} \longmapsto{ }^{*}$ error.
Thus, we know that

$$
\Xi \triangleright \text { let } y=t_{2^{*}} \text { in }\left(\varepsilon_{? \rightarrow ?} v_{1^{*}}:: ? \rightarrow \text { ?) } y \longmapsto{ }^{*}\right. \text { error }
$$

Therefore, the result follows immediately.
Case (Rpi).

$$
(\mathrm{Rpi}) \frac{\mu ; \Xi \vdash t_{1} \approx t_{1^{*}}: ?}{\mu ; \Xi \vdash \pi_{i}\left(t_{1}\right) \approx \pi_{i}\left(\varepsilon_{? \times ?} t_{1^{*}}:: ? \times ?\right): ?}
$$

If $t\left\|\mu \longrightarrow t^{\prime}\right\| \mu^{\prime}$, then by Lemma 9.5, the result follows immediately. Else, if $t\left\|\mu \longmapsto t^{\prime}\right\| \mu^{\prime}$, we know that $t=\pi_{i}\left(t_{1}\right)=f\left[t_{1}\right]$, where $\pi_{i}([])$.

Therefore, we have that $t_{1}\left\|\mu \longmapsto t_{1}^{\prime}\right\| \mu^{\prime}$.
By the induction hypothesis, we get that $\Xi \triangleright t_{1^{*}} \longmapsto{ }^{*} \Xi^{\prime} \triangleright t_{1^{*}}^{\prime}$ and $\mu^{\prime} ; \Xi^{\prime} \vdash t_{1}^{\prime} \approx t_{1^{*}}^{\prime}:$?. Thus, we know that

$$
\Xi \triangleright \pi_{i}\left(\varepsilon_{? \times ?} t_{1^{*}}:: ? \times ?\right) \longmapsto^{*} \Xi^{\prime} \triangleright \pi_{i}\left(\varepsilon_{? \times ?} t_{1^{*}}^{\prime}:: ? \times ?\right)
$$

Therefore, the result follows immediately by Rule (Rpi).
Case (Rsed1L).

$$
(\operatorname{Rsed} 1 \mathrm{~L}) \frac{\mu ; \Xi \vdash t_{1} \approx t_{1^{*}}: ? \quad \mu ; \Xi \vdash t_{2} \approx t_{2^{*}}: ?}{\mu ; \Xi \vdash\left\{t_{1}\right\}_{t_{2}} \approx \text { let } x=t_{1^{*}} \text { in let } y=t_{2^{*}} \operatorname{in}\left(\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times ?} y:: ? \times ?\right):: ? \rightarrow ?\right) x: ?}
$$

If $t \| \mu \longrightarrow$ error, then by Lemma 9.8, the result follows immediately. Else, if

$$
t \| \mu \longmapsto \text { error }
$$

, we have the following two cases:

- $t=\left\{t_{1}\right\}_{t_{2}}=f\left[t_{1}\right]$, where $f=\{[]\}_{t_{2}}$. Therefore, we have that $t_{1} \| \mu \longmapsto$ error. By the induction hypothesis, we get that $\Xi \triangleright t_{1^{*}} \longmapsto^{*}$ error. Thus, we know that

$$
\Xi \triangleright \text { let } x=t_{1^{*}} \text { in let } y=t_{2^{*}} \text { in }\left(\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times ?} y:: ? \times ?\right):: ? \rightarrow \text { ?) } x \longmapsto^{*}\right. \text { error }
$$

Therefore, the result follows immediately.

- $t=\left\{t_{1}\right\}_{t_{2}}=\left\{v_{1}\right\}_{t_{2}}=f\left[t_{2}\right]$, where $f=\left\{v_{1}\right\}_{[]}$.

Therefore, we have that $t_{2} \| \mu \longmapsto$ error. By the induction hypothesis, we get that $\Xi \triangleright t_{2^{*}} \longmapsto^{*}$ error. Since $\mu ; \Xi \vdash v_{1} \approx t_{1^{*}}:$?, by Lemma 9.4, we know that $\Xi \triangleright t_{1^{*}} \longmapsto^{*} \Xi \triangleright v_{1^{*}}$ and $\mu ; \Xi \vdash v_{1} \approx$ $v_{1^{*}}$: ?. Thus, we know that

$$
\begin{aligned}
& \Xi \triangleright \text { let } x=t_{1^{*}} \text { in let } y=t_{2^{*}} \text { in }\left(\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times ?} y:: ? \times ?\right):: ? \rightarrow ?\right) x \longmapsto^{*} \\
& \Xi \triangleright \text { let } x=v_{1^{*}}^{\prime} \text { in let } y=t_{2^{*}} \text { in }\left(\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times ?} y:: ? \times ?\right):: ? \rightarrow ?\right) x \longmapsto \\
& \Xi \triangleright \varepsilon_{?}\left(\text { let } y=t_{2^{*}} \text { in }\left(\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times ?} y:: ? \times ?\right):: ? \rightarrow ?\right) v_{1^{*}}^{\prime}\right):: ? \mapsto^{*} \text { error }
\end{aligned}
$$

Therefore, the result follows immediately.
Case (Rsed1R).

$$
(\text { Rsed1R }) \frac{\mu ; \Xi \vdash v_{1} \approx v_{1^{*}}: ? \quad \mu ; \Xi \vdash t_{2} \approx t_{2^{*}}: ?}{\mu ; \Xi \vdash\left\{v_{1}\right\}_{t_{2}} \approx \text { let } y=t_{2^{*}} \operatorname{in}\left(\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times ?} y:: ? \times ?\right):: ? \rightarrow ?\right) v_{1^{*}}: ?}
$$

If $t \| \mu \longrightarrow$ error, then by Lemma 9.8, the result follows immediately. Else, if

$$
t \| \mu \longmapsto \text { error }
$$

, we know that $t=\left\{t_{1}\right\}_{t_{2}}=\left\{v_{1}\right\}_{t_{2}}=f\left[t_{2}\right]$, where $f=\left\{v_{1}\right\}_{\square \square}$. Therefore, we have that

$$
t_{2} \| \mu \longmapsto \text { error }
$$

By the induction hypothesis, we get that $\Xi \triangleright t_{2^{*}} \longmapsto^{*}$ error. Thus, we know that

$$
\Xi \triangleright \text { let } y=t_{2^{*}} \text { in }\left(\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times ?} y:: ? \times ?\right):: ? \rightarrow \text { ?) } v_{1^{*}}^{\prime} \longmapsto{ }^{*}\right. \text { error }
$$

Therefore, the result follows immediately.
Case (RunsL).
(RunsL) $\frac{\mu ; \Xi \vdash t_{1} \approx t_{1^{*}}: ? \quad \mu ; \Xi \vdash t_{2} \approx t_{2^{*}}: ? \quad \mu ; \Xi ; z: ?+t_{3} \approx t_{3^{*}}: ?}{\mu ; \Xi+\text { let }\{z\}_{t_{1}}=t_{2} \text { in } t_{3} \approx \text { let } x=t_{1^{*}} \text { in let } y=t_{2^{*}} \text { in let } z=\varepsilon_{? \rightarrow \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times \text { ? }} x:: ? \times \text { ?) :: ? } \rightarrow \text { ? } y \text { in } t_{3^{*}}: ?\right.}$
If $t \| \mu \longrightarrow$ error, then by Lemma 9.8, the result follows immediately. Else, if

$$
t \| \mu \longmapsto \text { error }
$$

, we have the following two cases:

- $t=$ let $\{z\}_{t_{1}}=t_{2}$ in $t_{3}=f\left[t_{1}\right]$, where $f=$ let $\{z\}_{[]}=t_{2}$ in t_{3}. Therefore, we have that

$$
t_{1} \| \mu \longmapsto \text { error }
$$

By the induction hypothesis, we get that $\Xi \triangleright t_{1^{*}} \longmapsto^{*}$ error. Thus, we know that

$$
\Xi \triangleright \text { let } x=t_{1^{*}} \text { in let } y=t_{2^{*}} \text { in let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times ?} x:: ? \times ?\right):: ? \rightarrow ? y \text { in } t_{3^{*}} \longmapsto^{*} \text { error }
$$

Therefore, the result follows immediately.

- $t=$ let $\{z\}_{t_{1}}=t_{2}$ in $t_{3}=$ let $\{z\}_{v_{1}}=t_{2}$ in $t_{3}=f\left[t_{2}\right]$, where $f=$ let $\{z\}_{v_{1}}=[]$ in t_{3}. Therefore, we have that

$$
t_{2} \| \mu \longmapsto \text { error }
$$

By the induction hypothesis, we get that $\Xi \triangleright t_{2^{*}} \longmapsto^{*}$ error. Since μ; $\Xi \vdash v_{1} \approx t_{1^{*}}$: ?, by Lemma 9.4, we know that $\Xi \triangleright t_{1^{*}} \longmapsto{ }^{*} \Xi \triangleright v_{1^{*}}$ and μ; $\Xi \vdash v_{1} \approx v_{1^{*}}$: ?. Thus, we know that

$$
\begin{aligned}
& \Xi \triangleright \text { let } x=t_{1^{*}} \text { in let } y=t_{2^{*}} \text { in let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times ?} x:: ? \times ?\right):: ? \rightarrow ? y \text { in } t_{3^{*}} \longmapsto{ }^{*} \\
& \Xi \triangleright \text { let } x=v_{1^{*}} \text { in let } y=t_{2^{*}} \text { in let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times ?} x:: ? \times ?\right):: ? \rightarrow ? y \text { in } t_{3^{*}} \longmapsto \\
& \Xi \triangleright \varepsilon_{?}\left(\text { let } y=t_{2^{*}} \text { in let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times \times ?} v_{1^{*}}:: ? \times ?\right):: ? \rightarrow y \text { in } t_{3^{*}}\right):: ? \mapsto^{*} \text { error }
\end{aligned}
$$

Therefore, the result follows immediately.
Case (RunsR).

$$
(\text { RunsR }) \frac{\mu ; \Xi \vdash v_{1} \approx v_{1^{*}}: ? \quad \mu ; \Xi \vdash t_{2} \approx t_{2^{*}}: ? \quad \mu ; \Xi ; z: ? \vdash t_{3} \approx t_{3^{*}}: ?}{\mu ; \Xi \vdash \text { let }\{z\}_{v_{1}}=t_{2} \text { in } t_{3} \approx \text { let } y=t_{2^{*}} \text { in let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon ? \times ? v_{1^{*}}:: ? \times ?\right): ? \rightarrow ? y \text { in } t_{3^{*}}: ?}
$$

If $t \| \mu \longrightarrow$ error, then by Lemma 9.8, the result follows immediately. Else, if

$$
t \| \mu \longmapsto \text { error }
$$

, then we know that $t=$ let $\{z\}_{t_{1}}=t_{2}$ in $t_{3}=\operatorname{let}\{z\}_{v_{1}}=t_{2}$ in $t_{3}=f\left[t_{2}\right]$, where $f=$ let $\{z\}_{v_{1}}=[]$ in t_{3}. Therefore, we have that

$$
t_{2} \| \mu \longmapsto \text { error }
$$

By the induction hypothesis, we get that $\Xi \triangleright t_{2^{*}} \longmapsto^{*}$ error Thus, we know that

$$
\Xi \triangleright \text { let } y=t_{2^{*}} \text { in let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon ? \times ? v_{1^{*}}:: ? \times ?\right):: ? \rightarrow ? y \text { in } t_{3^{*}} \longmapsto{ }^{*} \text { error }
$$

Therefore, the result follows immediately.
Case (Runs).

$$
\text { (Runs) } \frac{\mu ; \Xi \vdash v_{1} \approx v_{1}^{\prime}: ? \quad \mu ; \Xi \vdash v_{2} \approx v_{2}^{\prime}: ? \quad \mu ; \Xi ; z: ? \vdash t_{3} \approx t_{3}^{\prime}: ?}{\mu ; \Xi \vdash \text { let }\{z\}_{v_{1}}=v_{2} \text { in } t_{3} \approx \text { let } z=\varepsilon_{?} \rightarrow ? \pi_{2}\left(\varepsilon_{? \times ?} v_{1}^{\prime}:: ? \times ?\right):: ? \rightarrow ? v_{2}^{\prime} \text { in } t_{3}^{\prime}: ?}
$$

Since $t=$ let $\{z\}_{v_{1}}=v_{2}$ in t_{3}, we know that $t \| \mu \longrightarrow$ error. Therefore, by Lemma 9.8, the result follows immediately.

Lemma 9.12. If $\varepsilon=\langle E, E\rangle$, then $\varepsilon ; \varepsilon=\varepsilon$.
Proof. Straightforward induction on the shape of the evidence ε.
Lemma 9.13. If $\Xi ; \Gamma \vdash\lceil t\rceil_{\varepsilon}: G$ then $G=$?.
Proof. Straightforward induction on the syntax of t.
Lemma 11.2. If $\mu ; \Xi ; \Gamma \vdash t \approx t_{\varepsilon}:$? then $\Xi ; \Gamma \vdash t_{\varepsilon}:$?.
Proof. Direct by Lemma 9.13.

Lemma 9.14. If t is closed $\lambda_{\text {seal }}$ term, then $\cdot ; \cdot ; \cdot\left\lceil\lceil \rceil_{\varepsilon}:\right.$?.
Proof. Straightforward induction on the syntax of t.

Lemma 9.15. $\Xi \triangleright s u_{\varepsilon} \longmapsto^{*} \Xi, \sigma:=$? $\triangleright u_{\varepsilon}^{\sigma}$, where $\sigma:=$? $\notin \Xi$.
Proof. Following the reduction rules of GSF.
Lemma 9.16 (SUbstitution preserves). If $\mu ; \Xi ; \Gamma, x:$? $t \approx t^{*}:$? and $\mu ; \Xi ; \Gamma \vdash v \approx v^{*}:$?, then $\mu ; \Xi ; \Gamma \vdash t[v / x] \approx t^{*}\left[v^{*} / x\right]: ?$.

Proof. The proof is a straightforward induction on the derivation of $\mu ; \Xi ; \Gamma, x: ? \vdash t \approx t^{*}:$?.
Case (Rx).

$$
(\mathrm{Rx}) \frac{x: ? \in \Gamma, x: ?}{\mu ; \Xi ; \Gamma, x: ? \vdash x \approx x: ?}
$$

We have that $t=x$ and $t^{*}=x$. By the definition of substitution, we have that $x[v / x]=v$ and $x\left[v^{*} / x\right]=v^{*}$. Therefore, we are required to prove that $\mu ; \Xi ; \Gamma \vdash v \approx v^{*}:$?, which follows by the premise.

If we have

$$
(\mathrm{Rx}) \frac{y: ? \in \Gamma, x: ?}{\mu ; \Xi ; \Gamma, x: ? \vdash y \approx y: ?}
$$

We have that $t=y$ and $t^{*}=y$. By the definition of substitution, we have that $y[v / x]=y$ and $y\left[v^{*} / x\right]=y$. Therefore, we are required to prove that $\mu ; \Xi ; \Gamma \vdash y \approx y:$?, which follows by the premise $\mu ; \Xi ; \Gamma, x:$? $\vdash ~ y \approx y: ?$ and Lemma 9.10.

Case (Rb).

$$
(\mathrm{Rb}) \frac{t y(b)=B}{\mu ; \Xi ; \Gamma, x: ? \vdash b \approx \varepsilon_{B} b:: ?: ?}
$$

We have that $t=b$ and $t^{*}=\varepsilon_{B} b::$?. By the definition of substitution, we have that $b[v / x]=b$ and $\varepsilon_{B} b:: ?\left[v^{*} / x\right]=\varepsilon_{B} b::$?. Therefore, we are required to prove that $\mu ; \Xi ; \Gamma \vdash b \approx \varepsilon_{B} b::$? : ?, which follows by the premise $\mu ; \Xi ; \Gamma, x: ? \vdash b \approx \varepsilon_{B} b::$? : ? and Lemma 9.10.

Case (Ru).

$$
(\mathrm{Ru}) \frac{\mu ; \Xi ; \Gamma, x: ? \vdash v_{1} \approx \varepsilon_{D} u:: ?: ?}{\mu ; \Xi ; \Gamma, x: ? \vdash v_{1} \approx \varepsilon_{D}\left(\varepsilon_{D} u:: D\right):: ?: ?}
$$

We have that $t=v_{1}$ and $t^{*}=\varepsilon_{D}\left(\varepsilon_{D} u:: D\right)::$?. By the definition of substitution, we have that $\left(\varepsilon_{D}\left(\varepsilon_{D} u:: D\right):: ?\right)\left[v^{*} / x\right]=\varepsilon_{D}\left(\varepsilon_{D} u\left[v^{*} / x\right]:: D\right)::$?. Therefore, we are required to prove that $\mu ; \Xi ; \Gamma \vdash$ $v_{1}[v / x] \approx \varepsilon_{D}\left(\varepsilon_{D} u\left[v^{*} / x\right]:: D\right):: ?: ?$, or what is the same $\mu ; \Xi ; \Gamma \vdash v_{1}[v / x] \approx\left(\varepsilon_{D} u\left[v^{*} / x\right]:: ?\right): ?$ which follows by the induction hypothesis on $\mu ; \Xi ; \Gamma, x: ? \vdash v_{1} \approx \varepsilon_{D} u::$?: ?.

Case (Rs).

$$
\text { (Rs) } \frac{\sigma:=? \in \Xi}{\mu ; \Xi ; \Gamma, x: ? \vdash \sigma \approx s u_{\varepsilon}^{\sigma}: ?}
$$

We have that $t=\sigma$ and $t^{*}=s u_{\varepsilon}^{\sigma}$. By the definition of substitution, we have that $\sigma[v / x]=\sigma$ and $s u_{\varepsilon}^{\sigma}\left[v^{*} / x\right]=s u_{\varepsilon}^{\sigma}$. Therefore, we are required to prove that $\mu ; \Xi ; \Gamma \vdash \sigma \approx s u_{\varepsilon}^{\sigma}:$?, which follows by the premise $\mu ; \Xi ; \Gamma, x:$? $\vdash \sigma \approx s u_{\varepsilon}^{\sigma}:$? and Lemma 9.10.

Case (Rp).

$$
(\mathrm{Rp}) \frac{\mu ; \Xi ; \Gamma, x: ? \vdash v_{1} \approx \varepsilon_{D_{1}} u_{1}:: ?: ? \quad \mu ; \Xi ; \Gamma, x: ? \vdash v_{2} \approx \varepsilon_{D_{2}} u_{2}:: ?: ?}{\mu ; \Xi ; \Gamma, x: ? \vdash\left\langle v_{1}, v_{2}\right\rangle \approx \varepsilon_{D_{1} \times D_{2}}\left\langle u_{1}, u_{2}\right\rangle:: ?: ?}
$$

We have that $t=\left\langle v_{1}, v_{2}\right\rangle$ and $t^{*}=\varepsilon_{D_{1} \times D_{2}}\left\langle u_{1}, u_{2}\right\rangle::$?. By the definition of substitution, we have that $\left\langle v_{1}, v_{2}\right\rangle[v / x]=\left\langle v_{1}[v / x], v_{2}[v / x]\right\rangle$ and $\left(\varepsilon_{D_{1} \times D_{2}}\left\langle u_{1}, u_{2}\right\rangle:: ?\right)\left[v^{*} / x\right]=\varepsilon_{D_{1} \times D_{2}}\left\langle u_{1}\left[v^{*} / x\right], u_{2}\left[v^{*} / x\right]\right\rangle::$?. Therefore, we are required to prove that $\mu ; \Xi ; \Gamma \vdash\left\langle v_{1}[v / x], v_{2}[v / x]\right\rangle \approx \varepsilon_{D_{1} \times D_{2}}\left\langle u_{1}\left[v^{*} / x\right], u_{2}\left[v^{*} / x\right]\right\rangle:: ?$: ?, or what is the same by Rule (Rp) that $\mu ; \Xi ; \Gamma \vdash v_{1}[v / x] \approx \varepsilon_{D_{1}} u_{1}\left[v^{*} / x\right]::$? : ? and $\mu ; \Xi ; \Gamma \vdash$ $v_{2}[v / x] \approx \varepsilon_{D_{2}} u_{2}\left[v^{*} / x\right]:: ?:$?. By the induction hypothesis on $\mu ; \Xi ; \Gamma, x: ? \vdash v_{1} \approx \varepsilon_{D_{1}} u_{1}::$?: ? and $\mu ; \Xi ; \Gamma, x: ? \vdash v_{2} \approx \varepsilon_{D_{2}} u_{2}::$? : ? the result follows immediately.

Case (R λ).

$$
(\mathrm{R} \lambda) \frac{\Xi ; \Gamma, x: ?, y: ? \vdash t_{1} \approx t_{2}: ?}{\mu ; \Xi ; \Gamma, x: ? \vdash\left(\lambda y . t_{1}\right) \approx \varepsilon_{? \rightarrow ?}\left(\lambda y . t_{2}\right):: ?: ?}
$$

We have that $t=\left(\lambda y . t_{1}\right)$ and $t^{*}=\varepsilon_{? \rightarrow ?}\left(\lambda y . t_{2}\right)::$?. By the definition of substitution, we have that $\left(\lambda y . t_{1}\right)[v / x]=\left(\lambda y . t_{1}[v / x]\right)$ and $\left(\varepsilon_{?} \rightarrow ?\left(\lambda y . t_{2}\right):: ?\right)\left[v^{*} / x\right]=\varepsilon_{? \rightarrow ?}\left(\lambda y . t_{2}\left[v^{*} / x\right]\right)::$?. Therefore, we are required to prove that $\mu ; \Xi ; \Gamma \vdash\left(\lambda y \cdot t_{1}[v / x]\right) \approx \varepsilon_{? \rightarrow ?}\left(\lambda y \cdot t_{2}\left[v^{*} / x\right]\right)::$? : ?, or what is the same $\mu ; \Xi ; \Gamma, y:$? $\vdash t_{1}[v / x] \approx t_{2}\left[v^{*} / x\right]:$? which follows by the induction hypothesis on $\mu ; \Xi ; \Gamma, x: ?, y: ? \vdash t_{1} \approx t_{2}: ?$.

Case (Rpt).

$$
(\mathrm{Rpt}) \frac{\mu ; \Xi ; \Gamma, x: ? \vdash t_{1} \approx t_{1}^{\prime}: ? \quad \mu ; \Xi ; \Gamma, x: ? \vdash t_{2} \approx t_{2}^{\prime}: ?}{\mu ; \Xi ; \Gamma, x: ? \vdash\left\langle t_{1}, t_{2}\right\rangle \approx \varepsilon_{? \times \times}\left\langle\left\langle t_{1}^{\prime}, t_{2}^{\prime}\right\rangle:: ?: ?\right.}
$$

We have that $t=\left\langle t_{1}, t_{2}\right\rangle$ and $t^{*}=\varepsilon_{? \times \times}\left\langle t_{1}^{\prime}, t_{2}^{\prime}\right\rangle::$?. By the definition of substitution, we have that $\left\langle t_{1}, t_{2}\right\rangle[v / x]=\left\langle t_{1}[v / x], t_{2}[v / x]\right\rangle$ and $\left(\varepsilon_{? \times ?}\left\langle t_{1}^{\prime}, t_{2}^{\prime}\right\rangle:: ?\right)\left[v^{*} / x\right]=\left(\varepsilon_{? ~} ?\left\langle t_{1}^{\prime}\left[v^{*} / x\right], t_{2}^{\prime}\left[v^{*} / x\right]\right\rangle:: ?\right)$. Therefore, we are required to prove that $\mu ; \Xi ; \Gamma \vdash\left\langle t_{1}[v / x], t_{2}[v / x]\right\rangle \approx\left(\varepsilon_{?} x ?\left\langle t_{1}^{\prime}\left[v^{*} / x\right], t_{2}^{\prime}\left[v^{*} / x\right]\right\rangle:: ?\right)$: ?, or what is the same by Rule (Rpt) that $\mu ; \Xi ; \Gamma \vdash t_{1}[v / x] \approx t_{1}^{\prime}\left[v^{*} / x\right]:$? and $\mu ; \Xi ; \Gamma \vdash t_{2}[v / x] \approx$
$t_{2}^{\prime}\left[v^{*} / x\right]:$?. By the induction hypothesis on $\mu ; \Xi ; \Gamma, x: ? \vdash t_{1} \approx t_{1}^{\prime}:$? and $\mu ; \Xi ; \Gamma, x: ? \vdash t_{2} \approx t_{2}^{\prime}:$? the result follows immediately.
Case (Rapp).

$$
(\mathrm{Rapp}) \frac{\mu ; \Xi ; \Gamma, x: ? \vdash v_{1} \approx v_{1}^{\prime}: ? \quad \mu ; \Xi ; \Gamma, x: ? \vdash v_{2} \approx v_{2}^{\prime}: ?}{\mu ; \Xi ; \Gamma, x: ? \vdash v_{1} v_{2} \approx\left(\varepsilon_{?} \rightarrow ? v_{1}^{\prime}:: ? \rightarrow ?\right) v_{2}^{\prime}: ?}
$$

We have that $t=v_{1} v_{2}$ and $t^{*}=\left(\varepsilon_{? \rightarrow ?} v_{1}^{\prime}:: ? \rightarrow\right.$?) v_{2}^{\prime}. By the definition of substitution, we have that

$$
\left(v_{1} v_{2}\right)[v / x]=v_{1}[v / x] v_{2}[v / x]
$$

and

$$
\left(\left(\varepsilon_{? \rightarrow ?} v_{1}^{\prime}:: ? \rightarrow ?\right) v_{2}^{\prime}\right)\left[v^{*} / x\right]=\left(\varepsilon_{? \rightarrow ?} v_{1}^{\prime}\left[v^{*} / x\right]:: ? \rightarrow ?\right) v_{2}^{\prime}\left[v^{*} / x\right]
$$

Therefore, we are required to prove that

$$
\mu ; \Xi ; \Gamma \vdash v_{1}[v / x] v_{2}[v / x] \approx\left(\varepsilon_{? \rightarrow ?} v_{1}^{\prime}\left[v^{*} / x\right]:: ? \rightarrow ?\right) v_{2}^{\prime}\left[v^{*} / x\right]: ?
$$

, or what is the same by Rule (Rapp) that $\mu ; \Xi ; \Gamma \vdash v_{1}[v / x] \approx v_{1}^{\prime}\left[v^{*} / x\right]:$? and $\mu ; \Xi ; \Gamma \vdash v_{2}[v / x] \approx$ $v_{2}^{\prime}\left[v^{*} / x\right]:$?. By the induction hypothesis on $\mu ; \Xi ; \Gamma, x: ? \vdash v_{1} \approx v_{1}^{\prime}:$? and $\mu ; \Xi ; \Gamma, x: ? \vdash v_{2} \approx v_{2}^{\prime}:$? the result follows immediately.

Case (RappL).

$$
(\mathrm{RappL}) \frac{\mu ; \Xi ; \Gamma, x: ? \vdash t_{1} \approx t_{1}^{\prime}: ? \quad \mu ; \Xi ; \Gamma, x: ? \vdash t_{2} \approx t_{2}^{\prime}: ?}{\mu ; \Xi ; \Gamma, x: ? \vdash t_{1} t_{2} \approx \text { let } z=t_{1}^{\prime} \text { in let } y=t_{2}^{\prime} \text { in }\left(\varepsilon_{? \rightarrow ?} z:: ? \rightarrow ?\right) y: ?}
$$

We have that $t=t_{1} t_{2}$ and $t^{*}=$ let $z=t_{1}^{\prime}$ in let $y=t_{2}^{\prime}$ in $\left(\varepsilon_{? \rightarrow ?} z:: ? \rightarrow\right.$?) y. By the definition of substitution, we have that

$$
\left(t_{1} t_{2}\right)[v / x]=t_{1}[v / x] t_{2}[v / x]
$$

and
(let $z=t_{1}^{\prime}$ in let $y=t_{2}^{\prime}$ in $(\varepsilon$? \rightarrow ? $z:: ? \rightarrow$?) $y)\left[v^{*} / x\right]=$ let $z=t_{1}^{\prime}\left[v^{*} / x\right]$ in let $y=t_{2}^{\prime}\left[v^{*} / x\right]$ in $(\varepsilon ? \rightarrow ? z:: ? \rightarrow$?) y
Therefore, we are required to prove that

$$
\mu ; \Xi ; \Gamma \vdash t_{1}[v / x] t_{2}[v / x] \approx \text { let } z=t_{1}^{\prime}\left[v^{*} / x\right] \text { in let } y=t_{2}^{\prime}\left[v^{*} / x\right] \text { in }\left(\varepsilon_{? \rightarrow ?} z:: ? \rightarrow ?\right) y: ?
$$

, or what is the same by Rule (RappL) that $\mu ; \Xi ; \Gamma \vdash t_{1}[v / x] \approx t_{1}^{\prime}\left[v^{*} / x\right]:$? and $\mu ; \Xi ; \Gamma \vdash t_{2}[v / x] \approx$ $t_{2}^{\prime}\left[v^{*} / x\right]:$?. By the induction hypothesis on $\mu ; \Xi ; \Gamma, x:$? 卜 $t_{1} \approx t_{1}^{\prime}:$? and $\mu ; \Xi ; \Gamma, x:$? $\vdash t_{2} \approx t_{2}^{\prime}:$? the result follows immediately.

Case (RappR).

$$
(\mathrm{RappR}) \frac{\mu ; \Xi ; \Gamma, x: ? \vdash v_{1} \approx v_{1}^{\prime}: ? \quad \mu ; \Xi ; \Gamma, x: ? \vdash t_{2} \approx t_{2}^{\prime}: ?}{\mu ; \Xi ; \Gamma, x: ? \vdash v_{1} t_{2} \approx \text { let } y=t_{2}^{\prime} \text { in }\left(\varepsilon_{? \rightarrow ?} v_{1}^{\prime}:: ? \rightarrow ?\right) y: ?}
$$

We have that $t=v_{1} t_{2}$ and $t^{*}=$ let $y=t_{2}^{\prime}$ in $\left(\varepsilon_{? \rightarrow ?} v_{1}^{\prime}:: ? \rightarrow ?\right) y$. By the definition of substitution, we have that

$$
\left(v_{1} t_{2}\right)[v / x]=v_{1}[v / x] t_{2}[v / x]
$$

and

$$
\left(\text { let } y=t_{2}^{\prime} \text { in }\left(\varepsilon_{? \rightarrow ?} v_{1}^{\prime}:: ? \rightarrow ?\right) y\right)\left[v^{*} / x\right]=\text { let } y=t_{2}^{\prime}\left[v^{*} / x\right] \text { in }\left(\varepsilon_{? \rightarrow ?} v_{1}^{\prime}\left[v^{*} / x\right]:: ? \rightarrow \text { ?) } y\right.
$$

Therefore, we are required to prove that

$$
\mu ; \Xi ; \Gamma \vdash v_{1}[v / x] t_{2}[v / x] \approx \text { let } y=t_{2}^{\prime}\left[v^{*} / x\right] \text { in }\left(\varepsilon_{? \rightarrow ?} v_{1}^{\prime}\left[v^{*} / x\right]:: ? \rightarrow ?\right) y: ?
$$

, or what is the same by Rule (RappR) that $\mu ; \Xi ; \Gamma \vdash v_{1}[v / x] \approx v_{1}^{\prime}\left[v^{*} / x\right]:$? and $\mu ; \Xi ; \Gamma \vdash t_{2}[v / x] \approx$ $t_{2}^{\prime}\left[v^{*} / x\right]:$?. By the induction hypothesis on $\mu ; \Xi ; \Gamma, x: ? \vdash v_{1} \approx v_{1}^{\prime}:$? and $\mu ; \Xi ; \Gamma, x:$? $\vdash t_{2} \approx t_{2}^{\prime}:$? the result follows immediately.

Case (R?).

$$
\text { (R?) } \frac{\mu ; \Xi ; \Gamma, x: ? \vdash t \approx t^{\prime}: ?}{\mu ; \Xi ; \Gamma, x: ? \vdash t \approx \varepsilon_{?} t^{\prime}:: ?: ?}
$$

We have that $t^{*}=\varepsilon_{?} t^{\prime}::$?. By the definition of substitution, we have that

$$
\left(\varepsilon_{?} t^{\prime}:: \text { ?) }\left[v^{*} / x\right]=\varepsilon_{?} t^{\prime}\left[v^{*} / x\right]::: ~ ?\right.
$$

Therefore, we are required to prove that

$$
\mu ; \Xi ; \Gamma \vdash t[v / x] \approx \varepsilon_{?} t^{\prime}\left[v^{*} / x\right]:: ?: ?
$$

, or what is the same by Rule (R ?) that $\mu ; \Xi ; \Gamma \vdash t[v / x] \approx t^{\prime}\left[v^{*} / x\right]$: ?. By the induction hypothesis on $\mu ; \Xi ; \Gamma, x:$? $\vdash ~ t \approx t^{\prime}:$? the result follows immediately.

Case (Rpi).

$$
(\mathrm{Rpi}) \frac{\mu ; \Xi ; \Gamma, x: ? \vdash t^{\prime \prime} \approx t^{\prime}: ?}{\mu ; \Xi ; \Gamma, x: ? \vdash \pi_{i}\left(t^{\prime \prime}\right) \approx \pi_{i}\left(\varepsilon_{? \times ?} t^{\prime}:: ? \times ?\right): ?}
$$

We have that $t=\pi_{i}\left(t^{\prime \prime}\right)$ and $t^{*}=\pi_{i}\left(\varepsilon_{? \times ?} t^{\prime}:: ? \times\right.$?). By the definition of substitution, we have that

$$
\pi_{i}\left(t^{\prime \prime}\right)[v / x]=\pi_{i}\left(t^{\prime \prime}[v / x]\right)
$$

and

$$
\left(\pi_{i}\left(\varepsilon_{? \times ?} t^{\prime}:: ? \times ?\right)\right)\left[v^{*} / x\right]=\pi_{i}\left(\varepsilon_{? \times ?} t^{\prime}\left[v^{*} / x\right]:: ? \times ?\right)
$$

Therefore, we are required to prove that

$$
\mu ; \Xi ; \Gamma \vdash \pi_{i}\left(t^{\prime \prime}[v / x]\right) \approx \pi_{i}\left(\varepsilon_{? \times} \times t^{\prime}\left[v^{*} / x\right]:: ? \times ?\right): ?
$$

, or what is the same by Rule (Rpi) that $\mu ; \Xi ; \Gamma \vdash t^{\prime \prime}[v / x] \approx t^{\prime}\left[v^{*} / x\right]:$?. By the induction hypothesis on $\mu ; \Xi ; \Gamma, x:$? $\vdash t^{\prime \prime} \approx t^{\prime}:$? the result follows immediately.

Case (RsG).

$$
(\operatorname{RsG}) \frac{\mu ; \Xi ; \Gamma, x: ?, z: ? \vdash t^{\prime \prime} \approx t^{\prime}: ?}{\mu ; \Xi ; \Gamma, x: ? \vdash v z \cdot t^{\prime \prime} \approx \text { let } z=s u_{\varepsilon} \text { in } t^{\prime}: ?}
$$

We have that $t=v z . t^{\prime \prime}$ and $t^{*}=$ let $z=s u_{\varepsilon}$ in t^{\prime}. By the definition of substitution, we have that

$$
\left(v z \cdot t^{\prime \prime}\right)[v / x]=v z \cdot t^{\prime \prime}[v / x]
$$

and

$$
\text { (let } \left.z=s u_{\varepsilon} \text { in } t^{\prime}\right)\left[v^{*} / x\right]=\text { let } z=s u_{\varepsilon} \text { in } t^{\prime}\left[v^{*} / x\right]
$$

Therefore, we are required to prove that

$$
\mu ; \Xi ; \Gamma \vdash v z . t^{\prime \prime}[v / x] \approx \text { let } z=s u_{\varepsilon} \text { in } t^{\prime}\left[v^{*} / x\right]: ?
$$

, or what is the same by Rule (RsG) that $\mu ; \Xi ; \Gamma, z: ? \vdash t^{\prime \prime}[v / x] \approx t^{\prime}\left[v^{*} / x\right]:$?. By the induction hypothesis on $\mu ; \Xi ; \Gamma, x:$?, $z:$? $\vdash t^{\prime \prime} \approx t^{\prime}:$? the result follows immediately.
Case (Rsed1).

$$
\text { (Rsed1) } \frac{\mu ; \Xi ; \Gamma, x: ? \vdash v_{1} \approx v_{1}^{\prime}: ? \quad \mu ; \Xi ; \Gamma, x: ? \vdash v_{2} \approx v_{2}^{\prime}: ?}{\mu ; \Xi ; \Gamma, x: ? \vdash\left\{v_{1}\right\}_{v_{2}} \approx \varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times ?} v_{2}^{\prime}:: ? \times ?\right):: ? \rightarrow ? v_{1}^{\prime}: ?}
$$

We have that $t=\left\{v_{1}\right\}_{v_{2}}$ and $t^{*}=\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times ?} v_{2}^{\prime}:: ? \times ?\right):: ? \rightarrow ? v_{1}^{\prime}$. By the definition of substitution, we have that

$$
\left\{v_{1}\right\}_{v_{2}}[v / x]=\left\{v_{1}[v / x]\right\}_{v_{2}[v / x]}
$$

and

$$
\left(\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times ?} v_{2}^{\prime}:: ? \times ?\right):: ? \rightarrow ? v_{1}^{\prime}\right)\left[v^{*} / x\right]=\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times ?} v_{2}^{\prime}\left[v^{*} / x\right]:: ? \times ?\right):: ? \rightarrow ? v_{1}^{\prime}\left[v^{*} / x\right]
$$

Therefore, we are required to prove that

$$
\mu ; \Xi ; \Gamma \vdash\left\{v_{1}[v / x]\right\}_{v_{2}[v / x]} \approx \varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times ?} v_{2}^{\prime}\left[v^{*} / x\right]:: ? \times ?\right):: ? \rightarrow ? v_{1}^{\prime}\left[v^{*} / x\right]: ?
$$

, or what is the same by Rule (Rsed1) that $\mu ; \Xi ; \Gamma \vdash v_{1}[v / x] \approx v_{1}^{\prime}\left[v^{*} / x\right]:$? and $\mu ; \Xi ; \Gamma \vdash v_{2}[v / x] \approx$ $v_{2}^{\prime}\left[v^{*} / x\right]:$?. By the induction hypothesis on $\mu ; \Xi ; \Gamma, x: ? \vdash v_{1} \approx v_{1}^{\prime}:$? and $\mu ; \Xi ; \Gamma, x: ? \vdash v_{2} \approx v_{2}^{\prime}:$? the result follows immediately.
Case (Rsed1L).

$$
\text { (Rsed1L) } \frac{\mu ; \Xi ; \Gamma, x: ? \vdash t_{1} \approx t_{1}^{\prime}: ? \quad \mu ; \Xi ; \Gamma, x: ? \vdash t_{2} \approx t_{2}^{\prime}: ?}{\mu ; \Xi ; \Gamma, x: ? \vdash\left\{t_{1}\right\}_{t_{2}} \approx \text { let } z=t_{1}^{\prime} \text { in let } y=t_{2}^{\prime} \text { in }\left(\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times ?} y:: ? \times ?\right):: ? \rightarrow ?\right) z: ?}
$$

We have that $t=\left\{t_{1}\right\}_{t_{2}}$ and $t^{*}=$ let $z=t_{1}^{\prime}$ in let $y=t_{2}^{\prime}$ in $\left(\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times ?} y:: ? \times ?\right):: ? \rightarrow\right.$?) z. By the definition of substitution, we have that

$$
\left\{t_{1}\right\}_{t_{2}}[v / x]=\left\{t_{1}[v / x]\right\}_{t_{2}[v / x]}
$$

and

$$
\text { (let } \left.z=t_{1}^{\prime} \text { in let } y=t_{2}^{\prime} \text { in }\left(\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times ?} y:: ? \times ?\right):: ? \rightarrow ?\right) z\right)\left[v^{*} / x\right]=
$$

$$
\text { let } z=t_{1}^{\prime}\left[v^{*} / x\right] \text { in let } y=t_{2}^{\prime}\left[v^{*} / x\right] \text { in }\left(\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times ?} y:: ? \times ?\right):: ? \rightarrow \text { ?) } z\right.
$$

Therefore, we are required to prove that
$\mu ; \Xi ; \Gamma \vdash\left\{t_{1}[v / x]\right\}_{t_{2}[v / x]} \approx$ let $z=t_{1}^{\prime}\left[v^{*} / x\right]$ in let $y=t_{2}^{\prime}\left[v^{*} / x\right]$ in $\left(\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times \times} y:: ? \times ?\right):: ? \rightarrow\right.$?) $z:$?
, or what is the same by Rule (Rsed1L) that $\mu ; \Xi ; \Gamma \vdash t_{1}[v / x] \approx t_{1}^{\prime}\left[v^{*} / x\right]:$? and $\mu ; \Xi ; \Gamma \vdash t_{2}[v / x] \approx$ $t_{2}^{\prime}\left[v^{*} \mid x\right]$: ?. By the induction hypothesis on $\mu ; \Xi ; \Gamma, x: ? \vdash t_{1} \approx t_{1}^{\prime}:$? and $\mu ; \Xi ; \Gamma, x: ? \vdash t_{2} \approx t_{2}^{\prime}:$? the result follows immediately.
Case (Rsed1R).

$$
(\text { Rsed1R }) \frac{\mu ; \Xi ; \Gamma, x: ? \vdash v_{1} \approx v_{1}^{\prime}: ? \quad \mu ; \Xi ; \Gamma, x: ? \vdash t_{2} \approx t_{2}^{\prime}: ?}{\mu ; \Xi ; \Gamma, x: ? \vdash\left\{v_{1}\right\}_{t_{2}} \approx \text { let } y=t_{2}^{\prime} \text { in }\left(\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times \times} y:: ? \times ?\right):: ? \rightarrow\right) v_{1}^{\prime}: ?}
$$

We have that $t=\left\{v_{1}\right\}_{t_{2}}$ and $t^{*}=$ let $y=t_{2}^{\prime}$ in $\left(\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times ?} y:: ? \times ?\right):: ? \rightarrow\right.$?) v_{1}^{\prime}. By the definition of substitution, we have that

$$
\left\{v_{1}\right\}_{t_{2}}[v / x]=\left\{v_{1}[v / x]\right\}_{t_{2}[v / x]}
$$

and

$$
\begin{aligned}
& \left(\text { let } y=t_{2}^{\prime} \text { in }\left(\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times \times} y:: ? \times ?\right):: ? \rightarrow \text { ?) } v_{1}^{\prime}\right)\left[v^{*} / x\right]=\right. \\
& \text { let } y=t_{2}^{\prime}\left[v^{*} / x\right] \text { in }\left(\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times ?} y:: ? \times ?\right):: ? \rightarrow \text { ?) } v_{1}^{\prime}\left[v^{*} / x\right]\right.
\end{aligned}
$$

Therefore, we are required to prove that

$$
\mu ; \Xi ; \Gamma \vdash\left\{v_{1}[v / x]\right\}_{t_{2}[v / x]} \approx \text { let } y=t_{2}^{\prime}\left[v^{*} / x\right] \text { in }\left(\varepsilon_{? \rightarrow ?} \pi_{1}\left(\varepsilon_{? \times ?} y:: ? \times ?\right):: ? \rightarrow ?\right) v_{1}^{\prime}\left[v^{*} / x\right]: ?
$$

, or what is the same by Rule (Rsed1R) that $\mu ; \Xi ; \Gamma \vdash v_{1}[v / x] \approx v_{1}^{\prime}\left[v^{*} / x\right]:$? and $\mu ; \Xi ; \Gamma \vdash t_{2}[v / x] \approx$ $t_{2}^{\prime}\left[v^{*} / x\right]:$?. By the induction hypothesis on $\mu ; \Xi ; \Gamma, x:$? 卜 $v_{1} \approx v_{1}^{\prime}:$? and $\mu ; \Xi ; \Gamma, x:$? $\vdash t_{2} \approx t_{2}^{\prime}:$? the result follows immediately.

Case (Rsed2).

$$
\text { (Rsed2) } \frac{\mu ; \Xi ; \Gamma, x: ? \vdash v^{\prime} \approx\left\langle E_{1}, E_{2}\right\rangle u:: ?: ? \quad \sigma:=? \in \Xi}{\mu ; \Xi ; \Gamma, x: ? \vdash\left\{v^{\prime}\right\}_{\sigma} \approx\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u:: ?: ?}
$$

We have that $t=\left\{v^{\prime}\right\}_{\sigma}$ and $t^{*}=\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u::$?. By the definition of substitution, we have that

$$
\left\{v^{\prime}\right\}_{\sigma}[v / x]=\left\{v^{\prime}[v / x]\right\}_{\sigma}
$$

and

$$
\left(\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u:: ?\right)\left[v^{*} / x\right]=\left(\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u\left[v^{*} / x\right]:: ?\right)
$$

Therefore, we are required to prove that

$$
\mu ; \Xi ; \Gamma \vdash\left\{v^{\prime}[v / x]\right\}_{\sigma} \approx\left(\left\langle E_{1}, \sigma^{E_{2}}\right\rangle u\left[v^{*} / x\right]:: ?\right): ?
$$

, or what is the same by Rule (Rsed2) that $\mu ; \Xi ; \Gamma \vdash v^{\prime}[v / x] \approx\left\langle E_{1}, E_{2}\right\rangle u\left[v^{*} / x\right]::$? : ?. By the induction hypothesis on $\mu ; \Xi ; \Gamma, x:$? $\vdash v^{\prime} \approx\left\langle E_{1}, E_{2}\right\rangle u::$? : ? the result follows immediately.

Case (Runs).

$$
\text { (Runs) } \frac{\mu ; \Xi ; \Gamma, x: ? \vdash v_{1} \approx v_{1}^{\prime}: ? \quad \mu ; \Xi ; \Gamma, x: ? \vdash v_{2} \approx v_{2}^{\prime}: ? \quad \mu ; \Xi ; \Gamma, x: ?, z: ? \vdash t_{3} \approx t_{3}^{\prime}: ?}{\mu ; \Xi ; \Gamma, x: ? \vdash \text { let }\{z\}_{v_{1}}=v_{2} \text { in } t_{3} \approx \text { let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? x ?} v_{1}^{\prime}:: ? \times ?\right):: ? \rightarrow ? v_{2}^{\prime} \text { in } t_{3}^{\prime}: ?}
$$

We have that $t=$ let $\{z\}_{v_{1}}=v_{2}$ in t_{3} and $t^{*}=$ let $z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times} \times v_{1}^{\prime}:: ? \times ?\right):: ? \rightarrow ? v_{2}^{\prime}$ in t_{3}^{\prime}. By the definition of substitution, we have that

$$
\left(\text { let }\{z\}_{v_{1}}=v_{2} \text { in } t_{3}\right)[v / x]=\text { let }\{z\}_{v_{1}[v / x]}=v_{2}[v / x] \text { in } t_{3}[v / x]
$$

and

$$
\begin{gathered}
\left(\text { let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times ?} v_{1}^{\prime}:: ? \times ?\right):: ? \rightarrow ? v_{2}^{\prime} \text { in } t_{3}^{\prime}\right)\left[v^{*} / x\right]= \\
\text { let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times \times ?} v_{1}^{\prime}\left[v^{*} / x\right]:: ? \times ?\right):: ? \rightarrow ? v_{2}^{\prime}\left[v^{*} / x\right] \text { in } t_{3}^{\prime}\left[v^{*} / x\right]
\end{gathered}
$$

Therefore, we are required to prove that
$\mu ; \Xi ; \Gamma \vdash$ let $\{z\}_{v_{1}[v / x]}=v_{2}[v / x]$ in $t_{3}[v / x] \approx$ let $z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times}\right.$? $\left.v_{1}^{\prime}\left[v^{*} / x\right]:: ? \times ?\right):: ? \rightarrow ? v_{2}^{\prime}\left[v^{*} / x\right]$ in $t_{3}^{\prime}\left[v^{*} / x\right]:$?
Or what is the same by Rule (Runs) that $\mu ; \Xi ; \Gamma \vdash v_{1}[v / x] \approx v_{1}^{\prime}\left[v^{*} / x\right]:$?, $\mu ; \Xi ; \Gamma \vdash v_{2}[v / x] \approx$ $v_{2}^{\prime}\left[v^{*} / x\right]:$? and $\mu ; \Xi ; \Gamma, z:$? $\vdash t_{3}\left[v^{*} / x\right] \approx t_{3}^{\prime}\left[v^{*} / x\right]:$? . By the induction hypothesis on $\mu ; \Xi ; \Gamma, x:$? 卜 $v_{1} \approx v_{1}^{\prime}:$?, $\mu ; \Xi ; \Gamma, x:$? $\vdash v_{2} \approx v_{2}^{\prime}:$? and $\mu ; \Xi ; \Gamma, x: ?, z:$? $\vdash t_{3} \approx t_{3}^{\prime}:$? the result follows immediately.

Case (RunsL).
(RunsL) $\frac{\mu ; \Xi ; \Gamma, x: ? \vdash t_{1} \approx t_{1}^{\prime}: ? \quad \mu ; \Xi ; \Gamma, x: ? \vdash t_{2} \approx t_{2}^{\prime}: ? \quad \mu ; \Xi ; \Gamma, x: ?, z: ? \vdash t_{3} \approx t_{3}^{\prime}: ?}{\mu ; \Xi ; \Gamma, x: \text { ? }+ \text { let }\{z\}_{t_{1}}=t_{2} \text { in } t_{3} \approx \text { let } w=t_{1}^{\prime} \text { in let } y=t_{2}^{\prime} \text { in let } z=\varepsilon_{?} \rightarrow ? \pi_{2}\left(\varepsilon ? \times ? w:: \text { ? } \times \text { ?) :: ? } \rightarrow \text { ? } y \text { in } t_{3}^{\prime}: ?\right.}$
We have that $t=$ let $\{z\}_{t_{1}}=t_{2}$ in t_{3} and

$$
t^{*}=\text { let } w=t_{1}^{\prime} \text { in let } y=t_{2}^{\prime} \text { in let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times ?} w:: ? \times ?\right):: ? \rightarrow ? y \text { in } t_{3}^{\prime}
$$

By the definition of substitution, we have that

$$
\text { (let } \left.\{z\}_{t_{1}}=t_{2} \text { in } t_{3}\right)[v / x]=\operatorname{let}\{z\}_{t_{1}[v / x]}=t_{2}[v / x] \text { in } t_{3}[v / x]
$$

and
(let $w=t_{1}^{\prime}$ in let $y=t_{2}^{\prime}$ in let $z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times ?} w:: ? \times ?\right.$) :: ? \rightarrow ? y in $\left.t_{3}^{\prime}\right)\left[v^{*} / x\right]=$
let $w=t_{1}^{\prime}\left[v^{*} / x\right]$ in let $y=t_{2}^{\prime}\left[v^{*} / x\right]$ in let $z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times}\right.$? $\left.w:: ? \times ?\right):: ? \rightarrow ? y$ in $t_{3}^{\prime}\left[v^{*} / x\right]$
Therefore, we are required to prove that

$$
\Xi ; \Gamma \vdash \text { let }\{z\}_{t_{1}[v / x]}=t_{2}[v / x] \text { in } t_{3}[v / x] \approx
$$

let $w=t_{1}^{\prime}\left[v^{*} / x\right]$ in let $y=t_{2}^{\prime}\left[v^{*} / x\right]$ in let $z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times ?} w:: ? \times ?\right):: ? \rightarrow$? y in $t_{3}^{\prime}\left[v^{*} / x\right]:$?
Or what is the same by Rule (RunsL) that $\mu ; \Xi ; \Gamma \vdash t_{1}[v / x] \approx t_{1}^{\prime}\left[v^{*} / x\right]:$?, $\mu ; \Xi ; \Gamma \vdash t_{2}[v / x] \approx$ $t_{2}^{\prime}\left[v^{*} / x\right]: ?$ and $\mu ; \Xi ; \Gamma, z: ? \vdash t_{3}\left[v^{*} / x\right] \approx t_{3}^{\prime}\left[v^{*} / x\right]:$? . By the induction hypothesis on $\mu ; \Xi ; \Gamma, x:$? 卜 $t_{1} \approx t_{1}^{\prime}: ?, \mu ; \Xi ; \Gamma, x: ? \vdash t_{2} \approx t_{2}^{\prime}:$? and $\mu ; \Xi ; \Gamma, x: ?, z:$? $\vdash t_{3} \approx t_{3}^{\prime}:$? the result follows immediately.

Case (RunsR).
(RunsR) $\frac{\mu ; \Xi ; \Gamma, x: ? \vdash v_{1} \approx v_{1}^{\prime}: ? \quad \mu ; \Xi ; \Gamma, x: ? \vdash t_{2} \approx t_{2}^{\prime}: ? \quad \mu ; \Xi ; \Gamma, x: ?, z: ? \vdash t_{3} \approx t_{3}^{\prime}: ?}{\mu ; \Xi ; \Gamma, x: ? \vdash \text { let }\{z\}_{v_{1}}=t_{2} \text { in } t_{3} \approx \text { let } y=t_{2}^{\prime} \text { in let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times ?} v_{1}^{\prime}:: ? \times ?\right):: ? \rightarrow ? y \text { in } t_{3}^{\prime}: ?}$
We have that $t=$ let $\{z\}_{v_{1}}=t_{2}$ in t_{3} and

$$
t^{*}=\text { let } y=t_{2}^{\prime} \text { in let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times ?} v_{1}^{\prime}:: ? \times ?\right):: ? \rightarrow ? y \text { in } t_{3}^{\prime}
$$

By the definition of substitution, we have that

$$
\text { (let } \left.\{z\}_{v_{1}}=t_{2} \text { in } t_{3}\right)[v / x]=\text { let }\{z\}_{v_{1}[v / x]}=t_{2}[v / x] \text { in } t_{3}[v / x]
$$

and

$$
\text { (let } \left.y=t_{2}^{\prime} \text { in let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times ?} v_{1}^{\prime}:: ? \times ?\right):: ? \rightarrow ? y \text { in } t_{3}^{\prime}\right)\left[v^{*} / x\right]=
$$

$$
\text { let } y=t_{2}^{\prime}\left[v^{*} / x\right] \text { in let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times ?} v_{1}^{\prime}\left[v^{*} / x\right]:: ? \times ?\right):: ? \rightarrow ? y \text { in } t_{3}^{\prime}\left[v^{*} / x\right]
$$

Therefore, we are required to prove that

$$
\begin{gathered}
\Xi ; \Gamma \vdash \text { let }\{z\}_{v_{1}[v / x]}=t_{2}[v / x] \text { in } t_{3}[v / x] \approx \\
\text { let } y=t_{2}^{\prime}\left[v^{*} / x\right] \text { in let } z=\varepsilon_{? \rightarrow ?} \pi_{2}\left(\varepsilon_{? \times ?} v_{1}^{\prime}\left[v^{*} / x\right]:: ? \times ?\right):: ? \rightarrow ? \text { in } t_{3}^{\prime}\left[v^{*} / x\right]: ?
\end{gathered}
$$

Or what is the same by Rule (RunsR) that $\mu ; \Xi ; \Gamma \vdash v_{1}[v / x] \approx v_{1}^{\prime}\left[v^{*} / x\right]: ?, \mu ; \Xi ; \Gamma \vdash t_{2}[v / x] \approx$ $t_{2}^{\prime}\left[v^{*} / x\right]:$? and $\mu ; \Xi ; \Gamma, z: ? \vdash t_{3}\left[v^{*} / x\right] \approx t_{3}^{\prime}\left[v^{*} / x\right]:$? . By the induction hypothesis on $\mu ; \Xi ; \Gamma, x:$? 卜 $v_{1} \approx v_{1}^{\prime}:$?, $\mu ; \Xi ; \Gamma, x:$? $卜 t_{2} \approx t_{2}^{\prime}:$? and $\mu ; \Xi ; \Gamma, x: ?, z:$? $\vdash t_{3} \approx t_{3}^{\prime}:$? the result follows immediately.

Lemma 11.4. If $\mu ; \Xi ; \Gamma, x:$? $\vdash t \approx t_{\varepsilon}:$? and $\mu ; \Xi ; \Gamma \vdash v \approx v_{\varepsilon}:$?, then $\mu ; \Xi ; \Gamma \vdash t[v / x] \approx t_{\varepsilon}\left[v_{\varepsilon} / x\right]:$?.
Proof. Direct by Lemma 9.16.
The remaining theorems and lemmas are in the main text.

10 GRADUAL EXISTENTIAL TYPES IN GSF

This session presents a motivational example for the extension of GSF with existential directly instead of using the encoding of existential into universal types. Also, we show the translation from GSF^{\exists} to $\mathrm{GSF}_{\varepsilon}^{\exists}$ and the proof of the fundamental property for existential types.

10.1 Existential types: primitive or encoded?

The benefit of a direct treatment of existential types can already be appreciated in the fully-static setting, with the simple examples of packages s_{1} and s_{2} above. Suppose we want to show that s_{1} and s_{2} are contextually equivalent, i.e. indistinguishable by any context. To show this equivalence, it is sufficient to show that the packages are logically related. The proof of this based on the direct interpretation of the existential types is considerably easier and more intuitive than proving that their encodings are related. To illustrate this point, we sketch these two proof techniques below in System F.

Proof with primitive existentials. Two packages are logically related at an existential type, if there exists a relation R between values of their representation types, such that their term components respect the relation R. Here, for v_{1} and v_{2} to respect R means that the following three conditions hold:

- The created semaphores with the operation bit are related. In this case, this imposes that (true, 1) $\in R$.
- If two semaphores are related, then changing their states with the operation flip yields related semaphores. Here, applying the flip operation of each package s_{1} and s_{2} to the values true and 1 , respectively, yields false and 0 . Therefore, (false, 0$) \in R$. Applying the flip operations on these values yields again true and 1, which are related.
- If two semaphores are related, then the Bool value obtained by applying the operation read must be the same. It is easy to see that this condition is also satisfied.
Formally, two packages are logically related at an existential type in standard System F (following [Ahmed 2006]):

$$
\begin{aligned}
\mathcal{V}_{\rho} \llbracket \exists X . T \rrbracket= & \left\{\left(\operatorname{pack}\left\langle T_{1}, v_{1}\right\rangle \text { as } \exists X . \rho(T), \operatorname{pack}\left\langle T_{2}, v_{2}\right\rangle \text { as } \exists X . \rho(T)\right) \in \operatorname{Atom}_{\rho}^{=}[\exists X . T] \mid\right. \\
& \exists R \in \operatorname{ReL}\left[T_{1}, T_{2}\right] \cdot\left(v_{1}, v_{2}\right) \in \mathcal{V}_{\left.\rho\left[X \mapsto\left(R, T_{1}, T_{2}\right)\right] \llbracket T \rrbracket\right\}}
\end{aligned}
$$

By this definition, in order to prove that s_{1} is logically related to s_{2} at type Sem, it is required to show that there exists a relation R between the types Bool and Int such that

$$
\left(v_{1}, v_{2}\right) \in \mathcal{V}_{[X \mapsto(R, \text { Bool }, \text { Int })]} \llbracket X \times(X \rightarrow X) \times(X \rightarrow \text { Bool }) \rrbracket
$$

Taking $R=\{\langle$ true, 1\rangle,\langle false, 0$\rangle\}$, it is easy to check that the implementations of s_{1} and s_{2} preserve this relation.
Proof with encoded existentials. Using the encoding of Sem in terms of universal types in order to prove that s_{1} and s_{2} are logically related is considerably more complex. First, we have to transform the packages s_{1} and s_{2} to type abstractions and prove that

$$
\left(\left(\Lambda Y . \lambda f: \operatorname{Sem}_{\text {client }} \cdot f[\text { Bool }] v_{1}\right),\left(\Lambda Y . \lambda f: \operatorname{Sem}_{\text {client }} \cdot f[\operatorname{Int}] v_{2}\right)\right) \in \mathcal{V}_{\rho} \llbracket \forall Y . \text { Sem }_{\text {client }} \rightarrow Y \rrbracket
$$

where Sem $_{\text {client }}=\forall X . X \times(X \rightarrow X) \times(X \rightarrow \mathrm{Bool}) \rightarrow Y$. The proof of the above leads us to show that for any type T_{1}^{\prime} and T_{2}^{\prime}, and any relation R^{\prime} between these types, the following type applications are related:

$$
\left(\left(\Lambda Y . \lambda f: \operatorname{Sem}_{\text {client }} \cdot f[\text { Bool }] v_{1}\right)\left[T_{1}^{\prime}\right],\left(\Lambda Y . \lambda f: \operatorname{Sem}_{\text {client }} . f[\operatorname{Int}] v_{2}\right)\left[T_{2}^{\prime}\right]\right) \in \mathcal{T}_{\left[Y \mapsto\left(R^{\prime}, T_{1}^{\prime}, T_{2}^{\prime}\right)\right]} \llbracket \operatorname{Sem}_{\text {client }} \rightarrow Y \rrbracket
$$

Several steps further in the proof, we have to show that $\left(f_{1}[\mathrm{Bool}] v_{1}, f_{2}[\mathrm{Int}] v_{2}\right) \in \mathcal{T}_{\left[Y \mapsto\left(R^{\prime}, T_{1}^{\prime}, T_{2}^{\prime}\right)\right]} \llbracket Y \rrbracket$, for any f_{1} and f_{2} such that

$$
\left(f_{1}, f_{2}\right) \in \mathcal{V}_{\left[Y \mapsto\left(R^{\prime}, T_{1}^{\prime}, T_{2}^{\prime}\right)\right]} \llbracket \text { Sem }_{\text {client }} \rrbracket
$$

Since f_{1} and f_{2} are related under a universal type, we can instantiate them at any types T_{1} and T_{2}, and any relation Q between these types, keeping the resulting terms related:

$$
\left(f_{1}\left[T_{1}\right], f_{2}\left[T_{2}\right]\right) \in \mathcal{T}_{\left[Y \mapsto\left(R^{\prime}, T_{1}^{\prime}, T_{2}^{\prime}\right), X \mapsto\left(Q, T_{1}, T_{2}\right)\right]} \llbracket(X \times(X \rightarrow X) \times(X \rightarrow \text { Bool }) \rightarrow Y) \rrbracket
$$

At this point, we can pick the same relation as above, $R=\{\langle$ true, 1\rangle,\langle false, 0$\rangle\}$, such that v_{1} and v_{2} are related.

$$
\left(v_{1}, v_{2}\right) \in \mathcal{V}_{[X \mapsto(R, \text { Bool }, \text { Int })]} \llbracket X \times(X \rightarrow X) \times(X \rightarrow \text { Bool }) \rrbracket
$$

Hence, we can instantiate T_{1} and T_{2} with the types Bool and Int, and Q with the relation R, obtaining that

$$
\left(f_{1}[\text { Bool }], f_{2}[\text { Int }]\right) \in \mathcal{T}_{\left[Y \mapsto\left(R^{\prime}, T_{1}^{\prime}, T_{2}^{\prime}\right), X \mapsto(R, \text { Bool, } \mathrm{Int})\right]} \llbracket(X \times(X \rightarrow X) \times(X \rightarrow \text { Bool }) \rightarrow Y) \rrbracket
$$

In a few more steps, we can instantiate the above with v_{1} and v_{2}, since they are related, finally obtaining the desired result.

As we can see, as part of the second approach (using the encoding) is needed to prove the same that is required by the first approach (directly on existential types) and more; being the second extremely more complex. The equivalence example that we use to illustrate the previous is very simple. But, for instance, Ahmed et al. [2009a] prove challenging cases of equivalences in the presence of abstract data types and mutable references, where the use of the encoding would have hindered the work.

10.2 Translation from $\mathbf{G S F}^{\exists}$ to GSF $_{\varepsilon}^{\exists}$

Figure 26 shows the translation from $\operatorname{GSF}^{\exists}$ to $\operatorname{GSF}_{\varepsilon}^{\exists}$.

$$
\begin{aligned}
& (\text { Gpacku }) \frac{\Delta ; \Gamma \vdash v:: G\left[G^{\prime} / X\right] \leadsto v^{\prime}: G\left[G^{\prime} / X\right] \Delta \vdash G^{\prime}}{\Delta ; \Gamma \vdash \operatorname{pack}\left\langle G^{\prime}, v\right\rangle \text { as } \exists X . G \leadsto \operatorname{packu}\left\langle G^{\prime}, v^{\prime}\right\rangle \text { as } \exists X . G: \exists X . G} \\
& \text { (Gpack) } \frac{t \neq v \quad \Delta ; \Gamma \vdash t \leadsto t^{\prime}: G_{1} \quad \varepsilon=\mathcal{I}\left(G_{1}, G\left[G^{\prime} / X\right]\right) \quad \Delta \vdash G^{\prime}}{\Delta ; \Gamma \vdash \operatorname{pack}\left\langle G^{\prime}, t\right\rangle \text { as } \exists X . G \leadsto \operatorname{pack}\left\langle G^{\prime}, \varepsilon t:: G\left[G^{\prime} / X\right]\right\rangle \text { as } \exists X . G: \exists X . G} \\
& \Delta ; \Gamma \vdash t_{1} \leadsto t_{1}^{\prime}: G_{1} \quad G_{1} \rightarrow \exists X . G_{1}^{\prime} \quad \varepsilon=\mathcal{I}\left(G_{1}, \exists X . G_{1}^{\prime}\right) \\
& \text { (Gunpack) } \frac{\Delta, X ; \Gamma, x: G_{1}^{\prime} \vdash t_{2} \leadsto t_{2}^{\prime}: G_{2}}{\Delta ; \Gamma \vdash \text { unpack }\langle X, x\rangle=t_{1} \text { in } t_{2} \leadsto \operatorname{unpack}\langle X, x\rangle=\varepsilon t_{1}^{\prime}:: \exists X . G_{1}^{\prime} \text { in } t_{2}^{\prime}: G_{2}}
\end{aligned}
$$

Fig. 26. Translation from GSF^{\exists} to $\operatorname{GSF}_{\mathcal{\varepsilon}}^{\exists}$

10.3 Properties of GSF $^{\exists}$

Proposition 12.1 (GSF ${ }^{\exists}$: Precision, inductively). The inductive definition of type precision given in Figure 17 is equivalent to Definition 6.1.

Proof. Direct by induction on the type structure of G_{1} and G_{2}. Similar to Prop. 6.2.
Proposition $12.2\left(\mathrm{GSF}^{\exists}\right.$: Consistency, inductively). The inductive definition of type consistency given in Figure 17 is equivalent to Definition 6.5.

Proof. Similar to Prop. 6.6.
Proposition 12.3 (GSF ${ }^{\exists}$: Static equivalence for static terms). Let t be a static term and $G a$ static type $(G=T)$. We have $\vdash_{s} t: T$ if and only if $\vdash t: T$.

Proof. Smilar to Prop. 6.9.
Proposition 12.4 (GSF ${ }^{\exists}$: Static gradual guarantee). Let t and t^{\prime} be closed $G S F^{\exists}$ terms such that $t \sqsubseteq t^{\prime}$ and $\vdash t: G$. Then $\vdash t^{\prime}: G^{\prime}$ and $G \sqsubseteq G^{\prime}$.

Proof. Similar to Prop. 6.10.

10.4 GSF ${ }^{\exists}$: Parametricity

Theorem 10.1 (Fundamental Property). If $\Xi ; \Delta ; \Gamma \vdash t: G$ then $\Xi ; \Delta ; \Gamma \vdash t \leq t: G$.
We follow by induction on the structure of t .
Proof.
Case (packu). Then $t=\varepsilon\left(\operatorname{packu}\left\langle G^{\prime}, v\right\rangle\right.$ as $\left.\exists X . G^{\prime \prime}\right):: G$, and therefore by the typing rules Epacku and Easc we have that

$$
\text { (Epack \& Easc) } \frac{\Xi ; \Delta ; \Gamma \vdash v: G^{\prime \prime}\left[G^{\prime} / X\right] \quad \Xi ; \Delta \vdash G^{\prime} \quad \varepsilon \Vdash \Xi ; \Delta \vdash \exists X . G^{\prime \prime} \sim G}{\Xi ; \Delta ; \Gamma \vdash \varepsilon\left(\operatorname{packu}\left\langle G^{\prime}, v\right\rangle \text { as } \exists X . G^{\prime \prime}\right):: G: G}
$$

Then we have to prove that:

$$
\Xi ; \Delta ; \Gamma \vdash \varepsilon\left(\operatorname{packu}\left\langle G^{\prime}, v\right\rangle \text { as } \exists X . G^{\prime \prime}\right):: G \leq \varepsilon\left(\text { packu }\left\langle G^{\prime}, v\right\rangle \text { as } \exists X . G^{\prime \prime}\right):: G: G
$$

By induction hypotheses we already know that $\Xi ; \Delta ; \Gamma \vdash v \leq v: G^{\prime \prime}\left[G^{\prime} / X\right]$. But the result follows directly by Prop 10.2 (Compatibility of packu).

Case (pack). Then $t=\operatorname{pack}\left\langle G^{\prime}, t^{\prime}\right\rangle$ as $\exists X . G^{\prime \prime}$, and therefore by the typing rules Epack we have that

$$
(\text { Epack }) \frac{\Xi ; \Delta ; \Gamma \vdash t^{\prime}: G^{\prime \prime}\left[G^{\prime} / X\right] \quad \Xi ; \Delta \vdash G^{\prime}}{\Xi ; \Delta ; \Gamma \vdash \operatorname{pack}\left\langle G^{\prime}, t^{\prime}\right\rangle \text { as } \exists X . G^{\prime \prime}: \exists X . G^{\prime \prime}}
$$

Then we have to prove that:

$$
\Xi ; \Delta ; \Gamma \vdash \operatorname{pack}\left\langle G^{\prime}, t^{\prime}\right\rangle \text { as } \exists X \cdot G^{\prime \prime} \leq \operatorname{pack}\left\langle G^{\prime}, t^{\prime}\right\rangle \text { as } \exists X \cdot G^{\prime \prime}: \exists X \cdot G^{\prime \prime}
$$

By induction hypotheses we already know that $\Xi ; \Delta ; \Gamma \vdash t^{\prime} \leq t^{\prime}: G^{\prime \prime}\left[G^{\prime} / X\right]$. But the result follows directly by Prop 10.3 (Compatibility of pack).

Case (unpack). Then $t=$ unpack $\langle X, x\rangle=t_{1}$ in t_{2}, and therefore:

$$
\left(\text { Eunpack } \frac{\Xi ; \Delta ; \Gamma \vdash t_{1}: \exists X . G_{1} \quad \Xi ; \Delta, X ; \Gamma, x: G_{1} \vdash t_{2}: G_{2} \quad \Xi ; \Delta \vdash G_{2}}{\Xi ; \Delta ; \Gamma \vdash \text { unpack }\langle X, x\rangle=t_{1} \text { in } t_{2}: G_{2}}\right.
$$

where $G=G_{2}$. Then we have to prove that:

$$
\Xi ; \Delta ; \Gamma \vdash \text { unpack }\langle X, x\rangle=t_{1} \text { in } t_{2} \leq \text { unpack }\langle X, x\rangle=t_{1} \text { in } t_{2}: G_{2}
$$

By induction hypotheses we already know that $\Xi ; \Delta ; \Gamma \vdash t_{1} \leq t_{1}: \exists X . G_{1}$ and $\Xi ; \Delta, X ; \Gamma, x: G_{1} \vdash$ $t_{2} \leq t_{2}: G_{2}$. But the result follows directly by Prop 10.4 (Compatibility of unpack).

Definition 10.1 (Operators over evidence).

$$
\begin{gathered}
\pi_{i}^{*}(\varepsilon) \triangleq\left\langle E_{*}, E_{*}\right\rangle \quad \text { where } E_{*}=\operatorname{lift} t_{\Xi}\left(\text { unlift }\left(\pi_{i}(\varepsilon)\right)\right) \quad \pi_{i}^{2}(\varepsilon) \triangleq\left\langle E_{*}, E_{*}\right\rangle \quad \text { where } E_{*}=\pi_{i}(\varepsilon) \\
\left\langle E_{1}, E_{2}\right\rangle[X]=\left\langle E_{1}[X], E_{2}[X]\right\rangle \quad\left\langle E_{1}, E_{2}\right\rangle\left[E_{3}, E_{4}\right]=\left\langle E_{1}\left[E_{3}\right], E_{2}\left[E_{4}\right]\right\rangle \\
\left\langle E_{1}, E_{2}\right\rangle\left[E_{3}, E_{4}, X\right]=\left\langle E_{1}\left[E_{3} / X\right], E_{2}\left[E_{4} / X\right]\right\rangle
\end{gathered}
$$

Proposition 10.2 (Compatibility-Epacku). If $\Xi ; \Delta ; \Gamma \vdash v_{11} \leq v_{12}: G^{\prime \prime}\left[G^{\prime} / X\right], \Xi ; \Delta \vdash G^{\prime}$ and $\varepsilon \Vdash \Xi ; \Delta \vdash \exists X . G^{\prime \prime} \sim G$, then

$$
\Xi ; \Delta ; \Gamma \vdash \varepsilon\left(p a c k u\left\langle G^{\prime}, v_{11}\right\rangle \text { as } \exists X . G^{\prime \prime}\right):: G \leq \varepsilon\left(\text { packu }\left\langle G^{\prime}, v_{12}\right\rangle \text { as } \exists X . G^{\prime \prime}\right):: G: G
$$

Proof. First, we are required to prove that

$$
\Xi ; \Delta ; \Gamma \vdash \varepsilon\left(\operatorname{packu}\left\langle G^{\prime}, v_{1 i}\right\rangle \text { as } \exists X . G^{\prime \prime}\right):: G: G
$$

But by unfolding the premises we know that $\Xi ; \Delta ; \Gamma \vdash v_{1 i}: G^{\prime \prime}\left[G^{\prime} / X\right]$, therefore:

$$
\left(\text { Epack \& Easc) } \frac{\Xi ; \Delta ; \Gamma \vdash v_{1 i}: G^{\prime \prime}\left[G^{\prime} \mid X\right] \quad \Xi ; \Delta \vdash G^{\prime} \quad \varepsilon \Vdash \Xi ; \Delta \vdash \exists X . G^{\prime \prime} \sim G}{\Xi ; \Delta ; \Gamma \vdash \varepsilon\left(\operatorname{pack}\left\langle G^{\prime}, v_{1 i}\right\rangle \text { as } \exists X . G^{\prime \prime}\right):: G: G}\right.
$$

Consider arbitrary W, ρ, γ such that $W \in \mathcal{S} \llbracket \Xi \rrbracket,(W, \rho) \in \mathcal{D} \llbracket \Delta \rrbracket$ and $(W, \gamma) \in \mathcal{G}_{\rho} \llbracket \Gamma \rrbracket$. We are required to show that

$$
\left(W, \rho\left(\gamma_{1}\left(\varepsilon\left(\operatorname{packu}\left\langle G^{\prime}, v_{11}\right\rangle \text { as } \exists X . G^{\prime \prime}\right):: G\right)\right), \rho\left(\gamma_{2}\left(\varepsilon\left(\operatorname{packu}\left\langle G^{\prime}, v_{12}\right\rangle \text { as } \exists X . G^{\prime \prime}\right):: G\right)\right)\right) \in \mathcal{T}_{\rho} \llbracket G \rrbracket
$$

First we have to prove that:

$$
W \cdot \Xi_{i} \vdash \rho\left(\gamma_{i}\left(\varepsilon\left(\operatorname{packu}\left\langle G^{\prime}, v_{1 i}\right\rangle \text { as } \exists X . G^{\prime \prime}\right):: G\right)\right): \rho(G)
$$

As we know that $\Xi ; \Delta ; \Gamma \vdash \varepsilon\left(\operatorname{packu}\left\langle G^{\prime}, v_{1 i}\right\rangle\right.$ as $\left.\exists X . G^{\prime \prime}\right):: G: G$, by Lemma 6.25 the result follows immediately.

By definition of substitutions

$$
\rho\left(\gamma_{i}\left(\varepsilon\left(\operatorname{packu}\left\langle G^{\prime}, v_{1 i}\right\rangle \text { as } \exists X . G^{\prime \prime}\right):: G\right)\right)=\varepsilon_{i}^{\rho}\left(\operatorname{packu}\left\langle\rho\left(G^{\prime}\right), \rho\left(\gamma_{i}\left(v_{1 i}\right)\right)\right\rangle \text { as } \exists X . \rho\left(G^{\prime \prime}\right)\right):: \rho(G)
$$

where $\varepsilon_{i}^{\rho}=\rho_{i}(\varepsilon)$ and $\varepsilon_{i}^{\rho} . n=k$. Therefore we have to prove that

$$
\left(W, \varepsilon_{1}^{\rho}\left(\operatorname{packu}\left\langle\rho\left(G^{\prime}\right), \rho\left(\gamma_{1}\left(v_{11}\right)\right)\right\rangle \text { as } \exists X . \rho\left(G^{\prime \prime}\right)\right):: \rho(G), \varepsilon_{2}^{\rho}\left(\operatorname{packu}\left\langle\rho\left(G^{\prime}\right), \rho\left(\gamma_{2}\left(v_{12}\right)\right)\right\rangle \text { as } \exists X . \rho\left(G^{\prime \prime}\right)\right):: \rho(G)\right) \in \mathcal{T}_{\rho} \llbracket G \rrbracket
$$

Or what is the same
$\left(W, \varepsilon_{1}^{\rho}\left(\operatorname{packu}\left\langle\rho\left(G^{\prime}\right), \rho\left(\gamma_{1}\left(v_{11}\right)\right)\right\rangle\right.\right.$ as $\left.\exists X . \rho\left(G^{\prime \prime}\right)\right):: \rho(G), \varepsilon_{2}^{\rho}\left(\operatorname{packu}\left\langle\rho\left(G^{\prime}\right), \rho\left(\gamma_{2}\left(v_{12}\right)\right)\right\rangle\right.$ as $\left.\left.\exists X . \rho\left(G^{\prime \prime}\right)\right):: \rho(G)\right) \in \mathcal{V}_{\rho} \llbracket G \rrbracket$

The type G can be $\exists X . G_{1}^{\prime}$, for some G_{1}^{\prime}, ? or a TypeName.
Let $u_{i}=\operatorname{packu}\left\langle\rho\left(G^{\prime}\right), v_{1 i}\right\rangle$ as $\exists X . \rho\left(G^{\prime \prime}\right)$ and $G^{*}=\exists X . G^{\prime \prime}$, we have to prove that:

$$
\left(W^{\prime}, \varepsilon_{1}^{\rho} u_{1}:: \rho(G), \varepsilon_{2}^{\rho} u_{2}:: \rho(G)\right) \in \mathcal{V}_{\rho} \llbracket G \rrbracket
$$

(1) If $G=\exists X . G_{1}^{\prime}$, by the definition of $\mathcal{V}_{\rho} \llbracket \exists X . G_{1}^{\prime} \rrbracket$, we have to prove that $\forall W^{\prime \prime} \geq W, \alpha \cdot \exists R \in$ $\operatorname{REL}_{W^{\prime \prime} . j}\left[\rho\left(G^{\prime}\right), \rho\left(G^{\prime}\right)\right]$ such that $\forall \varepsilon^{\prime} \Vdash \Xi ; \operatorname{dom}(\rho) \vdash \exists X . G_{1}^{\prime} \sim \exists X . G_{1}^{\prime}\left(\varepsilon^{\prime} . n=l\right)$ it is true that $\left.\left(W^{*},\left(\rho_{1}(\varepsilon) \stackrel{\circ}{\rho}\left(\varepsilon^{\prime}\right)\right)\left[\hat{G}^{\prime}, \hat{\alpha}\right] v_{11}:: \rho\left(G_{1}^{\prime}\right)[\alpha / X],\left(\rho_{2}(\varepsilon) \stackrel{\circ}{2} \rho_{2}\left(\varepsilon^{\prime}\right)\right)\left[\hat{G}_{2}, \hat{\alpha}\right] v_{12}:: \rho\left(G_{1}^{\prime}\right)[\alpha / X]\right)\right) \in \mathcal{T}_{\rho[X \mapsto \alpha]} \llbracket G_{1}^{\prime} \rrbracket$ where $W^{*}=W^{\prime \prime} \boxtimes\left(\alpha, \rho\left(G^{\prime}\right), \rho\left(G^{\prime}\right), R\right)$.
or what is the same, we have to prove that

$$
\left.\left(W^{*},\left(\rho_{1}\left(\varepsilon ; \varepsilon^{\prime}\right)\right)\left[\hat{G}^{\prime}, \hat{\alpha}\right] v_{11}:: \rho\left(G_{1}^{\prime}\right)[\alpha / X],\left(\rho_{2}\left(\varepsilon \circ, \varepsilon^{\prime}\right)\right)\left[\hat{G_{2}}, \hat{\alpha}\right] v_{12}:: \rho\left(G_{1}^{\prime}\right)[\alpha / X]\right)\right) \in \mathcal{T}_{\rho[X \mapsto \alpha]} \llbracket G_{1}^{\prime} \rrbracket
$$

By Proposition 10.8 (decomposition of the evidence) we know that

$$
\rho_{i}\left(\varepsilon ; \varepsilon^{\prime}\right)\left[\hat{G}^{\prime}, \hat{\alpha}\right]=\pi_{1}^{*}\left(\rho_{i}\left(\varepsilon ; \varepsilon^{\prime}\right)\right)\left[\hat{G}^{\prime}, \hat{\alpha}\right] \circ \rho_{i}\left(\varepsilon \circ \varepsilon^{\prime}\right)[\hat{\alpha}, \hat{\alpha}]
$$

Lets take $R=\mathcal{V}_{\rho} \llbracket G^{\prime} \rrbracket$.
Note that

- $W^{*}=W^{\prime \prime} \boxtimes\left(\alpha, \rho\left(G^{\prime}\right), \rho\left(G^{\prime}\right), \mathcal{V}_{\rho} \llbracket G^{\prime} \rrbracket\right) \geq W^{\prime}$
- $E_{i}^{\prime}=$ lift $_{W^{*} . \Xi_{i}}\left(\rho\left(G^{\prime}\right)\right)$,
- $E_{i *}=\operatorname{lift}_{W^{*} . \Xi_{i}}\left(G_{p i}\right), G_{p i}=\operatorname{unlift}\left(\pi_{1}\left(\rho_{i}\left(\varepsilon ; \varepsilon^{\prime}\right)\right)\right) \sqsubseteq \rho\left(G^{\prime \prime}\right)$,
- $\rho^{\prime}=\rho[X \mapsto \alpha]$,
- $\varepsilon_{i}^{-1}=\pi_{1}^{*}\left(\rho_{i}\left(\varepsilon ; \varepsilon^{\prime}\right)\right)\left[\hat{G}^{\prime}, \hat{\alpha}\right]=\left\langle E_{i *}\left[E_{i}^{\prime} / X\right], E_{i *}\left[\alpha^{E_{i}} / X\right]\right\rangle$, such that $\varepsilon_{i}^{-1} \Vdash W^{*} . \Xi_{i} \vdash \rho\left(G^{\prime \prime}\left[G^{\prime} / X\right]\right) \sim$ $\rho\left(G^{\prime \prime}[\alpha / X]\right), \alpha^{E_{i}^{\prime}}=$ lift $_{W^{*} . \Xi_{i}}(\alpha)$, and $E_{i}^{\prime}=$ lift $_{W^{*} . \Xi_{i}}\left(\rho\left(G^{\prime}\right)\right), \varepsilon_{i}{ }^{-1} . n=k$ and
- $\left(W^{\prime}, v_{11}, v_{12}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime \prime}\left[G^{\prime} / X\right] \rrbracket$, then $\left(W^{*}, v_{11}, v_{12}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime \prime}\left[G^{\prime} / X\right] \rrbracket$.

By the Lemma §10.6 (compositionality) we know that

$$
\left.\left(W^{*}, \pi_{1}\left(\rho_{1}\left(\varepsilon ; \varepsilon^{\prime}\right)\right)\left[\hat{G}^{\prime}, \hat{\alpha}\right] v_{11}:: \rho^{\prime}\left(G^{\prime \prime}\right), \pi_{1}\left(\rho_{2}\left(\varepsilon ; \varepsilon^{\prime}\right)\right)\left[\hat{G}^{\prime}, \hat{\alpha}\right] v_{12}:: \rho^{\prime}\left(G^{\prime \prime}\right)\right)\right) \in \mathcal{T}_{\rho^{\prime}} \llbracket G^{\prime \prime} \rrbracket
$$

or what is the same
$\left.\left(W^{*}, \pi_{1}^{*}\left(\rho_{1}\left(\varepsilon ; \varepsilon^{\prime}\right)\right)\left[\hat{G}^{\prime}, \hat{\alpha}\right] v_{11}:: \rho\left(G^{\prime \prime}\right)[\alpha / X], \pi_{1}^{*}\left(\rho_{2}\left(\varepsilon ; \varepsilon^{\prime}\right)\right)\left[\hat{G}^{\prime}, \hat{\alpha}\right] v_{12}:: \rho\left(G^{\prime \prime}\right)[\alpha / X]\right)\right) \in \mathcal{T}_{\rho[X \mapsto \alpha]} \llbracket G^{\prime \prime} \rrbracket$
Then we know that

$$
\left.\left(\downarrow_{k} W^{*}, \varepsilon_{1}^{\prime} u_{1}^{\prime}:: \rho\left(G^{\prime \prime}\right)[\alpha / X], \varepsilon_{2}^{\prime} u_{2}^{\prime}:: \rho\left(G^{\prime \prime}\right)[\alpha / X]\right)\right) \in \mathcal{V}_{\rho[X \mapsto \alpha]} \llbracket G^{\prime \prime} \rrbracket
$$

where $v_{1 i}=\varepsilon_{1 i}^{\prime} u_{i}:: \rho\left(G^{\prime \prime}\left[G^{\prime} / X\right]\right)$ and $\varepsilon_{i}^{\prime}=\varepsilon_{1 i}^{\prime} \circ \pi_{1}^{*}\left(\rho_{i}\left(\varepsilon \circ \varepsilon^{\prime}\right)\right)\left[\hat{G}^{\prime}, \hat{\alpha}\right]$.
Note now that

- $\left.\left(\downarrow_{k} W^{*}, \varepsilon_{1}^{\prime} u_{1}^{\prime}:: \rho\left(G^{\prime \prime}\right)[\alpha / X], \varepsilon_{2}^{\prime} u_{2}^{\prime}:: \rho\left(G^{\prime \prime}\right)[\alpha / X]\right)\right) \in \mathcal{V}_{\rho[X \mapsto \alpha]} \llbracket G^{\prime \prime} \rrbracket$,
- $\left(\varepsilon \circ{ }_{9}^{\prime}\right)[X] \Vdash \Xi ; \Delta, X \vdash G^{\prime \prime} \sim G_{1}^{\prime},\left(\varepsilon \circ \varepsilon^{\prime}\right)[X] . n=l$
- $\downarrow_{k} W^{*} \in \mathcal{S} \llbracket \Xi \rrbracket$ and $\left(\downarrow_{k} W^{*}, \rho^{\prime}\right) \in \mathcal{D} \llbracket \Delta, X \rrbracket$,

Then, by Lemma 10.5 (Ascription Lemma), we know that

$$
\left(\downarrow_{k+l} W^{*},\left(\varepsilon_{1}^{\prime} \varsubsetneqq \rho_{1}^{\prime}\left(\left(\varepsilon ; \varepsilon^{\prime}\right)[X]\right)\right) u_{1}^{\prime}:: \rho^{\prime}\left(G_{1}^{\prime}\right),\left(\varepsilon_{2}^{\prime} \circ \rho_{2}^{\prime}\left(\left(\varepsilon \circ \varepsilon^{\prime}\right)[X]\right)\right) u_{2}^{\prime}:: \rho^{\prime}\left(G_{1}^{\prime}\right)\right) \in \mathcal{V}_{\rho^{\prime}} \llbracket G_{1}^{\prime} \rrbracket
$$

or what is the same
$\left.\left(\downarrow_{k+l} W^{*},\left(\varepsilon_{1}^{\prime} \circ \rho_{1}\left(\varepsilon \circ \varepsilon^{\prime}\right)[\hat{\alpha}, \hat{\alpha}]\right) u_{1}^{\prime}:: \rho\left(G_{1}^{\prime}\right)[\alpha / X],\left(\varepsilon_{2}^{\prime} \circ \rho_{2}\left(\varepsilon \circ \varepsilon^{\prime}\right)[\hat{\alpha}, \hat{\alpha}]\right) u_{2}^{\prime}:: \rho\left(G_{1}^{\prime}\right)[\alpha / X]\right)\right) \in \mathcal{V}_{\rho[X \mapsto \alpha]} \llbracket G_{1}^{\prime} \rrbracket$
The result follows immediately.

$$
\left.\left(W^{*},\left(\rho_{1}\left(\varepsilon ; \varepsilon^{\prime}\right)\right)\left[\hat{G}^{\prime}, \hat{\alpha}\right] v_{11}:: \rho\left(G_{1}^{\prime}\right)[\alpha / X],\left(\rho_{2}\left(\varepsilon ; \varepsilon^{\prime}\right)\right)\left[\hat{G_{2}}, \hat{\alpha}\right] v_{12}:: \rho\left(G_{1}^{\prime}\right)[\alpha / X]\right)\right) \in \mathcal{T}_{\rho[X \mapsto \alpha]} \llbracket G_{1}^{\prime} \rrbracket
$$

(2) If $G \in \operatorname{TypeName}$ then $\varepsilon=\left\langle H_{3}, \alpha^{E_{4}}\right\rangle$. Notice that as $\alpha^{E_{4}}$ cannot have free type variables therefore H_{3} neither. Then $\varepsilon=\rho_{i}(\varepsilon)$. As α is sync, then let us call $G^{\prime \prime \prime}=W \cdot \Xi_{i}(\alpha)$. We have to prove that:

$$
\left(W,\left\langle H_{3}, \alpha^{E_{4}}\right\rangle u_{1}:: \alpha,\left\langle H_{3}, \alpha^{E_{4}}\right\rangle u_{2}:: \alpha\right) \in \mathcal{V}_{\rho} \llbracket \alpha \rrbracket
$$

which, by definition of $\mathcal{V}_{\rho} \llbracket \alpha \rrbracket$, is equivalent to prove that:

$$
\left(\downarrow W,\left\langle H_{3}, E_{4}\right\rangle u_{1}:: G^{\prime \prime \prime},\left\langle E_{3}, E_{4}\right\rangle u_{2}:: G^{\prime \prime \prime}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime \prime \prime} \rrbracket
$$

Then we proceed by case analysis on ε :

- (Case $\varepsilon=\left\langle H_{3}, \alpha^{\beta^{E_{4}}}\right\rangle$). We know that $\left\langle H_{3}, \alpha^{\beta^{E_{4}}}\right\rangle \vdash \Xi ; \Delta \vdash G^{*} \sim \alpha$, then by Lemma 6.29, $\left\langle H_{3}, \beta^{E_{4}}\right\rangle \vdash \Xi ; \Delta \vdash G^{*} \sim G^{\prime \prime \prime}$. As $\beta^{E_{4}} \sqsubseteq G^{\prime \prime \prime}$, then $G^{\prime \prime \prime}$ can either be ? or β.
If $G^{\prime \prime \prime}=$?, then by definition of $\mathcal{V}_{\rho} \llbracket$? \rrbracket, we have to prove that the resulting values belong to $\mathcal{V}_{\rho} \llbracket \beta \rrbracket$. Also as $\left\langle H_{3}, \beta^{E_{4}}\right\rangle \vdash \Xi ; \Delta \vdash G^{*} \sim$?, by Lemma 6.27, $\left\langle H_{3}, \beta^{E_{4}}\right\rangle \vdash \Xi ; \Delta \vdash G^{*} \sim \beta$, and then we proceed just like this case once again (this is process is finite as there are no circular references by construction and it ends up in something different to a type name). If $G^{\prime \prime \prime}=\beta$ we use an analogous argument as for $G^{\prime \prime}=$?.
- (Case $\left.\varepsilon=\left\langle H_{3}, \alpha^{H_{4}}\right\rangle\right)$. We have to prove that

$$
\left(\downarrow W,\left\langle H_{3}, H_{4}\right\rangle u_{1}:: G^{\prime \prime \prime},\left\langle H_{3}, H_{4}\right\rangle u_{2}:: G^{\prime \prime \prime}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime \prime \prime} \rrbracket
$$

By Lemma 6.29, $\left\langle H_{3}, H_{4}\right\rangle \vdash \Xi ; \Delta \vdash G^{*} \sim G^{\prime \prime}$. Then if $G^{\prime \prime}=$?, we proceed as the case $G^{\prime}=$?, with the evidence $\varepsilon=\left\langle H_{3}, H_{4}\right\rangle$. If $G^{\prime \prime} \in$ HeadType, we proceed as the previous case where $G^{\prime}=\forall X . G$, and the evidence $\varepsilon=\left\langle H_{3}, H_{4}\right\rangle$.
Also, we have to prove that $\left(\forall \Xi^{\prime}, \varepsilon^{\prime}, G_{1}^{*}\right.$, such that $\varepsilon^{\prime} \cdot n=k, \varepsilon^{\prime}=\left\langle\alpha^{E_{1}^{* *}}, E_{2}^{* *}\right\rangle(\downarrow W \in$ $\left.\mathcal{S} \llbracket \Xi^{\prime} \rrbracket \wedge \varepsilon^{\prime} \vdash \Xi^{\prime} \vdash \alpha \sim G_{1}^{*}\right)$, we get that

$$
\left.\left(\downarrow_{1} W, \varepsilon^{\prime}\left(\left\langle H_{3}, \alpha^{H_{4}}\right\rangle u_{1}:: \alpha\right):: G_{1}^{*}, \varepsilon^{\prime}\left(\left\langle H_{4}, \alpha^{E_{22}}\right\rangle u_{2}:: \alpha\right):: G_{1}^{*}\right) \in \mathcal{T}_{\rho} \llbracket G_{1}^{*} \rrbracket\right)
$$

or what is the same $\left(\left(\left\langle H_{3}, \alpha^{H_{4}}\right\rangle ; \varepsilon^{\prime}\right)\right.$ fails the result follows immediately)

$$
\left.\left(\downarrow_{1+k} W,\left(\left\langle H_{3}, \alpha^{H_{4}}\right\rangle ; \varepsilon^{\prime}\right) u_{1}:: G_{1}^{*},\left(\left\langle H_{2}, \alpha^{H_{4}}\right\rangle ; \varepsilon^{\prime}\right) u_{2}:: G_{1}^{*}\right) \in \mathcal{V}_{\rho} \llbracket G_{1}^{*} \rrbracket\right)
$$

By definition of transitivity and Lemma 6.30, we know that

$$
\left\langle H_{3}, \alpha^{H_{4}}\right\rangle \stackrel{\circ}{9}\left\langle\alpha^{E_{1}^{* *}}, E_{2}^{* *}\right\rangle=\left\langle H_{3}, H_{4}\right\rangle \circ\left\langle E_{1}^{* *}, E_{2}^{* *}\right\rangle
$$

We know that $\left\langle E_{1}^{* *}, E_{2}^{* *}\right\rangle \vdash \Xi^{\prime} \vdash G^{\prime \prime} \sim G_{1}^{*}$. Since $\left\langle E_{1}^{* *}, E_{2}^{* *}\right\rangle \vdash \Xi \vdash G^{\prime \prime} \sim G_{1}^{*}, \downarrow_{1} W \in \mathcal{S} \llbracket \Xi^{\prime} \rrbracket$, $\left(\downarrow_{1} W,\left\langle H_{3}, H_{4}\right\rangle u_{1}:: G^{\prime \prime},\left\langle H_{1}, H_{4}\right\rangle u_{2}:: G^{\prime \prime}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime \prime} \rrbracket$, by Lemma 6.17, we know that (since $\left(\left\langle H_{3}, \alpha^{H_{4}}\right\rangle \circ \varepsilon^{\prime}\right)$ does not fail then $\left(\left\langle H_{3}, H_{4}\right\rangle \stackrel{\circ}{\circ}\left\langle E_{1}^{* *}, E_{2}^{* *}\right\rangle\right)$ also does not fail by the transitivity rules)

$$
\left.\left(\downarrow_{1+k} W,\left(\left\langle H_{3}, H_{4}\right\rangle \stackrel{\circ}{\circ}\left\langle E_{1}^{* *}, E_{2}^{* *}\right\rangle\right) u_{1}:: G_{1}^{*},\left(\left\langle H_{3}, H_{4}\right\rangle \stackrel{\circ}{,}\left\langle E_{1}^{* *}, E_{2}^{* *}\right\rangle\right) u_{2}:: G_{1}^{*}\right) \in \mathcal{V}_{\rho} \llbracket G_{1}^{*} \rrbracket\right)
$$

The result follows immediately.
(3) If $G=$? we have the following cases:

- $\left(G=?, \varepsilon=\left\langle H_{3}, H_{4}\right\rangle\right)$. By the definition of $\mathcal{V}_{\rho} \llbracket ? \rrbracket$ in this case we have to prove that:

$$
\left(W, \rho_{1}(\varepsilon) u_{1}:: \rho(G), \rho_{2}(\varepsilon) u_{2}:: \rho(G)\right) \in \mathcal{V}_{\rho} \llbracket \operatorname{const}\left(H_{4}\right) \rrbracket
$$

but as const $\left(H_{4}\right)=\exists X$.?, we proceed just like the case where $G=\exists X . G_{1}^{\prime}$, where $G_{1}^{\prime}=$?.

- $\left(G=?, \varepsilon=\left\langle H_{3}, \alpha^{E_{4}}\right\rangle\right)$. Notice that as $\alpha^{E_{4}}$ cannot have free type variables therefore E_{3} neither. Then $\varepsilon=\rho_{i}(\varepsilon)$. By the definition of $\mathcal{V}_{\rho} \llbracket ? \rrbracket$ we have to prove that

$$
\left(W,\left\langle H_{3}, \alpha^{E_{4}}\right\rangle u_{1}:: \alpha,\left\langle H_{3}, \alpha^{E_{4}}\right\rangle u_{2}:: \alpha\right) \in \mathcal{V}_{\rho} \llbracket \alpha \rrbracket
$$

Note that by Lemma 6.27 we know that $\varepsilon \vdash \Xi ; \Delta \vdash G^{*} \sim \alpha$. Then we proceed just like the case $G \in$ TypeName.

Proposition 10.3 (Compatibility-Epack). If $\Xi ; \Delta ; \Gamma \vdash t_{1} \leq t_{2}: G^{\prime \prime}\left[G^{\prime} / X\right], \Xi ; \Delta \vdash G^{\prime}$, then

$$
\Xi ; \Delta ; \Gamma \vdash \operatorname{pack}\left\langle G^{\prime}, t_{1}\right\rangle \text { as } \exists X . G^{\prime \prime} \leq \operatorname{pack}\left\langle G^{\prime}, t_{2}\right\rangle \text { as } \exists X \cdot G^{\prime \prime}: \exists X \cdot G^{\prime \prime}
$$

Proof. First, we are required to prove that

$$
\Xi ; \Delta ; \Gamma \vdash \operatorname{pack}\left\langle G^{\prime}, t_{i}\right\rangle \text { as } \exists X \cdot G^{\prime \prime}: \exists X \cdot G^{\prime \prime}
$$

But by unfolding the premises we know that $\Xi ; \Delta ; \Gamma \vdash t_{i}: G^{\prime \prime}\left[G^{\prime} / X\right]$, therefore:

$$
\text { (Epack \& Easc) } \frac{\Xi ; \Delta ; \Gamma \vdash t_{i}: G^{\prime \prime}\left[G^{\prime} / X\right] \quad \Xi ; \Delta \vdash G^{\prime}}{\Xi ; \Delta ; \Gamma \vdash \operatorname{pack}\left\langle G^{\prime}, t_{i}\right\rangle \text { as } \exists X . G^{\prime \prime}: \exists X . G^{\prime \prime}}
$$

Consider arbitrary W, ρ, γ such that $W \in \mathcal{S} \llbracket \Xi \rrbracket,(W, \rho) \in \mathcal{D} \llbracket \Delta \rrbracket$ and $(W, \gamma) \in \mathcal{G}_{\rho} \llbracket \Gamma \rrbracket$. We are required to show that

$$
\left(W, \rho\left(\gamma_{1}\left(\operatorname{pack}\left\langle G^{\prime}, t_{1}\right\rangle \text { as } \exists X . G^{\prime \prime}\right)\right), \rho\left(\gamma_{2}\left(\operatorname{pack}\left\langle G^{\prime}, t_{2}\right\rangle \text { as } \exists X . G^{\prime \prime}\right)\right)\right) \in \mathcal{T}_{\rho} \llbracket \exists X . G^{\prime \prime} \rrbracket
$$

First we have to prove that:

$$
W \cdot \Xi_{i} \vdash \rho\left(\gamma_{i}\left(\left(\operatorname{pack}\left\langle G^{\prime}, t_{i}\right\rangle \text { as } \exists X . G^{\prime \prime}\right)\right)\right): \rho\left(\exists X . G^{\prime \prime}\right)
$$

As we know that $\Xi ; \Delta ; \Gamma \vdash\left(\operatorname{pack}\left\langle G^{\prime}, t_{i}\right\rangle\right.$ as $\left.\exists X . G^{\prime \prime}\right): \exists X . G^{\prime \prime}$, by Lemma 6.25 the result follows immediately.

By definition of substitutions

$$
\rho\left(\gamma_{i}\left(\left(\operatorname{pack}\left\langle G^{\prime}, t_{i}\right\rangle \text { as } \exists X . G^{\prime \prime}\right)\right)\right)=\left(\operatorname{pack}\left\langle\rho\left(G^{\prime}\right), \rho\left(\gamma_{i}\left(t_{i}\right)\right)\right\rangle \text { as } \exists X . \rho\left(G^{\prime \prime}\right)\right)
$$

Therefore we have to prove that
$\left(W,\left(\operatorname{pack}\left\langle\rho\left(G^{\prime}\right), \rho\left(\gamma_{1}\left(t_{1}\right)\right)\right\rangle\right.\right.$ as $\left.\exists X . \rho\left(G^{\prime \prime}\right)\right),\left(\operatorname{pack}\left\langle\rho\left(G^{\prime}\right), \rho\left(\gamma_{2}\left(t_{2}\right)\right)\right\rangle\right.$ as $\left.\left.\exists X . \rho\left(G^{\prime \prime}\right)\right)\right) \in \mathcal{T}_{\rho} \llbracket \exists X . G^{\prime \prime} \rrbracket$
Second, consider arbitrary $i<W . j, \Xi_{1}$. Either there exist v_{1} such that:

$$
W . \Xi_{1} \triangleright\left(\operatorname{pack}\left\langle\rho\left(G^{\prime}\right), \rho\left(\gamma_{1}\left(t_{1}\right)\right)\right\rangle \text { as } \exists X . \rho\left(G^{\prime \prime}\right)\right) \longmapsto{ }^{i} \Xi_{1} \triangleright v_{1}
$$

or

$$
W \cdot \Xi_{1} \triangleright\left(\operatorname{pack}\left\langle\rho\left(G^{\prime}\right), \rho\left(\gamma_{1}\left(t_{1}\right)\right)\right\rangle \text { as } \exists X . \rho\left(G^{\prime \prime}\right)\right) \longmapsto{ }^{i} \text { error }
$$

Let us suppose that $W \cdot \Xi_{1} \triangleright\left(\operatorname{pack}\left\langle\rho\left(G^{\prime}\right), \rho\left(\gamma_{1}\left(t_{1}\right)\right)\right\rangle\right.$ as $\left.\exists X . \rho\left(G^{\prime \prime}\right)\right) \longmapsto^{i} \Xi_{1} \triangleright v_{1}$. Hence, by inspection of the operational semantics, it follows that there exist $i_{1} \leq i, \Xi_{11}$ and v_{11} such that:

$$
\begin{gathered}
W . \Xi_{1} \triangleright\left(\operatorname{pack}\left\langle\rho\left(G^{\prime}\right), \rho\left(\gamma_{1}\left(t_{1}\right)\right)\right\rangle \text { as } \exists X . \rho\left(G^{\prime \prime}\right)\right) \longmapsto \longmapsto^{i_{1}} \Xi_{11} \triangleright\left(\operatorname{pack}\left\langle\rho\left(G^{\prime}\right), v_{11}\right\rangle \text { as } \exists X . \rho\left(G^{\prime \prime}\right)\right) \longmapsto{ }^{1} \\
\Xi_{11} \triangleright \varepsilon_{1}^{\rho}\left(\operatorname{packu}\left\langle\rho\left(G^{\prime}\right), v_{11}\right\rangle \text { as } \exists X . \rho\left(G^{\prime \prime}\right)\right):: \exists X . \rho\left(G^{\prime \prime}\right)
\end{gathered}
$$

where $\varepsilon=\left\langle\exists X . G^{\prime \prime}, \exists X . G^{\prime \prime}\right\rangle$ and $\varepsilon_{i}^{\rho}=\rho_{i}(\varepsilon)$.
We instantiate the hypothesis $\Xi ; \Delta ; \Gamma \vdash t_{1} \leq t_{2}: G^{\prime \prime}\left[G^{\prime} / X\right]$ with W, ρ and γ to obtain that:

$$
\left(W, \rho\left(\gamma_{1}\left(t_{1}\right)\right), \rho\left(\gamma_{2}\left(t_{2}\right)\right)\right) \in \mathcal{T}_{\rho} \llbracket G^{\prime \prime}\left[G^{\prime} / X\right] \rrbracket
$$

We instantiate $\mathcal{T}_{\rho} \llbracket G^{\prime \prime}\left[G^{\prime} / X\right] \rrbracket$ with i_{1}, Ξ_{11} and v_{11} (note that $i_{1} \leq i<W \cdot j$), hence there exists v_{12} and W_{1}, such that $W_{1} \geq W, W_{1} . j=W . j-i_{1}, W . \Xi_{2} \triangleright \rho\left(\gamma_{2}\left(t_{2}\right)\right) \longmapsto{ }^{*} W^{\prime} \cdot \Xi_{2} \triangleright v_{12}, W^{\prime} \cdot \Xi_{1}=\Xi_{11}$, and $\left(W_{1}, v_{11}, v_{12}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime \prime}\left[G^{\prime} / X\right] \rrbracket$ (Note that if $W \cdot \Xi_{1} \triangleright \rho\left(\gamma_{1}\left(t_{1}\right)\right) \longmapsto{ }^{i_{1}}$ error the result follows immediately). Let' s take $W^{\prime}=\downarrow_{1} W_{1}$. Note that we get that $\left(W^{\prime}, v_{11}, v_{12}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime \prime}\left[G^{\prime} / X\right] \rrbracket$.

Then we have to prove that

$$
\begin{gathered}
\left(W^{\prime}, \varepsilon_{1}^{\rho}\left(\operatorname{packu}\left\langle\rho\left(G^{\prime}\right), v_{11}\right\rangle \text { as } \exists X . \rho\left(G^{\prime \prime}\right)\right):: \exists X . \rho\left(G^{\prime \prime}\right),\right. \\
\left.\varepsilon_{2}^{\rho}\left(\operatorname{packu}\left\langle\rho\left(G^{\prime}\right), v_{12}\right\rangle \text { as } \exists X . \rho\left(G^{\prime \prime}\right)\right):: \exists X . \rho\left(G^{\prime \prime}\right)\right) \in \mathcal{V}_{\rho} \llbracket \exists X . \rho\left(G^{\prime \prime}\right) \rrbracket
\end{gathered}
$$

Let $u_{i}=\operatorname{packu}\left\langle\rho\left(G^{\prime}\right), v_{1 i}\right\rangle$ as $\exists X . \rho\left(G^{\prime \prime}\right)$ and $\exists X . G_{1}=\exists X . G^{\prime \prime}$, we have to prove that:

$$
\left(W^{\prime}, \varepsilon_{1}^{\rho} u_{1}:: \exists X . \rho\left(G^{\prime \prime}\right), \varepsilon_{2}^{\rho} u_{2}:: \exists X . \rho\left(G^{\prime \prime}\right)\right) \in \mathcal{V}_{\rho} \llbracket \exists X . G^{\prime \prime} \rrbracket
$$

(1) By the definition of $\mathcal{V}_{\rho} \llbracket \exists X . G_{1}^{\prime} \rrbracket$, we have to prove that $\forall W^{\prime \prime} \geq W^{\prime}, \alpha \cdot \exists R \in \operatorname{REL}_{W^{\prime \prime} . j}\left[\rho\left(G^{\prime}\right), \rho\left(G^{\prime}\right)\right]$ such that $\forall \varepsilon^{\prime} \Vdash \Xi ; \operatorname{dom}(\rho) \vdash \exists X . G_{1}^{\prime} \sim \exists X \cdot G_{1}^{\prime}\left(\varepsilon^{\prime} . n=l\right)$ it is true that
$\left.\left(W^{*},\left(\rho_{1}(\varepsilon) \stackrel{\circ}{\rho} \rho_{1}\left(\varepsilon^{\prime}\right)\right)\left[\hat{G}^{\prime}, \hat{\alpha}\right] v_{11}:: \rho\left(G_{1}^{\prime}\right)[\alpha / X],\left(\rho_{2}(\varepsilon) \stackrel{\circ}{2}\left(\varepsilon^{\prime}\right)\right)\left[\hat{G_{2}}, \hat{\alpha}\right] v_{12}:: \rho\left(G_{1}^{\prime}\right)[\alpha / X]\right)\right) \in \mathcal{T}_{\rho[X \mapsto \alpha]} \llbracket G_{1}^{\prime} \rrbracket$
where $W^{*}=W^{\prime \prime} \boxtimes\left(\alpha, \rho\left(G^{\prime}\right), \rho\left(G^{\prime}\right), R\right)$.
or what is the same, we have to prove that
$\left.\left(W^{*},\left(\rho_{1}\left(\varepsilon \circ \varepsilon^{\prime}\right)\right)\left[\hat{G}^{\prime}, \hat{\alpha}\right] v_{11}:: \rho\left(G_{1}^{\prime}\right)[\alpha / X],\left(\rho_{2}\left(\varepsilon ; \varepsilon^{\prime}\right)\right)\left[\hat{G}_{2}, \hat{\alpha}\right] v_{12}:: \rho\left(G_{1}^{\prime}\right)[\alpha / X]\right)\right) \in \mathcal{T}_{\rho[X \mapsto \alpha]} \llbracket G_{1}^{\prime} \rrbracket$
By Proposition 10.8 (decomposition of the evidence) we know that

$$
\rho_{i}\left(\varepsilon ; \varepsilon^{\prime}\right)\left[\hat{G}^{\prime}, \hat{\alpha}\right]=\pi_{1}^{*}\left(\rho_{i}\left(\varepsilon ; \varepsilon^{\prime}\right)\right)\left[\hat{G}^{\prime}, \hat{\alpha}\right] \stackrel{\circ}{\circ} \rho_{i}\left(\varepsilon ; \varepsilon^{\prime}\right)[\hat{\alpha}, \hat{\alpha}]
$$

Lets take $R=\mathcal{V}_{\rho} \llbracket G^{\prime} \rrbracket$.
Note that

- $W^{*}=W^{\prime \prime} \boxtimes\left(\alpha, \rho\left(G^{\prime}\right), \rho\left(G^{\prime}\right), \mathcal{V}_{\rho} \llbracket G^{\prime} \rrbracket\right) \geq W^{\prime}$
- $E_{i}^{\prime}=$ lift $_{W^{*}} \cdot \Xi_{i}\left(\rho\left(G^{\prime}\right)\right)$,
- $E_{i *}=\operatorname{lift}_{W^{*}} \cdot \Xi_{i}\left(G_{p i}\right), G_{p i}=\operatorname{unlift}\left(\pi_{1}\left(\rho_{i}\left(\varepsilon \circ \varepsilon^{\prime}\right)\right)\right) \sqsubseteq \rho\left(G^{\prime \prime}\right)$,
- $\rho^{\prime}=\rho[X \mapsto \alpha]$,
- $\varepsilon_{i}^{-1}=\pi_{1}^{*}\left(\rho_{i}\left(\varepsilon ; \varepsilon^{\prime}\right)\right)\left[\hat{G}^{\prime}, \hat{\alpha}\right]=\left\langle E_{i *}\left[E_{i}^{\prime} / X\right], E_{i *}\left[\alpha^{E_{i}} / X\right]\right\rangle$, such that $\varepsilon_{i}^{-1} \Vdash W^{*} . \Xi_{i} \vdash \rho\left(G^{\prime \prime}\left[G^{\prime} / X\right]\right) \sim$ $\rho\left(G^{\prime \prime}[\alpha / X]\right), \alpha^{E_{i}^{\prime}}=\operatorname{lift}_{W^{*}} . \Xi_{i}(\alpha)$, and $E_{i}^{\prime}=\operatorname{lift}_{W^{*}} \cdot \Xi_{i}\left(\rho\left(G^{\prime}\right)\right), \varepsilon_{i}^{-1} . n=k$ and
- $\left(W^{\prime}, v_{11}, v_{12}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime \prime}\left[G^{\prime} / X\right] \rrbracket$, then $\left(W^{*}, v_{11}, v_{12}\right) \in \mathcal{V}_{\rho} \llbracket G^{\prime \prime}\left[G^{\prime} / X\right] \rrbracket$.

By the Lemma $\S 10.6$ (compositionality) we know that

$$
\left.\left(W^{*}, \pi_{1}\left(\rho_{1}\left(\varepsilon ; \varepsilon^{\prime}\right)\right)\left[\hat{G}^{\prime}, \hat{\alpha}\right] v_{11}:: \rho^{\prime}\left(G^{\prime \prime}\right), \pi_{1}\left(\rho_{2}\left(\varepsilon ; \varepsilon^{\prime}\right)\right)\left[\hat{G}^{\prime}, \hat{\alpha}\right] v_{12}:: \rho^{\prime}\left(G^{\prime \prime}\right)\right)\right) \in \mathcal{T}_{\rho^{\prime}} \llbracket G^{\prime \prime} \rrbracket
$$

or what is the same
$\left.\left(W^{*}, \pi_{1}^{*}\left(\rho_{1}\left(\varepsilon ; \varepsilon^{\prime}\right)\right)\left[\hat{G}^{\prime}, \hat{\alpha}\right] v_{11}:: \rho\left(G^{\prime \prime}\right)[\alpha / X], \pi_{1}^{*}\left(\rho_{2}\left(\varepsilon ; \varepsilon^{\prime}\right)\right)\left[\hat{G}^{\prime}, \hat{\alpha}\right] v_{12}:: \rho\left(G^{\prime \prime}\right)[\alpha / X]\right)\right) \in \mathcal{T}_{\rho[X \mapsto \alpha]} \llbracket G^{\prime \prime} \rrbracket$
Then we know that

$$
\left.\left(\downarrow_{k} W^{*}, \varepsilon_{1}^{\prime} u_{1}^{\prime}:: \rho\left(G^{\prime \prime}\right)[\alpha / X], \varepsilon_{2}^{\prime} u_{2}^{\prime}:: \rho\left(G^{\prime \prime}\right)[\alpha / X]\right)\right) \in \mathcal{V}_{\rho[X \mapsto \alpha]} \llbracket G^{\prime \prime} \rrbracket
$$

where $v_{1 i}=\varepsilon_{1 i}^{\prime} u_{i}:: \rho\left(G^{\prime \prime}\left[G^{\prime} / X\right]\right)$ and $\varepsilon_{i}^{\prime}=\varepsilon_{1 i}^{\prime} \circ \pi_{1}^{*}\left(\rho_{i}\left(\varepsilon \circ \varepsilon^{\prime}\right)\right)\left[\hat{G}^{\prime}, \hat{\alpha}\right]$.
Note now that

- $\left.\left(\downarrow_{k} W^{*}, \varepsilon_{1}^{\prime} u_{1}^{\prime}:: \rho\left(G^{\prime \prime}\right)[\alpha / X], \varepsilon_{2}^{\prime} u_{2}^{\prime}:: \rho\left(G^{\prime \prime}\right)[\alpha / X]\right)\right) \in \mathcal{V}_{\rho[X \mapsto \alpha]} \llbracket G^{\prime \prime} \rrbracket$,
- $\left(\varepsilon ; \varepsilon^{\prime}\right)[X] \Vdash \Xi ; \Delta, X \vdash G^{\prime \prime} \sim G_{1}^{\prime},\left(\varepsilon \circ \varepsilon^{\prime}\right)[X] . n=l$
- $\downarrow_{k} W^{*} \in \mathcal{S} \llbracket \Xi \rrbracket$ and $\left(\downarrow_{k} W^{*}, \rho^{\prime}\right) \in \mathcal{D} \llbracket \Delta, X \rrbracket$,

Then, by Lemma 10.5 (Ascription Lemma), we know that

$$
\left.\left(\downarrow_{k+l} W^{*},\left(\varepsilon_{1}^{\prime} \circ \rho_{1}^{\prime}\left(\left(\varepsilon \circ \varepsilon^{\prime}\right)[X]\right)\right) u_{1}^{\prime}:: \rho^{\prime}\left(G_{1}^{\prime}\right),\left(\varepsilon_{2}^{\prime} \circ \rho_{2}^{\prime}\left(\left(\varepsilon \circ \varepsilon^{\prime}\right)[X]\right)\right) u_{2}^{\prime}:: \rho^{\prime}\left(G_{1}^{\prime}\right)\right) \in \mathcal{V}_{\rho^{\prime}} \llbracket G_{1}^{\prime}\right]
$$

or what is the same
$\left.\left(\downarrow_{k+l} W^{*},\left(\varepsilon_{1}^{\prime} \circ \rho_{1}\left(\varepsilon \circ \varepsilon^{\prime}\right)[\hat{\alpha}, \hat{\alpha}]\right) u_{1}^{\prime}:: \rho\left(G_{1}^{\prime}\right)[\alpha / X],\left(\varepsilon_{2}^{\prime} \circ \rho_{2}\left(\varepsilon ; \varepsilon^{\prime}\right)[\hat{\alpha}, \hat{\alpha}]\right) u_{2}^{\prime}:: \rho\left(G_{1}^{\prime}\right)[\alpha / X]\right)\right) \in \mathcal{V}_{\rho[X \mapsto \alpha]} \llbracket G_{1}^{\prime} \rrbracket$
The result follows immediately.

$$
\left.\left(W^{*},\left(\rho_{1}\left(\varepsilon ; \varepsilon^{\prime}\right)\right)\left[\hat{G}^{\prime}, \hat{\alpha}\right] v_{11}:: \rho\left(G_{1}^{\prime}\right)[\alpha / X],\left(\rho_{2}\left(\varepsilon ; \varepsilon^{\prime}\right)\right)\left[\hat{G_{2}}, \hat{\alpha}\right] v_{12}:: \rho\left(G_{1}^{\prime}\right)[\alpha / X]\right)\right) \in \mathcal{T}_{\rho[X \mapsto \alpha]} \llbracket G_{1}^{\prime} \rrbracket
$$

Proposition 10.4 (Compatibility-Eunpack). If $\Xi ; \Delta ; \Gamma \vdash t_{1} \leq t_{2}: \exists X . G_{1}, \Xi ; \Delta, X ; \Gamma, x: G_{1} \vdash$ $t_{1}^{\prime} \leq t_{2}^{\prime}: G_{2}$ and $\Xi ; \Delta \vdash G_{2}$, then $\Xi ; \Delta ; \Gamma \vdash$ unpack $\langle X, x\rangle=t_{1}$ in $t_{1}^{\prime} \leq$ unpack $\langle X, x\rangle=t_{2}$ in $t_{2}^{\prime}: G_{2}$.

Proof. First, we are required to prove that

$$
\Xi ; \Delta ; \Gamma \vdash \text { unpack }\langle X, x\rangle=t_{i} \text { in } t_{i}^{\prime}: G_{2}
$$

But by unfolding the premises we know that $\Xi ; \Delta ; \Gamma \vdash t_{i}: \exists X . G_{1}, \Xi ; \Delta, X ; \Gamma, x: G_{1} \vdash t_{i}^{\prime}: G_{2}$ and $\Xi ; \Delta \vdash G_{2}$, therefore:

$$
\text { (Eunpack) } \frac{\Xi ; \Delta ; \Gamma \vdash t_{i}: \exists X . G_{1} \quad \Xi ; \Delta, X ; \Gamma, x: G_{1} \vdash t_{i}^{\prime}: G_{2} \quad \Xi ; \Delta \vdash G_{2}}{\Xi ; \Delta ; \Gamma \vdash \text { unpack }\langle X, x\rangle=t_{i} \text { in } t_{i}^{\prime}: G_{2}}
$$

Consider arbitrary W, ρ, γ such that $W \in \mathcal{S} \llbracket \Xi \rrbracket,(W, \rho) \in \mathcal{D} \llbracket \Delta \rrbracket$ and $(W, \gamma) \in \mathcal{G}_{\rho} \llbracket \Gamma \rrbracket$. We are required to show that

$$
\left(W, \rho\left(\gamma_{1}\left(\text { unpack }\langle X, x\rangle=t_{1} \text { in } t_{1}^{\prime}\right)\right), \rho\left(\gamma_{2}\left(\text { unpack }\langle X, x\rangle=t_{2} \text { in } t_{2}^{\prime}\right)\right)\right) \in \mathcal{T}_{\rho} \llbracket G_{2} \rrbracket
$$

First we have to prove that:

$$
W \cdot \Xi_{i} \vdash \rho\left(\gamma_{i}\left(\operatorname{unpack}\langle X, x\rangle=t_{i} \text { in } t_{i}^{\prime}\right)\right): \rho\left(G_{2}\right)
$$

As we know that $\Xi ; \Delta ; \Gamma \vdash$ unpack $\langle X, x\rangle=t_{i}$ in $t_{i}^{\prime}: G_{2}$, by Lemma 6.25 the result follows immediately.

By definition of substitutions

$$
\rho\left(\gamma_{i}\left(\operatorname{unpack}\langle X, x\rangle=t_{i} \text { in } t_{i}^{\prime}\right)\right)=\operatorname{unpack}\langle X, x\rangle=\rho\left(\gamma_{i}\left(t_{i}\right)\right) \text { in } \rho\left(\gamma_{i}\left(t_{i}^{\prime}\right)\right)
$$

Therefore we have to prove that

$$
\left(W, \text { unpack }\langle X, x\rangle=\rho\left(\gamma_{1}\left(t_{1}\right)\right) \text { in } \rho\left(\gamma_{1}\left(t_{1}^{\prime}\right)\right), \text { unpack }\langle X, x\rangle=\rho\left(\gamma_{2}\left(t_{2}\right)\right) \text { in } \rho\left(\gamma_{2}\left(t_{2}^{\prime}\right)\right)\right) \in \mathcal{T}_{\rho} \llbracket G_{2} \rrbracket
$$

Second, consider arbitrary $i<W . j, \Xi_{1}$. Either there exist v_{1} such that:

$$
W . \Xi_{1} \triangleright \operatorname{unpack}\langle X, x\rangle=\rho\left(\gamma_{1}\left(t_{1}\right)\right) \text { in } \rho\left(\gamma_{1}\left(t_{1}^{\prime}\right)\right) \longmapsto i \Xi_{1} \triangleright v_{1}
$$

or

$$
W . \Xi_{1} \triangleright \text { unpack }\langle X, x\rangle=\rho\left(\gamma_{1}\left(t_{1}\right)\right) \text { in } \rho\left(\gamma_{1}\left(t_{1}^{\prime}\right)\right) \longmapsto{ }^{i} \Xi_{1} \triangleright \text { error }
$$

Let us suppose that $W \cdot \Xi_{1} \triangleright \operatorname{unpack}\langle X, x\rangle=\rho\left(\gamma_{1}\left(t_{1}\right)\right)$ in $\rho\left(\gamma_{1}\left(t_{1}^{\prime}\right)\right) \longmapsto{ }^{i} \Xi_{1} \triangleright v_{1}$.
Hence, by inspection of the operational semantics, it follows that there exist $i_{1} \leq i, \Xi_{11}$ and v_{11} such that:

$$
W \cdot \Xi_{1} \triangleright \rho\left(\gamma_{1}\left(t_{1}\right)\right) \longmapsto{ }^{i_{1}} \Xi_{11} \triangleright v_{11}
$$

Instantiate the second conjunct of $\Xi ; \Delta ; \Gamma \vdash t_{1} \leq t_{2}: \exists X$. G_{1} with W, ρ, and γ. Note that $W \in \mathcal{S} \llbracket \Xi \rrbracket$, $(W, \rho) \in \mathcal{D} \llbracket \Delta \rrbracket$ and $(W, \gamma) \in \mathcal{G}_{\rho} \llbracket \Gamma \rrbracket$. Then we have that $\left(W, \rho\left(\gamma_{1}\left(t_{1}\right)\right), \rho\left(\gamma_{2}\left(t_{2}\right)\right)\right) \in \mathcal{T}_{\rho} \llbracket \exists X . G_{1} \rrbracket$. Instantiate this with i_{1}, Ξ_{11} and v_{11}. Note that $i_{1}<W . j$ which follows from $i_{1} \leq i<W . j$.

Hence, there exists $W_{1} \geq W$ and v_{12} such that $W \cdot \Xi_{2} \triangleright \rho\left(\gamma_{2}\left(t_{2}\right)\right) \longmapsto{ }^{*} W_{1} \cdot \Xi_{2} \triangleright v_{12},\left(W_{1}, v_{11}, v_{12}\right) \in$ $\mathcal{V}_{\rho} \llbracket \exists X . G_{1} \rrbracket$ and $W_{1} \cdot j+i_{1}=W . j$.

Hence, $v_{1 i}=\varepsilon_{i}^{\prime}\left(\operatorname{packu}\left\langle G_{i}^{\prime}, v_{i}^{\prime}\right\rangle\right.$ as $\left.\exists X . G_{i}^{\prime \prime}\right):: \exists X . \rho\left(G_{1}\right)$, where $\varepsilon_{1}^{\prime}=k . n$ and $v_{i}^{\prime}=\varepsilon_{p i} u_{i}:: G_{p i}$.
From $\left(W_{1}, v_{11}, v_{12}\right) \in \mathcal{V}_{\rho} \llbracket \exists X . G_{1} \rrbracket$, it follows that there exists $R \in \operatorname{REL}_{W_{1} . j}\left[G_{1}^{\prime}, G_{2}^{\prime}\right]$ such that $\forall \varepsilon^{\prime} \Vdash \Xi ; \Delta \vdash \exists X . G_{1} \sim \exists X . G_{1}\left(\varepsilon^{\prime} . n=l\right)$ it is true that

$$
\left(W_{1}^{\prime},\left(\varepsilon_{1}^{\prime} ; \rho_{1}\left(\varepsilon^{\prime}\right)\right)\left[\hat{G}_{1}^{\prime}, \hat{\alpha}\right] v_{1}^{\prime}:: \rho\left(G_{1}\right)[\alpha / X],\left(\varepsilon_{2}^{\prime} \circ \rho_{2}\left(\varepsilon^{\prime}\right)\right)\left[\hat{G}_{2}^{\prime}, \hat{\alpha}\right] v_{2}^{\prime}:: \rho\left(G_{1}\right)[\alpha / X]\right) \in \mathcal{T}_{\rho[X \mapsto \alpha]} \llbracket G_{1} \rrbracket
$$

where $W_{1}^{\prime}=W_{1} \boxtimes\left(\alpha, G_{1}^{\prime}, G_{2}^{\prime}, R\right)$. If we take $\varepsilon^{\prime}=\mathcal{I}_{\Xi}\left(\exists X . G_{1}, \exists X . G_{1}\right)$, then

$$
\left(\varepsilon_{i}^{\prime} \circ \rho_{i}\left(\varepsilon^{\prime}\right)\right)=\varepsilon_{i}^{\prime}
$$

Therefore we know that

$$
\left(W_{1}^{\prime}, \varepsilon_{1}^{\prime}\left[\hat{G}_{1}^{\prime}, \hat{\alpha}\right] v_{1}^{\prime}:: \rho\left(G_{1}\right)[\alpha / X], \varepsilon_{2}^{\prime}\left[\hat{G}_{2}^{\prime}, \hat{\alpha}\right] v_{2}^{\prime}:: \rho\left(G_{1}\right)[\alpha / X]\right) \in \mathcal{T}_{\rho[X \mapsto \alpha]} \llbracket G_{1} \rrbracket
$$

If $W_{1}^{\prime} \cdot \Xi_{1} \triangleright \varepsilon_{1}^{\prime}\left[\hat{G}_{1}^{\prime}, \hat{\alpha}\right] v_{1}^{\prime}:: \rho\left(G_{1}\right)[\alpha / X] \longmapsto$ error the result follows immediately. Otherwise, if

$$
W_{1}^{\prime} \cdot \Xi_{1} \triangleright \varepsilon_{1}^{\prime}\left[\hat{G}_{1}^{\prime}, \hat{\alpha}\right] v_{1}^{\prime}:: \rho\left(G_{1}\right)[\alpha / X] \longmapsto{ }^{k+l} W_{1}^{\prime} \cdot \Xi_{1} \triangleright v_{p 1}
$$

where $v_{p 1}=\left(\varepsilon_{p 1} \circ \varepsilon_{1}^{\prime}\left[\hat{G}_{1}^{\prime}, \hat{\alpha}\right] u_{1}:: \rho\left(G_{1}\right)[\alpha / X]\right.$, then

$$
W_{1}^{\prime} \cdot \Xi_{2} \triangleright \varepsilon_{2}^{\prime}\left[\hat{G}_{2}^{\prime}, \hat{\alpha}\right] v_{2}^{\prime}:: \rho\left(G_{1}\right)[\alpha / X] \longmapsto{ }^{*} W_{1}^{\prime} \cdot \Xi_{2} \triangleright v_{p 2}
$$

where $v_{p 2}=\left(\varepsilon_{p 2} \circ \varepsilon_{2}^{\prime}\left[\hat{G}_{2}^{\prime}, \hat{\alpha}\right] u_{2}:: \rho\left(G_{1}\right)[\alpha / X]\right.$ and $\left(W_{2}^{\prime}, v_{p 1}, v_{p 2}\right) \in \mathcal{V}_{\rho[X \mapsto \alpha]} \llbracket G_{1} \rrbracket$, where $W_{2}^{\prime}=\downarrow_{k+l}$ W_{1}^{\prime} and $W_{2}^{\prime} \cdot j+k+l=W_{1}^{\prime} \cdot j$.

Note that

$$
\begin{gathered}
W \cdot \Xi_{1} \triangleright \text { unpack }\langle X, x\rangle=\rho\left(\gamma_{1}\left(t_{1}\right)\right) \text { in } \rho\left(\gamma_{1}\left(t_{1}^{\prime}\right)\right) \longmapsto \longmapsto^{i_{1}} \\
W_{1} \cdot \Xi_{1} \triangleright \text { unpack }\langle X, x\rangle=v_{11} \text { in } \rho\left(\gamma_{1}\left(t_{1}^{\prime}\right)\right) \longmapsto{ }^{k+l} W_{1} \cdot \Xi_{1} \triangleright t_{2}[\alpha / X]\left[v_{p 1} / x\right] \longmapsto^{i_{2}} \Xi_{1} \triangleright v_{1}
\end{gathered}
$$

where $i=i_{1}+k+l+i_{2}$.
Instantiate the second conjunct of $\Xi ; \Delta, X ; \Gamma, x: G_{1} \vdash t_{1}^{\prime} \leq t_{2}^{\prime}: G_{2}$ with $W_{2}^{\prime}, \rho[X \mapsto \alpha]$, $\gamma\left[x \mapsto\left(v_{p 1}, v_{p 2}\right)\right]$. Note that $W_{2}^{\prime} \in \mathcal{S} \llbracket \Xi \rrbracket\left(W_{2}^{\prime} \geq W\right),\left(W_{2}^{\prime}, \rho[X \mapsto \alpha]\right) \in \mathcal{D} \llbracket \Delta, X \rrbracket$ and $\left(W_{2}^{\prime}, \gamma[x \mapsto\right.$ $\left.\left.\left(v_{p 1}, v_{p 2}\right)\right]\right) \in \mathcal{G}_{\rho} \llbracket \Gamma, x: G_{1} \rrbracket$. Then we have that

$$
\left(W_{2}^{\prime}, \gamma_{1}\left(\rho\left(t_{1}^{\prime}\right)\right)[\hat{\alpha} / X]\left[v_{p 1} / x\right], \gamma_{2}\left(\rho\left(t_{2}^{\prime}\right)\right)[\hat{\alpha} / X]\left[v_{p 2} / x\right]\right) \in \mathcal{T}_{\rho[X \mapsto \alpha]} \llbracket G_{2} \rrbracket
$$

Instantiate this with $i_{2}<W_{2}^{\prime} . j=W . j-i_{1}-k-l\left(i_{2}=i-i_{1}-k-l, i<W . j\right), \Xi_{1}$ and v_{1}. Hence, there exists $W_{2} \geq W_{2}^{\prime}$ and v_{2} such that
$W^{\prime} . \Xi_{2} \triangleright \gamma_{2}\left(\rho\left(t_{2}^{\prime}\right)\right)[\hat{\alpha} / X]\left[v_{p 2} / x\right] \longmapsto{ }^{*} W_{2} \cdot \Xi_{2} \triangleright v_{2}, W_{2} \cdot \Xi_{1}=\Xi_{1}, W_{2} . j+i_{2}=W_{2}^{\prime} . j$ and

$$
\left(W_{2}, v_{1}, v_{2}\right) \in \mathcal{V}_{\rho[X \mapsto \alpha]} \llbracket G_{2} \rrbracket
$$

We are required to show that there exists $W_{2} \geq W$ and v_{2}, such that

$$
W \cdot \Xi_{2} \triangleright \text { unpack }\langle X, x\rangle=\rho\left(\gamma_{2}\left(t_{2}\right)\right) \text { in } \rho\left(\gamma_{2}\left(t_{2}^{\prime}\right)\right) \longmapsto{ }^{*} W_{2} \cdot \Xi_{2} \triangleright v_{2}
$$

, $W_{2} . j+i=W . j\left(W_{2} . j=W . j-i_{1}-k-l-i_{2}, i=i_{1}+k+l+i_{2}\right)$ and $\left(W_{2}, v_{1}, v_{2}\right) \in \mathcal{V}_{\rho} \llbracket G_{2} \rrbracket$, which follows from $\left(W_{2}, v_{1}, v_{2}\right) \in \mathcal{V}_{\rho[X \mapsto \alpha]} \llbracket G_{2} \rrbracket$ and $\Xi ; \Delta \vdash G_{2}$.

Proposition 10.5 (Ascriptions Preserve Relations). If $\left(W, v_{1}, v_{2}\right) \in \mathcal{V}_{\rho} \llbracket G \rrbracket, \varepsilon \Vdash$; $\Delta \vdash$ $G \sim G^{\prime}, W \in \mathcal{S} \llbracket \Xi \rrbracket$ and $(W, \rho) \in \mathcal{D} \llbracket \Delta \rrbracket$, then $\left(W, \rho_{1}(\varepsilon) v_{1}:: \rho\left(G^{\prime}\right), \rho_{2}(\varepsilon) v_{2}:: \rho\left(G^{\prime}\right)\right) \in \mathcal{T}_{\rho} \llbracket G^{\prime} \rrbracket$.

Proof. We only prove the case for existential, the other cases are in 6.2.
Case $\left(G=\exists X . G_{1}^{\prime \prime}\right.$ and $\left.G^{\prime}=\exists X . G_{1}^{\prime}\right)$. We know that

$$
\left(W, v_{1}, v_{2}\right) \in \mathcal{V}_{\rho} \llbracket \exists X . G_{1}^{\prime \prime} \rrbracket
$$

Where $v_{i}=\varepsilon_{i}\left(\operatorname{packu}\left\langle G_{i}^{*}, v_{i}^{\prime}\right\rangle\right.$ as $\left.\exists X . \rho\left(G_{i}^{\prime \prime \prime}\right)\right): \exists X . \rho\left(G_{1}^{\prime \prime}\right)$ and $\varepsilon_{i} \vdash W . \Xi_{i} \vdash \exists X . \rho\left(G_{i}^{\prime \prime \prime}\right) \sim \exists X . \rho\left(G_{1}^{\prime \prime}\right)$. Let's suppose that $\rho_{1}(\varepsilon) . n=k$ and $\varepsilon_{1} \cdot n=m$. We have to prove that

$$
\left(W, \rho_{1}(\varepsilon) v_{1}:: \exists X . \rho\left(G_{1}^{\prime}\right), \rho_{2}(\varepsilon) v_{2}:: \exists X . \rho\left(G_{1}^{\prime}\right)\right) \in \mathcal{T}_{\rho} \llbracket \exists X . G_{1}^{\prime} \rrbracket
$$

If $\left(\varepsilon_{1} \circ \rho_{1}(\varepsilon)\right)$ fails, then we apply Lemma 6.26 to show that $\left(\varepsilon_{2}{ }_{9} \rho_{2}(\varepsilon)\right)$ also fails, therefore the proof holds immediately. In the other case, $\left(\varepsilon_{i} \circ \rho_{i}(\varepsilon)\right)$ do not fail, then by the definition of $\mathcal{T}_{\rho} \llbracket \exists X . G_{1}^{\prime} \rrbracket$, we have to prove that:

```
\(\left(\downarrow_{k} W,\left(\varepsilon_{1}{ }_{9} \rho_{1}(\varepsilon)\right)\left(\operatorname{packu}\left\langle G_{1}{ }^{*}, v_{1}^{\prime}\right\rangle\right.\right.\) as \(\left.\exists X . \rho\left(G_{1}^{\prime \prime \prime}\right)\right):: \exists X . \rho\left(G_{1}^{\prime}\right),\left(\varepsilon_{2} \rho_{2}(\varepsilon)\right)\left(\operatorname{packu}\left\langle G_{2}{ }^{*}, v_{2}^{\prime}\right\rangle\right.\) as \(\left.\left.\exists X . \rho\left(G_{2}^{\prime \prime \prime}\right)\right):: \exists X . \rho\left(G_{1}^{\prime}\right)\right)\)
    \(\in \mathcal{V}_{\rho} \llbracket \exists X . G_{1}^{\prime} \rrbracket\)
```

or what is the same:

$$
\forall W^{\prime \prime} \geq \downarrow_{k} W, \alpha \cdot \exists R \in \operatorname{ReL}_{W^{\prime \prime} \cdot j}\left[G_{1}^{*}, G_{2}^{*}\right] .
$$

$$
\left(W^{\prime \prime} \cdot \Xi_{1} \vdash G_{1}^{*} \wedge W^{\prime \prime} . \Xi_{2} \vdash G_{2}^{*} \wedge \forall \Xi, \varepsilon^{\prime} \Vdash \Xi ; \operatorname{dom}(\rho) \vdash \exists X . G_{1}^{\prime} \sim \exists X . G_{1}^{\prime}, \Xi \in \mathcal{S} \llbracket \Xi \rrbracket, \varepsilon^{\prime} \cdot n=l .\right.
$$

$$
\left(W^{\prime \prime \prime},\left(\varepsilon_{1} \varsubsetneqq \rho_{1}\left(\varepsilon \circ, \varepsilon^{\prime}\right)\right)\left[\hat{G}_{1}^{*}, \hat{\alpha}\right] v_{1}^{\prime}:: \rho\left(G_{1}^{\prime}\right)[\alpha / X],\left(\varepsilon_{2} \circ \rho \rho_{2}\left(\varepsilon g \varepsilon^{\prime}\right)\right)\left[\hat{G}_{2}^{*}, \hat{\alpha}\right] v_{2}^{\prime}:: \rho\left(G_{1}^{\prime}\right)[\alpha / X]\right) \in \mathcal{T}_{\rho[X \mapsto \alpha]} \llbracket G_{1}^{\prime} \rrbracket
$$

where $W^{\prime \prime \prime}=\left(\left(W^{\prime \prime}\right) \boxtimes\left(\alpha, G_{1}^{*}, G_{2}^{*}, R\right)\right)$.
Let's suppose that $v_{i}^{\prime}=\varepsilon_{i}^{*} u_{i}:: G_{i}^{\prime \prime \prime}\left[G_{i}^{*}\right]$. Therefore, we are required to prove that

$$
\begin{gathered}
\left(\left(\downarrow_{k+l+m} W^{\prime \prime \prime}\right)\left(\varepsilon_{1}^{*} \circ \varepsilon_{1} \circ \rho_{1}\left(\varepsilon ; \varepsilon^{\prime}\right)\right)\left[\hat{G}_{1}^{*}, \hat{\alpha}\right] u_{1}:: \rho\left(G_{1}^{\prime}\right)[\alpha / X],\right. \\
\left.\varepsilon_{2}^{*} ;\left(\varepsilon_{2} \circ \rho_{2}\left(\varepsilon \circ \varepsilon^{\prime}\right)\right)\left[\hat{G}_{2}^{*}, \hat{\alpha}\right] u_{2}:: \rho\left(G_{1}^{\prime}\right)[\alpha / X]\right) \in \mathcal{V}_{\rho[X \mapsto \alpha]} \llbracket G_{1}^{\prime} \rrbracket
\end{gathered}
$$

Note that by Lemma 10.9 we get that

$$
\begin{gathered}
\left(\varepsilon_{i} \circ \rho_{i}\left(\varepsilon ; \varepsilon^{\prime}\right)\right)\left[\hat{G}_{i}^{*}, \hat{\alpha}\right]=\left(\varepsilon_{i} \circ \pi_{1}^{2}\left(\rho_{i}\left(\varepsilon ; \varepsilon^{\prime}\right)\right)\right)\left[\hat{G}_{i}^{*}, \hat{\alpha}\right] ; \rho_{i}\left(\varepsilon ; \varepsilon^{\prime}\right)[\hat{\alpha}, \hat{\alpha}]= \\
\left(\varepsilon_{i} \circ \rho_{i}\left(\pi_{1}^{2}\left(\varepsilon \circ \varepsilon^{\prime}\right)\right)\right)\left[\hat{G}_{i}^{*}, \hat{\alpha}\right] \circ \rho_{i}\left(\varepsilon \circ \varepsilon^{\prime}\right)[\hat{\alpha}, \hat{\alpha}]
\end{gathered}
$$

By premise, we know that $\left(W, v_{1}, v_{2}\right) \in \mathcal{V}_{\rho} \llbracket \exists X . G_{1}^{\prime \prime} \rrbracket$. Then, we instantiate this definition with $\left(\uparrow_{k} W^{\prime \prime}\right) \geq W\left(W^{\prime \prime} \geq\left(\downarrow_{k} W\right) \Rightarrow\left(\uparrow_{k} W^{\prime \prime}\right) \geq \uparrow_{k} \downarrow_{k} W\right)$ and α. Therefore, $\exists R \in \operatorname{ReL}_{W^{\prime \prime} . j}\left[G_{1}^{*}, G_{2}^{*}\right]$, such that for all evidence $\varepsilon^{\prime \prime} \Vdash \Xi^{\prime} ; \operatorname{dom}(\rho) \vdash \exists X . G_{1}^{\prime \prime} \sim \exists X . G_{1}^{\prime \prime}$, in particular $\varepsilon^{\prime \prime}=\pi_{1}^{2}\left(\varepsilon \circ \varepsilon^{\prime}\right)$ $\left(\pi_{1}^{2}\left(\varepsilon \circ \varepsilon^{\prime}\right) \cdot n=k\right)$. Therefore, we know that $\left(W^{\prime \prime \prime}=\left(W^{\prime \prime} \boxtimes\left(\alpha, G_{1}^{*}, G_{2}^{*}, R\right)\right)\right)$:

$$
\begin{aligned}
\left(W^{\prime \prime \prime},\left(\varepsilon_{1} ; \rho_{1}\left(\pi_{1}^{2}\left(\varepsilon ; \varepsilon^{\prime}\right)\right)\right)\left[\hat{G}_{1}^{*}, \hat{\alpha}\right] v_{1}^{\prime}::\right. & \rho\left(G_{1}^{\prime \prime}\right)[\alpha / X],\left(\varepsilon_{2} ; \rho_{2}\left(\pi_{1}^{2}\left(\varepsilon ; \varepsilon^{\prime}\right)\right)\left[\hat{G}_{2}^{*}, \hat{\alpha}\right] v_{2}^{\prime}:: \rho\left(G_{1}^{\prime \prime}\right)[\alpha / X]\right) \\
& \in \mathcal{T}_{\rho[X \mapsto \alpha]} \llbracket G_{1}^{\prime \prime} \rrbracket
\end{aligned}
$$

Then, we get that:

$$
\left(\left(\downarrow_{k+l} W^{\prime \prime \prime}\right), v_{1}^{\prime \prime \prime}, v_{2}^{\prime \prime \prime}\right) \in \mathcal{V}_{\rho[X \mapsto \alpha]} \llbracket G_{1}^{\prime \prime} \rrbracket
$$

where $v_{i}^{\prime \prime \prime}=\varepsilon_{i}^{*} \stackrel{\circ}{9}\left(\varepsilon_{i} \circ \rho_{i}\left(\pi_{1}^{2}\left(\varepsilon \circ \varepsilon^{\prime}\right)\right)\right)\left[\hat{G}_{i}^{*}, \hat{\alpha}\right] u_{i}:: \rho\left(G_{1}^{\prime \prime}\right)[\alpha / X]$.
By induction hypothesis on $\left(\left(\downarrow_{k+l} W^{\prime \prime \prime}\right), v_{1}^{\prime \prime \prime}, v_{2}^{\prime \prime \prime}\right) \in \mathcal{V}_{\rho[X \mapsto \alpha]} \llbracket G_{1}^{\prime \prime} \rrbracket$, with $\left(\varepsilon ; \varepsilon^{\prime}\right)[X] \Vdash \Xi ; \Delta, X \vdash$ $G_{1}^{\prime \prime} \sim G_{1}^{\prime}\left(\left(\varepsilon ; \varepsilon^{\prime}\right)[X] . n=m\right),\left(\downarrow_{k+l} W^{\prime \prime \prime}\right) \in \mathcal{S} \llbracket \Xi \rrbracket$ and $\left(\left(\downarrow_{k+l} W^{\prime \prime \prime}\right), \rho^{\prime}\right) \in \mathcal{D} \llbracket \Delta, X \rrbracket, \rho^{\prime}=\rho[X \mapsto \alpha]$, we get that:

$$
\left(\left(\downarrow_{k+l} W^{\prime \prime \prime}\right), \rho_{1}^{\prime}\left(\left(\varepsilon ; \varepsilon^{\prime}\right)[X]\right) v_{1}^{\prime \prime \prime}:: \rho\left(G_{1}^{\prime}\right)[\alpha / X], \rho_{2}^{\prime}\left(\left(\varepsilon ; \varepsilon^{\prime}\right)[X]\right) v_{2}^{\prime \prime \prime}:: \rho\left(G_{1}^{\prime}\right)[\alpha / X]\right) \in \mathcal{T}_{\rho[X \mapsto \alpha]} \llbracket G_{1}^{\prime} \rrbracket
$$

or what is the same (note that $\left.\rho_{i}^{\prime}\left(\left(\varepsilon \circ \varepsilon^{\prime}\right)[X]\right)=\rho_{i}\left(\varepsilon ; \varepsilon^{\prime}\right)[\hat{\alpha}, \hat{\alpha}]\right)$:

$$
\left(\left(\downarrow_{k+l} W^{\prime \prime \prime}\right), \rho_{1}\left(\varepsilon ; \varepsilon^{\prime}\right)[\hat{\alpha}, \hat{\alpha}] v_{1}^{\prime \prime \prime}:: \rho\left(G_{1}^{\prime}\right)[\alpha / X], \rho_{2}\left(\varepsilon ; \varepsilon^{\prime}\right)[\hat{\alpha}, \hat{\alpha}] v_{2}^{\prime \prime \prime}:: \rho\left(G_{1}^{\prime}\right)[\alpha / X]\right) \in \mathcal{T}_{\rho[X \mapsto \alpha]} \llbracket G_{1}^{\prime} \rrbracket
$$

or what is the same:

$$
\left(\left(\downarrow_{k+l+m} W^{\prime \prime \prime}\right), v_{1}^{*}, v_{2}^{*}\right) \in \mathcal{V}_{\rho[X \mapsto \alpha]} \llbracket G_{1}^{\prime} \rrbracket
$$

where $v_{i}^{*}=\varepsilon_{i}^{*} \stackrel{\circ}{\circ}\left(\left(\varepsilon_{i} \circ \rho_{i}\left(\pi_{1}^{2}\left(\varepsilon \circ \varepsilon^{\prime}\right)\right)\right)\left[\hat{G}_{i}^{*}, \hat{\alpha}\right] \circ \rho_{i}\left(\varepsilon \circ \varepsilon^{\prime}\right)[\hat{\alpha}, \hat{\alpha}]\right) u_{i}:: \rho\left(G_{1}^{\prime}\right)[\alpha / X]$.
By the reduction rule

$$
W^{\prime \prime \prime} . \Xi_{1} \triangleright\left(\varepsilon_{1} \circ \rho_{1}\left(\varepsilon ; \varepsilon^{\prime}\right)\right)\left[\hat{G}_{1}^{*}, \hat{\alpha}\right] v_{1}^{\prime}:: \rho\left(G_{1}^{\prime}\right)[\alpha / X] \longrightarrow^{k+m+l} W^{\prime \prime \prime} . \Xi_{1} \triangleright v_{1}^{*}
$$

Therefore, the results follows immediately $\left(\left(\left(\downarrow_{k+l+m} W^{\prime \prime \prime}\right), v_{1}^{*}, v_{2}^{*}\right) \in \mathcal{V}_{\rho[X \mapsto \alpha]} \llbracket G_{1}^{\prime} \rrbracket\right)$.

Proposition 10.6 (CompositionalityEx). If

- $W \cdot \Xi_{i}(\alpha)=\rho\left(G^{\prime}\right)$ and $W . \kappa(\alpha)=\mathcal{V}_{\rho} \llbracket G^{\prime} \rrbracket$,
- $E_{i}^{\prime}=$ lift $_{W \cdot \Xi_{i}}\left(\rho\left(G^{\prime}\right)\right)$,
- $E_{i}=$ lift $_{W . \Xi_{i}}\left(G_{p}\right)$ for some $G_{p} \sqsubseteq \rho(G)$,
- $\rho^{\prime}=\rho[X \mapsto \alpha]$,
- $\varepsilon_{i}=\left\langle E_{i}\left[\alpha^{E_{i}^{\prime}} / X\right], E_{i}\left[E_{i}^{\prime} / X\right]\right\rangle$, such that $\varepsilon_{i} \vdash W \cdot \Xi_{i} \vdash \rho(G[\alpha / X]) \sim \rho\left(G\left[G^{\prime} / X\right]\right)$, and
- $\varepsilon_{i}^{-1}=\left\langle E_{i}\left[E_{i}^{\prime} / X\right], E_{i}\left[\alpha^{E_{i}^{\prime}} / X\right]\right\rangle$, such that $\varepsilon_{i}^{-1} \vdash W . \Xi_{i} \vdash \rho\left(G\left[G^{\prime} / X\right]\right) \sim \rho(G[\alpha / X])$, then
(1)

$$
\begin{align*}
& \left(W, \varepsilon_{1}^{\prime} u_{1}:: \rho^{\prime}(G), \varepsilon_{2}^{\prime} u_{2}:: \rho^{\prime}(G)\right) \in \mathcal{V}_{\rho^{\prime}} \llbracket G \rrbracket \Rightarrow \\
& \left(W, \varepsilon_{1}\left(\varepsilon_{1}^{\prime} u_{1}:: \rho(G)\right):: \rho\left(G\left[G^{\prime} / X\right]\right), \varepsilon_{2}\left(\varepsilon_{2}^{\prime} u_{2}:: \rho(G)\right):: \rho\left(G\left[G^{\prime} / X\right]\right)\right) \in \mathcal{T}_{\rho} \llbracket G\left[G^{\prime} / X\right] \rrbracket \tag{2}
\end{align*}
$$

$\left(W, \varepsilon_{1}^{\prime} u_{1}:: \rho\left(G\left[G^{\prime} / X\right]\right), \varepsilon_{2}^{\prime} u_{2}:: \rho\left(G\left[G^{\prime} / X\right]\right)\right) \in \mathcal{V}_{\rho} \llbracket G\left[G^{\prime} / X\right] \rrbracket \Rightarrow$

$$
\left(W, \varepsilon_{1}^{-1}\left(\varepsilon_{1}^{\prime} u_{1}:: \rho\left(G\left[G^{\prime} / X\right]\right)\right):: \rho^{\prime}(G), \varepsilon_{2}^{-1}\left(\varepsilon_{2}^{\prime} u_{2}:: \rho\left(G\left[G^{\prime} / X\right]\right)\right):: \rho^{\prime}(G)\right) \in \mathcal{T}_{\rho^{\prime}} \llbracket G \rrbracket
$$

Proof. We only prove the case for existential, the other cases are in 6.2. We proceed by induction on G. Let $v_{i}=\varepsilon_{i}^{\prime} u_{i}:: \rho^{\prime}(G), \Delta=\operatorname{dom}(\rho)$. We prove (1) first. Let's suppose that $\varepsilon_{1}^{\prime} \cdot n=k, \varepsilon_{1} \cdot n=l$ and $\varepsilon_{1}{ }^{-1} \cdot n=m$.

Case (\exists Y . G_{1}). We know that

$$
\left(W, \varepsilon_{1}^{\prime} u_{1}:: \rho^{\prime}(G), \varepsilon_{2}^{\prime} u_{2}:: \rho^{\prime}(G)\right) \in \mathcal{V}_{\rho^{\prime}} \llbracket G \rrbracket
$$

where $u_{i}=\operatorname{packu}\left\langle G_{i}^{*}, v_{i}^{\prime}\right\rangle$ as $\exists Y . G_{i}^{\prime \prime}$ and $G=\exists Y . G_{1}$. Therefore, we have to prove that

$$
\left(W, \varepsilon_{1}\left(\varepsilon_{1}^{\prime} u_{1}:: \rho(G)\right):: \rho\left(G\left[G^{\prime} / X\right]\right), \varepsilon_{2}\left(\varepsilon_{2}^{\prime} u_{2}:: \rho(G)\right):: \rho\left(G\left[G^{\prime} / X\right]\right)\right) \in \mathcal{V}_{\rho} \llbracket G\left[G^{\prime} / X\right] \rrbracket
$$

If $\varepsilon_{i}^{\prime} 9 \varepsilon_{i}$ is not defined, the result follows immediately. If it is defined, we have to prove that:

$$
\left(\left(\downarrow_{l} W\right),\left(\varepsilon_{1}^{\prime} \circ \varepsilon_{1}\right) u_{1}:: \rho\left(G\left[G^{\prime} / X\right],\left(\varepsilon_{2}^{\prime} \circ \varepsilon_{2}\right) u_{2}:: \rho\left(G\left[G^{\prime} / X\right]\right)\right) \in \mathcal{V}_{\rho} \llbracket G\left[G^{\prime} / X\right] \rrbracket\right.
$$

or what is the same by the definition of $\mathcal{V}_{\rho} \llbracket G\left[G^{\prime} / X\right] \rrbracket$, we have to prove that:

$$
\begin{aligned}
& \forall W^{\prime \prime} \geq\left(\downarrow_{l} W\right), \beta \cdot \exists R \in \operatorname{ReL}^{\prime \prime} \cdot\left[G_{1}^{*}, G_{2}^{*}\right] . \\
& \left(W^{\prime \prime} . \Xi_{1} \vdash G_{1}^{*} \wedge W^{\prime \prime} . \Xi_{2} \vdash G_{2}^{*} \wedge \forall \varepsilon^{\prime} \Vdash \Xi ; \Delta \vdash \exists Y \cdot G_{1}\left[G^{\prime} / X\right] \sim \exists Y \cdot G_{1}\left[G^{\prime} / X\right] \wedge \varepsilon^{\prime} \cdot n=k^{\prime}\right. \\
& \left(W^{\prime \prime \prime},\left(\varepsilon_{1}^{\prime} \circ \varepsilon_{1} \circ \rho_{1}\left(\varepsilon^{\prime}\right)\right)\left[\hat{G}_{1}^{*}, \hat{\beta}\right] v_{1}^{\prime}:: \rho\left(G_{1}\left[G^{\prime} / X\right][\beta / Y]\right),\left(\varepsilon_{2}^{\prime} \circ \varepsilon_{2} \circ \rho_{2}\left(\varepsilon^{\prime}\right)\right)\left[\hat{G}_{2}^{*}, \hat{\beta}\right] v_{2}^{\prime}:: \rho\left(G_{1}\left[G^{\prime} / X\right][\beta / Y]\right)\right) \\
& \qquad \in \mathcal{T}_{\rho[Y \mapsto \beta]} \llbracket G_{1}\left[G^{\prime} / X\right] \rrbracket
\end{aligned}
$$

where $W^{\prime \prime \prime}=\left(\left(W^{\prime \prime}\right) \boxtimes\left(\alpha, G_{1}^{*}, G_{2}^{*}, R\right)\right)$. Therefore, we are required to prove that

$$
\begin{gathered}
\left(\left(\downarrow_{k+l+k^{\prime}} W^{\prime \prime \prime}\right)\left(\varepsilon_{1}^{*} \circ\left(\varepsilon_{1}^{\prime} \circ \varepsilon_{1} \varsubsetneqq \rho_{1}\left(\varepsilon^{\prime}\right)\right)\left[\hat{G}_{1}^{*}, \hat{\beta}\right]\right) u_{1}^{\prime}:: \rho\left(G_{1}\left[G^{\prime} / X\right][\beta / Y]\right),\right. \\
\left.\left(\varepsilon_{2}^{*} \dot{(}\left(\varepsilon_{2}^{\prime} \circ \varepsilon_{2} \circ \rho_{2}\left(\varepsilon^{\prime}\right)\right)\left[\hat{G}_{2}^{*}, \hat{\beta}\right]\right) u_{2}^{\prime}:: \rho\left(G_{1}\left[G^{\prime} / X\right][\beta / Y]\right)\right) \in \mathcal{T}_{\rho[Y \mapsto \beta]} \llbracket G_{1}\left[G^{\prime} / X\right] \rrbracket
\end{gathered}
$$

where $v_{i}^{\prime}=\varepsilon_{i}{ }^{*} u_{i}^{\prime}:: G_{i}^{\prime \prime}\left[G_{i}^{*} / Y\right]$.
Note that by Lemma 10.10 we know that $\varepsilon_{i}=\rho_{i}\left(\varepsilon^{* *}\right)\left[\alpha, \rho\left(G^{\prime}\right), X\right]$ for some $\varepsilon^{* *} \Vdash \Xi ; \Delta, X \vdash$ $\exists Y . G_{1} \sim \exists Y . G_{1}$. Therefore, by Lemma 10.11 we get that for some $\varepsilon^{*} \Vdash \Xi ; \Delta, X \vdash \exists Y . G_{1} \sim \exists Y . G_{1}$:

$$
\begin{aligned}
& \left(\varepsilon_{i}^{\prime} \circ \varepsilon_{i} \circ \rho_{i}\left(\varepsilon^{\prime}\right)\right)\left[\hat{G}_{i}^{*}, \hat{\beta}\right]=\left(\varepsilon_{i}^{\prime} \circ \rho_{i}\left(\varepsilon^{* *}\right)\left[\alpha, \rho\left(G^{\prime}\right), X\right] \stackrel{\circ}{\rho} \rho_{i}\left(\varepsilon^{\prime}\right)\right)\left[\hat{G}_{i}^{*}, \hat{\beta}\right]= \\
& \left(\varepsilon_{i}^{\prime} \circ \rho_{i}\left(\varepsilon^{*}\right)[\alpha, \alpha, X]\right)\left[\hat{G}_{i}^{*}, \hat{\beta}\right] \stackrel{\circ}{\circ}\left(\pi_{2}^{*}\left(\rho_{i}\left(\varepsilon^{*}\right)\right)\left[\alpha, \rho\left(G^{\prime}\right), Y\right] \stackrel{\rho}{i}\left(\varepsilon^{\prime}\right)\right)[\hat{\beta}, \hat{\beta}]=
\end{aligned}
$$

$$
\left(\varepsilon_{i}^{\prime} \varsubsetneqq \rho_{i}^{\prime}\left(\varepsilon^{*}\right)\right)\left[\hat{G}_{i}^{*}, \hat{\beta}\right] \stackrel{q}{g}\left(\pi_{2}^{*}\left(\rho_{i}\left(\varepsilon^{*}\right)\right)\left[\alpha, \rho\left(G^{\prime}\right), Y\right] \varsubsetneqq \rho_{i}\left(\varepsilon^{\prime}\right)\right)[\hat{\beta}, \hat{\beta}]
$$

By premise, we know that $\left(W, \varepsilon_{1}^{\prime} u_{1}:: \rho^{\prime}(G), \varepsilon_{2}^{\prime} u_{2}:: \rho^{\prime}(G)\right) \in \mathcal{V}_{\rho^{\prime}} \llbracket \exists Y$. $G_{1} \rrbracket$. Then, we instantiate this definition with $\left(\uparrow_{l} W^{\prime \prime}\right) \geq W\left(W^{\prime \prime} \geq\left(\downarrow_{l} W\right) \Rightarrow \uparrow W^{\prime \prime} \geq\left(\uparrow_{l} \downarrow_{l} W\right)\right)$ and β. Therefore, $\exists R \in$ $\operatorname{ReL}_{W^{\prime \prime} . j}\left[G_{1}^{*}, G_{2}^{*}\right]$, such that for all evidence $\varepsilon^{\prime \prime} \Vdash \Xi ; \Delta, X \vdash \exists X . G_{1}^{\prime} \sim \exists X . G_{1}^{\prime}$, in particular, we instantiate with $\varepsilon^{\prime \prime}=\varepsilon^{*}[X]\left(\varepsilon^{\prime \prime} . n=l\right)$. Therefore, we know that $\left(W^{\prime \prime \prime}=\left(\left(W^{\prime \prime}\right) \boxtimes\left(\beta, G_{1}^{*}, G_{2}^{*}, R\right)\right)\right)$:

$$
\left(\uparrow_{l} W^{\prime \prime},\left(\varepsilon_{1}^{\prime} \circ \rho_{1}^{\prime}\left(\varepsilon^{*}\right)\right)\left[\hat{G}_{1}^{*}, \hat{\beta}\right] v_{1}^{\prime}:: \rho^{\prime}\left(G_{1}\right)[\beta / Y],\left(\varepsilon_{2}^{\prime} \circ \rho_{2}^{\prime}\left(\varepsilon^{*}\right)\right)\left[\hat{G}_{2}^{*}, \hat{\beta}\right] v_{2}^{\prime}:: \rho^{\prime}\left(G_{1}\right)[\beta / Y] \in \mathcal{T}_{\rho^{\prime}[Y \mapsto \beta]} \llbracket G_{1} \rrbracket\right.
$$

Therefore, we know that

$$
\left(\downarrow_{k} W^{\prime \prime \prime}, v_{1}^{\prime \prime}, v_{2}^{\prime \prime}\right) \in \mathcal{V}_{\rho^{\prime}[Y \mapsto \beta]} \llbracket G_{1} \rrbracket
$$

where $v_{i}^{\prime \prime}=\varepsilon_{i}^{*} \circ\left(\varepsilon_{i}^{\prime} \circ \rho_{i}^{\prime}\left(\varepsilon^{*}\right)\right)\left[\hat{G}_{i}^{*}, \hat{\beta}\right] u_{i}^{\prime}:: \rho^{\prime}\left(G_{1}\right)[\beta / Y]$.
Note that, for some $G_{p h} \sqsubseteq \rho[Y \mapsto \beta]\left(G_{1}\right)$, we get $E_{i}^{*}=\operatorname{lift}_{W^{\prime \prime \prime} . \Xi_{i}}\left(G_{p h}\right)$ such that:

- unlift $\left(\pi_{2}\left(\rho[Y \mapsto \beta]_{i}\left(\varepsilon^{*}\right)\right)\right)=G_{p h} \sqsubseteq \rho[Y \mapsto \beta]\left(G_{1}\right)$ and $E_{i}^{*}=\operatorname{lift}_{W^{\prime \prime \prime} \cdot \Xi_{i}}\left(G_{p h}\right)$
- $\pi_{2}^{*}\left(\rho_{i}\left(\varepsilon^{*}\right)\right)[\hat{\beta}, \hat{\beta}]=\pi_{2}^{*}\left(\rho[Y \mapsto \beta]_{i}\left(\varepsilon^{*}\right)\right)=\left\langle E_{i}^{*}, E_{i}^{*}\right\rangle$, by the definition of $\pi_{2}^{*}()[$.
- $\pi_{2}^{*}\left(\rho_{i}\left(\varepsilon^{*}\right)\right)\left[\alpha, \rho\left(G^{\prime}\right), X\right][\hat{\beta}, \hat{\beta}]=\pi_{2}^{*}\left(\rho[Y \mapsto \beta]_{i}\left(\varepsilon^{*}\right)\right)\left[\alpha, \rho\left(G^{\prime}\right), X\right]$
- $\left\langle E_{i}^{*}\left[\alpha^{E_{i}^{\prime}} / X\right], E_{i}^{*}\left[E_{i}^{\prime} / X\right]\right\rangle=\left\langle E_{i}^{*}, E_{i}^{*}\right\rangle\left[\alpha, \rho\left(G^{\prime}\right), X\right]=\pi_{2}^{*}\left(\rho_{i}\left(\varepsilon^{*}\right)\right)\left[\alpha, \rho\left(G^{\prime}\right), X\right][\hat{\beta}, \hat{\beta}]$

Now, by the induction hypothesis we get:

- $\left(\downarrow_{k} W^{\prime \prime \prime}, v_{1}^{\prime \prime}, v_{2}^{\prime \prime}\right) \in \mathcal{V}_{\rho^{\prime}[Y \mapsto \beta]} \llbracket G_{1} \rrbracket$
- $W_{i}^{\prime \prime \prime} \cdot \Xi(\alpha)=\rho[Y \mapsto \beta]\left(G^{\prime}\right)$ and $W \cdot \kappa(\alpha)=\mathcal{V}_{\rho[Y \mapsto \beta]} \llbracket G^{\prime} \rrbracket$,
- $E_{i}^{\prime}=\operatorname{lift}_{W^{\prime \prime \prime} \cdot \Xi_{i}}\left(\rho[Y \mapsto \beta]\left(G^{\prime}\right)\right)$,
- $E_{i}^{*}=\operatorname{lift}_{W^{\prime \prime \prime} \cdot \Xi_{i}}\left(G_{p h}\right), G_{p h} \sqsubseteq \rho[Y \mapsto \beta]\left(G_{1}\right)$,
- $\rho^{\prime \prime}=\rho[Y \mapsto \beta][X \mapsto \alpha]$,
- $\varepsilon_{i h}=\left\langle E_{i}^{*}\left[\alpha^{E_{i}^{\prime}} / X\right], E_{i}^{*}\left[E_{i}^{\prime} / X\right]\right\rangle=\pi_{2}^{*}\left(\rho_{i}\left(\varepsilon^{*}\right)\right)\left[\alpha, \rho\left(G^{\prime}\right), Y\right][\hat{\beta}, \hat{\beta}]\left(\varepsilon_{i h} . n=l\right)$, such that

$$
\varepsilon_{i h} \vdash W^{\prime \prime \prime} . \Xi_{i} \vdash \rho[Y \mapsto \beta]\left(G_{1}[\alpha / X]\right) \sim \rho[Y \mapsto \beta]\left(G_{1}\left[G^{\prime} / X\right]\right)
$$

$\left(\downarrow_{k} W^{\prime \prime \prime}, \varepsilon_{1 h} v_{1}^{\prime \prime}:: \rho[Y \mapsto \beta]\left(G_{1}\left[G^{\prime} / X\right]\right), \varepsilon_{2 h} v_{2}^{\prime \prime}:: \rho[Y \mapsto \beta]\left(G_{1}\left[G^{\prime} / X\right]\right)\right) \in \mathcal{T}_{\rho[Y \mapsto \beta]} \llbracket G_{1}[G / X] \rrbracket$
If the combination of evidence does not succeed, then the result follows immediately. Otherwise, we get that

$$
\left(\downarrow_{k+l} W^{\prime \prime \prime} W^{\prime \prime \prime}, v_{1}^{\prime \prime \prime}, v_{2}^{\prime \prime \prime}\right) \in \mathcal{V}_{\rho[Y \mapsto \beta]} \llbracket G_{1}[G / X] \rrbracket
$$

where $v_{i}^{\prime \prime \prime}=\left(\varepsilon_{i}^{*} ;\left(\varepsilon_{i}^{\prime} \circ \rho_{i}^{\prime}\left(\varepsilon^{*}\right)\right)\left[\hat{G}_{i}^{*}, \hat{\beta}\right] ; \varepsilon_{i h}\right) u_{i}^{\prime}:: \rho[Y \mapsto \beta]\left(G_{1}\left[G^{\prime} / X\right]\right)$
By the ascription Lemma 10.5:

- $\left(\downarrow_{k+l} W^{\prime \prime \prime}, v_{1}^{\prime \prime \prime}, v_{2}^{\prime \prime \prime}\right) \in \mathcal{V}_{\rho[Y \mapsto \beta]} \llbracket G_{1}[G / X] \rrbracket$
- $\varepsilon^{\prime}[Y] \Vdash \Xi ; \Delta, Y \vdash G_{1}\left[G^{\prime} / X\right] \sim G_{1}\left[G^{\prime} / X\right]\left(\varepsilon^{\prime}[Y] . n=k^{\prime}\right)$
- $\downarrow_{k+l} W^{\prime \prime \prime} \in \mathcal{S} \llbracket \Xi \rrbracket$ and $\left(\downarrow_{k+l} W^{\prime \prime \prime}, \rho[Y \mapsto \beta]\right) \in \mathcal{D} \llbracket \Delta, Y \rrbracket$
then we have:

$$
\begin{gathered}
\left(\downarrow_{k+l} W^{\prime \prime \prime}, \rho_{1}\left(\varepsilon^{\prime}\right)\right)[\hat{\beta}, \hat{\beta}] v_{1}^{\prime \prime \prime}:: \rho[Y \mapsto \beta]\left(G_{1}\left[G^{\prime} / X\right]\right), \\
\left.\left.\rho_{2}\left(\varepsilon^{\prime}\right)\right)[\hat{\beta}, \hat{\beta}] v_{2}^{\prime \prime \prime}:: \rho[Y \mapsto \beta]\left(G_{1}\left[G^{\prime} / X\right]\right)\right) \in \mathcal{T}_{\rho[Y \mapsto \beta]} \llbracket G_{1}[G / X] \rrbracket
\end{gathered}
$$

If the combination of evidence does not succeed, then the result follows immediately. Otherwise, we get that

$$
\left(\downarrow_{k+l+k^{\prime}} W^{\prime \prime \prime}, v_{1}^{\prime \prime \prime \prime}, v_{2}^{\prime \prime \prime \prime}\right) \in \mathcal{V}_{\rho[Y \mapsto \beta]} \llbracket G_{1}[G / X] \rrbracket
$$

where $\left.v_{i}^{\prime \prime \prime \prime}=\left(\varepsilon_{i}^{*} \circ\left(\varepsilon_{i}^{\prime} \circ \rho_{i}^{\prime}\left(\varepsilon^{*}\right)\right)\left[\hat{G}_{i}^{*}, \hat{\beta}\right] \circ \varepsilon_{i h} \circ \rho_{i}\left(\varepsilon^{\prime}\right)\right)[\hat{\beta}, \hat{\beta}]\right) u_{i}^{\prime}:: \rho[Y \mapsto \beta]\left(G_{1}\left[G^{\prime} / X\right]\right)$ Note that

$$
W^{\prime \prime \prime} . \Xi_{1} \triangleright\left(\varepsilon_{1}^{\prime} \circ \varepsilon_{1} \circ \rho_{1}\left(\varepsilon^{\prime}\right)\right)\left[\hat{G}_{1}^{*}, \hat{\beta}\right] v_{1}^{\prime}:: \rho\left(G_{1}\left[G^{\prime} / X\right][\beta / Y]\right) \longrightarrow^{k+l+k^{\prime}} W^{\prime \prime \prime} . \Xi_{1} \triangleright v_{1}^{\prime \prime \prime \prime}
$$

And, we have to prove

$$
\begin{gathered}
\left(W^{\prime \prime \prime},\left(\varepsilon_{1}^{\prime} \varsubsetneqq \varepsilon_{1} \varsubsetneqq \rho_{1}\left(\varepsilon^{\prime}\right)\right)\left[\hat{G}_{1}^{*}, \hat{\beta}\right] v_{1}^{\prime}:: \rho\left(G_{1}\left[G^{\prime} / X\right][\beta / Y]\right),\left(\varepsilon_{2}^{\prime} \circ \varepsilon_{2} \circ \rho_{2}\left(\varepsilon^{\prime}\right)\right)\left[\hat{G}_{2}^{*}, \hat{\beta}\right] v_{2}^{\prime}:: \rho\left(G_{1}\left[G^{\prime} / X\right][\beta / Y]\right)\right) \\
\in \mathcal{T}_{\rho[Y \mapsto \beta] \llbracket G_{1}\left[G^{\prime} / X\right] \rrbracket}
\end{gathered}
$$

Therefore, the result follows immediately $\left(\left(\left(\downarrow_{k+l+k^{\prime}} W^{\prime \prime \prime}\right), v_{1}^{\prime \prime \prime \prime}, v_{2}^{\prime \prime \prime \prime}\right) \in \mathcal{V}_{\rho[Y \mapsto \beta]} \llbracket G_{1}[G / X] \rrbracket\right)$.

Lemma 10.7. If $\varepsilon \Vdash \Xi ; \Delta \vdash \exists X . G_{1} \sim \exists X . G_{2}$ then $\varepsilon[X] \Vdash \Xi ; \Delta, X \vdash G_{1} \sim G_{2}$.
Proof. Straightforward by induction on the evidences.
Lemma 10.8.

$$
\varepsilon\left[E_{1}, E_{2}\right]=\pi_{1}^{*}(\varepsilon)\left[E_{1}, E_{2}\right] ; \varepsilon\left[E_{2}, E_{2}\right]=\pi_{1}^{2}(\varepsilon)\left[E_{1}, E_{2}\right] \rho \varepsilon\left[E_{2}, E_{2}\right]
$$

Proof. Straightforward induction on the evidence structure.

Lemma 10.9.

$$
\left(\varepsilon ; \varepsilon^{\prime}\right)\left[E_{1}, E_{2}\right]=\left(\varepsilon ; \pi_{1}^{*}\left(\varepsilon^{\prime}\right)\right)\left[E_{1}, E_{2}\right] ; \varepsilon^{\prime}\left[E_{2}, E_{2}\right]=\left(\varepsilon ; \pi_{1}^{2}\left(\varepsilon^{\prime}\right)\right)\left[E_{1}, E_{2}\right] ; \varepsilon^{\prime}\left[E_{2}, E_{2}\right]
$$

Proof. Straightforward induction on the evidence structure.
Lemma 10.10. If $\varepsilon_{i} \Vdash{ }^{\Downarrow} \Xi_{i} \vdash \rho(G) \sim \rho(G), W \in \mathcal{S} \llbracket \Xi \rrbracket$ and $(W, \rho) \in \mathcal{D} \llbracket \Delta \rrbracket$, then $\exists \varepsilon \Vdash \Xi, \Delta \vdash G \sim$ G such that $\varepsilon_{i}=\rho_{i}(\varepsilon)$.

Proof. Straightforward induction on the evidence structure.
Lemma 10.11 (Evidence decomposition). If
$-\varepsilon_{1} \Vdash \Xi ; \Delta, X, Y \vdash G \sim G$
$-\varepsilon_{2} \Vdash \Xi ; \Delta, X \vdash G\left[G^{\prime} / Y\right] \sim G^{\prime \prime}$ and $\Xi ; \Delta \vdash G^{\prime}$
$-W \in \mathcal{S} \llbracket \Xi \rrbracket,(W, \rho[X \mapsto \alpha][Y \mapsto \beta]) \in \mathcal{D} \llbracket \Delta, X, Y \rrbracket, W \cdot \Xi_{i}(\alpha)=\rho\left(G_{i}\right)$ and $W \cdot \Xi_{i}(\beta)=\rho\left(G^{\prime}\right)$
then $\exists \varepsilon \Vdash \Xi ; \Delta, X, Y \vdash G \sim G$

$$
\left(\rho_{i}\left(\varepsilon_{1}\right)\left[\beta, G^{\prime}, Y\right] \stackrel{\circ}{\circ} \rho_{i}\left(\varepsilon_{2}\right)\right)\left[G_{i}, \alpha, X\right]=\left(\rho_{i}(\varepsilon)[\beta, \beta, Y]\right)\left[G_{i}, \alpha, X\right] \stackrel{q}{q}\left(\pi_{2}^{*}\left(\rho_{i}(\varepsilon)\right)[\beta, G, Y] \stackrel{q}{\circ} \rho_{i}\left(\varepsilon_{2}\right)\right)[\alpha, \alpha, X]
$$

Proof. We proceed by induction on G.
Case $\left(G=B\right.$ and $\left.G^{\prime \prime}=B\right)$. Then, we know that $\varepsilon_{i}=\langle B, B\rangle$. Therefore, if we choose $\varepsilon=\langle B, B\rangle$ the results follows immediately.

Case ($G=G_{1}^{\prime \prime} \rightarrow G_{2}^{\prime \prime}$, and $G^{\prime \prime}=G_{1}^{\prime} \rightarrow G_{2}^{\prime}$). We know that
$-\varepsilon_{1} \Vdash \Xi ; \Delta, X, Y \vdash G_{1}^{\prime \prime} \rightarrow G_{2}^{\prime \prime} \sim G_{1}^{\prime \prime} \rightarrow G_{2}^{\prime \prime}$ implies that

$$
\operatorname{idom}^{\sharp}\left(\varepsilon_{1}\right) \Vdash \Xi ; \Delta, X, Y \vdash G_{1}^{\prime \prime} \sim G_{1}^{\prime \prime}
$$

$-\varepsilon_{2} \Vdash \Xi ; \Delta, X \vdash\left(G_{1}^{\prime \prime} \rightarrow G_{2}^{\prime \prime}\right)\left[G^{\prime} / Y\right] \sim G_{1}^{\prime} \rightarrow G_{2}^{\prime}$ implies that

$$
\operatorname{idom}^{\sharp}\left(\varepsilon_{2}\right) \Vdash \Xi ; \Delta, X \vdash G_{1}^{\prime \prime}\left[G^{\prime} / Y\right] \sim G_{1}^{\prime}
$$

Therefore by the induction hypothesis, we know that $\exists \varepsilon^{\prime} \Vdash \Xi ; \Delta, X, Y \vdash G_{1}^{\prime \prime} \sim G_{1}^{\prime \prime}$ such that

$$
\begin{gathered}
\left(\rho_{i}\left(i d o m^{\sharp}\left(\varepsilon_{1}\right)\right)\left[\beta, G^{\prime}, Y\right] \stackrel{\circ}{9} \rho_{i}\left(i \text { idm }^{\sharp}\left(\varepsilon_{2}\right)\right)\right)\left[G_{i}, \alpha, X\right]= \\
\left(\rho_{i}\left(\varepsilon^{\prime}\right)[\beta, \beta, Y]\right)\left[G_{i}, \alpha, X\right] \stackrel{ }{q}\left(\pi_{2}^{*}\left(\rho_{i}\left(\varepsilon^{\prime}\right)\right)[\beta, G, Y] \stackrel{ }{9} \rho_{i}\left(\text { idom }^{\sharp}\left(\varepsilon_{2}\right)\right)\right)[\alpha, \alpha, X]
\end{gathered}
$$

Also we know that
$-\varepsilon_{1} \Vdash \Xi ; \Delta, X, Y \vdash G_{1}^{\prime \prime} \rightarrow G_{2}^{\prime \prime} \sim G_{1}^{\prime \prime} \rightarrow G_{2}^{\prime \prime}$ implies that

$$
i \operatorname{cod}^{\sharp}\left(\varepsilon_{1}\right) \Vdash \Xi ; \Delta, X, Y \vdash G_{2}^{\prime \prime} \sim G_{2}^{\prime \prime}
$$

$-\varepsilon_{2} \Vdash \Xi ; \Delta, X \vdash\left(G_{1}^{\prime \prime} \rightarrow G_{2}^{\prime \prime}\right)\left[G^{\prime} / Y\right] \sim G_{1}^{\prime} \rightarrow G_{2}^{\prime}$ implies that

$$
\operatorname{icod}^{\sharp}\left(\varepsilon_{2}\right) \Vdash \Xi ; \Delta, X \vdash G_{2}^{\prime \prime}\left[G^{\prime} / Y\right] \sim G_{2}^{\prime}
$$

Therefore by the induction hypothesis, we know that $\exists \varepsilon^{\prime \prime} \Vdash \Xi ; \Delta, X, Y \vdash G_{2}^{\prime \prime} \sim G_{2}^{\prime \prime}$ such that

$$
\begin{gathered}
\left(\rho_{i}\left(i \operatorname{cod}^{\sharp}\left(\varepsilon_{1}\right)\right)\left[\beta, G^{\prime}, Y\right] \stackrel{\circ}{\left.\rho_{i}\left(i \operatorname{cod} d^{\sharp}\left(\varepsilon_{2}\right)\right)\right)\left[G_{i}, \alpha, X\right]=}\right. \\
\left(\rho_{i}\left(\varepsilon^{\prime \prime}\right)[\beta, \beta, Y]\right)\left[G_{i}, \alpha, X\right] \stackrel{ }{\circ}\left(\pi_{2}^{*}\left(\rho_{i}\left(\varepsilon^{\prime \prime}\right)\right)[\beta, G, Y] \stackrel{\circ}{\circ} \rho_{i}\left(i \operatorname{cod^{\# }}\left(\varepsilon_{2}\right)\right)\right)[\alpha, \alpha, X]
\end{gathered}
$$

Therefore, it follows that $\exists \varepsilon \Vdash \Xi ; \Delta, X, Y \vdash G_{1}^{\prime \prime} \rightarrow G_{2}^{\prime \prime} \sim G_{1}^{\prime \prime} \rightarrow G_{2}^{\prime \prime}$, such that the result follows immediately $\left(\varepsilon=\left\langle\pi_{1}\left(\varepsilon^{\prime}\right) \rightarrow \pi_{1}\left(\varepsilon^{\prime \prime}\right), \pi_{2}\left(\varepsilon^{\prime}\right) \rightarrow \pi_{2}\left(\varepsilon^{\prime \prime}\right)\right\rangle\right)$. Note that

- idom $^{\#}(\varepsilon)=\varepsilon^{\prime}$
- $\operatorname{icod}^{\#}(\varepsilon)=\varepsilon^{\prime \prime}$
- $\operatorname{idom}^{\sharp}\left(\left(\rho_{i}\left(\varepsilon_{1}\right)\left[\beta, G^{\prime}, Y\right] \stackrel{\circ}{\rho} \rho_{i}\left(\varepsilon_{2}\right)\right)\left[G_{i}, \alpha, X\right]\right)=$

$$
\left(\rho_{i}\left(\operatorname{idom}^{\sharp}\left(\varepsilon_{1}\right)\right)\left[\beta, G^{\prime}, Y\right] ; \rho_{i}\left(\text { idom }^{\sharp}\left(\varepsilon_{2}\right)\right)\right)\left[G_{i}, \alpha, X\right]=
$$

$$
\left(\rho_{i}\left(\varepsilon^{\prime}\right)[\beta, \beta, Y]\right)\left[G_{i}, \alpha, X\right] \stackrel{\circ}{9}\left(\pi_{2}^{*}\left(\rho_{i}\left(\varepsilon^{\prime}\right)\right)[\beta, G, Y] \stackrel{ }{\circ} \rho_{i}\left(i \text { idom }^{\sharp}\left(\varepsilon_{2}\right)\right)\right)[\alpha, \alpha, X]=
$$

$$
\operatorname{idom}^{\sharp}\left(\left(\rho_{i}(\varepsilon)[\beta, \beta, Y]\right)\left[G_{i}, \alpha, X\right] \stackrel{q}{q}\left(\pi_{2}^{*}\left(\rho_{i}(\varepsilon)\right)[\beta, G, Y] \stackrel{\circ}{\circ} \rho_{i}\left(\varepsilon_{2}\right)\right)[\alpha, \alpha, X]\right)
$$

- $\operatorname{icod}^{\sharp}\left(\left(\rho_{i}\left(\varepsilon_{1}\right)\left[\beta, G^{\prime}, Y\right] ; \rho_{i}\left(\varepsilon_{2}\right)\right)\left[G_{i}, \alpha, X\right]\right)=$ $\left(\operatorname{icod}^{\sharp}\left(\rho_{i}\left(\operatorname{icod}^{\sharp}\left(\varepsilon_{1}\right)\right)\left[\beta, G^{\prime}, Y\right] \stackrel{ }{\circ} \rho_{i}\left(\operatorname{icod}^{\sharp}\left(\varepsilon_{2}\right)\right)\right)\left[G_{i}, \alpha, X\right]=\right.$ $\left(\rho_{i}\left(\varepsilon^{\prime \prime}\right)[\beta, \beta, Y]\right)\left[G_{i}, \alpha, X\right] \stackrel{\circ}{9}\left(\pi_{2}^{*}\left(\rho_{i}\left(\varepsilon^{\prime \prime}\right)\right)[\beta, G, Y] \stackrel{\circ}{9} \rho_{i}\left(i \operatorname{cod} d^{\sharp}\left(\varepsilon_{2}\right)\right)\right)[\alpha, \alpha, X]=$ $\operatorname{icod}^{\sharp}\left(\left(\rho_{i}(\varepsilon)[\beta, \beta, Y]\right)\left[G_{i}, \alpha, X\right] \stackrel{\circ}{\circ}\left(\pi_{2}^{*}\left(\rho_{i}(\varepsilon)\right)[\beta, G, Y] \stackrel{ }{\circ} \rho_{i}\left(\varepsilon_{2}\right)\right)[\alpha, \alpha, X]\right)$
Note that two evidences are equals if and only if their idom ${ }^{\sharp}$ and icod ${ }^{\sharp}$ equals too.
Case $\left(G=\forall X . G_{1}^{\prime \prime}\right.$ and $\left.G^{\prime \prime}=\forall X . G_{1}^{\prime}\right)$. Similar to function case.
Case ($G=G_{1} \times G 2$). Similar to function case.
Case $(G=\alpha)$. This means that evidences do not have type variables, therefore, type substitutions are not applied. For this reason, the result follows immediately.
Case $(G=\beta)$. This means that evidences do not have type variables, therefore, type substitutions are not applied. For this reason, the result follows immediately.
Case $(G=\beta)$. This means that evidences do not have type variables, therefore, type substitutions are not applied. For this reason, the result follows immediately.

Case $(G=X)$. Then, we know that $\varepsilon_{1}=\langle X, X\rangle$ and $\varepsilon_{2}=\langle X, X\rangle$. Therefore, with $\varepsilon=\langle X, X\rangle$ the result follows immediately.

Case $(G=Y)$. Then, we know that $\varepsilon_{1}=\langle Y, Y\rangle$. Since, $\varepsilon_{2} \Vdash \Xi ; \Delta, X \vdash G^{\prime} \sim G^{\prime \prime}$ and $\Xi ; \Delta \vdash G^{\prime}$ (without X), we know that

$$
\rho_{i}\left(\varepsilon_{2}\right)\left[G_{i}, \alpha, X\right]=\rho_{i}\left(\varepsilon_{2}\right)[\alpha, \alpha, X]=\rho_{i}\left(\varepsilon_{2}\right)
$$

Therefore, $\exists \varepsilon=\langle Y, Y\rangle$, such that the result follows immediately.
Case $(G=Z)$. Then, we know that $\varepsilon_{1}=\langle Z, Z\rangle$ and $\varepsilon_{2}=\langle Z, Z\rangle$. Therefore, with $\varepsilon=\langle Z, Z\rangle$ the result follows immediately.
Case ($G=$?). We follow by case in the evidences.

- $\varepsilon_{1}=\langle$?, ? \rangle, then $\exists \varepsilon=\varepsilon_{2}$ such that the results follows immediately (by Lemma 10.8).

$G \leqslant G$ Strict type precision

$$
\frac{G_{1} \leqslant G_{2}}{\exists X \cdot G_{1} \leqslant \exists X . G_{2}}
$$

$\Omega \vdash \Xi_{1} \triangleright s: G \leqslant \Xi_{2} \triangleright s: G$ Strict term precision (for conciseness, s ranges over both t and u)

$$
\begin{gathered}
\left(\leqslant \text { packu }_{\varepsilon}\right) \frac{G_{1}^{\prime} \leqslant G_{2}^{\prime} \quad \Omega \vdash \Xi_{1} \triangleright v_{1}: G_{1}\left[G_{1}^{\prime} / X\right] \leqslant \Xi_{2} \triangleright v_{2}: G_{2}\left[G_{2}^{\prime} / X\right] \quad \exists X . G_{1} \sqsubseteq \exists X . G_{2}}{\Omega \vdash \Xi_{1} \triangleright \operatorname{packu}\left\langle G_{1}^{\prime}, v_{1}\right\rangle \text { as } \exists X \cdot G_{1}: \exists X . G_{1} \leqslant \Xi_{2} \triangleright \operatorname{packu}\left\langle G_{2}^{\prime}, v_{2}\right\rangle \text { as } \exists X \cdot G_{2}: \exists X \cdot G_{2}} \\
\left(\leqslant \text { pack }_{\varepsilon}\right) \frac{G_{1}^{\prime} \leqslant G_{2}^{\prime} \quad \Omega \vdash \Xi_{1} \triangleright t_{1}: G_{1}\left[G_{1}^{\prime} / X\right] \leqslant \Xi_{2} \triangleright t_{2}: G_{2}\left[G_{2}^{\prime} / X\right] \quad \exists X . G_{1} \leqslant \exists X . G_{2}}{\Omega \vdash \Xi_{1} \triangleright \operatorname{pack}\left\langle G_{1}^{\prime}, t_{1}\right\rangle \text { as } \exists X \cdot G_{1}: \exists X \cdot G_{1} \leqslant \Xi_{2} \triangleright \operatorname{pack}\left\langle G_{2}^{\prime}, t_{2}\right\rangle \text { as } \exists X . G_{2}: \exists X . G_{2}} \\
\left(\leqslant \text { unpack }_{\varepsilon}\right) \frac{\Omega \vdash \Xi_{1} \triangleright t_{1}: \exists X . G_{1} \leqslant \Xi_{2} \triangleright t_{2}: \exists X \cdot G_{2} \quad \Omega, x: G_{1} \sqsubseteq G_{2} \vdash \Xi_{1} \triangleright t_{1}^{\prime}: G_{1}^{\prime} \leqslant \Xi_{2} \triangleright t_{2}^{\prime}: G_{2}^{\prime}}{\Omega \vdash \Xi_{1} \triangleright \text { unpack }\langle X, x\rangle=t_{1} \text { in } t_{1}^{\prime}: G_{1}^{\prime} \leqslant \Xi_{2} \triangleright \text { unpack }\langle X, x\rangle=t_{2} \text { in } t_{2}^{\prime}: G_{2}^{\prime}}
\end{gathered}
$$

$G \rightarrow G$ Type matching

$$
? \rightarrow \exists X . ?
$$

$\Omega \vdash v: G \leqslant v v: G$ Strict value precision

$(\leqslant$ packu $) \frac{G_{1}^{\prime} \leqslant G_{2}^{\prime} \quad \Omega \vdash v_{1}: G_{1}^{\prime \prime} \leqslant v v_{2}: G_{2}^{\prime \prime} \quad \exists X . G_{1} \sqsubseteq \exists X . G_{2} \quad G_{1}^{\prime \prime} \sqcap G_{1}\left[G_{1}^{\prime} / X\right] \leqslant G_{2}^{\prime \prime} \sqcap G_{2}\left[G_{2}^{\prime} / X\right]}{\Omega \vdash \operatorname{pack}\left\langle G_{1}^{\prime}, v_{1}\right\rangle \text { as } \exists X . G_{1}: \exists X . G_{1} \leqslant v \operatorname{pack}\left\langle G_{2}^{\prime}, v_{2}\right\rangle \text { as } \exists X . G_{2}: \exists X . G_{2}}$

$\Omega \vdash t: G \leqslant t: G$ Strict term precision

$$
\begin{aligned}
&(\leqslant \text { pack }) \frac{G_{1}^{\prime} \leqslant G_{2}^{\prime}}{} \quad \Omega \vdash t_{1}: G_{1}^{\prime \prime} \leqslant t_{2}: G_{2}^{\prime \prime} \quad \exists X \cdot G_{1} \leqslant \exists X \cdot G_{2} \quad G_{1}^{\prime \prime} \sqcap G_{1}\left[G_{1}^{\prime} / X\right] \leqslant G_{2}^{\prime \prime} \sqcap G_{2}\left[G_{2}^{\prime} / X\right] \\
& \Omega \vdash \operatorname{pack}\left\langle G_{1}^{\prime}, t_{1}\right\rangle \text { as } \exists X \cdot G_{1}: \exists X \cdot G_{1} \leqslant \operatorname{pack}\left\langle G_{2}^{\prime}, t_{2}\right\rangle \text { as } \exists X \cdot G_{2}: \exists X \cdot G_{2} \\
&(\leqslant \text { unpack }) \Omega \vdash t_{1}: G_{1} \leqslant t_{2}: G_{2} \quad \Omega, x: \operatorname{sch} m_{e}^{\sharp}\left(G_{1}\right) \sqsubseteq \operatorname{sch} m_{e}^{\sharp}\left(G_{2}\right) \vdash t_{1}^{\prime}: G_{1}^{\prime} \leqslant t_{2}^{\prime}: G_{2}^{\prime} \\
& \Omega \vdash \text { unpack }\langle X, x\rangle=t_{1} \text { in } t_{1}^{\prime}: G_{1}^{\prime} \leqslant \text { unpack }\langle X, x\rangle=t_{2} \text { in } t_{2}^{\prime}: G_{2}^{\prime}
\end{aligned}
$$

Fig. 27. $\operatorname{GSF}_{\varepsilon}^{\exists}$ and $\operatorname{GSF}^{\exists}$: Strict term precision

- $\varepsilon_{2}=\langle$?, ? \rangle, then $\exists \varepsilon=\varepsilon_{1}$ such that the results follows immediately (by Lemma 10.8).
- The other evidence cases are covered in other cases of the proof.

Proposition 12.5. If $\Xi ; \Delta ; \Gamma \vdash t_{1} \approx t_{2}: G$, then $\Xi ; \Delta ; \Gamma \vdash t_{1} \approx^{c t x} t_{2}: G$.
Proof. Similar to Th. 6.32.

10.5 A Weak Dynamic Gradual Guarantee for GSF $^{\exists}$

Proposition 10.12. If $\Omega \vdash t_{1}^{*}: G_{1}^{*} \leqslant t_{2}^{*}: G_{2}^{*}, \Omega \equiv \Gamma_{1} \sqsubseteq \Gamma_{2}, \Delta ; \Gamma_{i} \vdash t_{i}^{*} \leadsto t_{i}^{* *}: G_{i}^{*}$, then $\Omega \vdash \triangleright t_{1}^{* *}: G_{1}^{*} \leqslant \Xi_{2} \triangleright t_{2}^{* *}: G_{2}^{*}$.

Proof. We follow by induction on $\Omega \vdash t_{1}^{*}: G_{1}^{*} \leqslant t_{2}^{*}: G_{2}^{*}$. We avoid the notation $\Omega \vdash t_{1}^{*}: G_{1}^{*} \leqslant$ $t_{2}^{*}: G_{2}^{*}$, and use $t_{1}^{*} \leqslant t_{2}^{*}$ instead, for simplicity, when the typing environments are not relevant. We use metavariable v or u in GSF to range over constants, functions and type abstractions. We only proof here the cases related to existential types. Other cases where proved in Section 5.

Case ($\leqslant \mathrm{v}$).

$$
\begin{gathered}
(\leqslant \mathrm{v}) \frac{\Omega \vdash u_{1}: G_{1}^{*} \leqslant v u_{2}: G_{2}^{*} \quad G_{1}^{*} \leqslant G_{2}^{*}}{\Omega \vdash u_{1}: G_{1}^{*} \leqslant u_{2}: G_{2}^{*}} \\
(\mathrm{Gu}) \frac{\Delta ; \Gamma_{1} \vdash u_{1} \leadsto u_{1}^{\prime}: G_{1}^{*} \quad \varepsilon_{G_{1}^{*}}=I\left(G_{1}^{*}, G_{1}^{*}\right)}{\Delta ; \Gamma_{1} \vdash u_{1} \leadsto \varepsilon_{G_{1}^{*}} u_{1}^{\prime}:: G_{1}^{*}: G_{1}^{*}} \\
(\mathrm{Gu}) \frac{\Delta ; \Gamma_{2} \vdash u_{2} \leadsto u_{2}^{\prime}: G_{2}^{*} \quad \varepsilon_{G_{2}^{*}}=I\left(G_{2}^{*}, G_{2}^{*}\right)}{\Delta ; \Gamma_{2} \vdash u_{2} \leadsto \varepsilon_{G_{2}^{*}} u_{2}^{\prime}:: G_{2}^{*}: G_{2}^{*}}
\end{gathered}
$$

We have to prove that $\Omega \vdash \varepsilon_{G_{1}^{*}} u_{1}^{\prime}:: G_{1}^{*} \leqslant \varepsilon_{G_{2}^{*}} u_{2}^{\prime}:: G_{2}^{*}: G_{1}^{*} \leqslant G_{2}^{*}$. By the rule ($\leqslant \operatorname{asc}_{\varepsilon}$), we are required to prove that $\varepsilon_{G_{1}^{*}} \leqslant \varepsilon_{G_{2}^{*}}, \Omega \vdash u_{1}^{\prime} \leqslant u_{2}^{\prime}: G_{1}^{*} \leqslant G_{2}^{*}$ and $G_{1}^{*} \sqsubseteq G_{2}^{*}$. Since $G_{1}^{*} \leqslant G_{2}^{*}$ and Proposition 10.22, we know that $\varepsilon_{G_{1}^{*}} \leqslant \varepsilon_{G_{2}^{*}}$. Also, by Proposition 10.23 and $G_{1}^{*} \leqslant G_{2}^{*}$, we now that $G_{1}^{*} \sqsubseteq G_{2}^{*}$. Therefore, we only have required to prove that $\Omega \vdash u_{1}^{\prime} \leqslant u_{2}^{\prime}: G_{1}^{*} \leqslant G_{2}^{*}$. We follow by case analysis on $\Omega \vdash u_{1}: G_{1}^{*} \leqslant v u_{2}: G_{2}^{*}$. We only take into account the package, where $u_{i}=\operatorname{packu}\left\langle G_{i}^{\prime}, v_{i}\right\rangle$ as $\exists X . G_{i}^{\prime \prime}$ and $G_{i}^{*}=\exists X . G_{i}^{\prime \prime}$, where $\exists X . G_{1}^{\prime \prime} \leqslant \exists X . G_{2}^{\prime \prime}$. We know that

$$
\begin{gathered}
(\leqslant \text { pack }) \frac{G_{1}^{\prime} \leqslant G_{2}^{\prime} \quad \Omega \vdash \triangleright v_{1}: G_{1} \leqslant \Xi_{2} \triangleright v_{2}: G_{2} \quad \exists X . G_{1}^{\prime \prime} \sqsubseteq \exists X . G_{2}^{\prime \prime} \quad G_{1} \sqcap G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right] \leqslant G_{2} \sqcap G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right]}{\Omega \vdash \triangleright \operatorname{pack}\left\langle G_{1}^{\prime}, v_{1}\right\rangle \text { as } \exists X . G_{1}^{\prime \prime}: \exists X . G_{1}^{\prime \prime} \leqslant \Xi_{2} \triangleright \operatorname{pack}\left\langle G_{2}^{\prime}, v_{2}\right\rangle \text { as } \exists X . G_{2}^{\prime \prime}: \exists X . G_{2}^{\prime \prime}} \\
\Delta ; \Gamma_{1} \vdash v_{1}:: G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right] \leadsto v_{1}^{\prime \prime}: G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right] \\
(\text { Gpack }) \frac{\Delta ; \Gamma_{1} \vdash \operatorname{pack}\left\langle G_{1}^{\prime}, v_{1}\right\rangle \text { as } \exists X . G_{1}^{\prime \prime} \leadsto \operatorname{packu}\left\langle G_{1}^{\prime}, v_{1}^{\prime \prime}\right\rangle \text { as } \exists X . G_{1}^{\prime \prime}: \exists X . G_{1}^{\prime \prime}}{} \\
\Delta ; \Gamma_{2} \vdash v_{2}:: G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right] \leadsto v_{2}^{\prime \prime}: G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right] \\
\left(\text { Gpack } \frac{\Delta ; \Gamma_{2} \vdash \operatorname{pack}\left\langle G_{2}^{\prime}, v_{2}\right\rangle \text { as } \exists X . G_{2}^{\prime \prime} \leadsto \operatorname{packu}\left\langle G_{2}^{\prime}, v_{2}^{\prime \prime}\right\rangle \text { as } \exists X . G_{2}^{\prime \prime}: \exists X . G_{2}^{\prime \prime}}{}\right.
\end{gathered}
$$

We have to prove that $\Omega \vdash \triangleright$ packu $\left\langle G_{1}^{\prime}, v_{1}^{\prime \prime}\right\rangle$ as $\exists X . G_{1}^{\prime \prime}: \exists X . G_{1}^{\prime \prime} \leqslant \Xi_{2} \triangleright$ packu $\left\langle G_{2}^{\prime}, v_{2}^{\prime \prime}\right\rangle$ as $\exists X . G_{2}^{\prime \prime}$: $\exists X . G_{2}^{\prime \prime}$, or what is the same by the rule (\leqslant packu $_{\varepsilon}$), we have to prove that $G_{1}^{\prime} \leqslant G_{2}^{\prime}, \Omega \vdash \triangleright v_{1}^{\prime \prime}$: $G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right] \leqslant \Xi_{2} \triangleright v_{2}^{\prime \prime}: G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right]$ and $\exists X . G_{1}^{\prime \prime} \sqsubseteq \exists X . G_{2}^{\prime \prime}$. By premise, $G_{1}^{\prime} \leqslant G_{2}^{\prime}$ and $\exists X . G_{1}^{\prime \prime} \sqsubseteq \exists X . G_{2}^{\prime \prime}$ (Proposition 10.16) follows immediately. Therefore, we only have required to prove that $\Omega \vdash \triangleright v_{1}^{\prime \prime}$: $G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right] \leqslant \Xi_{2} \triangleright v_{2}^{\prime \prime}: G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right]$, which follows by the induction hypothesis. We know that

$$
\begin{aligned}
& v_{1}^{\prime \prime}=\varepsilon_{1} v_{1}^{\prime}:: G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right] \text { where } \varepsilon_{1}=\mathcal{I}\left(G_{1}, G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right]\right) \\
& v_{2}^{\prime \prime}=\varepsilon_{2} v_{2}^{\prime}:: G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right] \text { where } \varepsilon_{2}=\mathcal{I}\left(G_{2}, G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right]\right)
\end{aligned}
$$

where $\Delta ; \Gamma_{i} \vdash v_{i} \leadsto v v_{i}^{\prime}: G_{i}$, and therefore $\Omega \vdash v_{1}^{\prime} \leqslant v_{2}^{\prime}: G_{1} \leqslant G_{2}$.
By rule $\left(\leqslant \operatorname{asc}_{\varepsilon}\right)$, we are required to prove that $\varepsilon_{1} \leqslant \varepsilon_{2}, \Omega \vdash v_{1}^{\prime} \leqslant v_{2}^{\prime}: G_{1} \leqslant G_{2}$ and $G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right] \sqsubseteq$ $G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right]$. By induction hypothesis on $\Omega \vdash \Xi_{1} \triangleright v_{1}: G_{1} \leqslant \Xi_{2} \triangleright v_{2}: G_{2}$, we know that $\Omega \vdash v_{1}^{\prime} \leqslant v_{2}^{\prime}$: $G_{1} \leqslant G_{2}$. By Proposition 10.26, $G_{1}^{\prime \prime} \leqslant G_{2}^{\prime \prime}$ and $G_{1}^{\prime} \leqslant G_{2}^{\prime}$, we know that $G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right] \leqslant G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right]$, and therefore $G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right] \sqsubseteq G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right]$. By Proposition 10.14 and $G_{1} \sqcap G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right] \leqslant G_{2} \sqcap G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right]$, we know that

$$
\begin{gathered}
\varepsilon_{1}=\mathcal{I}\left(G_{1}, G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right]\right)=\mathcal{I}\left(G_{1} \sqcap G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right], G_{1} \sqcap G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right]\right) \leqslant \\
\mathcal{I}\left(G_{2} \sqcap G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right], G_{2} \sqcap G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right]\right)=\mathcal{I}\left(G_{2}, G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right]\right)=\varepsilon_{2}
\end{gathered}
$$

Therefore, the results holds.
Case ($\leqslant \mathrm{ascv}$). We know that

$$
\begin{gathered}
(\leqslant \mathrm{ascv}) \frac{\Omega \vdash u_{1}: G_{1}^{* *} \leqslant v u_{2}: G_{2}^{* *} \quad G_{1}^{* *} \sqcap G_{1}^{*} \leqslant G_{2}^{* *} \sqcap G_{2}^{*} \quad G_{1}^{*} \sqsubseteq G_{2}^{*}}{\Omega \vdash u_{1}:: G_{1}^{*}: G_{1}^{*} \leqslant u_{2}:: G_{2}^{*}: G_{2}^{*}} \\
(\mathrm{Gascu}) \frac{\Delta ; \Gamma_{1} \vdash u_{1} \leadsto u_{1}^{\prime}: G_{1}^{* *} \quad \varepsilon_{1}=\mathcal{I}\left(G_{1}^{* *}, G_{1}^{*}\right)}{\Delta ; \Gamma_{1} \vdash u_{1}:: G_{1}^{*} \leadsto \varepsilon_{1} u_{1}^{\prime}:: G_{1}^{*}: G_{1}^{*}}
\end{gathered}
$$

$$
(\mathrm{Gascu}) \frac{\Delta ; \Gamma_{2} \vdash u_{2} \leadsto u_{2}^{\prime}: G_{2}^{* *} \quad \varepsilon_{2}=I\left(G_{2}^{* *}, G_{2}^{*}\right)}{\Delta ; \Gamma_{2} \vdash u_{2}:: G_{2}^{*} \leadsto \varepsilon_{2} u_{2}^{\prime}:: G_{2}^{*}: G_{2}^{*}}
$$

We have to prove that $\Omega \vdash \varepsilon_{1} u_{1}^{\prime}:: G_{1}^{*} \leqslant \varepsilon_{2} u_{2}^{\prime}:: G_{2}^{*}: G_{1}^{*} \leqslant G_{2}^{*}$, or what is the same by the rule $\left(\leqslant \operatorname{asc}_{\varepsilon}\right)$, we have to prove that $\varepsilon_{1} \leqslant \varepsilon_{2}, \Omega \vdash u_{1}^{\prime} \leqslant u_{2}^{\prime}: G_{1}^{* *} \leqslant G_{2}^{* *}$ and $G_{1}^{*} \sqsubseteq G_{2}^{*}$. By Proposition 10.13, we know that $\varepsilon_{1}=\mathcal{I}\left(G_{1}^{* *}, G_{1}^{*}\right)=\mathcal{I}\left(G_{1}^{* *} \sqcap G_{1}^{*}, G_{1}^{* *} \sqcap G_{1}^{*}\right)$ and $\varepsilon_{2}=\mathcal{I}\left(G_{2}^{* *}, G_{2}^{*}\right)=\mathcal{I}\left(G_{2}^{* *} \sqcap G_{2}^{*}, G_{2}^{* *} \sqcap G_{2}^{*}\right)$. Since $G_{1}^{* *} \sqcap G_{1}^{*} \leqslant G_{2}^{* *} \sqcap G_{2}^{*}$, then $\varepsilon_{1}=\mathcal{I}\left(G_{1}^{* *}, G_{1}^{*}\right)=\mathcal{I}\left(G_{1}^{* *} \sqcap G_{1}^{*}, G_{1}^{* *} \sqcap G_{1}^{*}\right) \leqslant \mathcal{I}\left(G_{2}^{* *} \sqcap G_{2}^{*}, G_{2}^{* *} \sqcap G_{2}^{*}\right)=$ $\mathcal{I}\left(G_{2}^{* *}, G_{2}^{*}\right)=\varepsilon_{2}$, by Proposition 10.14. Thus, we only have to prove that $\Omega \vdash u_{1}^{\prime} \leqslant u_{2}^{\prime}: G_{1}^{* *} \leqslant G_{2}^{* *}$, and we know that $\Omega \vdash u_{1}^{\prime}: G_{1}^{* *} \leqslant v u_{2}^{\prime}: G_{2}^{* *}$. We follow by case analysis on $\Omega \vdash u_{1}: G_{1}^{* *} \leqslant v u_{2}: G_{2}^{* *}$. We only take into account the package, where $u_{i}=\operatorname{pack}\left\langle G_{i}^{\prime}, v_{i}\right\rangle$ as $\exists X . G_{i}^{\prime \prime}$ and $G_{i}^{*}=\exists X . G_{i}^{\prime \prime}$, where $\exists X . G_{1}^{\prime \prime} \leqslant \exists X . G_{2}^{\prime \prime}$. We know that

$$
\begin{gathered}
(\leqslant \text { pack }) \frac{G_{1}^{\prime} \leqslant G_{2}^{\prime} \quad \Omega \vdash \triangleright v_{1}: G_{1} \leqslant \Xi_{2} \triangleright v_{2}: G_{2} \quad \exists X . G_{1}^{\prime \prime} \sqsubseteq \exists X . G_{2}^{\prime \prime} \quad G_{1} \sqcap G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right] \leqslant G_{2} \sqcap G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right]}{\Omega \vdash \triangleright \operatorname{pack}\left\langle G_{1}^{\prime}, v_{1}\right\rangle \text { as } \exists X . G_{1}^{\prime \prime}: \exists X . G_{1}^{\prime \prime} \leqslant \Xi_{2} \triangleright \operatorname{pack}\left\langle G_{2}^{\prime}, v_{2}\right\rangle \text { as } \exists X . G_{2}^{\prime \prime}: \exists X . G_{2}^{\prime \prime}} \\
\Delta ; \Gamma_{1} \vdash v_{1}:: G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right] \leadsto v_{1}^{\prime \prime}: G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right] \\
(\text { Gpack }) \frac{\Delta ; \Gamma_{1} \vdash \operatorname{pack}\left\langle G_{1}^{\prime}, v_{1}\right\rangle \text { as } \exists X . G_{1}^{\prime \prime} \leadsto \operatorname{packu}\left\langle G_{1}^{\prime}, v_{1}^{\prime \prime}\right\rangle \text { as } \exists X . G_{1}^{\prime \prime}: \exists X . G_{1}^{\prime \prime}}{\Delta ; \Gamma_{2} \vdash v_{2}:: G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right] \leadsto v_{2}^{\prime \prime}: G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right]} \\
(\text { Gpack })
\end{gathered}
$$

We have to prove that $\Omega \vdash \triangleright$ packu $\left\langle G_{1}^{\prime}, v_{1}^{\prime \prime}\right\rangle$ as $\exists X . G_{1}^{\prime \prime}: \exists X . G_{1}^{\prime \prime} \leqslant \Xi_{2} \triangleright$ packu $\left\langle G_{2}^{\prime}, v_{2}^{\prime \prime}\right\rangle$ as $\exists X . G_{2}^{\prime \prime}$: $\exists X . G_{2}^{\prime \prime}$, or what is the same by the rule (\leqslant packu $_{\varepsilon}$), we have to prove that $G_{1}^{\prime} \leqslant G_{2}^{\prime}, \Omega \vdash \triangleright v_{1}^{\prime \prime}$: $G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right] \leqslant \Xi_{2} \triangleright v_{2}^{\prime \prime}: G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right]$ and $\exists X . G_{1}^{\prime \prime} \sqsubseteq \exists X . G_{2}^{\prime \prime}$. By premise, $G_{1}^{\prime} \leqslant G_{2}^{\prime}$ and $\exists X . G_{1}^{\prime \prime} \sqsubseteq \exists X . G_{2}^{\prime \prime}$ (Proposition 10.16) follows immediately. Therefore, we only have required to prove that $\Omega \vdash \triangleright v_{1}^{\prime \prime}$: $G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right] \leqslant \Xi_{2} \triangleright v_{2}^{\prime \prime}: G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right]$, which follows by the induction hypothesis.

We know that

$$
\begin{aligned}
& v_{1}^{\prime \prime}=\varepsilon_{1} v_{1}^{\prime}:: G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right] \text { where } \varepsilon_{1}=\mathcal{I}\left(G_{1}, G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right]\right) \\
& v_{2}^{\prime \prime}=\varepsilon_{2} v_{2}^{\prime}:: G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right] \text { where } \varepsilon_{2}=\mathcal{I}\left(G_{2}, G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right]\right)
\end{aligned}
$$

where $\Delta ; \Gamma_{i} \vdash v_{i} \leadsto_{v} v_{i}^{\prime}: G_{i}$, and therefore $\Omega \vdash v_{1}^{\prime} \leqslant v_{2}^{\prime}: G_{1} \leqslant G_{2}$.
By rule ($\leqslant \operatorname{asc}_{\varepsilon}$), we are required to prove that $\varepsilon_{1} \leqslant \varepsilon_{2}, \Omega \vdash v_{1}^{\prime} \leqslant v_{2}^{\prime}: G_{1} \leqslant G_{2}$ and $G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right] \sqsubseteq$ $G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right]$. By induction hypothesis on $\Omega \vdash \Xi_{1} \triangleright v_{1}: G_{1} \leqslant \Xi_{2} \triangleright v_{2}: G_{2}$, we know that $\Omega \vdash v_{1}^{\prime} \leqslant v_{2}^{\prime}$: $G_{1} \leqslant G_{2}$. By Proposition 10.26, $G_{1}^{\prime \prime} \leqslant G_{2}^{\prime \prime}$ and $G_{1}^{\prime} \leqslant G_{2}^{\prime}$, we know that $G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right] \leqslant G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right]$, and therefore $G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right] \sqsubseteq G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right]$. By Proposition 10.14 and $G_{1} \sqcap G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right] \leqslant G_{2} \sqcap G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right]$, we know that

$$
\begin{gathered}
\varepsilon_{1}=I\left(G_{1}, G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right]\right)=\mathcal{I}\left(G_{1} \sqcap G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right], G_{1} \sqcap G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right]\right) \leqslant \\
\mathcal{I}\left(G_{2} \sqcap G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right], G_{2} \sqcap G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right]\right)=\mathcal{I}\left(G_{2}, G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right]\right)=\varepsilon_{2}
\end{gathered}
$$

Therefore, the results holds.
Case (\leqslant pack). We know that

$$
\begin{gathered}
(\leqslant \text { pack }) \frac{G_{1}^{\prime} \leqslant G_{2}^{\prime} \quad \Omega \vdash \triangleright t_{1}: G_{1} \leqslant \Xi_{2} \triangleright t_{2}: G_{2} \quad \exists X . G_{1}^{\prime \prime} \leqslant \exists X . G_{2}^{\prime \prime} \quad G_{1} \sqcap G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right] \leqslant G_{2} \sqcap G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right]}{\Omega \vdash \triangleright \operatorname{pack}\left\langle G_{1}^{\prime}, t_{1}\right\rangle \text { as } \exists X . G_{1}^{\prime \prime}: \exists X . G_{1}^{\prime \prime} \leqslant \Xi_{2} \triangleright \operatorname{pack}\left\langle G_{2}^{\prime}, t_{2}\right\rangle \text { as } \exists X . G_{2}^{\prime \prime}: \exists X . G_{2}^{\prime \prime}} \\
(\text { Gpack }) \frac{\Delta ; \Gamma_{1} \vdash t_{1} \leadsto t_{1}^{\prime}: G_{1} \quad t_{1}^{\prime \prime}=\operatorname{norm}\left(t_{1}^{\prime}, G_{1}, G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right]\right)}{\Delta ; \Gamma_{1} \vdash \operatorname{pack}\left\langle G_{1}^{\prime}, t_{1}\right\rangle \text { as } \exists X . G_{1}^{\prime \prime} \leadsto \operatorname{pack}\left\langle G_{1}^{\prime}, t_{1}^{\prime \prime}\right\rangle \text { as } \exists X . G_{1}^{\prime \prime}: \exists X . G_{1}^{\prime \prime}}
\end{gathered}
$$

$$
\text { (Gpack) } \frac{\Delta ; \Gamma_{2} \vdash t_{2} \leadsto t_{2}^{\prime}: G_{2} \quad t_{2}^{\prime \prime}=\operatorname{norm}\left(t_{2}^{\prime}, G_{2}, G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right]\right)}{\Delta ; \Gamma_{2} \vdash \operatorname{pack}\left\langle G_{2}^{\prime}, t_{2}\right\rangle \text { as } \exists X . G_{2}^{\prime \prime} \leadsto \operatorname{pack}\left\langle G_{2}^{\prime}, t_{2}^{\prime \prime}\right\rangle \text { as } \exists X . G_{2}^{\prime \prime}: \exists X . G_{2}^{\prime \prime}}
$$

We have to prove that $\Omega \vdash \triangleright \operatorname{pack}\left\langle G_{1}^{\prime}, t_{1}^{\prime \prime}\right\rangle$ as $\exists X . G_{1}^{\prime \prime}: \exists X . G_{1}^{\prime \prime} \leqslant \Xi_{2} \triangleright \operatorname{pack}\left\langle G_{2}^{\prime}, t_{2}^{\prime \prime}\right\rangle$ as $\exists X . G_{2}^{\prime \prime}$: $\exists X . G_{2}^{\prime \prime}$, or what is the same by the rule $\left(\leqslant \operatorname{pack}_{\varepsilon}\right)$, we have to prove that $G_{1}^{\prime} \leqslant G_{2}^{\prime}, \Omega \vdash \triangleright t_{1}^{\prime \prime}$: $G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right] \leqslant \Xi_{2} \triangleright t_{2}^{\prime \prime}: G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right]$ and $\exists X . G_{1}^{\prime \prime} \leqslant \exists X . G_{2}^{\prime \prime}$. By premise, $G_{1}^{\prime} \leqslant G_{2}^{\prime}$ and $\exists X . G_{1}^{\prime \prime} \leqslant \exists X . G_{2}^{\prime \prime}$ (Proposition 10.16) follows immediately. Therefore, we only have required to prove that $\Omega \vdash \triangleright t_{1}^{\prime \prime}$: $G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right] \leqslant \Xi_{2} \triangleright t_{2}^{\prime \prime}: G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right]$. We know that

$$
\begin{aligned}
& t_{1}^{\prime \prime}=\operatorname{norm}\left(t_{1}^{\prime}, G_{1}, G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right]\right)=\varepsilon_{1} t_{1}^{\prime}:: G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right] \text { where } \varepsilon_{1}=\mathcal{I}\left(G_{1}, G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right]\right) \\
& t_{2}^{\prime \prime}=\operatorname{norm}\left(t_{2}^{\prime}, G_{2}, G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right]\right)=\varepsilon_{2} t_{2}^{\prime}:: G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right] \text { where } \varepsilon_{2}=\mathcal{I}\left(G_{2}, G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right]\right)
\end{aligned}
$$

By rule $\left(\leqslant \operatorname{asc}_{\varepsilon}\right)$, we are required to prove that $\varepsilon_{1} \leqslant \varepsilon_{2}, \Omega \vdash t_{1}^{\prime} \leqslant t_{2}^{\prime}: G_{1} \leqslant G_{2}$ and $G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right] \sqsubseteq$ $G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right]$. By induction hypothesis on $\Omega \vdash \triangleright t_{1}: G_{1} \leqslant \Xi_{2} \triangleright t_{2}: G_{2}$, we know that $\Omega \vdash t_{1}^{\prime} \leqslant t_{2}^{\prime}$: $G_{1} \leqslant G_{2}$. By Proposition 10.26, $G_{1}^{\prime \prime} \leqslant G_{2}^{\prime \prime}$ and $G_{1}^{\prime} \leqslant G_{2}^{\prime}$, we know that $G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right] \leqslant G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right]$, and therefore $G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right] \sqsubseteq G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right]$. By Proposition 10.14 and $G_{1} \sqcap G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right] \leqslant G_{2} \sqcap G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right]$, we know that

$$
\begin{gathered}
\varepsilon_{1}=\mathcal{I}\left(G_{1}, G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right]\right)=\mathcal{I}\left(G_{1} \sqcap G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right], G_{1} \sqcap G_{1}^{\prime \prime}\left[G_{1}^{\prime} / X\right]\right) \leqslant \\
\mathcal{I}\left(G_{2} \sqcap G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right], G_{2} \sqcap G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right]\right)=\mathcal{I}\left(G_{2}, G_{2}^{\prime \prime}\left[G_{2}^{\prime} / X\right]\right)=\varepsilon_{2}
\end{gathered}
$$

Therefore, the results holds.
Case (unpack). We know that
$(\leqslant$ unpack $) \frac{\Omega \vdash \triangleright t_{11}: G_{1} \leqslant \Xi_{2} \triangleright t_{21}: G_{2} \quad \Omega, x: \operatorname{schm}_{e}^{\#}\left(G_{1}\right) \sqsubseteq \operatorname{schm} m_{e}^{\#}\left(G_{2}\right) \vdash \triangleright t_{12}: G_{1}^{\prime} \leqslant \Xi_{2} \triangleright t_{22}: G_{2}^{\prime}}{\Omega \vdash \triangleright \text { unpack }\langle X, x\rangle=t_{11} \text { in } t_{12}: G_{1}^{\prime} \leqslant \Xi_{2} \triangleright \text { unpack }\langle X, x\rangle=t_{21} \text { in } t_{22}: G_{2}^{\prime}}$

$$
\Delta ; \Gamma_{1} \vdash t_{11} \leadsto t_{11}^{\prime}: G_{1} \quad t_{11}^{\prime \prime}=\operatorname{norm}\left(t_{11}^{\prime}, G_{1}, \exists \operatorname{var}^{\sharp}\left(G_{1}\right) \cdot \operatorname{schm}_{e}^{\sharp}\left(G_{1}\right)\right)
$$

$$
(\text { Gunpack }) \frac{\Delta ; \Gamma_{1}, x: \operatorname{schm}_{e}^{\sharp}\left(G_{1}\right) \vdash t_{12} \leadsto t_{12}^{\prime}: G_{1}^{\prime}}{\Delta ; \Gamma_{1} \vdash \text { unpack }\langle X, x\rangle=t_{11} \text { in } t_{12} \leadsto \text { unpack }\langle X, x\rangle=t_{11}^{\prime \prime} \text { in } t_{12}^{\prime}: G_{1}^{\prime}}
$$

$$
\Delta ; \Gamma_{2} \vdash t_{21} \leadsto t_{21}^{\prime}: G_{2} \quad t_{21}^{\prime \prime}=\operatorname{norm}\left(t_{21}^{\prime}, G_{2}, \exists \operatorname{var}^{\sharp}\left(G_{2}\right) \cdot \operatorname{schm}_{e}^{\sharp}\left(G_{2}\right)\right)
$$

$$
\left(\text { Gunpack } \frac{\Delta ; \Gamma_{2}, x: \operatorname{schm}_{e}^{\sharp}\left(G_{2}\right) \vdash t_{22} \leadsto t_{22}^{\prime}: G_{2}^{\prime}}{\Delta ; \Gamma_{2} \vdash \text { unpack }\langle X, x\rangle=t_{21} \text { in } t_{22} \leadsto \text { unpack }\langle X, x\rangle=t_{21}^{\prime \prime} \text { in } t_{22}^{\prime}: G_{2}^{\prime}}\right.
$$

We have to prove that $\Omega \vdash$ unpack $\langle X, x\rangle=t_{11}^{\prime \prime}$ in $t_{12}^{\prime} \leqslant$ unpack $\langle X, x\rangle=t_{21}^{\prime \prime}$ in $t_{22}^{\prime}: G_{1}^{\prime} \leqslant G_{2}^{\prime}$, or what is the same by the rule ($\leqslant \operatorname{unpack}_{\varepsilon}$), we have to prove that $\Omega \vdash t_{11}^{\prime \prime} \leqslant t_{21}^{\prime \prime}: \exists v a r^{\sharp}\left(G_{1}\right) . \operatorname{schm}_{e}^{\sharp}\left(G_{1}\right) \leqslant$ $\exists \operatorname{var}^{\sharp}\left(G_{2}\right) . \operatorname{schm}_{e}^{\sharp}\left(G_{2}\right)$ and $\Omega, x: \operatorname{schm}_{e}^{\sharp}\left(G_{1}\right) \sqsubseteq \operatorname{schm}_{e}^{\sharp}\left(G_{2}\right) \vdash t_{12}^{\prime} \leqslant t_{22}^{\prime}: G_{1}^{\prime} \leqslant G_{2}^{\prime}$. By the induction hypothesis on $\Omega, x: \operatorname{schm}_{e}^{\sharp}\left(G_{1}\right) \sqsubseteq \operatorname{schm}_{e}^{\sharp}\left(G_{2}\right) \vdash \triangleright t_{12}: G_{1}^{\prime} \leqslant \Xi_{2} \triangleright t_{22}: G_{2}^{\prime}$, we know that $\Omega, x: \operatorname{schm}_{e}^{\sharp}\left(G_{1}\right) \sqsubseteq \operatorname{schm}_{e}^{\sharp}\left(G_{2}\right) \vdash t_{12}^{\prime} \leqslant t_{22}^{\prime}: G_{1}^{\prime} \leqslant G_{2}^{\prime}$. Therefore, we only are required to prove that $\Omega \vdash t_{11}^{\prime \prime} \leqslant t_{21}^{\prime \prime}: \exists \operatorname{var}^{\sharp}\left(G_{1}\right) . \operatorname{schm}_{e}^{\sharp}\left(G_{1}\right) \leqslant \exists \operatorname{var}^{\sharp}\left(G_{2}\right) . \operatorname{schm}_{e}^{\sharp}\left(G_{2}\right)$. We know that

$$
t_{11}^{\prime \prime}=\operatorname{norm}\left(t_{11}^{\prime}, G_{1}, \exists \operatorname{var}^{\sharp}\left(G_{1}\right) \cdot \operatorname{schm}_{e}^{\sharp}\left(G_{1}\right)\right)=\varepsilon_{1} t_{11}^{\prime}:: \exists \operatorname{var}^{\sharp}\left(G_{1}\right) \cdot \operatorname{schm}_{e}^{\sharp}\left(G_{1}\right)
$$

where $\varepsilon_{1}=\mathcal{I}\left(G_{1}, \exists \operatorname{var}^{\sharp}\left(G_{1}\right) . \operatorname{schm}_{e}^{\sharp}\left(G_{1}\right)\right)=\mathcal{I}\left(\exists \operatorname{var}^{\sharp}\left(G_{1}\right) . \operatorname{schm}_{e}^{\sharp}\left(G_{1}\right), \exists \operatorname{var}^{\sharp}\left(G_{1}\right) . \operatorname{schm}_{e}^{\sharp}\left(G_{1}\right)\right)=$
$\varepsilon_{\exists \operatorname{var} \sharp\left(G_{1}\right) . \operatorname{schm}}{ }_{e}^{\sharp}\left(G_{1}\right)$

$$
t_{21}^{\prime \prime}=\operatorname{norm}\left(t_{21}^{\prime}, G_{2}, \exists \operatorname{var}^{\sharp}\left(G_{2}\right) \cdot \operatorname{schm}_{e}^{\sharp}\left(G_{2}\right)\right)=\varepsilon_{2} t_{21}^{\prime}:: \exists \operatorname{var}^{\sharp}\left(G_{2}\right) \cdot \operatorname{schm}_{e}^{\sharp}\left(G_{2}\right)
$$

where $\varepsilon_{2}=I\left(G_{2}, \exists \operatorname{var}^{\sharp}\left(G_{2}\right) \cdot \operatorname{schm}_{e}^{\sharp}\left(G_{2}\right)\right)=I\left(\exists \operatorname{var}^{\sharp}\left(G_{2}\right) \cdot \operatorname{schm}_{e}^{\sharp}\left(G_{2}\right), \exists \operatorname{var}^{\sharp}\left(G_{2}\right) \cdot \operatorname{schm}_{e}^{\sharp}\left(G_{2}\right)\right)=$
$\varepsilon_{\exists \mathrm{var}}{ }^{\sharp}\left(G_{2}\right) . \operatorname{schm} m_{e}^{\sharp}\left(G_{2}\right)$

By induction hypothesis on $\Omega \vdash t_{11}: G_{1} \leqslant t_{21}: G_{2}$, we know that $\Omega \vdash \triangleright t_{11}^{\prime}: G_{1} \leqslant \Xi_{2} \triangleright t_{21}^{\prime}: G_{2}$, and by Proposition 10.16, we know that $G_{1} \sqsubseteq G_{2}$, thus $\exists \operatorname{var}^{\sharp}\left(G_{1}\right) . \operatorname{schm}_{e}^{\sharp}\left(G_{1}\right) \sqsubseteq \exists v a r^{\sharp}\left(G_{2}\right) . \operatorname{schm}_{e}^{\sharp}\left(G_{2}\right)$. Therefore, we only have to prove by rule ($\leqslant \operatorname{Masc}_{\varepsilon}$) that $\varepsilon_{1} \sqsubseteq \varepsilon_{2}$. But, by Proposition 10.15 and $\exists v a r^{\sharp}\left(G_{1}\right) \cdot \operatorname{schm}_{e}^{\sharp}\left(G_{1}\right) \sqsubseteq \exists v a r^{\sharp}\left(G_{2}\right) \cdot \operatorname{schm}_{e}^{\sharp}\left(G_{2}\right)$ the results holds.

Proposition 10.13. $\mathcal{I}_{\Xi}\left(G_{1} \sqcap G_{2}, G_{1} \sqcap G_{2}\right)=\mathcal{I}_{\Xi}\left(G_{1}, G_{2}\right)$
Proof. By the definition of \sqcap and $I_{\Xi}\left(G_{1}, G_{2}\right)$.
Proposition 10.14. If $G_{1} \sqcap G_{2} \leqslant G_{1}^{\prime} \sqcap G_{2}^{\prime}$, then

$$
\mathcal{I}_{\Xi}\left(G_{1}, G_{2}\right)=\mathcal{I}_{\Xi}\left(G_{1} \sqcap G_{2}, G_{1} \sqcap G_{2}\right) \leqslant \mathcal{I}_{\Xi}\left(G_{1}^{\prime} \sqcap G_{2}^{\prime}, G_{1}^{\prime} \sqcap G_{2}^{\prime}\right)=\mathcal{I}_{\Xi}\left(G_{1}^{\prime}, G_{2}^{\prime}\right)
$$

Proof. By Proposition 10.13 and the definition of \leqslant in evidence.
Proposition 10.15. If $G_{1} \leqslant G_{2}$, then

$$
\mathcal{I}_{\Xi}\left(G_{1}, G_{1}\right) \sqsubseteq \mathcal{I}_{\Xi}\left(G_{2}, G_{2}\right)
$$

Proof. By the definition of \mathcal{I}_{Ξ} and the \sqsubseteq in evidence.
Proposition 10.16. $\Omega \vdash \Xi_{1} \triangleright s_{1}: G_{1} \leqslant \Xi_{2} \triangleright s_{2}: G_{2}$ then $G_{1} \sqsubseteq G_{2}$.
Proof. By the definition of Π and $I_{\Xi}\left(G_{1}, G_{2}\right)$.
Proposition 10.17. If $\Xi_{1} \vdash t_{1}^{*} \leqslant \Xi_{2} \vdash t_{2}^{*}$ and $\Xi_{1} \triangleright t_{1}^{*} \longrightarrow \Xi_{1}^{\prime} \triangleright t_{1}^{* *}$, then $\Xi_{2} \triangleright t_{2}^{*} \longrightarrow \Xi_{2}^{\prime} \triangleright t_{2}^{* *}$ and $\Xi_{1}^{\prime} \vdash t_{1}^{* *} \leqslant \Xi_{2}^{\prime} \vdash t_{2}^{* *}$.

Proof. If $\Xi_{1} \vdash t_{1}^{*} \leqslant \Xi_{2} \vdash t_{2}^{*}$, we know that $\vdash t_{1}^{*} \leqslant t_{2}^{*}: G_{1}^{*} \leqslant G_{2}^{*}, \Xi_{1} \leqslant \Xi_{2}$, $\Xi_{1} \vdash t_{1}^{*}: G_{1}^{*}$ and $\Xi_{2} \vdash t_{2}^{*}: G_{2}^{*}$. We follow by induction on $\vdash t_{1}^{*} \leqslant t_{2}^{*}: G_{1}^{*} \leqslant G_{2}^{*}$. We avoid the notation $\vdash t_{1} \leqslant t_{2}: G_{1} \leqslant G_{2}$, and use $t_{1} \leqslant t_{2}$ instead, for simplicity, when the typing environments are not relevant. We only take into account the existential unpack case.

Case (pack). We know that

$$
(\leqslant \text { pack }) \frac{G_{1}^{\prime \prime} \leqslant G_{2}^{\prime \prime} \quad \vdash \Xi_{1} \triangleright t_{11}: G_{11}\left[G_{1}^{\prime \prime} / X\right] \leqslant \Xi_{2} \triangleright t_{22}: G_{22}\left[G_{2}^{\prime \prime} / X\right] \quad \exists X . G_{11} \leqslant \exists X . G_{22}}{\vdash \Xi_{1} \triangleright \operatorname{pack}\left\langle G_{1}^{\prime \prime}, t_{11}\right\rangle \text { as } \exists X . G_{11}: \exists X . G_{11} \leqslant \Xi_{2} \triangleright \operatorname{pack}\left\langle G_{2}^{\prime \prime}, t_{22}\right\rangle \text { as } \exists X . G_{22}: \exists X \cdot G_{22}}
$$

Also, since $\Xi_{1} \triangleright t_{1}^{*} \longrightarrow \Xi_{1}^{\prime} \triangleright t_{1}^{*}$, we know that $t_{11}=v_{11}$. By Proposition 10.27 and $\vdash \Xi_{1} \triangleright t_{11}$: $G_{11}\left[G_{1}^{\prime \prime} / X\right] \leqslant \Xi_{2} \triangleright t_{22}: G_{22}\left[G_{2}^{\prime \prime} / X\right]$, we know that $t_{22}=v_{22}$.

By the reduction rules, we know that

$$
\begin{aligned}
& \Xi_{1} \triangleright \operatorname{pack}\left\langle G_{1}^{\prime \prime}, v_{11}\right\rangle \text { as } \exists X . G_{11} \longrightarrow \Xi_{1} \triangleright \varepsilon_{\exists X . G_{11}} \operatorname{packu}\left\langle G_{1}^{\prime \prime}, v_{11}\right\rangle \text { as } \exists X . G_{11}:: \exists X . G_{11} \\
& \Xi_{2} \triangleright \operatorname{pack}\left\langle G_{2}^{\prime \prime}, v_{22}\right\rangle \text { as } \exists X . G_{22} \longrightarrow \Xi_{2} \triangleright \varepsilon_{\exists X . G_{22}} \operatorname{packu}\left\langle G_{2}^{\prime \prime}, v_{22}\right\rangle \text { as } \exists X . G_{22}:: \exists X . G_{22}
\end{aligned}
$$

We are required to prove that

$$
\begin{gathered}
\vdash \varepsilon_{\exists X . G_{11}} \text { packu }\left\langle G_{1}^{\prime \prime}, v_{11}\right\rangle \text { as } \exists X . G_{11}:: \exists X . G_{11} \leqslant: \leqslant \\
\varepsilon_{\exists X . G_{22}} \text { packu }\left\langle G_{2}^{\prime \prime}, v_{22}\right\rangle \text { as } \exists X . G_{22}:: \exists X . G_{22}: \exists X . G_{11} \leqslant \exists X . G_{22}
\end{gathered}
$$

This follows immediately by rules $\left(\leqslant \operatorname{packu}_{\varepsilon}\right)$ and $\left(\leqslant \operatorname{asc}_{\varepsilon}\right)$. Note that $\varepsilon_{\exists X . G_{11}} \leqslant \varepsilon_{\exists X . G_{22}}$, by Lemma 10.15.

Case (unpack). We know that

$$
(\leqslant \text { unpack }) \frac{\vdash \Xi_{1} \triangleright t_{11}: \exists X . G_{1} \leqslant \Xi_{2} \triangleright t_{21}: \exists X . G_{2} \quad x: G_{1} \sqsubseteq G_{2} \vdash \Xi_{1} \triangleright t_{12}: G_{1}^{\prime} \leqslant \Xi_{2} \triangleright t_{22}: G_{2}^{\prime}}{\vdash \Xi_{1} \triangleright \text { unpack }\langle X, x\rangle=t_{11} \text { in } t_{12}: G_{1}^{\prime} \leqslant \Xi_{2} \triangleright \text { unpack }\langle X, x\rangle=t_{21} \text { in } t_{22}: G_{2}^{\prime}}
$$

Also, since $\Xi_{1} \triangleright t_{1}^{*} \longrightarrow \Xi_{1}^{\prime} \triangleright t_{1}^{*}$, we know that $t_{11}=\varepsilon_{11}$ packu $\left\langle G_{1}^{\prime \prime}, \varepsilon_{1} u_{1}:: G_{11}\left[G_{1}^{\prime \prime} / X\right]\right\rangle$ as $\exists X . G_{11}::$ $\exists X . G_{1}$. By Proposition 10.27 and $\vdash \Xi_{1} \triangleright t_{11}: \exists X . G_{1} \leqslant \Xi_{2} \triangleright t_{21}: \exists X . G_{2}$, we know that $t_{21}=$ ε_{22} packu $\left\langle G_{2}^{\prime \prime}, \varepsilon_{2} u_{2}:: G_{22}\left[G_{2}^{\prime \prime} / X\right]\right\rangle$ as $\exists X . G_{22}:: \exists X . G_{2}$. By the reduction rules, we know that

$$
\Xi_{1} \triangleright \text { unpack }\langle X, x\rangle=t_{11} \text { in } t_{12} \longrightarrow \Xi_{1}^{\prime} \triangleright t_{12}[\hat{\alpha} / X]\left[\left(\left(\varepsilon_{1} \stackrel{ }{q} \varepsilon_{11}\left[\hat{G_{1}^{\prime \prime}}, \hat{\alpha}\right]\right) u_{1}:: G_{1}[\alpha / X]\right) / x\right]
$$

where $\Xi_{1}^{\prime}=\Xi_{1}, \alpha:=G_{1}^{\prime \prime}$ and $\hat{\alpha_{1}}=\operatorname{lift}_{\Xi_{1}^{\prime}}(\alpha)$.
We know that $\varepsilon_{11} \leqslant \varepsilon_{22}, \Xi_{1}^{\prime} \leqslant \Xi_{2}^{\prime}$ and $G_{1}^{\prime \prime} \leqslant G_{2}^{\prime \prime}$, therefore by Proposition 10.19, we know that $\varepsilon_{11}\left[\hat{G_{1}^{\prime \prime}}, \hat{\alpha}\right] \leqslant \varepsilon_{22}\left[\hat{G_{2}^{\prime \prime}}, \hat{\alpha}\right]$. Therefore, we know that $\left(\varepsilon_{1} \circ \varepsilon_{11}\left[\hat{G_{1}^{\prime \prime}}, \hat{\alpha}\right]\right) \leqslant\left(\varepsilon_{2} \circ \varepsilon_{22}\left[\hat{G_{2}^{\prime \prime}}, \hat{\alpha}\right]\right)$, by Proposition 10.20 and $\varepsilon_{1} \leqslant \varepsilon_{2}$.

Therefore, we know that

$$
\Xi_{2} \triangleright \text { unpack }\langle X, x\rangle=t_{21} \text { in } t_{22} \longrightarrow \Xi_{2}^{\prime} \triangleright t_{22}[\hat{\alpha} / X]\left[\left(\left(\varepsilon_{2} \circ \varepsilon_{22}\left[\hat{G_{2}^{\prime \prime}}, \hat{\alpha}\right]\right) u_{2}:: G_{2}[\alpha / X]\right) / x\right]
$$

where $\Xi_{2}^{\prime}=\Xi_{2}, \alpha:=G_{2}^{\prime \prime}$ and $\hat{\alpha_{2}}=\operatorname{lift}_{\Xi_{2}^{\prime}}(\alpha)$.
Since $\Xi_{1} \leqslant \Xi_{2}$ and $G_{1}^{\prime \prime} \leqslant G_{2}^{\prime \prime}$, we know that $\Xi_{1}^{\prime} \leqslant \Xi_{2}^{\prime}$. Therefore, we only are required to prove that

$$
t_{12}[\hat{\alpha} / X]\left[\left(\left(\varepsilon_{1} \varsubsetneqq \varepsilon_{11}\left[\hat{G_{1}^{\prime \prime}}, \hat{\alpha}\right]\right) u_{1}:: G_{1}[\alpha / X]\right) / x\right]: G_{1}^{\prime} \leqslant t_{22}[\hat{\alpha} / X]\left[\left(\left(\varepsilon_{2} \subsetneq \varepsilon_{22}\left[\hat{G_{2}^{\prime \prime}}, \hat{\alpha}\right]\right) u_{2}:: G_{2}[\alpha / X]\right) / x\right]: G_{2}^{\prime}
$$

By Proposition 10.21 we know that $t_{12}\left[\hat{\alpha_{1}} / X\right] \leqslant t_{22}\left[\hat{\alpha_{2}} / X\right]$.
We know that $\left(\left(\varepsilon_{1} \circ \varepsilon_{11}\left[\hat{G_{1}^{\prime \prime}}, \hat{\alpha}\right]\right) u_{1}:: G_{1}[\alpha / X]\right) \leqslant\left(\left(\varepsilon_{2} \circ \varepsilon_{22}\left[\hat{G_{2}^{\prime \prime}}, \hat{\alpha}\right]\right) u_{2}:: G_{2}[\alpha / X]\right)$, by the Rule $\left(\leqslant \operatorname{asc}_{\varepsilon}\right)$ and since $u_{1} \leqslant u_{2},\left(\varepsilon_{1} \circ \varepsilon_{11}\left[\hat{G_{1}^{\prime \prime}}, \hat{\alpha}\right]\right) \leqslant\left(\varepsilon_{2} \circ \varepsilon_{22}\left[\hat{G_{2}^{\prime \prime}}, \hat{\alpha}\right]\right)$ and $G_{1}[\alpha / X] \sqsubseteq G_{2}[\alpha / X]$ (by Proposition 10.24 and Proposition 10.25). Finally, by Proposition 10.18 the result holds.

Proposition 10.18 (Substitution Preserves Precision). If $\Omega^{\prime}, x: G_{1} \sqsubseteq G_{2} \vdash s_{1} \leqslant s_{2}: G_{1}^{\prime} \leqslant G_{2}^{\prime}$ and $\Omega^{\prime} \vdash v_{1} \leqslant v_{2}: G_{1} \leqslant G_{2}$, then $\Omega^{\prime} \vdash s_{1}\left[v_{1} / x\right] \leqslant s_{2}\left[v_{2} / x\right]: G_{1}^{\prime} \leqslant G_{2}^{\prime}$.

Proof. We follow by induction on $\Omega^{\prime}, x: G_{1} \sqsubseteq G_{2} \vdash t_{1} \leqslant t_{2}: G_{1}^{\prime} \leqslant G_{2}^{\prime}$. We avoid the notation $\Omega^{\prime}, x: G_{1} \sqsubseteq G_{2} \vdash t_{1} \leqslant t_{2}: G_{1}^{\prime} \leqslant G_{2}^{\prime}$, and use $t_{1} \leqslant t_{2}$ instead, for simplicity, when the typing environments are not relevant. Let suppose that $\Omega=\Omega^{\prime}, x: G_{1} \sqsubseteq G_{2}$.
Case (packu). We know that

$$
\left(\leqslant \operatorname{packu}_{\varepsilon}\right) \frac{G_{1}^{* *} \leqslant G_{2}^{* *} \quad \Omega \vdash \Xi_{1} \triangleright v_{1}^{\prime}: G_{1}^{*}\left[G_{1}^{* *} / X\right] \leqslant \Xi_{2} \triangleright v_{2}^{\prime}: G_{2}^{*}\left[G_{2}^{* *} / X\right] \quad \exists X . G_{1}^{*} \sqsubseteq \exists X . G_{2}^{*}}{\Omega \vdash \Xi_{1} \triangleright \operatorname{packu}\left\langle G_{1}^{* *}, v_{1}^{\prime}\right\rangle \text { as } \exists X . G_{1}^{*}: \exists X . G_{1}^{*} \leqslant \Xi_{2} \triangleright \operatorname{packu}\left\langle G_{2}^{* *}, v_{2}^{\prime}\right\rangle \text { as } \exists X . G_{2}^{*}: \exists X . G_{2}^{*}}
$$

Note that we are required to prove that

$$
\Omega \vdash \Xi_{1} \triangleright \operatorname{packu}\left\langle G_{1}^{* *}, v_{1}^{\prime}\left[v_{1} / x\right]\right\rangle \text { as } \exists X . G_{1}^{*}: \exists X . G_{1}^{*} \leqslant \Xi_{2} \triangleright \operatorname{packu}\left\langle G_{2}^{* *}, v_{2}^{\prime}\left[v_{2} / x\right]\right\rangle \text { as } \exists X . G_{2}^{*}: \exists X . G_{2}^{*}
$$

or what is the same $\Omega \vdash \Xi_{1} \triangleright v_{1}^{\prime \prime}\left[v_{1} / x\right]: G_{1}^{*}\left[G_{1}^{* *} / X\right] \leqslant \Xi_{2} \triangleright v_{2}^{\prime \prime}\left[v_{2} / x\right]: G_{2}^{*}\left[G_{2}^{* *} / X\right]$. But the result follows immediately by the induction hypothesis on $\Omega \vdash \Xi_{1} \triangleright v_{1}^{\prime}: G_{1}^{*}\left[G_{1}^{* *} / X\right] \leqslant \Xi_{2} \triangleright v_{2}^{\prime}: G_{2}^{*}\left[G_{2}^{* *} / X\right]$.
Case (pack). We know that

$$
\left(\leqslant \operatorname{pack}_{\varepsilon}\right) \frac{G_{1}^{* *} \leqslant G_{2}^{* *} \quad \Omega \vdash \Xi_{1} \triangleright t_{1}: G_{1}^{*}\left[G_{1}^{* *} / X\right] \leqslant \Xi_{2} \triangleright t_{2}: G_{2}^{*}\left[G_{2}^{* *} / X\right] \quad \exists X . G_{1}^{*} \leqslant \exists X . G_{2}^{*}}{\Omega \vdash \Xi_{1} \triangleright \operatorname{pack}\left\langle G_{1}^{* *}, t_{1}\right\rangle \text { as } \exists X . G_{1}^{*}: \exists X . G_{1}^{*} \leqslant \Xi_{2} \triangleright \operatorname{pack}\left\langle G_{2}^{* *}, t_{2}\right\rangle \text { as } \exists X . G_{2}^{*}: \exists X . G_{2}^{*}}
$$

Note that we are required to prove that

$$
\Omega \vdash \Xi_{1} \triangleright \operatorname{pack}\left\langle G_{1}^{* *}, t_{1}\left[v_{1} / x\right]\right\rangle \text { as } \exists X . G_{1}^{*}: \exists X . G_{1}^{*} \leqslant \Xi_{2} \triangleright \operatorname{pack}\left\langle G_{2}^{* *}, t_{2}\left[v_{2} / x\right]\right\rangle \text { as } \exists X . G_{2}^{*}: \exists X . G_{2}^{*}
$$

or what is the same $\Omega \vdash \Xi_{1} \triangleright t_{1}\left[v_{1} / x\right]: G_{1}^{*}\left[G_{1}^{* *} / X\right] \leqslant \Xi_{2} \triangleright t_{2}\left[v_{2} / x\right]: G_{2}^{*}\left[G_{2}^{* *} / X\right]$. But the result follows immediately by the induction hypothesis on $\Omega \vdash \Xi_{1} \triangleright t_{1}: G_{1}^{*}\left[G_{1}^{* *} / X\right] \leqslant \Xi_{2} \triangleright t_{2}: G_{2}^{*}\left[G_{2}^{* *} / X\right]$.

Case (unpack). We know that
$\left(\leqslant\right.$ unpack $\left._{\varepsilon}\right) \frac{\Omega \vdash \Xi_{1} \triangleright t_{1}: \exists X . G_{1}^{*} \leqslant \Xi_{2} \triangleright t_{2}: \exists X . G_{2}^{*} \quad \Omega, x: G_{1}^{*} \sqsubseteq G_{2}^{*} \vdash \Xi_{1} \triangleright t_{1}^{\prime}: G_{1}^{* *} \leqslant \Xi_{2} \triangleright t_{2}^{\prime}: G_{2}^{* *}}{\Omega \vdash \Xi_{1} \triangleright \text { unpack }\langle X, x\rangle=t_{1} \text { in } t_{1}^{\prime}: G_{1}^{* *} \leqslant \Xi_{2} \triangleright \text { unpack }\langle X, x\rangle=t_{2} \text { in } t_{2}^{\prime}: G_{2}^{* *}}$
Note that we are required to prove that $\Omega^{\prime} \vdash \Xi_{1} \triangleright$ unpack $\langle X, x\rangle=t_{1}\left[v_{1} / x\right]$ in $t_{1}^{\prime}\left[v_{1} / x\right]: G_{1}^{* *} \leqslant$ $\Xi_{2} \triangleright$ unpack $\langle X, x\rangle=t_{2}\left[v_{2} / x\right]$ in $t_{2}^{\prime}\left[v_{2} / x\right]: G_{2}^{* *}$. Or what is the same $\Omega^{\prime} \vdash \Xi_{1} \triangleright t_{1}\left[v_{1} / x\right]: \exists X . G_{1}^{*} \leqslant$ $\Xi_{2} \triangleright t_{2}\left[v_{2} / x\right]: \exists X . G_{1}^{*}$ and $\Omega^{\prime}, x: G_{1}^{*} \sqsubseteq G_{2}^{*} \vdash \Xi_{1} \triangleright t_{1}^{\prime}\left[v_{1} / x\right]: G_{1}^{* *} \leqslant \Xi_{2} \triangleright t_{2}^{\prime}\left[v_{2} / x\right]: G_{2}^{* *}$. But the result follows immediately by the induction hypothesis on $\Omega \vdash \Xi_{1} \triangleright t_{1}: \exists X . G_{1}^{*} \leqslant \Xi_{2} \triangleright t_{2}: \exists X . G_{2}^{*}$ and $\Omega, x: G_{1}^{*} \sqsubseteq G_{2}^{*} \vdash \Xi_{1} \triangleright t_{1}^{\prime}: G_{1}^{* *} \leqslant \Xi_{2} \triangleright t_{2}^{\prime}: G_{2}^{* *}$.

Proposition 10.19. If $\varepsilon_{1} \leqslant \varepsilon_{2}, G_{1} \leqslant G_{2}, \Xi_{1} \leqslant \Xi_{2}, \alpha:=G_{1} \in \Xi_{1}, \alpha:=G_{2} \in \Xi_{2}$ and $\varepsilon_{1}\left[\hat{G_{1}}, \hat{\alpha_{1}}\right]$ is defined, then $\varepsilon_{1}\left[\hat{G_{1}}, \hat{\alpha_{1}}\right] \leqslant \varepsilon_{2}\left[\hat{G_{2}}, \hat{\alpha_{2}}\right]$, where $\hat{\alpha_{1}}=\operatorname{lift}_{\Xi_{1}}(\alpha), \hat{\alpha_{2}}=\operatorname{lift}_{\Xi_{2}}(\alpha), \hat{G_{1}}=\operatorname{lift}_{\Xi_{1}}\left(G_{1}\right)$ and $\hat{G_{2}}=\operatorname{lift}_{\Xi_{2}}\left(G_{2}\right)$.

Proof. Note that $\hat{\alpha_{1}} \leqslant \hat{\alpha_{2}}$ and $\hat{G_{1}} \leqslant \hat{G_{2}}$ by Proposition 10.22. Suppose that $\varepsilon_{1}=\left\langle\exists X . E, \exists X . E^{\prime}\right\rangle$ and $\varepsilon_{2}=\left\langle\exists X . E^{\prime \prime}, \exists X . E^{\prime \prime \prime}\right\rangle$ (since $\varepsilon_{1}\left[\hat{G}_{1}, \hat{\alpha}\right]$ is defined). We are required to prove that

$$
\varepsilon_{1}\left[\hat{G}_{1}, \hat{\alpha_{1}}\right]=\left\langle E\left[\hat{G}_{1} / X\right], E^{\prime}\left[\hat{\alpha_{1}} / X\right]\right\rangle \leqslant\left\langle E^{\prime \prime}\left[\hat{G}_{2} / X\right], E^{\prime \prime \prime}\left[\hat{\alpha_{2}} / X\right]\right\rangle=\varepsilon_{2}\left[\hat{G_{2}}, \hat{\alpha_{2}}\right]
$$

Thus, we are required to prove that $E\left[\hat{G}_{1} / X\right] \leqslant E^{\prime \prime}\left[\hat{G}_{2} / X\right]$ and $E^{\prime}\left[\hat{\alpha_{1}} / X\right] \leqslant E^{\prime \prime \prime}\left[\hat{\alpha_{2}} / X\right]$. Since $\varepsilon_{1} \leqslant \varepsilon_{2}$, we know that $\left\langle\exists X . E, \exists X . E^{\prime}\right\rangle \leqslant\left\langle\exists X . E^{\prime \prime}, \exists X . E^{\prime \prime \prime}\right\rangle$, and therefore $E \leqslant E^{\prime \prime}$ and $E^{\prime} \leqslant E^{\prime \prime \prime}$. By Proposition 10.26 and $\hat{\alpha_{1}} \leqslant \hat{\alpha_{2}}$ and $\hat{G_{1}} \leqslant \hat{G_{2}}$, we know that $E\left[\hat{G_{1}} / X\right] \leqslant E^{\prime \prime}\left[\hat{G_{2}} / X\right]$ and $E^{\prime}\left[\hat{\alpha_{1}} / X\right] \leqslant$ $E^{\prime \prime \prime}\left[\hat{\alpha_{2}} / X\right]$. Therefore the result holds.

Proposition 10.20 (Monotonicity of Evidence Transitivity). If $\varepsilon_{1} \leqslant \varepsilon_{2}, \varepsilon_{3} \leqslant \varepsilon_{4}$, and $\varepsilon_{1} \stackrel{\circ}{9} \varepsilon_{3}$ is defined, then $\varepsilon_{1}{ }_{9} \varepsilon_{3} \leqslant \varepsilon_{2}{ }_{9} \varepsilon_{4}$.

Proof. By definition of consistent transitivity for $=$ and the definition of precision. We only take into account the existential type case.

Case $\left([\exists]-\varepsilon_{i}=\left\langle\exists X . E_{i}, \exists X . E_{i}^{\prime}\right\rangle\right)$. By the definition of \leqslant, we know that $\left\langle E_{1}, E_{1}^{\prime}\right\rangle \leqslant\left\langle E_{2}, E_{2}^{\prime}\right\rangle$ and $\left\langle E_{3}, E_{3}^{\prime}\right\rangle \leqslant\left\langle E_{4}, E_{4}^{\prime}\right\rangle$. By the definition of transitivity we know that $\left\langle\exists X . E_{1}, \exists X . E_{1}^{\prime}\right\rangle \circ\left\langle\exists X . E_{3}, \exists X . E_{3}^{\prime}\right\rangle=$ $\left\langle\exists X . E_{5}, \exists X . E_{5}^{\prime}\right\rangle$ and $\left\langle\exists X . E_{2}, \exists X . E_{2}^{\prime}\right\rangle{ }_{9}^{\circ}\left\langle\exists X . E_{4}, \exists X . E_{4}^{\prime}\right\rangle=\left\langle\exists X . E_{6}, \exists X . E_{6}^{\prime}\right\rangle$, where $\left\langle E_{5}, E_{5}^{\prime}\right\rangle=\left\langle E_{1}, E_{1}^{\prime}\right\rangle$; $\left\langle E_{3}, E_{3}^{\prime}\right\rangle$ and $\left\langle E_{6}, E_{6}^{\prime}\right\rangle=\left\langle E_{2}, E_{2}^{\prime}\right\rangle \stackrel{\circ}{\circ}\left\langle E_{4}, E_{4}^{\prime}\right\rangle$. Therefore, we are required to prove that $\left\langle E_{5}, E_{5}^{\prime}\right\rangle \leqslant$ $\left\langle E_{6}, E_{6}^{\prime}\right\rangle$. But the result follows immediately by the induction hypothesis on $\left\langle E_{1}, E_{1}^{\prime}\right\rangle \leqslant\left\langle E_{2}, E_{2}^{\prime}\right\rangle$ and $\left\langle E_{3}, E_{3}^{\prime}\right\rangle \leqslant\left\langle E_{4}, E_{4}^{\prime}\right\rangle$.

Proposition 10.21 (Monotonicity of Evidence Substitution). If $\Omega \vdash s_{1}^{*} \leqslant s_{2}^{*}: G_{1}^{*} \leqslant G_{2}^{*}$ and $\Xi_{1} \leqslant \Xi_{2}$, then $\Omega[\alpha / X] \vdash s_{1}^{*}\left[\hat{\alpha}_{1} / X\right] \leqslant s_{2}^{*}\left[\hat{\alpha_{2}} / X\right]: G_{1}^{*}[\alpha / X] \leqslant G_{2}^{*}[\alpha / X]$, where $\alpha:=G_{1}^{* *} \in \Xi_{1}$, $\alpha:=G_{2}^{* *} \in \Xi_{2}, \hat{\alpha_{1}}=\operatorname{lift}_{\Xi_{1}}(\alpha)$ and $\hat{\alpha_{2}}=\operatorname{lift}_{\Xi_{2}}(\alpha)$.

Proof. We follow by induction on $\Omega \vdash s_{1}^{*} \leqslant s_{2}^{*}: G_{1}^{*} \leqslant G_{2}^{*}$. We avoid the notation $\Omega \vdash s_{1}^{*} \leqslant s_{2}^{*}$: $G_{1}^{*}[\alpha / X] \leqslant G_{2}^{*}[\alpha / X]$, and use $s_{1}^{*} \leqslant s_{2}^{*}$ instead, for simplicity, when the typing environments are not relevant. We only take into account the cases related to existential types.

Case (packu). We know that

$$
\left(\leqslant \operatorname{packu}_{\varepsilon}\right) \frac{G_{1}^{\prime} \leqslant G_{2}^{\prime} \quad \Omega \vdash \Xi_{1} \triangleright v_{1}: G_{1}\left[G_{1}^{\prime} / Y\right] \leqslant \Xi_{2} \triangleright v_{2}: G_{2}\left[G_{2}^{\prime} / Y\right] \quad \exists Y \cdot G_{1} \sqsubseteq \exists Y \cdot G_{2}}{\Omega \vdash \Xi_{1} \triangleright \operatorname{packu}\left\langle G_{1}^{\prime}, v_{1}\right\rangle \text { as } \exists Y \cdot G_{1}: \exists Y . G_{1} \leqslant \Xi_{2} \triangleright \operatorname{packu}\left\langle G_{2}^{\prime}, v_{2}\right\rangle \text { as } \exists Y \cdot G_{2}: \exists Y \cdot G_{2}}
$$

We are required to show

$$
\begin{gathered}
\Omega[\alpha / X] \vdash \Xi_{1} \triangleright \operatorname{packu}\left\langle G_{1}^{\prime}[\alpha / X], v_{1}\left[\hat{\alpha_{1}} / X\right]\right\rangle \text { as } \exists Y . G_{1}[\alpha / X]: \leqslant \Xi_{2} \triangleright: \\
\quad \operatorname{packu}\left\langle G_{2}^{\prime}, v_{2}\left[\hat{\alpha_{1}} / X\right]\right\rangle \text { as } \exists Y . G_{2}: \exists Y . G_{1}[\alpha / X] \leqslant \exists Y . G_{2}[\alpha / X]
\end{gathered}
$$

Note that $G_{1}^{\prime}[\alpha / X] \leqslant G_{2}^{\prime}[\alpha / X]$ by Proposition 10.26 and $\exists Y . G_{1}[\alpha / X] \sqsubseteq \exists Y . G_{2}[\alpha / X]$ by Proposition 10.25. Therefore, we are required to prove $\Omega[\alpha / X] \vdash \Xi_{1} \triangleright\left(v_{1}\left[\hat{\alpha_{1}} / X\right]\right): G_{1}\left[G_{1}^{\prime} / Y\right][\alpha / X] \leqslant$ $\Xi_{2} \triangleright\left(v_{2}\left[\hat{\alpha_{2}} / X\right]\right): G_{2}\left[G_{2}^{\prime} / Y\right][\alpha / X]$. But the results follows immediately by the induction hypothesis on $\Omega \vdash \Xi_{1} \triangleright v_{1}: G_{1}\left[G_{1}^{\prime} / Y\right] \leqslant \Xi_{2} \triangleright v_{2}: G_{2}\left[G_{2}^{\prime} / Y\right]$.

Case (pack). We know that

$$
\left(\leqslant \operatorname{pack}_{\varepsilon}\right) \frac{G_{1}^{\prime} \leqslant G_{2}^{\prime} \quad \Omega \vdash \Xi_{1} \triangleright t_{1}: G_{1}\left[G_{1}^{\prime} / Y\right] \leqslant \Xi_{2} \triangleright t_{2}: G_{2}\left[G_{2}^{\prime} / Y\right] \quad \exists Y \cdot G_{1} \leqslant \exists Y \cdot G_{2}}{\Omega \vdash \Xi_{1} \triangleright \operatorname{pack}\left\langle G_{1}^{\prime}, t_{1}\right\rangle \text { as } \exists Y \cdot G_{1}: \exists Y \cdot G_{1} \leqslant \Xi_{2} \triangleright \operatorname{pack}\left\langle G_{2}^{\prime}, t_{2}\right\rangle \text { as } \exists Y \cdot G_{2}: \exists Y \cdot G_{2}}
$$

We are required to show

$$
\begin{gathered}
\Omega[\alpha / X] \vdash \Xi_{1} \triangleright \operatorname{pack}\left\langle G_{1}^{\prime}[\alpha / X], t_{1}\left[\hat{\alpha_{1}} / X\right]\right\rangle \text { as } \exists Y \cdot G_{1}[\alpha / X]: \leqslant \Xi_{2} \triangleright: \\
\operatorname{pack}\left\langle G_{2}^{\prime}, t_{2}\left[\hat{\alpha_{1}} / X\right]\right\rangle \text { as } \exists Y . G_{2}: \exists Y \cdot G_{1}[\alpha / X] \leqslant \exists Y . G_{2}[\alpha / X]
\end{gathered}
$$

Note that $G_{1}^{\prime}[\alpha / X] \leqslant G_{2}^{\prime}[\alpha / X]$ by Proposition 10.26 and $\exists Y . G_{1}[\alpha / X] \leqslant \exists Y . G_{2}[\alpha / X]$ by Proposition 10.26. Therefore, we are required to prove $\Omega[\alpha / X] \vdash \Xi_{1} \triangleright\left(t_{1}\left[\hat{\alpha_{1}} / X\right]\right): G_{1}\left[G_{1}^{\prime} / Y\right][\alpha / X] \leqslant$ $\Xi_{2} \triangleright\left(t_{2}\left[\hat{\alpha_{2}} / X\right]\right): G_{2}\left[G_{2}^{\prime} / Y\right][\alpha / X]$. But the results follows immediately by the induction hypothesis on $\Omega \vdash \Xi_{1} \triangleright t_{1}: G_{1}\left[G_{1}^{\prime} / Y\right] \leqslant \Xi_{2} \triangleright t_{2}: G_{2}\left[G_{2}^{\prime} / Y\right]$.

Case (unpack). We know that

$$
\left(\leqslant \text { unpack }_{\varepsilon}\right) \frac{\Omega \vdash \Xi_{1} \triangleright t_{1}: \exists Y . G_{1} \leqslant \Xi_{2} \triangleright t_{2}: \exists Y \cdot G_{2} \quad \Omega, x: G_{1} \sqsubseteq G_{2} \vdash \Xi_{1} \triangleright t_{1}^{\prime}: G_{1}^{\prime} \leqslant \Xi_{2} \triangleright t_{2}^{\prime}: G_{2}^{\prime}}{\Omega \vdash \Xi_{1} \triangleright \text { unpack }\langle Y, x\rangle=t_{1} \text { in } t_{1}^{\prime}: G_{1}^{\prime} \leqslant \Xi_{2} \triangleright \text { unpack }\langle Y, x\rangle=t_{2} \text { in } t_{2}^{\prime}: G_{2}^{\prime}}
$$

We are required to show
$\Omega[\alpha / X] \vdash \Xi_{1} \triangleright$ unpack $\langle Y, x\rangle=t_{1}\left[\hat{\alpha}_{1} / X\right]$ in $t_{1}^{\prime}\left[\hat{\alpha_{1}} / X\right]: G_{1}^{\prime}[\alpha / X] \leqslant \Xi_{2} \triangleright$ unpack $\langle Y, x\rangle=t_{2}\left[\hat{\alpha_{2}} / X\right]$ in $t_{2}^{\prime}\left[\hat{\alpha_{2}} / X\right]: G_{2}^{\prime}[\alpha / X]$
Therefore, we are required to prove $\Omega[\alpha / X] \vdash \Xi_{1} \triangleright\left(t_{1}\left[\hat{\alpha_{1}} / X\right]\right): \exists Y \cdot G_{1}[\alpha / X] \leqslant \Xi_{2} \triangleright\left(t_{2}\left[\hat{\alpha_{2}} / X\right]\right)$: $\exists Y . G_{2}[\alpha / X]$ and $\Omega[\alpha / X], x: G_{1}[\alpha / X] \sqsubseteq G_{2}[\alpha / X] \vdash \Xi_{1} \triangleright\left(t_{1}^{\prime}\left[\hat{\alpha_{1}} / X\right]\right): G_{1}^{\prime}[\alpha / X] \leqslant \Xi_{2} \triangleright\left(t_{2}^{\prime}\left[\hat{\alpha_{2}} / X\right]\right):$ $G_{2}^{\prime}[\alpha / X]$. But the results follows immediately by the induction hypothesis on $\Omega \vdash \Xi_{1} \triangleright t_{1}: \exists Y . G_{1} \leqslant$ $\Xi_{2} \triangleright t_{2}: \exists Y . G_{2}$ and $\Omega, x: G_{1} \sqsubseteq G_{2} \vdash \Xi_{1} \triangleright t_{1}^{\prime}: G_{1}^{\prime} \leqslant \Xi_{2} \triangleright t_{2}^{\prime}: G_{2}^{\prime}$.

Proposition 10.22 (Lift Environment Precision). If $G_{1} \leqslant G_{2}$ and $\Xi_{1} \leqslant \Xi_{2}$, then $\hat{G}_{1} \leqslant \hat{G}_{2}$, where $\hat{G}_{1}=\operatorname{lift}_{\Xi_{1}}\left(G_{1}\right)$ and $\hat{G_{2}}=\operatorname{lift}_{\Xi_{2}}\left(G_{2}\right)$.

Proof. Remember that

$$
\operatorname{lift}_{\Xi}(G)= \begin{cases}\operatorname{lift}_{\Xi}\left(G_{1}\right) \rightarrow \text { lift }_{\Xi}\left(G_{2}\right) & G=G_{1} \rightarrow G_{2} \\ \forall X . \text { lift }_{\Xi}\left(G_{1}\right) & G=\forall X . G_{1} \\ \exists X . \operatorname{lift}_{\Xi}\left(G_{1}\right) & G=\exists X . G_{1} \\ \operatorname{lift}_{\Xi}\left(G_{1}\right) \times \operatorname{lift}_{\Xi}\left(G_{2}\right) & G=G_{1} \times G_{2} \\ \alpha \operatorname{lift}_{\Xi}(\Xi(\alpha)) & G=\alpha \\ G & \text { otherwise }\end{cases}
$$

The prove follows by the definition of $\hat{G}_{1}=\operatorname{lift}_{\Xi_{1}}\left(G_{1}\right)$ and induction on the structure of the type.
Case $\left(G_{i}=\exists X . G_{i}^{\prime}\right)$. We know that $G_{1}^{\prime} \leqslant G_{2}^{\prime}$. We are required to prove that $\exists X$.lift $t_{\Xi_{1}}\left(G_{1}^{\prime}\right) \leqslant$ $\exists X$.lift $\Xi_{\Xi_{2}}\left(G_{2}^{\prime}\right)$, or what is the same lift $_{\Xi_{1}}\left(G_{1}^{\prime}\right) \leqslant$ lift $_{\Xi_{2}}\left(G_{2}^{\prime}\right)$. By the induction hypothesis on $G_{1}^{\prime} \leqslant G_{2}^{\prime}$ and $\Xi_{1} \leqslant \Xi_{2}$ the result follows immediately.

Proposition 10.23. If $G_{1}^{*} \leqslant G_{2}^{*}$ then $G_{1}^{*} \sqsubseteq G_{2}^{*}$.
Proof. Examining \leqslant rules.
Case $\left(\exists X . G_{1} \leqslant \exists X . G_{2}\right)$. We know that

$$
\frac{G_{1} \leqslant G_{2}}{\exists X \cdot G_{1} \leqslant \exists X \cdot G_{2}}
$$

By the induction hypothesis on $G_{1} \leqslant G_{2}$, we know that $G_{1} \sqsubseteq G_{2}$. We are required to prove that $\exists X . G_{1} \sqsubseteq \exists X . G_{2}$, which follows immediately by the rule

$$
\frac{G_{1} \sqsubseteq G_{2}}{\exists X . G_{1} \sqsubseteq \exists X . G_{2}}
$$

Proposition 10.24. If $G_{1}^{*} \sqsubseteq G_{2}^{*}$ and $G_{1}^{\prime} \sqsubseteq G_{2}^{\prime}$ then $G_{1}^{*}\left[G_{1}^{\prime} / X\right] \sqsubseteq G_{2}^{*}\left[G_{2}^{\prime} / X\right]$.
Proof. Follow by induction on $G_{1}^{*} \sqsubseteq G_{2}^{*}$. We only take into account the existential type case.
Case $\left(\exists X . G_{1} \sqsubseteq \exists X . G_{2}\right)$. We know that

$$
\frac{G_{1} \sqsubseteq G_{2}}{\exists X . G_{1} \sqsubseteq \exists X . G_{2}}
$$

By the definition of \sqsubseteq, we know that $G_{1} \sqsubseteq G_{2}$. We are required to prove that

$$
\left(\exists X . G_{1}\right)\left[G_{1}^{\prime} / X\right]=\left(\exists X . G_{1}\left[G_{1}^{\prime} / X\right]\right) \sqsubseteq\left(\exists X . G_{2}\left[G_{2}^{\prime} / X\right]\right)=\left(\exists X . G_{2}\right)\left[G_{2}^{\prime} / X\right]
$$

Or what is the same that $\left(G_{1}\left[G_{1}^{\prime} / X\right]\right) \sqsubseteq\left(G_{2}\left[G_{2}^{\prime} / X\right]\right)$. But the result follows immediately by the induction hypothesis on $G_{1} \sqsubseteq G_{2}$.

Proposition 10.25. If $G_{1} \sqsubseteq G_{2}$ and $G_{1}^{\prime} \leqslant G_{2}^{\prime}$ then $G_{1}\left[G_{1}^{\prime} / X\right] \sqsubseteq G_{2}\left[G_{2}^{\prime} / X\right]$.
Proof. By Proposition 10.23 and Proposition 10.24 the results follows immediately.
Proposition 10.26. If $G_{1} \leqslant G_{2}$ and $G_{1}^{\prime} \leqslant G_{2}^{\prime}$ then $G_{1}\left[G_{1}^{\prime} / X\right] \leqslant G_{2}\left[G_{2}^{\prime} / X\right]$.

Proof. Straightforward induction on $G_{1} \leqslant G_{2}$. Very similar to Proposition 10.24.
Proposition 10.27. If $v_{1} \leqslant t_{2}$ then $t_{2}=v_{2}$.
Proof. Exploring \leqslant rules.
Proposition 10.28. If $\Xi_{1} \vdash t_{1} \leqslant \Xi_{2} \vdash t_{2}$ and $\Xi_{1} \triangleright t_{1} \longmapsto \Xi_{1}^{\prime} \triangleright t_{1}^{\prime}$, then $\Xi_{2} \triangleright t_{2} \longmapsto \Xi_{2}^{\prime} \triangleright t_{2}^{\prime}$ and $\Xi_{1}^{\prime} \vdash t_{1}^{\prime} \leqslant \Xi_{2}^{\prime} \vdash t_{2}^{\prime}$.

Proof. If $\Xi_{1} \vdash t_{1} \leqslant \Xi_{2} \vdash t_{2}$, we know that $\vdash t_{1} \leqslant t_{2}: G_{1} \leqslant G_{2}, \Xi_{1} \leqslant \Xi_{2}, \Xi_{1} \vdash t_{1}: G_{1}$ and $\Xi_{2} \vdash t_{2}: G_{2}$. We avoid the notation $\vdash t_{1} \leqslant t_{2}: G_{1} \leqslant G_{2}$, and use $t_{1} \leqslant t_{2}$ instead, for simplicity, when the typing environments are not relevant.

By induction on reduction $\Xi_{1} \triangleright t_{1} \longmapsto \Xi_{1}^{\prime} \triangleright t_{1}^{\prime}$. We only take into account the existential unpack case.

Case $\left(\Xi_{1} \triangleright\right.$ unpack $\langle X, x\rangle=t_{11}$ in $t_{12} \longmapsto \Xi_{1}^{\prime} \triangleright$ unpack $\langle X, x\rangle=t_{11}^{\prime}$ in t_{12}). By inspection of $\leqslant, t_{2}=$ unpack $\langle X, x\rangle=t_{21}$ in t_{22}, where $t_{11} \leqslant t_{21}$ and $t_{12} \leqslant t_{22}$. By induction hypothesis on $\Xi_{1} \triangleright t_{11} \longmapsto \Xi_{1}^{\prime} \triangleright t_{11}^{\prime}$, we know that $\Xi_{2} \triangleright t_{21} \longmapsto \Xi_{2}^{\prime} \triangleright t_{21}^{\prime}$, where $\Xi_{1}^{\prime} \vdash t_{11}^{\prime} \leqslant \Xi_{2}^{\prime} \vdash t_{21}^{\prime}$. Then, by \leqslant, we know that $\Xi_{1}^{\prime} \vdash$ unpack $\langle X, x\rangle=t_{11}^{\prime}$ in $t_{12} \leqslant \Xi_{2}^{\prime} \vdash$ unpack $\langle X, x\rangle=t_{21}^{\prime}$ in t_{22} and the result holds.

[^0]: *This work is partially funded by CONICYT/FONDECYT Regular/1190058, CONICYT/Doctorado Nacional/2015-21150510 \& 21151566.

[^1]: Authors' addresses: Elizabeth Labrada, University of Chile, PLEIAD Lab, Computer Science Department (DCC), Beauchef 851, Santiago, Chile; Matías Toro, University of Chile, PLEIAD Lab, Computer Science Department (DCC), Beauchef 851, Santiago, Chile; Éric Tanter, University of Chile, PLEIAD Lab, Computer Science Department (DCC), Beauchef 851, Santiago, Chile.

