
Gradual System F: Auxiliary Definitions and Proofs

ELIZABETH LABRADA, University of Chile, Chile
MATÍAS TORO, University of Chile, Chile
ÉRIC TANTER, University of Chile, Chile

Bringing the bene�ts of gradual typing to a language with parametric polymorphism like System F, while
preserving relational parametricity, has proven extremely challenging: �rst attempts were formulated a decade
ago, and several designs have been recently proposed, with varying syntax, behavior, and properties. Starting
from a detailed review of the challenges and tensions that a�ect the design of gradual parametric languages,
this work presents an extensive account of the semantics and metatheory of GSF, a gradual counterpart of
System F. In doing so, we also report on the extent to which the Abstracting Gradual Typing methodology can
help us derive such a language. Among gradual parametric languages that follow the syntax of System F, GSF
achieves a unique combination of properties. We clearly establish the bene�ts and limitations of the language,
and discuss several extensions of GSF towards a practical programming language.

CCS Concepts: • Theory of computation→ Type structures; Program semantics;

Additional Key Words and Phrases: Gradual typing, polymorphism, parametricity

∗This work is partially funded by CONICYT/FONDECYT Regular/1190058, CONICYT/Doctorado Nacional/2015-21150510 &
21151566.

Authors’ addresses: Elizabeth Labrada, University of Chile, PLEIAD Lab, Computer Science Department (DCC), Beauchef
851, Santiago, Chile; Matías Toro, University of Chile, PLEIAD Lab, Computer Science Department (DCC), Beauchef 851,
Santiago, Chile; Éric Tanter, University of Chile, PLEIAD Lab, Computer Science Department (DCC), Beauchef 851, Santiago,
Chile.

2 Elizabeth Labrada, Matías Toro, and Éric Tanter

C�������

Contents 2
1 SF: Well-formedness 3
2 GSF: Statics 4
2.1 Syntax and Syntactic Meaning of Gradual Types 4
2.2 Lifting the Static Semantics 5
2.3 Well-formedness 8
2.4 Static Properties 8
2.4.1 Static Equivalence for Static Terms 8
2.4.2 Static Gradual Guarantee 9
3 GSF: Dynamics 14
3.1 Evidence Type Precision 14
3.2 Initial Evidence 14
3.3 Consistent Transitivity 15
3.4 GSF� : Dynamic Semantics 15
3.5 Translation from GSF to GSF� 16
4 GSF: Properties 18
4.1 Type Safety 18
4.2 Static Terms Do Not Fail 22
5 GSF and The Dynamic Gradual Guarantee 25
5.1 Evidence Type Precision 25
5.2 Monotonicity of Evidence Transitivity and Instantiation 25
5.3 Weak Dynamic Gradual Guarantee for GSF 33
5.4 Syntactic Strict Precision for GSF 41
6 GSF: Parametricity 47
6.1 Auxiliary De�nitions 47
6.2 Fundamental Property 47
6.3 Contextual Equivalence 81
7 Parametricity vs. the DGG in GSF 83
8 A Cheap Theorem in GSF 84
9 Embedding Dynamic Sealing in GSF 86
10 Gradual Existential Types in GSF 110
10.1 Existential types: primitive or encoded? 110
10.2 Translation from GSF9 to GSF9� 111
10.3 Properties of GSF9 111
10.4 GSF9: Parametricity 112
10.5 A Weak Dynamic Gradual Guarantee for GSF9 125

Gradual System F: Auxiliary Definitions and Proofs 3

1 SF: WELL-FORMEDNESS
In this section we present auxiliary de�nitions for well-formedness of type name stores, and
well-formedness of types.

De�nition 1.1 (Well-formedness of the type name store).

` ·
� < � � ; · ` T ` �

` �,� : T

De�nition 1.2 (Well-formedness of types).
` �

� ;� ` B
� ;� ` T1 � ;� ` T2

� ;� ` T1 ! T2

�;�,X ` T
� ;� ` 8X .T

� ;� ` T1 � ;� ` T2
� ;� ` T1 ⇥T2

` � X 2 �
� ;� ` X

` � � : T 2 �
� ;� ` �

4 Elizabeth Labrada, Matías Toro, and Éric Tanter

2 GSF: STATICS
In this section we present auxiliary de�nitions and proofs of the statics semantics of GSF not
presented in the paper.

2.1 Syntax and Syntactic Meaning of Gradual Types
P���������� 6.2 (P��������, �����������). The inductive de�nition of type precision given in

Figure 3 is equivalent to De�nition 6.1.

P����. Direct by induction on the type structure of G1 and G2. We only present representative
cases to illustrate the reasoning used in the proof. We prove �rst that C(G1) ✓ C(G2)) G1 v G2,
where G1 v G2 stands for the inductive de�nition given in Figure 3.

Case (G1 = B,G2 = B). Then { B } ✓ { B }, but we already know that B v B and the result holds.

Case (G1 = G,G2 = ?). Then C(G) ✓ C(?) = T���, but G v ? is an axiom and the result holds.

Case (G1 = 8X .G 0
1,G2 = 8X .G 0

2). Then we know that {8X .T | T 2 C(G 0
1) } ✓ {8X .T | T 2 C(G 0

1) },
then it must be the case that C(G 0

1) ✓ C(G 0
2). Then by induction hypothesis G1 v G2, then by

inductive de�nition of precision for type abstractions, 8X .G1 v 8X .G2 and the result holds.

Then we prove the other direction, i.e. G1 v G2) C(G1) ✓ C(G2).
Case (G1 = B,G2 = B). Then B v B, but we already know that { B } ✓ { B } and the result holds.

Case (G1 = G,G2 = ?). Then G v ?, but C(G) ✓ C(?) = T��� and the result holds.

Case (G1 = 8X .G 0
1,G2 = 8X .G 0

2). Then we know that 8X .G1 v 8X .G2, then by looking at the
premise of the corresponding de�nition,G 0

1 v G
0
2. Then by induction hypothesisC(G 0

1) ✓ C(G 0
2). But

we have to prove that {8X .T | T 2 C(G 0
1) } ✓ {8X .T | T 2 C(G 0

1) }, which is direct from C(G 0
1) ✓

C(G 0
2).

⇤

P���������� 6.3 (G����� ����������). hC,Ai is a Galois connection, i.e.:
a) (Soundness) for any non-empty set of static types S = {T }, we have S ✓ C (A(S))
b) (Optimality) for any gradual type G, we have A(C (G)) v G.

P����. We �rst proceed to prove a) by induction on the structure of the non-empty set S .

Case ({ B }). Then A({ B }) = B. But C(B) = { B } and the result holds.

Case ({Ti1 ! Ti2 }). Then A({Ti1 ! Ti2 }) = A({Ti1 }) ! A({Ti2 }). But by de�nition of C ,
C(A({Ti1 }) ! A({Ti2 })) = {T1 ! T2 | T1 2 C (A({Ti1 })),T2 2 C (A({Ti2 }))}. By induc-
tion hypotheses, {Ti1 } ✓ C(A({Ti1 })) and {Ti2 } ✓ C(A({Ti2 })), therefore {Ti1 ! Ti2 } ✓
{T1 ! T2 | T1 2 {Ti1 } ,T2 2 {Ti2 } } ✓ {T1 ! T2 | T1 2 C (A({Ti1 })),T2 2 C (A({Ti2 }))} and
the result holds.

Case ({Ti1 ⇥Ti2 }). We proceed analogous to case {Ti1 ! Ti2 }.
Case ({X }, { � }). We proceed analogous to case { B }.
Case ({8X .Ti }). Then A({8X .Ti }) = 8X .A({Ti }). But by de�nition of C , C(8X .A({Ti })) =
{8X .T | T 2 C (A({Ti }))}. By induction hypothesis, {Ti } ✓ C(A({Ti })), therefore {8X .Ti } =
{8X .T | T 2 {Ti } } ✓ {8X .T | T 2 C (A({Ti }))} and the result holds.

Case ({Ti } heterogeneous). ThenA({Ti }) = ? and thereforeC(A({Ti })) = T���, but {Ti } ✓ T���
and the result holds.

Gradual System F: Auxiliary Definitions and Proofs 5

Now let us proceed to prove b) by induction on gradual type G.

Case (B). Trivial because C(B) = { B }, and A({ B }) = B.

Case (G1 ! G2). We have to prove that A(C(G1 ! G2)) v G1 ! G2, which is equivalent to prove
that C(A(ÛT)) ✓ ÛT , where ÛT = C(G1 ! G2) = {T1 ! T2 | T1 2 C(G1),T2 2 C(G2) }. Then ÛT has the
form {Ti1 ! Ti2 }, such that 8i,Ti1 2 C(G1) and Ti2 2 C(G2). Also note that {Ti1 } = C(G1) and
{Ti2 } = C(G2). But by de�nition of A, A({Ti1 ! Ti2 }) = A({Ti1 }) ! A({Ti2 }) and therefore
C(A({Ti1 }) ! A({Ti2 })) = {T1 ! T2 | T1 2 C(A({Ti1 })),T2 2 C(A({Ti2 }))}. But by induction
hypotheses C(A({Ti1 })) ✓ C(G1) and C(A({Ti2 })) ✓ C(G2) and the result holds.

Case (G1 ⇥G2). We proceed analogous to case G1 ! G2.

Case (X , �). We proceed analogous to case B.

Case (8X .G). We have to prove that A(C(8X .G)) v 8X .G, which is equivalent to prove that
C(A(ÛT)) ✓ ÛT , where ÛT = C(8X .G) = {8X .T | T 2 C(G) }. Then ÛT has the form {8X .Ti }, such that
8i,Ti 2 C(G). Also note that {Ti } = C(G). But by de�nition of A, A({8X .Ti }) = 8X .A({Ti }) and
therefore C(8X .A({Ti })) = {8X .T | T 2 C(A({Ti }))}. But by induction hypothesis C(A({Ti })) ✓
C(G) and the result holds.

Case (?). Then we have to prove that C(A(?)) ✓ C(?) = T���, but this is always true and the result
holds immediately.

⇤

2.2 Li�ing the Static Semantics
De�nition 2.1 (Store precision). �1 v �2 if and only if dom(�1) = dom(�2) and8� 2 dom(�1),�1(�) v

�2(�).
L���� 2.2. If �1 v �2, ` �i , G1 v G2, and �1;� ` G1, then �2;� ` G2.

P����. Straightforward induction on relation G1 v G2. We only present interesting cases.

Case (G1 = 8X .G 0
1,G2 = 8X .G 0

2). By de�nition of precision G
0
1 v G

0
1. By de�nition of well-

formedness of types, �1;X ` G 0
1 and then by induction hypothesis �2;�,X ` G 0

2. Then by de�nition
of well-formedness of types �2;� ` 8X .G 0

2 and the result holds.

Case (G2 = ?). This is trivial because as ` �2, then �2;� ` ?.
Case (G1 = �,G2 = �). Trivial by de�nition of �1 v �2, � 2 dom(�2), therefore � : G 0

2 2 �2 and
then �2;� ` � .

⇤

L���� 2.3. Let �1 v �2, then ` �1)` �2.

P����. By induction on relation �1 v �2.

Case (· v ·). Trivial as ` ·.
Case (�0

1,� : G1 v �0
2,� : G2). By de�nition of store precision we know that �0

1 v �0
2 and that

G1 v G2. By de�nition of well-formedness, ` �0
1,� : G1)` �0

1, therefore by induction hypothesis
` �0

2. We only have left to prove is that �0
2; · ` G2, which follows directly from Lemma 2.2.

⇤

6 Elizabeth Labrada, Matías Toro, and Éric Tanter

L���� 2.4. If � 2 C(�) and ` � , then ` �
P����. Corollary of Lemma 2.3 as � v �. ⇤

L���� 2.5. If �;� ` T1 = T2, then �;� ` T1 and �;� ` T2.
P����. By induction on relation �;� ` T1 = T2. Most cases are straightforward, so we present

only the interesting cases.

Case (T1 = 8X .T 0
1 ,T2 = 8X .T 0

2). As �;� ` 8X .T 0
1 = 8X .T 0

2 , by inspection of the derivation rule,
�;�,X ` T

0
1 = T

0
2 . By induction hypotheses we know that �;�,X ` T

0
1 , and that �;�,X ` T

0
2 .

Therefore by well-formedness of types we know that �;� ` 8X .T 0
1 and that �;� ` 8X .T 0

2 and the
result holds.

Case (T1 = X ,T2 = X). As �;� ` X = X , then we know by inspection of the derivation rule that
` � and that X 2 �. Then as ` � and that X 2 �, �;� ` X and the result holds.

⇤

P���������� 6.6 (C����������, �����������). The inductive de�nition of type consistency given
in Figure 3 is equivalent to De�nition 6.5.

P����. First we prove that �;� ` T1 = T2 for some � 2 C (�), Ti 2 C (Gi) implies that �;� `
G1 ⇠ G2, where �;� ` G1 ⇠ G2 stands for the inductive de�nition of consistency. We proceed by
straightforward induction onGi such that the predicate holds (we only show interesting cases). By
Lemma 2.4 we know that if ` � then ` �, which will be assumed to be true whenever is needed.

Case (G1 = B,G2 = B). Then �;� ` B = B, but we already know that � ` B ⇠ B and the result
holds.

Case (G1 = G,G2 = ?). We know that �;� ` T1 = T2 for some T1 2 C(G) and T2 2 C(?). Then
by Lemma 2.5, �;� ` T1, and as � v � and T1 v G, by Lemma 2.2, �;� ` G. Then as �;� ` G,
G ⇠ ? = T��� and the result holds.

Case (G1 = 8X .G 0
1,G2 = 8X .G 0

2). Then we know that �;� ` 8X .T1 = 8X .T2 where 8X .T1 2
C(8X .G 0

1),8X .T2 2 C(8X .G 0
1). Notice that T1 2 C(G 0

1), T2 2 C(G 0
2), and that �;�,X ` T1 = T2. Then

by induction hypotheses, � ` G 0
1 ⇠ G

0
2[�,X], and therefore �;� ` 8X .G 0

1 ⇠ 8X .G 0
2 and the result

holds.

Then we prove the other direction, i.e. G1 v G2) C(G1) ⇠ C(G2).
Case (G1 = B,G2 = B). Then B v B, but we already know that B 2 C(B) and �;� ` B = B, and the
result holds immediately.

Case (G1 = G,G2 = ?). ThenG v ?. LetT1 2 C(G) and � 2 C(�) such that � ;� ` T1. AsC(?) = T���,
we can choose T1 2 T���, so �;� ` T1 = T1, and the result holds.

Case (G1 = 8X .G 0
1,G2 = 8X .G 0

2). Then we know that �;� ` 8X .G 0
1 ⇠ 8X .G 0

2, then by looking at
the premise of the corresponding de�nition, �;�,X ` G

0
1 ⇠ G

0
2. Then by induction hypotheses

9T1 2 C(G 0
1),T2 2 C(G 0

2), � 2 C(�), such that �;�,X ` T1 = T2. By de�nition of consistency
8X .Ti 2 C(Gi). Then by de�nition of equality, �;� ` 8X .T1 = 8X .T2 and the result holds.

⇤

De�nition 6.7 (Consistent lifting of functions). Let Fn be a function of type T���n ! T���. Its
consistent lifting F

]
n , of type GT���n ! GT���, is de�ned as: F]

n (G) = A({ Fn(T) | T 2 C (G) })

Gradual System F: Auxiliary Definitions and Proofs 7

L���� 2.6. G = A(C(G))
P����. Then we have to prove that G = A(C(G)). By optimality (Prop 6.3.b), we know that

A(C(G)) v G, and by soundness (Prop 6.3.a), C(G) ✓ C(A(C(G))), i.e. G v A(C(G)). Therefore
G v A(C(G)) and A(C(G)) v G, thus G = A(C(G)) and the result holds. ⇤

L���� 2.7. G[G 0/X] = A({T [T 0/X] | T 2 C(G),T 0 2 C(G 0) }).
P����. We proceed by induction on G. We only present interesting cases.

Case (G = X). Then G[G 0/X] = G
0, and C(G) = {X }. Then we have to prove that G 0 =

A({T 0 | T 0 2 C(G 0) }). But notice that A({T 0 | T 0 2 C(G 0) }) = A(C(G 0)) and by Lemma 2.6 the
result holds immediately.

Case (G = ?). Then G[G 0/X] = ?, and C(G) = T���. Then we have to prove that
? = A({T [T 0/X] | T 2 T���,T 0 2 C(G 0) }). But notice that A({T [T 0/X] | T 2 T���,T 0 2 C(G 0) }) =
A(C(T���)) and by Lemma 2.6 the result holds immediately.

Case (G = 8Y .G 00). Then G[G 0/X] = 8Y .G 00[G 0/X], and C(G) = 8Y .C(G 00). Then we have to prove
that 8Y .G 00[G 0/X] = A({8Y .T 00[T 0/X] | T 00 2 C(G 00),T 0 2 C(G 0) }). But notice that by de�nition of
abstractionA({8Y .T 00[T 0/X] | T 00 2 C(G 00),T 0 2 C(G 0) }) = 8Y .A({T 00[T 0/X] | T 00 2 C(G 00),T 0 2 C(G 0) }).
Then by induction hypothesis onG 00,G 00[G 0/X] = A({T 00[T 0/X] | T 00 2 C(G 00),T 0 2 C(G 0) }), there-
fore 8Y .G 00[G 0/X] = 8Y .A({T 00[T 0/X] | T 00 2 C(G 00),T 0 2 C(G 0) }) and the result holds.

⇤

P���������� 6.8 (C��������� ���� ���������). The de�nitions of dom] , cod] , inst] , and proj]i
given in Fig. 3 are consistent liftings, as per Def. 6.7, of the corresponding functions from Fig. 1.

P����. We present the proof for inst] and dom] (the other proofs are analogous).
First we prove that inst](G,G 0) = A(ĩnst(C2(G,G 0))), where inst](G,G 0) correspond to the algo-

rithmic de�nitions presented in Fig. 3. Notice that

A(ĩnst(C2(G,G 0)))
= A(ĩnst({ hT ,T 0i | T 2 C(G),T 0 2 C(G 0) }))
= A({T [T 0/X] | 8X .T 2 C(G),T 0 2 C(G 0) })

But then the result follows immediately from Lemma 2.7.
Then we prove that dom](G) = A(d̄om(C(G))), where dom](G) correspond to the algorithmic

de�nitions presented in Fig. 3. We proceed by induction on G.

Case (G = G1 ! G2). Notice that

A(d̄om(C(G)))

= A(d̄om(C(G1 ! G2)))

= A(d̄om({T1 ! T2 | T1 2 C(G1),T2 2 C(G2) }))
= A({T1 | T1 2 C(G1) })
= A(C(G1))

But dom](G1 ! G2) = G1. Then we have to prove thatG1 = A(C(G1)) which holds immediately by
Lemma 2.6.

8 Elizabeth Labrada, Matías Toro, and Éric Tanter

Case (G = ?). Notice that

A(d̄om(C(G)))

= A(d̄om(C(?)))

= A(d̄om(T���))
= A(T���)
= ?

and the result holds immediately as dom](?) = ?.

Case (G , ? , G1 ! G2). If G has not the form G1 ! G2, or is not ?, then dom](G) is unde�ned.
Then as ö,T 2 C(G) such that T = T1 ! T2 the result holds immediately as dom(T) is unde�ned
8T 2 C(G).

⇤

2.3 Well-formedness
In this section we present auxiliary de�nitions of the statics semantics of GSF.

De�nition 2.8 (Well-formedness of type name store).

` ·
� < � �; · ` G ` �

` �,� : G

De�nition 2.9 (Well-formedness of types).
` �

�;� ` B
�;� ` G1 �;� ` G2

�;� ` G1 ! G2

�;�,X ` G
�;� ` 8X .G

�;� ` G1 �;� ` G2
�;� ` G1 ⇥G2

` � X 2 �

�;� ` X
` � � : G 2 �

�;� ` �
` �

�;� ` ?

2.4 Static Properties

In this section we present two static properties of GSF and the proof: the static equivalence for
static terms and the static gradual guarantee.

2.4.1 Static Equivalence for Static Terms.

P���������� 6.9 (S����� ���������� ��� ������ �����). Let t be a static term and G a static
type (G = T). We have `S t : T if and only if ` t : T
P����. We prove this proposition for open terms instead. The proof is direct thanks to the equiv-

alence between the typing rules and the equivalence between type equality and type consistency
rules for static types. We only present one case to illustrate the reasoning.
First we prove �;� `S t : T) �;� ` t : T by induction on judgment �;� `S t : T .

Case (�;� `S t
0[T 00] : inst(8X .T 0,T 00)). Then �;� `S t

0 : 8X .T 0, and by induction hypothesis
�;� ` t 0 : 8X .T 0. Then inst](8X .T ,T 00) = T [T 00/X] = inst(8X .T 0,T 00), and as �;� ` T 00, therefore
�;� ` t 0[T 00] : T [T 00/X] and the result holds.

Gradual System F: Auxiliary Definitions and Proofs 9

Then we prove �;� ` t : T) �;� `S t : T by induction on judgment �;� `S t : T .

Case (�;� ` t 0[T 00] : inst](8X .T 0,T 00)). Then � ;� ` t 0 : 8X .T 0, and by induction hypothesis � ;� `S
t
0 : 8X .T 0. Then inst(8X .T ,T 00) = T [T 00/X] = inst](8X .T 0,T 00), and as �;� ` T

00, therefore
�;� `S t

0[T 00] : T [T 00/X] and the result holds.

⇤

2.4.2 Static Gradual Guarantee. In this section we present the proof of the static gradual guarantee
property. In the De�nition 2.10 and De�nition 2.11 we present term precision and type environment
precision.

De�nition 2.10 (Term precision).

(Px)
x v x

(Pb)
b v b

(P�)
t v t

0
G v G

0

(�x : G .t) v (�x : G 0.t 0)
(P�)

t v t
0

(�X .t) v (�X .t 0)

(Ppair)
t1 v t

0
1 t2 v t

0
2

ht1, t2i v ht 01, t 02i
(Pasc)

t v t
0

G v G
0

(t :: G) v (t 0 :: G 0)
(Pop)

t v t 0

op(t) v op(t 0)

(Papp)
t1 v t

0
1 t2 v t

0
2

t1 t2 v t
0
1 t

0
2

(PappG)
t v t

0
G v G

0

t [G] v t
0 [G 0]

(Ppairi)
t v t

0

�i (t) v �i (t 0)

De�nition 2.11 (Type environment precision).

. v .
� v �0 G v G

0

�, x : G v �0, x : G 0

L���� 2.12. If �;�; � ` t : G and � v �0, then �;�; �0 ` t : G 0 for some G v G
0.

P����. Simple induction on type derivation �;�; � ` t : G (we only present interesting cases).

Case (t = x). we know that �;�; � ` x : G and �(x) = G. By de�nition of � v �0, �(x) v �0(x),
therefore �;�; � ` x : G 0, where G v G

0 and the result holds.

Case (t = (�x : G1.t 0)). we know that � ;�; � ` (�x : G1.t 0) : G1 ! G2, where � ;�; �, x : G1 ` t 0 : G2.
As � v �0 andG1 v G1, then by de�nition of precision for type environments, �, x : G1 v �0, x : G 0

1.
Therefore by induction hypothesis on �;�; �, x : G1 ` t

0 : G2, �;�; �0, x : G1 ` t
0 : G 0

2, where
G2 v G

0
2. Finally, by (G�), �;�; �0 ` (�x : G1.t 0) : G1 ! G

0
2, and as G1 ! G2 v G1 ! G

0
2, the result

holds.

⇤

L���� 2.13. If �;� ` G1 ⇠ G2 and G1 v G
0
1 and G2 v G

0
2 then �;� ` G 0

1 ⇠ G
0
2.

P����. By de�nition of �;� ` · ⇠ ·, there exists hT1,T2i 2 C
2(G1,G2) such thatT1 = T2.G1 v G

0
1

and G2 v G
0
2 mean that C (G1) ✓ C (G 0

1) and C (G2) ✓ C (G 0
2), therefore hT1,T2i 2 C

2(G 0
1,G

0
2), and

the resul follows. ⇤

L���� 2.14. If G1 v G
0
1 and G2 v G

0
2 then G1[G2/X] v G

0
1[G 0

2/X].
P����. By induction on the relation of G1 v G

0
1. We only present interesting cases.

Case (X v X). Then we have to prove that X [G2/X] v X [G 0
2/X], which is equivalent to G2 v G

0
2,

but that is part of the premise and the result holds immediately.

Case (G1 v ?). Then we have to prove that G1[G2/X] v ? which is always true.

10 Elizabeth Labrada, Matías Toro, and Éric Tanter

Case (8Y .G3 v 8Y .G 0
3). Then we have to prove that 8Y .G3[G2/X] v 8Y .G 0

3[G 0
2/X], which is

equivalent to prove that G3[G2/X] v G
0
3[G 0

2/X], which holds by induction hypothesis on G3 v G
0
3.

⇤

L���� 2.15. If G1 v G
0
1 and G2 v G

0
2 then inst](G1,G2) v inst](G 0

1,G
0
2).

P����. By induction on relation G1 v G
0
1.

Case (? v ?). The result is trivial as inst](?,G 0
i) = ? and ? v ?.

Case (8X .G1 v ?,8X .G1 v 8X .G2). The result follows directly from Lemma 2.14.

⇤

L���� 2.16. If G1 v G2 then proj]i (G1) v proj]i (G2).
P����. The proof is direct, analogous to Lemma 2.15, by induction on relation G1 v G2. ⇤

P���������� 2.17 (S����� ������� ��������� ��� ���� �����). If �;�; � ` t1 : G1 and t1 v t2,
then �;�; � ` t2 : G2, for some G2 such that G1 v G2.

P����. We prove the property on opens terms instead of closed terms: If �;�; � ` t1 : G1 and
t1 v t2 then �;�; � ` t2 : G2 and G1 v G2.

The proof proceed by induction on the typing derivation.

Case (Gx, Gb). Trivial by de�nition of term precision (v) using (Px), (Pb) respectively.
Case (G�). Then t1 = (�x : G 0

1.t) and G1 = G
0
1 ı! G

0
2. By (G�) we know that:

(G�)
�;�; �, x : G 0

1 ` t : G 0
2

�;�; � ` �x : G 0
1.t : G

0
1 ! G

0
2

(1)

Consider t2 such that t1 v t2. By de�nition of term precision t2 must have the form t2 = (�x : G 00
1 .t

0)
and therefore

(P�)
t v t

0
G

0
1 v G

00
1

(�x : G 0
1.t) v (�x : G 00

1 .t
0)

(2)

Using induction hypotheses on the premises of (1) and (2), �;�; �, x : G 0
1 ` t 0 : G 00

2 with G 0
2 v G

00
2 .

By Lemma 2.12, �;�; �, x : G 00
1 ` t 0 : G 000

2 where G 00
2 v G

000
2 . Then we can use rule (G�) to derive:

(G�)
�;�; �, x : G 00

1 ` t 0 : G 000
2

�;�; � ` (�x : G 00
1 .t

0) : G 00
1 ı! G

000
2

Where G2 v G
00
2 . Using the premise of (2) and the de�nition of type precision we can infer that

G
0
1 ı! G

0
2 v G

00
1 ı! G

000
2

and the result holds.

Case (G�). Then t1 = (�X .t) and G1 = 8X .G 0
1. By (G�) we know that:

(G�)
�;�,X ; � ` t : G 0

1

�;�; � ` �X .t : 8X .G 0
1

(3)

Consider t2 such that t1 v t2. By de�nition of term precision t2 must have the form t2 = (�X .t 0)
and therefore

(P�)
t v t

0

(�X .t) v (�X .t 0)
(4)

Gradual System F: Auxiliary Definitions and Proofs 11

Using induction hypotheses on the premises of (3) and (4), �;�,X ; � ` t 0 : G 00
1 with G 0

1 v G
00
1 . Then

we can use rule (G�) to derive:

(G�)
�;�,X ; � ` t 0 : G 00

1

�;�; � ` (�X .t 0) : 8X .G 00
1

Using the de�nition of type precision we can infer that

8X .G 0
1 v 8X .G 00

1

and the result holds.

Case (Gpair). Then t1 = ht 01, t 02i and G1 = G
0
1 ⇥G

0
2. By (Gpair) we know that:

(Gpair)
�;�; � ` t 01 : G 0

1 �;�; � ` t 02 : G 0
2

�;�; � ` t 01 t 02 : G 0
1 ⇥G

0
2

(5)

Consider t2 such that t1 v t2. By de�nition of term precision, t2 must have the form ht 001 , t 002 i and
therefore

(Ppair)
t
0
1 v t

00
1 t

0
2 v t

00
2

ht 01, t 02i v ht 001 , t 002 i
(6)

Using induction hypotheses on the premises of (5) and (6), �;�; � ` t 001 : G 00
1 and �;�; � ` t 002 : G 00

2 ,
where G 0

1 v G
00
1 and G 0

2 v G
00
2 . Then we can use rule (Gpair) to derive:

(Gpair)
�;�; � ` t 001 : G 00

1 �;�; � ` t 002 : G 00
2

�;�; � ` ht 001 , t 002 i : G 00
1 ⇥G

00
2

Finally, using the de�nition of type precision we can infer that

G
0
1 ⇥G

0
2 v G

00
1 ⇥G

00
2

and the result holds.

Case (Gasc). Then t1 = t :: G1. By (Gasc) we know that:

(Gasc)
�;�; � ` t : G �;� ` G ⇠ G1

�;�; � ` t :: G1 : G1
(7)

Consider t2 such that t1 v t2. By de�nition of term precision t2 must have the form t2 = t
0 :: G2 and

therefore

(Pasc)
t v t

0
G1 v G2

t :: G1 v t
0 :: G2

(8)

Using induction hypotheses on the premises of (7) and (8), �;�; � ` t 0 : G 0 where G v G
0. We can

use rule (Gasc) and Lemma 2.13 to derive:

(Gasc)
�;�; � ` t 0 : G 0 �;� ` G 0 ⇠ G2

�;�; � ` t 0 :: G2 : G2

Where G1 v G2 and the result holds.

Case (Cop). Then t1 = op(t) and G1 = G
⇤. By (Gop) we know that:

(Gop)

�;�; � ` t : G ty(op) = G2 ! G
⇤

�;� ` G ⇠ G2

�;�; � ` op(t) : G⇤ (9)

12 Elizabeth Labrada, Matías Toro, and Éric Tanter

Consider t2 such that t1 v t2. By de�nition of term precision t2 must have the form t2 = op(t 0) and
therefore

(Pop)
t v t 0

op(t) v op(t 0)
(10)

Using induction hypotheses on the premises of (9) and (10), �;�; � ` t 0 : G 0, where G v G 0. Using
the Lemma 2.13 we know that �;� ` G 0 ⇠ G2. Therefore we can use rule (Gop) to derive:

(Gop)

�;�; � ` t 0 : G 0 ty(op) = G2 ! G
⇤

�;� ` G 0 ⇠ G2

�;�; � ` op(t 0) : G⇤

and the result holds.

Case (Gapp). Then t1 = t
0
1 t

0
2 and G1 = cod](G 0

1). By (Gapp) we know that:

(Gapp)

�;�; � ` t 01 : G 0
1 �;�; � ` t 02 : G 0

2
�;� ` dom](G 0

1) ⇠ G
0
2

�;�; � ` t 01 t 02 : cod](G 0
1)

(11)

Consider t2 such that t1 v t2. By de�nition of term precision t2 must have the form t2 = t
00
1 t

00
2 and

therefore

(Papp)
t
0
1 v t

00
1 t

0
2 v t

00
2

t
0
1 t

0
2 v t

00
1 t

00
2

(12)

Using induction hypotheses on the premises of (11) and (12), �;�; � ` t 001 : G 00
1 and �;�; � ` t 002 : G 00

2 ,
where G 0

1 v G
00
1 and G 0

2 v G
00
2 . By de�nition type precision and the de�nition of dom] , dom](G 0

1) v
dom](G 00

1) and, therefore by Lemma 2.13, �;� ` dom](G 00
1) ⇠ G

00
2 . Also, by the previous argument

cod](G 0
1) v cod](G 00

1). Then we can use rule (Gapp) to derive:

(Gapp)

�;�; � ` t 001 : G 00
1 �;�; � ` t 002 : G 00

2
�;� ` dom](G 00

1) ⇠ G
00
2

�;�; � ` t 001 t
00
2 : cod](G 00

1)
and the result holds.

Case (GappG). Then t1 = t [G]. By (GappG) we know that:

(GappG)
�;�; � ` t : G 0

1 �;� ` G
�;�; � ` t [G] : inst](G 0

1,G)
(13)

whereG1 = inst](G 0
1,G). Consider t2 such that t1 v t2. By de�nition of term precision t2 must have

the form t2 = t
0 [G 0] and therefore

(PappG)
t v t

0
G v G

0

t [G] v t
0 [G 0]

(14)

Using induction hypotheses on the premises of (13) and (14), �;�; � ` t 0 : G 0
2 where G

0
1 v G

0
2. We

can use rule (GappG) and Lemma 2.2 to derive:

(Gasc)
�;�; � ` t 0 : G 0

2 �;� ` G 0

�;�; � ` t 0 [G 0] : inst](G 0
2,G

0)
Finally, by the Lemma 2.15 we know that inst](G 0

1,G) v inst](G 0
2,G

0) and the result holds.

Gradual System F: Auxiliary Definitions and Proofs 13

Case (Gpairi). Then t1 = �i (t) and G1 = proj]i (G). By (Gpair) we know that:

(Gpairi)
�;�; � ` t : G

�;�; � ` �i (t) : proj]i (G)
(15)

Consider t2 such that t1 v t2. By de�nition of term precision, t2 must have the form �i (t 0) and
therefore

(Ppairi)
t v t

0

�i (t) v �i (t 0)
(16)

Using induction hypotheses on the premises of (15) and (16), �;�; � ` t 0 : G 0 whereG v G
0. Then

we can use rule (Gpairi) to derive:

(Gpairi)
�;�; � ` t 0 : G 0

�;�; � ` �i (t 0) : proj]i (G 0)

Finally, by the Lemma 2.16 we can infer that proj]i (G) v proj]i (G 0) and the result holds.

⇤

P���������� 6.10 (S����� ������� ���������). Let t and t 0 be closed GSF terms such that t v t
0

and ` t : G. Then ` t 0 : G 0 and G v G
0.

P����. Direct corollary of Prop. 2.17. ⇤

14 Elizabeth Labrada, Matías Toro, and Éric Tanter

3 GSF: DYNAMICS
In this section, we expose auxiliary de�nitions of the dynamic semantics of GSF. First, we present
type precision, interior and consistent transitivity de�nitions for evidence types. Then we show
some important de�nitions, used in the dynamic semantics of GSF� . Finally, we present the transla-
tion semantics from GSF to GSF� .

3.1 Evidence Type Precision
Figure 20 presents the de�nition of the evidence type precision.

E v E Type precision

B v B X v X

E1 v E
0
1 E2 v E

0
2

E1 ! E2 v E
0
1 ! E

0
2

E1 v E2
8X .E1 v 8X .E2

E1 v E
0
1 E2 v E

0
2

E1 ⇥ E2 v E
0
1 ⇥ E

0
2

E1 v E2

�
E1 v �

E2 E v ?

Fig. 20. Evidence Type Precision

3.2 Initial Evidence
In Figure 21 we present the interior function, used to compute the initial evidence.

I : ET��� ⇥ ET���* E�������

E 2 B���T��� [T���V�� [{?}
I(E, E) = I(?, E) = I(E, ?) = hE, Ei

I(E1, E2) = hE 01, E 02i

I(�E1 , E2) = h�E0
1 , E 02i

I(E1, E2) = hE 01, E 02i

I(E1,�E2) = hE 01,�E
0
2 i

I(E11 ! E12, ? ! ?) = hE 01, E 02i
I(E11 ! E12, ?) = hE 01, E 02i

I(? ! ?, E11 ! E12) = hE 01, E 02i
I(?, E11 ! E12) = hE 01, E 02i

I(8X .E,8X .?) = hE 01, E 02i
I(8X .E, ?) = hE 01, E 02i

I(8X .?,8X .E) = hE 01, E 02i
I(?,8X .E) = hE 01, E 02i

I(E11 ⇥ E12, ? ⇥ ?) = hE 011 ⇥ E
0
12, E

0
21 ⇥ E

0
22i

I(E11 ⇥ E12, ?) = hE 011 ⇥ E
0
12, E

0
21 ⇥ E

0
22i

I(? ⇥ ?, E11 ⇥ E12) = hE 011 ⇥ E
0
12, E

0
21 ⇥ E

0
22i

I(?, E11 ⇥ E12) = hE 011 ⇥ E
0
12, E

0
21 ⇥ E

0
22i

I(E21, E11) = hE 021, E 011i I(E12, E22) = hE 012, E 022i
I(E11 ! E12, E21 ! E22) = hE 011 ! E

0
12, E

0
21 ! E

0
22i

I(E11, E21) = hE 011, E 021i I(E12, E22) = hE 012, E 022i
I(E11 ⇥ E12, E21 ⇥ E22) = hE 011 ⇥ E

0
12, E

0
21 ⇥ E

0
22i

I(E1, E2) = hE 01, E 02i
I(8X .E1,8X .E2) = h8X .E 01,8X .E 02i

Fig. 21. GSF: Computing Initial Evidence

Gradual System F: Auxiliary Definitions and Proofs 15

3.3 Consistent Transitivity
In Figure 22, we present the de�nition of consistent transitivity for evidence types.

(base)
hB,Bi # hB,Bi = hB,Bi

(typeVar)
hX ,X i # hX ,X i = hX ,X i

(idL)
hE1, E2i # h?, ?i = hE1, E2i

(idR)
h?, ?i # hE1, E2i = hE1, E2i

(sealL)
hE1, E2i # hE3, E4i = hE 01, E 02i

hE1, E2i # hE3,�E4 i = hE 01,�E
0
2 i

(sealR)
hE1, E2i # hE3, E4i = hE 01, E 02i

h�E1 , E2i # hE3, E4i = h�E0
1 , E 02i

(unsl)
hE1, E2i # hE3, E4i = hE 01, E 02i

hE1,�E2 i # h�E3 , E4i = hE 01, E 02i

(func)
hE41, E31i # hE21, E11i = hE3, E1i hE12, E22i # hE32, E42i = hE2, E4i

hE11 ! E12, E21 ! E22i # hE31 ! E32, E41 ! E42i = hE1 ! E2, E3 ! E4i

(abst)
hE1, E2i # hE3, E4i = hE 01, E 02i

h8X .E1,8X .E2i # h8X .E3,8X .E4i = h8X .E 01,8X .E 02i

(pair)
hE11, E21i # hE31, E41i = hE1, E3i hE12, E22i # hE32, E42i = hE2, E4i
hE11 ⇥ E12, E21 ⇥ E22i # hE31 ⇥ E32, E41 ⇥ E42i = hE1 ⇥ E2, E3 ⇥ E4i

Fig. 22. GSF: Consistent Transitivity

3.4 GSF�: Dynamic Semantics
In this section, we show the function de�nitions used in the dynamic semantics of GSF� , speci�cally
in the type application rule (RappG).

De�nition 3.1.

�out , hE⇤[�E], E⇤[E 0]i where E⇤ = lift� (unlift(�2(�))),�E = lift�0(�), E 0 = lift� (G 0)

De�nition 3.2. hE1, E2i [E3] = hE1[E3], E2[E3]i

De�nition 3.3.

s[�E/X] =

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

b s = b

�x : G1[�/X].t[�E/X] s = �x : G1.t

�Y .t[�E/X] s = �Y .t

hs1[�E/X], s2[�E/X]i s = hs1, s2i
x s = x

�[�E/X]t[�E/X] :: G[�/X] s = �t :: G
op(t[�E/X]) s = op(t)
t1[�E/X] t2[�E/X] s = t1 t2

�i (t[�E/X]) s = �i (t)
t[�E/X] [G[�/X]] s = t [G]

16 Elizabeth Labrada, Matías Toro, and Éric Tanter

De�nition 3.4.

lift� (G) =

8>>>>>>>><
>>>>>>>>:

lift� (G1) ! lift� (G2) G = G1 ! G2

8X .lift� (G1) G = 8X .G1

lift� (G1) ⇥ lift� (G2) G = G1 ⇥G2

�
lift� (�(�)) G = �

G otherwise

De�nition 3.5.

unlift(E) =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

B E = B

unlift(E1) ! unlift(E2) E = E1 ! E2

8X .unlift(E1) E = 8X .E1
unlift(E1) ⇥ unlift(E2) E = E1 ⇥ E2

� E = �
E1

X E = X

? E = ?

3.5 Translation from GSF to GSF�
In this section we present the translation from GSF to GSF� (Figure 23), which inserts ascriptions
to ensure that top-level constructors match in every elimination form. We use the following
normalization metafunction:

norm(t,G1,G2) = �t :: G2, where � = I� (G1,G2)
I� (G1,G2) = I(lift� (G1), lift� (G2))

L���� 7.1 (T���������� P�������� T�����). Let t be a GSF term. If �; � ` t : G then �; � ` t {
t� : G and �; � ` t� : G.

P����. The proof follows by induction on the typing derivation of �; � ` t : G. ⇤

Gradual System F: Auxiliary Definitions and Proofs 17

�; � ` � {� u : G Value translation

(Gb)
ty(b) = B � ` �

�; � ` b {� b : B
(Gpairu)

�; � ` �1 { u1 : G1 �; � ` �2 { u2 : G2

�; � ` h�1,�2i {� hu1,u2i : G1 ⇥G2

(G�)
�; �, x : G ` t { t

0 : G 0

�; � ` (�x : G .t) {� (�x : G .t 0) : G ! G
0 (G�)

�,X ; � ` t { t
0 : G � ` �

�; � ` (�X .t) {� (�X .t 0) : 8X .G
�; � ` t { t : G Term translation

(Gu)
�; � ` � {� u : G � = I(G,G)

�; � ` � { �u :: G : G
(Gascu)

�; � ` � {� u : G � = I(G,G 0)
�; � ` � :: G 0 { �u :: G 0 : G 0

(Gx) x : G 2 � � ` �
�; � ` x { x : G

(Gasct)
t , � �; � ` t { t

0 : G � = I(G,G 0)
�; � ` t :: G 0 { �t

0 :: G 0 : G 0

(Gpairt)
(t1 , �1 _ t2 , �2) �; � ` t1 { t

0
1 : G1 �; � ` t2 { t

0
2 : G2

�; � ` ht1, t2i { ht 01, t 02i : G1 ⇥G2

(Gop)
�; � ` t { t 0 : G1 ty(op) = G2 ! G t 00 = norm(t 0,G1,G2)

�; � ` op(t) { op(t 00) : G

(Gapp)

�; � ` t1 { t
0
1 : G1 t

00
1 = norm(t 01,G1, dom](G1) ! cod](G1))

�; � ` t2 { t
0
2 : G2 t

00
2 = norm(t 02,G2, dom](G1))

�; � ` t1 t2 { t
00
1 t

00
2 : cod](G2)

(GappG)
�; � ` t { t

0 : G � ` G 0
t
00 = norm(t 0,G,8var](G).schm]

u (G))
�; � ` t [G 0] { t

00 [G 0] : inst](G,G 0)

(Gpairi)
�; � ` t { t

0 : G t
00 = norm(t 0,G, proj]1 (G) ⇥ proj]2 (G))

�; � ` �i (t) { �i (t 00) : proj]i (G)
var] : GT���* GT���
var](8X .G) = X

var](?) = X fresh
var](G) unde�ned o/w

schm]
u : GT���* GT���

schm]
u (8X .G) = G

schm]
u (?) = ?

schm]
u (G) unde�ned o/w

norm(t,G1,G2) = �t :: G2, where � = I(G1,G2)

Fig. 23. GSF to GSF� translation.

18 Elizabeth Labrada, Matías Toro, and Éric Tanter

4 GSF: PROPERTIES
In this section we present some properties of GSF. Section 4.1, presents Type Safety and its proof.
Section 4.2, shows the property and proof about static terms do not fail.

4.1 Type Safety
In this section we present the proof of type safety for GSF� .
We de�ne what it means for a store to be well typed with respect to a term. Informally, all free

locations of a term and of the contents of the store must be de�ned in the domain of that store.
Also, the store must preserve types between intrinsic locations and underlying values.

L���� 4.1 (C�������� �����). Consider a value �; ·; · ` � : G . Then � = �u :: G , with �; ·; · ` u :
G

0 and � � � ` G 0 ⇠ G. Furthermore:
(1) If G = B, then � = �Bb :: B, with �; ·; · ` b : B and �B � � ` B ⇠ B.
(2) If G = G1 ! G2, then � = �(�x : G 0

1.t) :: G1 ! G2, with �; ·;x : G 0
1 ` t : G 0

2 and
� � � ` G 0

1 ! G
0
2 ⇠ G1 ! G2.

(3) IfG = 8X .G1, then � = �(�X .t) :: 8X .G1, with �;�,X ; · ` t : G 0
1 and � � � ` 8X .G 0

1 ⇠ 8X .G1.
(4) If G = G1 ⇥ G2, then � = � hu1,u2i :: G1 ⇥ G2, with �; ·; · ` u1 : G 0

1, �; ·; · ` u2 : G 0
2 and

� � � ` G 0
1 ⇥G

0
2 ⇠ G1 ⇥G2.

P����. By direct inspection of the formation rules of evidence augmented terms. ⇤

L���� 4.2 (S�����������). If �;�; �, x : G1 ` t : G , and �; ·; · ` � : G1, then �;�; � ` t[�/x] : G .

P����. By induction on the derivation of �;�; �, x : G1 ` t : G. ⇤

L���� 4.3. If � � �;�,X ` G1 ⇠ G2, �; · ` G 0, � < dom(�), and E = lift� (G 0), then �[�E0/X] �
�,� := G 0;� ` G1[�/X] ⇠ G2[�/X].

P����. By induction on the judgment � � �;�,X ` G1 ⇠ G2 and the de�nition of evidences. ⇤

L���� 4.4 (T��� S�����������). If �;�,X ; � ` t : G, �; · ` G 0, � < dom(�), and E = lift� (G 0),
then �,� := G 0;�; � ` t[�E/X] : G[�/X].

P����. By induction on the derivation of �;�,X ; � ` t : G and Lemma 4.3. ⇤

L���� 4.5. If �1 � �;� ` G
0
1 ⇠ G1, and �2 � �;� ` G

0
2 ⇠ G2, then �1 ⇥ �2 � �;� ` G

0
1 ⇥G

0
2 ⇠

G1 ⇥G2.

P����. By de�nition of the judgment � � �;�,X ` G
0
1 ⇥ G

0
2 ⇠ G1 ⇥ G2 and the de�nition of

evidences. ⇤

L���� 4.6. If � � �;� ` G 0 ⇠ G then pi (�) � �;� ` proj]i (G 0) ⇠ proj]i (G).

P����. By de�nition of judgment � � �;�,X ` proj]i (G 0) ⇠ proj]i (G) and the de�nition of
evidences. ⇤

P���������� 4.7 (��! �� ���� �������). If �; ·; · ` t : G, then either
• � . t ��! � 0 . t 0, � ✓ � 0 and � 0; ·; · ` t 0 : G; or
• � . t ��! error

Gradual System F: Auxiliary Definitions and Proofs 19

P����. By induction on the structure of a derivation of � . t ��! r , considering the last rule
used in the derivation.

Case (Rapp). Then t = (�1(�x : G11.t1) :: G1 ! G2) (�2u :: G1). Then

(Eapp)

(Easc)

�; ·;x : G11 ` t1 : G12

�; ·; · ` (�x : G11.t1) : G11 ! G12
�1 � �; · ` G11 ! G12 ⇠ G1 ! G2

�; ·; · ` (�1(�x : G11.t1) :: G1 ! G2) : G
(Easc)

�; ·; · ` u : G 0
2

�2 � �; · ` G 0
2 ⇠ G1

�; ·; · ` (�2u :: G1) : G1

�; ·; · ` (�1(�x : G11.t1) :: G) (�2u :: G1) : G2

If � 0 = (�2 # dom(�1)) is not de�ned, then � . t ��! error, and then the result hold immediately.
Suppose that consistent transitivity does hold, then

� . (�1(�x : G11.t1) :: G1 ! G2) (�2u :: G1) ��! � . cod(�1)(t1[� 0u :: G11)/x]) :: G2

As �2 ` G 0
2 ⇠ G1 and by inversion lemma dom(�1) ` G1 ⇠ G11, then �

0 ` G 0
2 ⇠ G11. Therefore

�; ·; · ` � 0u :: G11 : G11, and by Lemma 4.2, �; ·; · ` t[(� 0u :: G11)/x] : G12.
Let us call t 00 = t[(� 0u :: G11)/x]. Then

(Easc)
�; ·; · ` t1[� 0u :: G11)/x] : G12 cod(�1) � �; · ` G12 ⇠ G2

�; ·; · ` cod(�1)(t1[� 0u :: G11)/x]) :: G2 : G2

and the result holds.

Case (RappG). Then t = (��X .t1 :: 8X .Gx) [G 0]. Consider Gx = schm]
u (G), then

(EappG)

(Easc)
�;X ; · ` t1 : G1 � � �;X ; · ` G1 ⇠ 8X .Gx

�; ·; · ` (��X .t1 :: 8X .Gx) : 8X .Gx �; · ` G 0

�; ·; · ` (��X .t1 :: 8X .Gx) [G 0] : Gx [G 0/X]

Then

� . (��X .t1 :: G) [G 0] ��! � 0 . �E
0/� E0

G (�[�E0]t1[�E
0/X] :: Gx [�/X]) :: Gx [G 0/X]

where � 0 , �,� := G 0,� < dom(�), and E 0 , lift� (G 0), and
�
E0/� E0
8X .Gx

= hlift� (Gx)[�E0/X], lift� (Gx [G 0/X])i. Notice that hlift� (Gx [�/X]), lift� (Gx [G 0/X])i =
I(Gx [�/X],Gx [G 0/X]), and by de�nition of the special substitution, lift� (Gx)[�E0/X] v lift� (Gx [�/X])
(because lift� (�) = �

E0 , and the substitution on evidences just extend unknowns with �). Therefore

�
E0/� E0
8X .Gx

v I(Gx [�/X],Gx [G 0/X]), and �
E0/� E0
8X .Gx

� �; · ` Gx [�/X] ⇠ Gx [G 0/X]. Also by Lemma 4.3
�[�E0] � �; · ` G1[�/X] ⇠ Gx [�/X], and by Lemma 4.4, �; ·; · ` t1[�E0/X] : G1[�/X].

Then, as � ✓ � 0,

(Easc)

(Easc)

�; ·; · ` t1[�E
0/X] : G1[�/X]

�[�E0] � �; · ` G1[�/X] ⇠ Gx [�/X]
�; ·; · ` (�[�E0]t1[�E

0/X] :: Gx [�/X]) : Gx [�/X] �
E0/� E0
G � �; · ` Gx [�/X] ⇠ Gx [G 0/X]

�; ·; · ` �E
0/� E0

G (�[�E0]t1[�E
0/X] :: Gx [�/X]) :: Gx [G 0/X] : Gx [G 0/X]

and the result holds.

20 Elizabeth Labrada, Matías Toro, and Éric Tanter

Case (Rasc). Then t = �1(�2u :: G2) :: G. Then

(Easc)
(Easc)

�; ·; · ` u : Gu �2 � �; · ` Gu ⇠ G2
�; ·; · ` �2u :: G2 : G2 �1 � �; · ` G2 ⇠ G

�; ·; · ` �1(�2u :: G2) :: G : G

If (�2 # �1) is not de�ned, then � . t ��! error, and then the result hold immediately. Suppose
that consistent transitivity does hold, then

� . �1(�2u :: G2) :: G ��! � . (�2 # �1)u :: G

where (�2 # �1) � �; · ` Gu ⇠ G. Then

(Easc)
�; ·; · ` u : Gu (�2 # �1) � �; · ` Gu ⇠ G

�; ·; · ` (�2 # �1)u :: G : G

and the result follows.

Case (Rop). Then t = op(�u :: B0). Then

(Eop)

(Easc)
�; ·; · ` u : Gu � � �; · ` Gu ⇠ B0

�;�; � ` �u :: B0 : B0 ty(op) = B0 ! B

�; ·; · ` op(�u :: B0) : B

Let us assume that ty(op) : B0 ! B.

� . op(�u :: B0) ��! � . �B � (op,u) :: B

But as �B ` �; · ` B ⇠ B, then

(Easc)
�; ·; · ` � (op,u) : B �B � �; · ` B ⇠ B

�; ·; · ` �B � (op,u) :: B : B

and the result follows.

Case (Rpair). Then t = h�1u1 :: G1, �2u2 :: G2i. Then

(Epair)
(Easc)

�; ·; · ` u1 : G 0
1

�1 � �; · ` G 0
1 ⇠ G1

�; ·; · ` �1u1 :: G1
(Easc)

�; ·; · ` u2 : G 0
2

�2 � �; · ` G 0
2 ⇠ G2

�; ·; · ` �2u2 :: G2

�; ·; · ` h�1u1 :: G1, �2u2 :: G2i : G1 ⇥G2

Then
� . h�1u1 :: G1, �2u2 :: G2i ��! � . (�1 ⇥ �2)hu1,u2i :: G1 ⇥G2

By Lemma 4.5, �1 ⇥ �2 � �; · ` G 0
1 ⇥G

0
2 ⇠ G1 ⇥G2. Then

(Easc)

(Epair)
�; ·; · ` u1 : G 0

1 �; ·; · ` u2 : G 0
2

�; ·; · ` hu1,u2i : G 0
1 ⇥G

0
2 �1 ⇥ �2 � �; · ` G 0

1 ⇥G
0
2 ⇠ G1 ⇥G2

�; ·; · ` (�1 ⇥ �2)hu1,u2i :: G1 ⇥G2 : G1 ⇥G2

and the result holds.

Case (Rproji). Then t = �i (� hu1,u2i :: G). Then

Gradual System F: Auxiliary Definitions and Proofs 21

(Epairi)

(Easc)

�; ·; · ` ui : G 0
i

�; ·; · ` hu1,u2i : G 0
1 ⇥G

0
2 � � �; · ` G 0

1 ⇥G
0
2 ⇠ G

� hu1,u2i :: G

�; ·; · ` �i (� hu1,u2i :: G) : proj]i (G)

Then
� . �i (� hu1,u2i :: G) ��! � . pi (�)ui :: proj]i (G)

By Lemma 4.6, pi (�) � �; · ` proj]i (G 0
1 ⇥G

0
2) ⇠ proj]i (G). Then

(Easc)
�; ·; · ` ui : G 0

i pi (�) � �; · ` proj]i (G 0
1 ⇥G

0
2) ⇠ proj]i (G)

�; ·; · ` pi (�)ui :: proj]i (G) : proj
]
i (G)

and the result holds.

⇤

P���������� 4.8 (7��! �� ���� �������). If �; ·; · ` t : G, then either

• � . t 7��! � 0 . t 0, � ✓ � 0 and � 0; ·; · ` t 0 : G; or
• � . t 7��! error

P����. By induction on the structure of t.

• If t has some of this form: �2(�1u :: G1) :: G2, op(�u :: G), (�x : G11.t) :: G1 ! G2) (�2u :: G1),
h�1u1 :: G1, �2u2 :: G2i,�i (� hu1,u2i :: G1 ⇥G2) or (��X .t :: 8X .G) [G 0], then bywell-de�nedness
of ��! (Prop 4.7), � . t ��! � 0 . t 0 and � ✓ � 0 and � 0; ·; · ` t 0 : G or � . t ��! error, .
If � . t ��! � 0 . t 0, � ✓ � 0 and � 0; ·; · ` t 0 : G, then by the rule R�! the result holds.
If � . t ��! error, then by the rule Rerr � . t 7��! error and the result holds immediately.

• If t = f [t1], we know that �; ·; · ` f [t1] : G and �; ·; · ` t1 : G 0, where f : G 0 ! G. Then, by
the induction hypothesis � . t1 7��! � 0 . t 01, � ✓ � 0 and � 0; ·; · ` t 01 : G or � . t1 7��! � 0 . error.
If � . t1 7��! � 0 . t 01, by the Rf rule the result holds.
If � . t1 7��! � 0 . error, by the Rf err rule the result holds. .

⇤

P���������� 4.9 (7��! �� ���� �������). If �; ·; · ` t : G, t { t� , then t� is a value � ; or
� . t� 7��! � 0 . t 0� , � ✓ � 0 and � 0; ·; · ` t 0� : G; or � . t� 7��! error.

P����. By induction on the structure of t , using Lemma 4.8 andCanonical Forms (Lemma 4.1). ⇤

Now we can establish type safety of GSF: programs of GSF do not get stuck, though they may
terminate with cast errors. Also the store of a program is well typed.

P���������� 8.4 (T��� S�����). If ` t : G then either t + � . � with � . � : G, t + error, or t *.

P����. Direct by 4.9. ⇤

22 Elizabeth Labrada, Matías Toro, and Éric Tanter

4.2 Static Terms Do Not Fail
L���� 8.2. (Properties of consistent transitivity).

(a) Associativity. (�1 # �2) # �3 = �1 # (�2 # �3), or both are unde�ned.
(b) Optimality. If � = �1 # �2 is de�ned, then �1(�) v �1(�1) and �2(�) v �2(�2).
(c) Monotonicity. If �1 v �1

0 and �2 v �2
0 and �1 # �2 is de�ned, then �1 # �2 v �1

0 # �2 0.

P����. A direct result of the application of the AGT framework. ⇤

L���� 4.10. If �1 and �2 two static evidences, such that �1 � �;� ` T1 ⇠ T2 and �2 � �;� ` T2 ⇠ T3,
then �1 # �2 = hp1(�1),p2(�2)i.
P����. Straightforward induction on types T1,T2,T3 (�;� ` T2 ⇠ T3 coincides with �;� ` T2 =

T3), and optimality of evidences (Lemma 8.2), because the resulting evidence cannot gain precision
as each component of the evidences are static (note that precision · v · between static types coincide
with equality of static types �;� ` · = ·). ⇤

L���� 4.11. Let T1 and T2 two static types, and � a static store, such that �;� ` T1 ⇠ T2. Then
I(T1,T2) = I(lift� (T1), lift� (T2)) = hlift� (T1), lift� (T2)i.
P����. Straightforward induction on types T1,T2, and noticing that we cannot gain precision

from the types. ⇤

P���������� 4.12 (S����� ����� �������� ��� P�����������). Let t be a static term, � a static
store (� = �), and G a static type (G = T). If �; ·; · ` t : T , then either � . t 7��! � 0 . t 0 and
� 0; ·; · ` t 0 : T , for some � 0 and t 0 static; or t is a value � .

P����. By induction on the structure of a derivation of �; ·; · ` t : T .
Note that �;� ` T1 ⇠ T2 coincides with �;� ` T1 = T2, so we use the latter notation throughout

the proof.

Case (t = �u :: G). The result is trivial as t is a value.

Case (t = (�1(�x : T11.t1) :: T1 ! T2) (�2u :: T1)). Then

(Eapp)

(Easc)

�; ·;x : T11 ` t1 : T12
�; ·; · ` (�x : T11.t1) : T11 ! T12
�1 � � ;� ` T11 ! T12 = T1 ! T2

�; ·; · ` (�1(�x : T11.t1) :: T1 ! T2) : T1 ! T2
(Easc)

�; ·; · ` u : T 0
2

�2 � � ;� ` T 0
2 = T1

�; ·; · ` (�2u :: T1) : T1
�; ·; · ` (�1(�x : T11.t1) :: T1 ! T2) (�2u :: T1) : T2

By Lemma 4.10, � 0 = (�2 # dom(�1)) is de�ned and by Lemma 4.11, the new evidence is also static.
Then

� . (�1(�x : T11.t1) :: T) (�2u :: T1) ��! � . cod(�1)(t1[� 0u :: T11)/x]) :: T2

And the result holds immediately by the Lemma 4.2 and the typing rule (Easc).

Case (t = (��X .t1 :: 8X .Tx) [T 0]). Then

(EappT)

(Easc)
�;X ; · ` t1 : T1 � � � ;� ` [= �;X ; ·]T18X .Tx

�; ·; · ` (��X .t1 :: 8X .Tx) : T �; · ` T 0

�; ·; · ` (��X .t1 :: 8X .Tx) [T 0] : Tx [T 0/X]

Gradual System F: Auxiliary Definitions and Proofs 23

Then
(��X .t1 :: 8X .Tx) [T 0] ��! � 0 . �E

0/� E0
8X .Tx

(�[�E0]t1[�E
0/X] :: Tx [�/X]) :: Tx [T 0/X]

where � 0 , �,� := T 0,� < dom(�), and E 0 , lift� (T 0), and
�
E0/� E0
8X .Tx

= hlift� (Tx)[�E0/X], lift� (Tx [T 0/X])i. Then, � ✓ � 0, and � 0 is extended with a type name
that maps to a static type. Finally, the result holds immediately by the Lemma 4.4 and Lemma 4.3,
and the typing rule (Easc).

Case (t = � . �1(�2u :: T2) :: T). Then

(Easc)
(Easc)

�; ·; · ` u : Tu �2 � � ;� ` Tu = T2
�; ·; · ` �2u :: T2 : T2 �1 � � ;� ` T2 = T

�; ·; · ` �1(�2u :: T2) :: T : T

By Lemma 4.10, �2 # �1 is de�ned and by Lemma 4.11, the new evidence is also static. Then
� . �1(�2u :: T2) :: T ��! � . (�2 # �1)u :: T

and the result holds by the typing rule (Easc).

Case (t = op(�u :: B0)). Then

(Easc)

(Easc)
�; ·; · ` u : Tu � � � ;� ` Tu = B0

�;�; � ` �u :: B0 : B0 ty(op) = B0 ! B

�; ·; · ` op(�u :: B0) : B
Let us assume that ty(op) : B0 ! B. Then

� . op(�u :: B0) ��! � . �B � (op,u) :: B
And the result holds by the typing rule (Easc).

Case (t = h�1u1 :: T1, �2u2 :: T2i). Then

(Epair)
(Easc)

�; ·; · ` u1 : T 0
1

�1 � � ;� ` T 0
1 = T1

�; ·; · ` �1u1 :: T1
(Easc)

�; ·; · ` u2 : T 0
2

�2 � � ;� ` T 0
2 = T2

�; ·; · ` �2u2 :: T2
�; ·; · ` h�1u1 :: T1, �2u2 :: T2i : T1 ⇥T2

Then
� . h�1u1 :: T1, �2u2 :: T2i ��! � . (�1 ⇥ �2)hu1,u2i :: T1 ⇥T2

and the result holds by the Lemma 4.5.

Case (t = �i (� hu1,u2i :: T)). Then

(Epair)

(Easc)

�; ·; · ` ui : T 0
i

�; ·; · ` hu1,u2i : T 0
1 ⇥T

0
2 � � � ;� ` T 0

1 ⇥T
0
2 = T

� hu1,u2i :: T

�; ·; · ` �i (� hu1,u2i :: T) : proj]i (T)
Then

� . �i (� hu1,u2i :: T) ��! � . pi (�)ui :: proj]i (T)
And the result holds by Lemma 4.6.

Case (t = t1 t2). Then by induction hypothesis � . t1 7��! � . t 01, and t
0
1 is static, and so t 01 t2.

24 Elizabeth Labrada, Matías Toro, and Éric Tanter

Case (t = � t2). Then by induction hypothesis � . t2 7��! � . t 02, and t
0
2 is static, and so � t

0
2.

Case (t = t1[T], t = ht1, t2i, t = op(t1), t = �i (t1)). Similar inductive reasoning to application cases.

⇤

P���������� 8.5 (S����� ����� �� ��� ����). Let t be a static term. If ` t : T then ¬(t + error).
P����. Direct by Lemma 4.12. ⇤

Gradual System F: Auxiliary Definitions and Proofs 25

5 GSF AND THE DYNAMIC GRADUAL GUARANTEE
In this section, we prove the weaker variant of the DGG in GSF� and then in GSF. We also present
auxiliary de�nitions and Propositions.

5.1 Evidence Type Precision
This section show the de�nition of evidence type precision.

B 6 B X 6 X � 6 � B 6 ?
E1 ! E2 6 ? ! ?
E1 ! E2 6 ? ? 6 ?

E1 6 E3 E2 6 E4

E1 ! E2 6 E3 ! E4

E1 6 E2

8X .E1 6 8X .E2
E1 6 E2

�
E1 6 �

E2

E1 6 E3 E2 6 E4

hE1, E2i 6 hE3, E4i

5.2 Monotonicity of Evidence Transitivity and Instantiation
This section presents the proofs of the monotonicity of evidence transitivity and instantiation
proposition.

P���������� 9.3 (6�M����������� �� C��������� T�����������). If �1 6 �2, �3 6 �4, and
�1 # �3 is de�ned, then �1 # �3 6 �2 # �4.

P����. By de�nition of consistent transitivity for = and the de�nition of precision.

Case (�i = hB,Bi). The results follows immediately, due

hB,Bi = (hB,Bi # hB,Bi) 6 (hB,Bi # hB,Bi = hB,Bi)

Case ([X]- �i = hX ,X i). The results follows immediately, due

hX ,X i = (hX ,X i # hX ,X i) 6 (hX ,X i # hX ,X i = hX ,X i)

Case ([�1]- �1 = h�E1, E 0
1i , �2 = h�E2, E 0

2i , �3 = hE3, E 0
3i , �4 = hE4, E 0

4i). By the de�nition of 6, we
know that hE1, E 0

1i 6 hE2, E 0
2i and hE3, E 0

3i 6 hE4, E 0
4i. By the de�nition of transitivity we know that

h�E1, E 0
1i # hE3, E 0

3i = h�E5, E 0
5i and h�E2, E 0

2i # hE4, E 0
4i = h�E6, E 0

6i, where hE5, E 0
5i = hE1, E 0

1i # hE3, E 0
3i

and hE6, E 0
6i = hE2, E 0

2i # hE4, E 0
4i. Therefore, we are required to prove that h�E5, E 0

5i 6 h�E6, E 0
6i, or

what is the same hE5, E 0
5i 6 hE6, E 0

6i. But the result follows immediately by the induction hypothesis
on hE1, E 0

1i 6 hE2, E 0
2i and hE3, E 0

3i 6 hE4, E 0
4i.

Case ([�2]- �1 = hE1,�E0
1i , �2 = hE2,�E0

2i , �3 = h�E3, E 0
3i , �4 = h�E

4 , E
0
4i). By the de�nition of 6, we

know that hE1, E 0
1i 6 hE2, E 0

2i and hE3, E 0
3i 6 hE4, E 0

4i. By the de�nition of transitivity we know that
hE1,�E0

1i # h�E3, E 0
3i = hE5, E 0

5i and hE2,�E0
2i # h�E4, E 0

4i = hE6, E 0
6i, where hE5, E 0

5i = hE1, E 0
1i # hE3, E 0

3i
and hE6, E 0

6i = hE2, E 0
2i # hE4, E 0

4i. Therefore, we are required to prove that hE5, E 0
5i 6 hE6, E 0

6i. But
the result follows immediately by the induction hypothesis on hE1, E 0

1i 6 hE2, E 0
2i and hE3, E 0

3i 6
hE4, E 0

4i.

Case ([�3]- �1 = hE1, E 0
1i , �2 = hE2, E 0

2i , �3 = hE3,�E0
3i , �4 = hE4,�E0

4i). By the de�nition of 6, we
know that hE1, E 0

1i 6 hE2, E 0
2i and hE3, E 0

3i 6 hE4, E 0
4i. By the de�nition of transitivity we know that

hE1, E 0
1i # hE3,�E0

3i = hE5,�E0
5i and hE2, E 0

2i # hE4,�E0
4i = hE6,�E0

6i, where hE5, E 0
5i = hE1, E 0

1i # hE3, E 0
3i

and hE6, E 0
6i = hE2, E 0

2i # hE4, E 0
4i. Therefore, we are required to prove that hE5,�E0

5i 6 hE6,�E0
6i, or

what is the same hE5, E 0
5i 6 hE6, E 0

6i. But the result follows immediately by the induction hypothesis
on hE1, E 0

1i 6 hE2, E 0
2i and hE3, E 0

3i 6 hE4, E 0
4i.

26 Elizabeth Labrada, Matías Toro, and Éric Tanter

Case ([8]- �i = h8X .Ei ,8X .E 0
i i). By the de�nition of 6, we know that hE1, E 0

1i 6 hE2, E 0
2i and

hE3, E 0
3i 6 hE4, E 0

4i. By the de�nition of transitivity we know that h8X .E1,8X .E 0
1i #h8X .E3,8X .E 0

3i =
h8X .E5,8X .E 0

5i and h8X .E2,8X .E 0
2i # h8X .E4,8X .E 0

4i = h8X .E6,8X .E 0
6i, where hE5, E 0

5i = hE1, E 0
1i #

hE3, E 0
3i and hE6, E 0

6i = hE2, E 0
2i # hE4, E 0

4i. Therefore, we are required to prove that hE5, E 0
5i 6

hE6, E 0
6i. But the result follows immediately by the induction hypothesis on hE1, E 0

1i 6 hE2, E 0
2i and

hE3, E 0
3i 6 hE4, E 0

4i.
Case ([!]- �i = hE1i ! E2i , E 0

1i ! E
0
2i i). By the de�nition of 6, we know that hE11, E 0

11i 6
hE12, E 0

12i, hE13, E 0
13i 6 hE14, E 0

14i, hE21, E 0
21i 6 hE22, E 0

22i and hE23, E 0
23i 6 hE24, E 0

24i. By the de�ni-
tion of transitivitywe know that hE11 ! E21, E 0

11 ! E
0
21i#hE13 ! E23, E 0

13 ! E
0
23i = hE15 ! E25, E 0

15 ! E
0
25i

and hE12 ! E22, E 0
12 ! E

0
22i # hE14 ! E24, E 0

14 ! E
0
24i = hE16 ! E26, E 0

16 ! E
0
26i, where hE 0

15, E15i =
hE 0

13, E13i # hE 0
11, E11i, hE25, E 0

25i = hE21, E 0
21i # hE24, E 0

24i, hE16, E 0
16i = hE 0

41, E41i # hE 0
12, E12i and

hE26, E 0
26i = hE22, E 0

22i # hE24, E 0
24i.

Therefore, we are required to prove that

hE15 ! E25, E
0
15 ! E

0
25i 6 hE16 ! E26, E

0
16 ! E

0
26i

or what is the same

hE 0
13, E13i # hE 0

11, E11i = hE 0
15, E15i 6 hE 0

16, E16i = hE 0
41, E41i # hE 0

12, E12i
and

hE21, E 0
21i # hE23, E 0

23i = hE25, E 0
25i 6 hE26, E 0

26i = hE22, E 0
22i # hE24, E 0

24i
But the result follows immediately by the induction hypothesis onhE11, E 0

11i 6 hE12, E 0
12i and

hE13, E 0
13i 6 hE14, E 0

14i, hE21, E 0
21i 6 hE22, E 0

22i and hE23, E 0
23i 6 hE24, E 0

24i.
Case ([⇥]- �i = hE1i ⇥ E2i , E 0

1i ⇥ E
0
2i i). Similar to Case [!].

Case ([?1]- �1 = h?, ?i). Since �1 6 �2, we know that �2 = h?, ?i. Therefore, by the transitivity rules,
we know that �1 # �3 = �3 and �2 # �4 = �4. Thus, we are required to prove that �3 6 �4, but the result
follows immediately by premise.

Case ([?2]- �2 = h?, ?i). The proof follows from some of the previous cases.
• (�1 = h?, ?i). The results follows immediately, since it was discussed in Case [?1].
• (�3 = h?, ?i). The results follows immediately, since it was discussed in Case [?3].
• (�4 = h?, ?i). The results follows immediately, since �1 # �3 6 h?, ?i # h?, ?i = h?, ?i.
• (�i = hB,Bi). The results follows immediately, since hB,Bi # hB,Bi 6 h?, ?i # hB,Bi.
• (�i = hX ,X i). This case is not possible, since hX ,X i ⌦ h?, ?i.
• Case [�1] (�1 = hE1,�E0

1i , �2 = h?, ?i , �3 = h�E3, E 0
3i , �4 = h�E

4 , E
0
4i). This case is not possible,

since h�E1, E 0
1i ⌦ h?, ?i.

• Case [�2] (�1 = hE1,�E0
1i , �2 = h?, ?i , �3 = h�E3, E 0

3i , �4 = h�E
4 , E

0
4i). This case is not possible,

since hE1,�E0
1i ⌦ h?, ?i.

• Case [�3] (�1 = hE1, E 0
1i , �2 = h?, ?i , �3 = hE3,�E0

3i , �4 = hE4,�E0
4i). This case was discussed

in Case [�3] above.
• (�1 = h8X .E1,8X .E 0

1i). This case is not possible, since h8X .E1,8X .E 0
1i ⌦ h?, ?i.

• (�i = hE1i ! E2i , E 0
1i ! E

0
2i i). We have to prove that

hE11 ! E21, E
0
11 ! E

0
21i # hE13 ! E23, E

0
13 ! E

0
23i 6 h?, ?i # hE14 ! E24, E

0
14 ! E

0
24i

or what is the same

hE11 ! E21, E
0
11 ! E

0
21i # hE13 ! E23, E

0
13 ! E

0
23i 6 h? ! ?, ? ! ?i # hE14 ! E24, E

0
14 ! E

0
24i

But, this case was discussed in Case [!] above.

Gradual System F: Auxiliary Definitions and Proofs 27

• (�i = hE1i ⇥ E2i , E 0
1i ⇥ E

0
2i i). We have to prove that

hE11 ⇥ E21, E
0
11 ⇥ E

0
21i # hE13 ⇥ E23, E

0
13 ⇥ E

0
23i 6 h?, ?i # hE14 ⇥ E24, E

0
14 ⇥ E

0
24i

or what is the same:

hE11 ⇥ E21, E
0
11 ⇥ E

0
21i # hE13 ⇥ E23, E

0
13 ⇥ E

0
23i 6 h? ⇥ ?, ? ⇥ ?i # hE14 ⇥ E24, E

0
14 ⇥ E

0
24i

This case was discussed in Case [⇥].
Case ([?3]- �3 = h?, ?i). Since �3 6 �4, we know that �4 = h?, ?i. Therefore, by the transitivity rules,
we know that �1 # �3 = �1 and �2 # �4 = �2. Thus, we are required to prove that �1 6 �2, but the result
follows immediately by premise.

Case ([?4]- �4 = h?, ?i). The proof follows from some of the previous cases.
• (�1 = h?, ?i). The results follows immediately, since it was discussed in Case [?1].
• (�2 = h?, ?i). The results follows immediately, since �1 # �3 6 h?, ?i # h?, ?i = h?, ?i.
• (�3 = h?, ?i). The results follows immediately, since it was discussed in Case [?3].
• (�i = hB,Bi). The results follows immediately, since hB,Bi # hB,Bi 6 hB,Bi # h?, ?i.
• (�i = hX ,X i). This case is not possible, since hX ,X i ⌦ h?, ?i.
• Case [�1] (�1 = h�E1, E 0

1i , �2 = h�E2, E 0
2i , �3 = hE3, E 0

3i , �4 = h?, ?i). This case was discussed
in Case [�1] above.

• Case [�2] (�1 = hE1,�E0
1i , �2 = hE2,�E0

2i , �3 = h�E3, E 0
3i , �4 = h?, ?i). This case is not possible,

since hE3,�E0
3i ⌦ h?, ?i.

• Case [�3] (�1 = hE1, E 0
1i , �2 = hE2, E 0

2i , �3 = hE3,�E0
3i , �4 = h?, ?i). This case is not possible,

since hE3,�E0
3i ⌦ h?, ?i.

• (�1 = h8X .E1,8X .E 0
1i). This case is not possible, since h8X .E1,8X .E 0

1i ⌦ h?, ?i.
• (�i = hE1i ! E2i , E 0

1i ! E
0
2i i). We have to prove that

hE11 ! E21, E
0
11 ! E

0
21i # hE13 ! E23, E

0
13 ! E

0
23i 6 hE14 ! E24, E

0
14 ! E

0
24i # h?, ?i

or what is the same

hE11 ! E21, E
0
11 ! E

0
21i # hE13 ! E23, E

0
13 ! E

0
23i 6 hE14 ! E24, E

0
14 ! E

0
24i # h? ! ?, ? ! ?i

But, this case was discussed in Case [!] above.
• (�i = hE1i ⇥ E2i , E 0

1i ⇥ E
0
2i i). We have to prove that

hE11 ⇥ E21, E
0
11 ⇥ E

0
21i # hE13 ⇥ E23, E

0
13 ⇥ E

0
23i 6 hE14 ⇥ E24, E

0
14 ⇥ E

0
24i # h?, ?i

or what is the same:

hE11 ⇥ E21, E
0
11 ⇥ E

0
21i # hE13 ⇥ E23, E

0
13 ⇥ E

0
23i 6 hE14 ⇥ E24, E

0
14 ⇥ E

0
24i # h? ⇥ ?, ? ⇥ ?i

This case was discussed in Case [⇥].
⇤

De�nition 5.1 (Store Precision). �1 6 �2 () �1 = � 0
1,� := G1, �2 = � 0

2,� := G2, G1 6 G2 and
� 0
1 6 � 0

2, or �1 = �2 = ·.

De�nition 5.2 (Typing Environment Precision). �1 v �2 () �1 = �01 , x : G1, �2 = �02 , x : G2,
G1 6 G2 and �01 v �02 , or �1 = �2 = ·.

P���������� 5.3 (L��� E���������� P��������). If G1 6 G2 and �1 6 �2, then Ĝ1 6 Ĝ2, where
Ĝ1 = lift�1

(G1) and Ĝ2 = lift�2
(G2).

28 Elizabeth Labrada, Matías Toro, and Éric Tanter

P����. Remember that

lift� (G) =

8>>>>>>>><
>>>>>>>>:

lift� (G1) ! lift� (G2) G = G1 ! G2

8X .lift� (G1) G = 8X .G1

lift� (G1) ⇥ lift� (G2) G = G1 ⇥G2

�
lift� (�(�)) G = �

G otherwise

The prove follows by the de�nition of Ĝ1 = lift�1
(G1) and induction on the structure of the type.

Case (Gi = B). The result follows immediately due to B̂ = B 6 B = B̂.

Case (Gi = X). The result follows immediately due to X̂ = X 6 X = X̂ .

Case (Gi = �). We are required to prove that � lift�1 (�1(�)) 6 �
lift�2 (�2(�)), or what is the same

lift�1
(�1(�)) 6 lift�2

(�2(�)). Note that �1(�) 6 �2(�) due to �1 6 �2. The result follows immedi-
ately by the induction hypothesis on �1(�) 6 �2(�) and �1 6 �2.

Case (Gi = 8X .G 0
i). We know that G 0

1 6 G
0
2. We are required to prove that 8X .lift�1

(G 0
1) 6

8X .lift�2
(G 0

2), or what is the same lift�1
(G 0

1) 6 lift�2
(G 0

2). By the induction hypothesis on G 0
1 6 G

0
2

and �1 6 �2 the result follows immediately.

Case (Gi = G
0
i ! G

00
i). We know that G 0

1 6 G
0
2 and G

00
1 6 G

00
2 . We are required to prove that

lift�1
(G 0

1) ! lift�1
(G 00

1) 6 lift�2
(G 0

2) ! lift�2
(G 00

2), or what is the same lift�1
(G 0

1) 6 lift�2
(G 0

2) and
lift�1

(G 00
1) 6 lift�2

(G 00
2). By the induction hypothesis on G

0
1 6 G

0
2 and G

00
1 6 G

00
2 with �1 6 �2 the

result follows immediately.

Case (Gi = G
0
i ⇥G

00
i). This case is similar to the function case above.

Case (G1 = ?). Then G2 = ?. The result follows immediately due to ?̂ = ? 6 ? = ?̂.

Case (G2 = ?). Note that Ĝ2 = ?̂ = ?. Therefore, we are required to prove that Ĝ1 6 ?.

• Case (G1 = B). The result follows immediately, B̂ = B 6 ?.
• Case (G1 = X). This case is not possible due to X ⌦ ?.
• Case (G1 = �). This case is not possible due to � ⌦ ?.
• Case (G1 = 8X .G 0

1). This case is not possible due to 8X .G 0
1 ⌦ ?.

• Case (G1 = G
0
1 ! G

0
2). We are required to prove that lift�1

(G 0
1) ! lift�2

(G 0
2) 6 ?, or what is

the same lift�1
(G 0

1) ! lift�2
(G 0

2) 6 ? ! ?, which follows similar to the function case above.
• Case (G1 = G

0
1 ⇥G

0
2). We are required to prove that lift�1

(G 0
1) ⇥ lift�2

(G 0
2) 6 ?, or what is the

same lift�1
(G 0

1) ⇥ lift�2
(G 0

2) 6 ? ⇥ ?, which follows similar to the pair case above.

⇤

P���������� 5.4 (U����� E������� T���� P�������� P��������). If E1 6 E2 then unlift(E1) 6
unlift(E2).

Gradual System F: Auxiliary Definitions and Proofs 29

P����. Remember that

unlift(E) =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

B E = B

unlift(E1) ! unlift(E2) E = E1 ! E2

8X .unlift(E1) E = 8X .E1
unlift(E1) ⇥ unlift(E2) E = E1 ⇥ E2

� E = �
E1

X E = X

? E = ?

The prove follows by the de�nition of unlift(E1) and induction on the structure of the type.

Case (Gi = B). The result follows immediately due to unlift(B) = B 6 B = unlift(B).

Case (Gi = X). The result follows immediately due to unlift(X) = X 6 X = unlift(X).

Case (Gi = �
E0
i). The result follows immediately due to unlift(�E0

1) = � 6 � = unlift(�E0
2).

Case (Ei = 8X .E 0
i). We know that E 0

1 6 E
0
2. We are required to prove that 8X .unlift(E 0

1) 6
8X .unlift(E 0

2), or what is the same unlift(E 0
1) 6 unlift(E 0

2). By the induction hypothesis on E
0
1 6 E

0
2

the result follows immediately.

Case (Ei = E
0
i ! E

00
i). We know that E 0

1 6 E
0
2 and E

00
1 6 E

00
2 . We are required to prove that

unlift(E 0
1) ! unlift(E 00

1) 6 unlift(E 0
2) ! unlift(E 00

2), or what is the same unlift(E 0
1) 6 unlift(E 0

2) and
unlift(E 00

1) 6 unlift(E 00
2). By the induction hypothesis on E

0
1 6 E

0
2 and E

00
1 6 E

00
2 the result follows

immediately.

Case (Ei = E
0
i ⇥ E

00
i). This case is similar to the function case above.

Case (E1 = ?). Then E2 = ?. The result follows immediately due to unlift(?) = ? 6 ? = unlift(?).

Case (E2 = ?). Note that unlift(E2) = unlift(?) = ?. Therefore, we are required to prove that
unlift(E1) 6 ?.

• Case (E1 = B). The result follows immediately, unlift(B) = B 6 ?.
• Case (E1 = X). This case is not possible due to X ⌦ ?.
• Case (E1 = �). This case is not possible due to � ⌦ ?.
• Case (E1 = 8X .E 0

1). This case is not possible due to 8X .E 0
1 ⌦ ?.

• Case (E1 = E
0
1 ! E

0
2). We are required to prove that unlift(E 0

1) ! unlift(E 0
2) 6 ?, or what is

the same unlift(E 0
1) ! unlift(E 0

2) 6 ? ! ?, which follows similar to the function case above.
• Case (E1 = E

0
1 ⇥ E

0
2). We are required to prove that unlift(E 0

1) ⇥ unlift(E 0
2) 6 ?, or what is the

same unlift(E 0
1) ⇥ unlift(E 0

2) 6 ? ⇥ ?, which follows similar to the pair case above.

⇤

P���������� 5.5. If �1 6 �2, G1 6 G2, �1 6 �2, � := G1 2 �1, � := G2 2 �2 and �1[�̂1/X] is
de�ned, then

• �1[�̂1/X] 6 �2[�̂2/X].
• hE⇤1[�̂1/X], E⇤1[Ĝ1/X]i 6 hE⇤2[�̂2/X], E⇤2[Ĝ2/X]i.

where E⇤1 = lift�1
(unlift(�2(�1))), E⇤2 = lift�2

(unlift(�2(�2))), �̂1 = lift�1
(�1), �̂2 = lift�2

(�2), Ĝ1 =

lift�1
(G1) and Ĝ2 = lift�2

(G2).

30 Elizabeth Labrada, Matías Toro, and Éric Tanter

P����. Note that �̂1 6 �̂2 and Ĝ1 6 Ĝ2 by Proposition 5.3. Suppose that �1 = hE, E 0i and
�2 = hE 00, E 000i. We are required to prove that

�1[�̂1/X] = hE[�̂1/X], E 0[�̂1/X]i 6 hE 00[�̂2/X], E 000[�̂2/X]i = �2[�̂2/X]
�1

⇤ = hE⇤1[�̂1/X], E⇤1[Ĝ1/X]i 6 hE⇤2[�̂2/X], E⇤2[Ĝ2/X]i = �2
⇤

We follow by case analysis on the evidence type, the de�nition of consistent transitivity for =
and the de�nition of precision.

Case (�i = hB,Bi). The results follows immediately because �1[�̂1/X] = �2[�̂2/X] = �1
⇤ = �2

⇤ =
hB,Bi.
Case (�i = hX ,X i). We are required to prove that �1[�̂1/X] = h�̂1, �̂1i 6 h�̂2, �̂2i = �2[�̂2/X], which
follows immediately due to �̂1 6 �̂2. Also, we are required to prove that �1⇤ = h�̂1, Ĝ1i 6 h�̂2, Ĝ2i =
�2

⇤, which follows immediately due to �̂1 6 �̂2 and Ĝ1 6 Ĝ2.

Case (�i = hY ,Y i). The results follows immediately because �1[�̂1/X] = �2[�̂2/X] = �1
⇤ = �2

⇤ =
hY ,Y i.
Case (�i = h�Ei , E 0

i i). The results follows immediately because �1[�̂1/X] = h�E1, E 0
1i 6 h�E2, E 0

2i =
�2[�̂2/X] by premise (note that X can not be free in h�Ei , E 0

i i). Also, we are required to prove that
�1

⇤ 6 �2
⇤, but the result follows immediately by Preposition 5.4 and Proposition 5.3.

Case (�i = hEi , �E
0
i i). Similar to the previous case.

Case (�i = h8Y .Ei ,8Y .E 0
i i). By the de�nition of 6, we know that hE1, E 0

1i 6 hE2, E 0
2i. We are required

to prove that
�1[�̂1/X] = h8Y .E1[�̂1/X],8Y .E 0

1[�̂1/X]i 6 h8Y .E2[�̂2/X],8Y .E 0
2[�̂2/X]i = �2[�̂2/X]

or what is the same
hE1, E 0

1i [�̂1/X] = hE1[�̂1/X], E 0
1[�̂1/X]i 6 hE2[�̂2/X], E 0

2[�̂2/X]i = hE2, E 0
2i [�̂2/X]

By the induction hypothesis on hE1, E 0
1i 6 hE2, E 0

2i the result follows immediately.
Also we are required to prove

�1
⇤ = hE⇤1[�̂1/X], E⇤1[Ĝ1/X]i 6 hE⇤2[�̂2/X], E⇤2[Ĝ2/X]i = �2

⇤

Note thatE⇤1 = lift�1
(unlift(8Y .E 0

1)) = 8Y .lift�1
(unlift(E 0

1)) = 8Y .E⇤11 andE⇤2 = lift�2
(unlift(8Y .E 0

2)) =
8Y .lift�2

(unlift(E 0
2)) = 8Y .E⇤22. Therefore, we are required to prove

hE⇤11[�̂1/X], E⇤11[Ĝ1/X]i 6 hE⇤22[�̂2/X], E⇤22[Ĝ2/X]i
By the induction hypothesis on hE1, E 0

1i 6 hE2, E 0
2i the result follows immediately.

Case (�i = hE1i ! E2i , E 0
1i ! E

0
2i i). By the de�nition of 6, we know that hE11, E 0

11i 6 hE12, E 0
12i

and hE21, E 0
21i 6 hE22, E 0

22i. We are required to prove that
�1[�̂1/X] = hE11[�̂1/X] ! E12[�̂1/X], E 0

11[�̂1/X] ! E
0
12[�̂1/X]i 6

hE12[�̂2/X] ! E21[�̂2/X], E 0
12[�̂2/X] ! E

0
22[�̂2/X]i = �2[�̂2/X]

or what is the same
hE11[�̂1/X], E 0

11[�̂1/X]i 6 hE12[�̂2/X], E 0
12[�̂2/X]i

and
hE12[�̂1/X], E 0

12[�̂1/X]i 6 hE21[�̂2/X], E 0
22[�̂2/X]i

By the induction hypothesis on hE11, E 0
11i 6 hE12, E 0

12i and hE21, E 0
21i 6 hE22, E 0

22i the result follows
immediately.

Gradual System F: Auxiliary Definitions and Proofs 31

Also we are required to prove

�1
⇤ = hE⇤1[�̂1/X], E⇤1[Ĝ1/X]i 6 hE⇤2[�̂2/X], E⇤2[Ĝ2/X]i = �2

⇤

Note that E⇤1 = lift�1
(unlift(E 0

11 ! E
0
12)) = lift�2

(unlift(E 0
11)) ! lift�2

(unlift(E 0
12)) = E

⇤
11 !

E
⇤
12 and E

⇤
2 = lift�2

(unlift(E 0
21 ! E

0
22)) = lift�2

(unlift(E 0
21)) ! lift�2

(unlift(E 0
22)) = E

⇤
21 ! E

⇤
22.

Therefore, we are required to prove

hE⇤11[�̂1/X], E⇤11[Ĝ1/X]i 6 hE⇤21[�̂2/X], E⇤21[Ĝ2/X]i
and

hE⇤12[�̂1/X], E⇤12[Ĝ1/X]i 6 hE⇤22[�̂2/X], E⇤22[Ĝ2/X]i
By the induction hypothesis on hE11, E 0

11i 6 hE12, E 0
12i and hE21, E 0

21i 6 hE22, E 0
22i the result follows

immediately.

Case (�i = hE1i ⇥ E2i , E 0
1i ⇥ E

0
2i i). Similar to the function case.

Case (�1 = h?, ?i). Note that if �1 = h?, ?i then �2 = h?, ?i. Therefore, the result follows immediately
because �1[�̂1] = �2[�̂2] = �1

⇤ = �2
⇤ = h?, ?i. This case is trivial,

Case (�2 = h?, ?i). Note that �2[�̂2] = �2
⇤ = h?, ?i. Therefore, we are required to prove that

�1[�̂1] 6 h?, ?i and �1⇤ 6 h?, ?i.
• Case (�1 = hB,Bi). The result follows immediately, �1[�̂1/X] = �1

⇤ = hB,Bi 6 h?, ?i.
• Case (�1 = hX ,X i). This case is not possible due to hX ,X i ⌦ h?, ?i.
• Case (�1 = h�E1, E 0

1i). This case is not possible due to h�E1, E 0
1i ⌦ h?, ?i.

• Case (�1 = hE1,�E0
1i). This case is not possible due to hE1,�E0

1i ⌦ h?, ?i.
• Case (�1 = h8Y .E1,8Y .E 0

1i). This case is not possible due to h8Y .E1,8Y .E 0
1i ⌦ h?, ?i.

• Case (�1 = hE11 ! E12, E 0
11 ! E

0
12i). We are required to prove that �1[�̂1] 6 h?, ?i and �1⇤ 6

h?, ?i, or what is the same �1[�̂1] 6 h? ! ?, ? ! ?i and �1⇤ 6 h? ! ?, ? ! ?i, which follows
similar to the function case above.

• Case (�1 = hE11 ⇥ E12, E 0
11 ⇥ E

0
12i). We are required to prove that �1[�̂1] 6 h?, ?i and �1⇤ 6 h?, ?i,

or what is the same �1[�̂1] 6 h? ⇥ ?, ? ⇥ ?i and �1⇤ 6 h? ⇥ ?, ? ⇥ ?i, which follows similar to
the pair case above.

⇤

P���������� 5.6. If �1 v �2, G1 6 G2, �1 6 �2, � := G1 2 �1, � := G2 2 �2 and �1[�̂1/X] is
de�ned, then �1[�̂1/X] v �2[�̂2/X], where �̂1 = lift�1

(�) and �̂2 = lift�2
(�).

P����. Similar to Proposition 5.5. ⇤

P���������� 5.7 (M����������� �� E������� I������������). If �1 6 �2,G1 6 G2, �1 6 �2,
� := G1 2 �1, � := G2 2 �2 and �1[�̂1] is de�ned, then

• �̂1 6 �̂2.
• �1[�̂1] 6 �2[�̂2].
• �1out 6 �2out .

where �̂1 = lift�1
(�) and �̂2 = lift�2

(�).

P����. This result �̂1 6 �̂2 follows immediately by the Proposition 5.3.
Remember that

�out , hE⇤[�E], E⇤[E 0]i where E⇤= lift� (unlift(�2(�))),�E = lift�0(�), E 0= lift� (G 0)

32 Elizabeth Labrada, Matías Toro, and Éric Tanter

Note that �1[�̂1] only succeed if �1 = h8X .E,8X .E 0i. Since �1 6 �2 and �1 = h8X .E,8X .E 0i, then
�2 = h8X .E 00,8X .E 000i. Let suppose that � 01 = hE, E 0i and � 02 = hE 00, E 000i. Then we are required to
prove that

�1[�̂1] = �
0
1[�̂1/X] = hE[�̂1/X], E 0[�̂1/X]i 6 hE 00[�̂2/X], E 000[�̂2/X]i = �

0
2[�̂2/X] = �2[�̂2]

�1out = hE⇤1[�̂1/X], E⇤1[Ĝ1/X]i 6 hE⇤2[�̂2/X], E⇤2[Ĝ2/X]i = �2out

where E⇤1 = lift�1
(unlift(E 0)), E⇤2 = lift�2

(unlift(E 000)), Ĝ1 = lift�1
(G1) and Ĝ2 = lift�2

(G2).
By the Proposition 5.5 the result follows immediately. ⇤

P���������� 5.8. If G⇤
1 v G

⇤
2 and G

0
1 v G

0
2 then G

⇤
1[G 0

1/X] v G
⇤
2[G 0

2/X].
P����. Follow by induction on G⇤

1 v G
⇤
2 .

Case (B v B). The results follows immediately due to B[G 0
1/X] = B v B = B[G 0

2/X].
Case (Y v Y). If Y = X , the results follows immediately due to X [G 0

1/X] = G
0
1 v G

0
2 = X [G 0

2/X]
and G 0

1 v G
0
2 by premise. If Y , X , the results, also, follows immediately due to Y [G 0

1/X] = Y v
Y = Y [G 0

2/X].
Case (� v �). The results follows immediately due to �[G 0

1/X] = � v � = �[G 0
2/X].

Case (G v ?). The results follows immediately due to G[G 0
1/X] v ? = ?[G 0

2/X].
Case (8X .G1 v 8X .G2). We know that

G1 v G2

8X .G1 v 8X .G2

By the de�nition of v, we know that G1 v G2. We are required to prove that

(8X .G1)[G 0
1/X] = (8X .G1[G 0

1/X]) v (8X .G2[G 0
2/X]) = (8X .G2)[G 0

2/X]
Or what is the same that (G1[G 0

1/X]) v (G2[G 0
2/X]). But the result follows immediately by the

induction hypothesis on G1 v G2.

Case (G1 ! G2 v G3 ! G4). We know that
G1 v G3 G2 v G4

G1 ! G2 v G3 ! G4

By the de�nition of v, we know that G1 v G3 and G2 v G4. We are required to prove that

(G1 ! G2)[G 0
1/X] = (G1[G 0

1/X] ! G2[G 0
1/X]) v (G3[G 0

2/X] ! G4[G 0
2/X]) = (G3 ! G4)[G 0

2/X]
Or what is the same that G1[G 0

1/X] v G3[G 0
2/X] and G2[G 0

1/X] v G4[G 0
2/X]. But the result follows

immediately by the induction hypothesis on G1 v G3 and G2 v G4.

Case (G1 ⇥G2 v G3 ⇥G4). We know that
G1 v G3 G2 v G4

G1 ⇥G2 v G3 ⇥G4

By the de�nition of v, we know that G1 v G3 and G2 v G4. We are required to prove that

(G1 ⇥G2)[G 0
1/X] = (G1[G 0

1/X] ⇥G2[G 0
1/X]) v (G3[G 0

2/X] ⇥G4[G 0
2/X]) = (G3 ⇥G4)[G 0

2/X]
Or what is the same that G1[G 0

1/X] v G3[G 0
2/X] and G2[G 0

1/X] v G4[G 0
2/X]. But the result follows

immediately by the induction hypothesis on G1 v G3 and G2 v G4.

⇤

Gradual System F: Auxiliary Definitions and Proofs 33

P���������� 5.9. If G1 v G2 and G 0
1 6 G

0
2 then G1[G 0

1/X] v G2[G 0
2/X].

P����. By Proposition 5.14 and Proposition 5.8 the results follows immediately. ⇤

P���������� 5.10. If G1 6 G2 and G 0
1 6 G

0
2 then G1[G 0

1/X] 6 G2[G 0
2/X].

P����. Straightforward induction on G1 6 G2. Very similar to Proposition 5.8. ⇤

P���������� 5.11. If G1 _ G2 then G1[�/X] _ G2[�/X].

P����. By induction on the de�nition of G1 _ G2. ⇤

5.3 Weak Dynamic Gradual Guarantee for GSF
In this section, we present the proof of the weak dynamic gradual guarantee for GSF� previously
presented and the auxiliary Propositions an De�nitions.

P���������� 5.12 (M����������� �� E������� S�����������). If � ` s
⇤
1 6 s

⇤
2 : G⇤

1 6 G
⇤
2

and �1 6 �2, then �[�/X] ` s
⇤
1[�̂1/X] 6 s

⇤
2[�̂2/X] : G⇤

1[�/X] 6 G
⇤
2[�/X], where � := G

⇤⇤
1 2 �1,

� := G⇤⇤
2 2 �2, �̂1 = lift�1

(�) and �̂2 = lift�2
(�).

P����. We follow by induction on � ` s⇤1 6 s
⇤
2 : G

⇤
1 6 G

⇤
2 . We avoid the notation � ` s⇤1 6 s

⇤
2 :

G
⇤
1[�/X] 6 G⇤

2[�/X], and use s⇤1 6 s
⇤
2 instead, for simplicity, when the typing environments are not

relevant.

Case (b 6 b). The results follows immediately due to b[�̂1/X] = b 6 b = b[�̂2/X].

Case (x 6 x). The results follows immediately due to x[�̂1/X] = x 6 x = x[�̂2/X].

Case ((�x : G1.t1) 6 (�x : G2.t2)). We know that
� ` �1 . t1 : G 0

1 6 �2 . t2 : G 0
2 G1 v G2

(�x : G1.t1) 6 (�x : G2.t2)
We are required to show

(�x : G1.t1)[�̂1/X] = (�x : G1[�/X].t1[�̂1/X]) 6 (�x : G2[�/X].t2[�̂2/X]) = (�x : G2.t2)[�̂2/X]

Note that G1[�/X] v G2[�/X], by Proposition 5.9.
Therefore, we are required to prove

�, x : G1[�/X] v G2[�/X] ` �1 . (t1[�̂1/X]) : G 0
1[�/X] 6 �2 . (t2[�̂2/X]) : G 0

2[�/X]
But the results follows immediately by the induction hypothesis on

�, x : G1 v G2 ` �1 . t1 : G 0
1 6 �2 . t2 : G 0

2

Case ((�Y .t1) 6 (�Y .t2)). We know that
t1 6 t2

(�Y .t1) 6 (�Y .t2)
We are required to show

(�Y .t1)[�̂1/X] = (�Y .t1[�̂1/X]) 6 (�Y .t2[�̂2/X]) = (�Y .t2)[�̂2/X]

Therefore, we are required to prove (t1[�̂1/X]) 6 (t2[�̂2/X]). But the results follows immediately
by the induction hypothesis on t1 6 t2.

34 Elizabeth Labrada, Matías Toro, and Éric Tanter

Case (t1 t2 6 t1 t
0
2). We know that

t1 6 t
0
1 t2 6 t

0
2

t1 t2 6 t1 t
0
2

We are required to show
(t1 t2)[�̂1/X] = t1[�̂1/X] t2[�̂1/X]) 6 (t 01[�̂2/X] t 02[�̂2/X]) = (t 01 t 02)[�̂2/X]

Therefore, we are required to prove t1[�̂1/X] 6 t
0
1[�̂2/X] and t2[�̂1/X] 6 t

0
2[�̂2/X]. But the results

follows immediately by the induction hypothesis on t1 6 t
0
1 and t2 6 t

0
2.

Case (t1 [G1] 6 t2 [G2]). We know that
t1 6 t2 G1 6 G2

t1 [G1] 6 t2 [G2]
We are required to show

(t1 [G1])[�̂1/X] = (t1[�̂1/X] [G1[�/X]]) 6 (t2[�̂2/X] [G2[�/X]]) = (t2 [G2])[�̂2/X]

Note that G1[�/X] 6 G2[�/X] by Proposition 5.10 and G1 6 G2.
Therefore, we are required to prove (t1[�̂1/X]) 6 (t2[�̂2/X]). But the results follows immediately
by the induction hypothesis on t1 6 t2.

Case (�1s1 :: G1 6 �2s2 :: G2).
�1 6 �2 s1 6 s2 G1 v G2

�1s1 :: G1 6 �2s2 :: G2

We are required to show
(�1s1 :: G1)[�̂1/X] = (�1[�̂1/X]s1[�̂1/X] :: G1[�/X]) 6 (�2[�̂2/X]s2[�̂2/X] :: G2[�/X]) = (�2s2 :: G2)[�̂2/X]

Note that by Proposition 5.5 and �1 6 �2, we know that �1[�̂1/X] 6 �2[�̂2/X]. Also, by Proposi-
tion 5.9 and G1 v G2, we know that G1[�/X] v G2[�/X].
Therefore, we are required to prove (s1[�̂1/X]) 6 (s2[�̂2/X]). But the results follows immediately
by the induction hypothesis on s1 6 s2.

Case (�G1t
0
1 :: G1 6 �G2t

0
2 :: G2).

� ` �1 . t
0
1 : G

0
1 6 �2 . t

0
2 : G

0
2 G1 v G2 G

0
1 _ G1 G

0
2 _ G2

� ` �1 . �G1 (t 01 :: G1 : G1 6 �2 . �G2t
0
2 :: G2 : G2

We are required to show
(�G1t

0
1 :: G1)[�̂1/X] = (�G1 [�̂1/X]t 01[�̂1/X] :: G1[�/X]) 6

(�G2 [�̂2/X]t 02[�̂2/X] :: G2[�/X]) = (�G2t
0
2 :: G2)[�̂2/X]

Note that sinceG1 v G2 and Proposition 5.24, we know that �G1 v �G2 . Note that by Proposition 5.6
and �G1 v �G2 , we know that �G1 [�̂1/X] v �G2 [�̂2/X]. Also, by Proposition 5.9 and G1 v G2, we
know that G1[�/X] v G2[�/X]. By Proposition 5.11, we know that G 0

1[�/X] _ G1[�/X] and
G

0
2[�/X] _ G2[�/X]. Therefore, we are required to prove (t1[�̂1/X]) 6 (t2[�̂2/X]). But the results

follows immediately by the induction hypothesis on t1 6 t2.

⇤

P���������� 5.13 (S����������� P�������� P��������). If �0, x : G1 v G2 ` s1 6 s2 : G 0
1 6 G

0
2

and �0 ` �1 6 �2 : G1 6 G2, then �0 ` s1[�1/x] 6 s2[�2/x] : G 0
1 6 G

0
2.

Gradual System F: Auxiliary Definitions and Proofs 35

P����. We follow by induction on �0, x : G1 v G2 ` t1 6 t2 : G 0
1 6 G

0
2. We avoid the notation

�0, x : G1 v G2 ` t1 6 t2 : G 0
1 6 G

0
2, and use t1 6 t2 instead, for simplicity, when the typing

environments are not relevant. Let suppose that � = �0, x : G1 v G2.

Case (b 6 b). The result follows immediately.

Case (x 6 x). We know that

(6x�)
x : G1 v G2 2 �

� ` �1 . x : G1 6 �2 . x : G2

The result follows immediately due to � ` �1 . �1 : G1 6 �2 . �2 : G2 and

t1[�1/x] = x[�1/x] = �1 6 �2 = x[�2/x] = t2[�2/x]
Case ((�� : G 00

1 .t
0
1) 6 (�� : G 00

2 .t
0
2)). We know that

�,� : G 00
1 v G

00
2 ` �1 . t

0
1 : G

000
1 6 �2 . t

0
2 : G

000
2 G

00
1 v G

00
2

� ` �1 . (�� : G 00
1 .t

0
1) : G 00

1 ! G
000
1 6 �2 . (�� : G 00

2 .t
0
2) : G 00

2 ! G
000
2

Note that we are required to prove that � ` �1 . (�� : G 00
1 .t

0
1) : G 00

1 ! G
000
1 6 �2 . (�� : G 00

2 .t
0
2) :

G
00
2 ! G

000
2 .

(�� : G 00
1 .t

0
1)[�1/x] = (�� : G 00

1 .t
0
1[�1/x]) 6 (�� : G 00

2 .t
0
2[�2/x]) = (�� : G 00

2 .t
0
2)[�2/x]

or what is the same �,� : G 00
1 v G

00
2 ` �1 . t

0
1[�1/x] : G 000

1 6 �2 . t
0
2[�2/x] : G 000

2 . But the result
follows immediately by the induction hypothesis on �,� : G 00

1 v G
00
2 ` �1 . t

0
1 : G

000
1 6 �2 . t

0
2 : G

000
2 .

Case ((�X .t 01) 6 (�X .t 02)). We know that
� ` �1 . t

0
1 : G

00
1 6 �2 . t

0
2 : G

00
2

� ` �1 . (�X .t 01) : 8X .G 00
1 6 �2 . (�X .t 02) : 8X .G 00

2

Note that we are required to prove that � ` �1 . (�X .t 01) : 8X .G 00
1 6 �2 . (�X .t 02) : 8X .G 00

2 .

(�X .t 01)[�1/x] = (�X .t 01[�1/x]) 6 (�X .t 02[�2/x]) = (�X .t 02)[�2/x]
or what is the same � ` �1 . t

0
1[�1/x] : G 00

1 6 �2 . t
0
2[�2/x] : G 00

2 . But the result follows immediately
by the induction hypothesis on � ` �1 . t

0
1 : G

00
1 6 �2 . t

0
2 : G

00
2 .

Case (t 01 t
0
2 6 t

00
1 t

00
2). We know that

� ` �1 . t
0
1 : G

00
1 ! G

000
1 6 �2 . t

0
2 : G

00
2 ! G

000
2 � ` �1 . t

00
1 : G 00

1 6 �2 . t
00
2 : G 00

2

� ` �1 . t
0
1 t

00
1 : G 000

1 6 �2 . t
0
2 t

00
2 : G 000

2

Note that we are required to prove that � ` �1 . t
0
1 t

00
1 : G 000

1 6 �2 . t
0
2 t

00
2 : G 000

2 .

(t 01 t 001)[�1/x] = t
0
1[�1/x] t 001 [�1/x] 6 t

0
2[�2/x] t 002 [�2/x] = (t 02 t 002)[�2/x]

or what is the same � ` �1 . t
0
1[�1/x] : G 00

1 ! G
000
1 6 �2 . t

0
2[�2/x] : G 00

2 ! G
000
2 and � `

�1 . t
00
1 [�1/x] : G 000

1 6 �2 . t
00
2 [�2/x] : G 000

2 . But the result follows immediately by the induction
hypothesis on � ` �1 . t

0
1 : G

00
1 ! G

000
1 6 �2 . t

0
2 : G

00
2 ! G

000
2 and � ` �1 . t

00
1 : G 00

1 6 �2 . t
00
2 : G 00

2 .

Case (t 01 [G 00
1] 6 t

0
2 [G 00

2]).
� ` �1 . t

0
1 : 8X .G 000

1 6 �2 . t
0
2 : 8X .G 000

2 G
00
1 6 G

00
2

� ` �1 . t
0
1 [G 00

1] : G 000
1 [G 00

1 /X] 6 �2 . t
0
2 [G 00

2] : G 000
2 [G 00

2 /X]
Note that we are required to prove that � ` �1 . t

0
1 [G 00

1] : G 000
1 [G 00

1 /X] 6 �2 . t
0
2 [G 00

2] : G 000
2 [G 00

2 /X].
(t 01 [G 00

1])[�1/x] = (t 01[�1/x] [G 00
1]) 6 (t 02[�2/x] [G 00

2]) = (t 02 [G 00
2])[�2/x]

36 Elizabeth Labrada, Matías Toro, and Éric Tanter

or what is the same � ` �1 . t
0
1[�1/x] : G 000

1 [G 00
1 /X] 6 �2 . t

0
2[�2/x] : G 000

2 [G 00
2 /X]. But the result

follows immediately by the induction hypothesis on � ` �1 .t
0
1 : G

000
1 [G 00

1 /X] 6 �2 .t
0
2 : G

000
2 [G 00

2 /X].

Case (�1s 01 :: G
00
1 6 �1s

0
1 :: G

00
1).

�1 6 �2 � ` �1 . s
0
1 : G

000
1 6 �2 . s

0
2 : G

000
2 G

00
1 v G

00
2

� ` �1 . �1s
0
1 :: G

00
1 : G 00

1 6 �2 . �2s
0
2 :: G

00
2 : G 00

2

Note that we are required to prove that � ` �1 . �1s
0
1 :: G

00
1 : G 00

1 6 �2 . �2s
0
2 :: G

00
2 : G 00

2 .

(�1s 01 :: G 00
1)[�1/x] = (�1s 01[�1/x] :: G 00

1) 6 (�2s 02[�2/x] :: G 00
2) = (�2s 02 :: G 00

2)[�2/x]
or what is the same � ` �1 .s

0
1[�1/x] : G 000

1 6 �2 .s
0
2[�2/x] : G 000

2 . But the result follows immediately
by the induction hypothesis on � ` �1 . s

0
1 : G

000
1 6 �2 . s

0
2 : G

000
2 .

Case (�G0
1
t
0
1 :: G1 6 �G0

2
t
0
2 :: G

0
2). We know that

�G1 ⌦ �G2 � ` �1 . t
0
1 : G

000
1 6 �2 . t

0
2 : G

000
2 G

0
1 v G

0
2 G

00
1 _ G

0
1 G

00
2 _ G

0
2

� ` �1 . �G0
1
t
0
1 :: G

0
1 : G

0
1 6 �2 . �G0

2
t
0
2 :: G

0
2 : G

0
2

Note that we are required to prove that

(�G0
1
t
0
1 :: G

0
1)[�1/x] = (�G00

1
t
0
1[�1/x] :: G 0

1) 6

(�G0
2
t
0
2[�2/x] :: G 00

2) = (�G0
2
t
0
2 :: G

0
2)[�2/x]

or what is the same � ` �1 .t
0
1[�1/x] : G 000

1 6 �2 .t
0
2[�2/x] : G 000

2 . But the result follows immediately
by the induction hypothesis on � ` �1 . t

0
1 : G

000
1 6 �2 . t

0
2 : G

000
2 .

⇤

P���������� 5.14. If G⇤
1 6 G

⇤
2 then G

⇤
1 v G

⇤
2 .

P����. Examining 6 rules.

Case (B 6 B). The results follows immediately by the rule G v G.

Case (X 6 X). The results follows immediately by the rule G v G.

Case (� 6 �). The results follows immediately by the rule G v G.

Case (B 6 ?). The results follows immediately by the rule G v ?.

Case (G1 ! G2 6 ?). The results follows immediately by the rule G v ?.

Case (G1 ⇥G2 6 ?). The results follows immediately by the rule G v ?.

Case (? 6 ?). The results follows immediately by the rule G v ?.

Case (8X .G1 6 8X .G2). We know that
G1 6 G2

8X .G1 6 8X .G2

By the induction hypothesis on G1 6 G2, we know that G1 v G2. We are required to prove that
8X .G1 v 8X .G2, which follows immediately by the rule

G1 v G2

8X .G1 v 8X .G2

Gradual System F: Auxiliary Definitions and Proofs 37

Case (G1 ! G2 6 G3 ! G4). We know that
G1 6 G3 G2 6 G4

G1 ! G2 6 G3 ! G4

By the induction hypothesis on G1 6 G3 and G2 6 G4, we know that G1 v G3 and G2 v G4. We are
required to prove that G1 ! G2 v G3 ! G4, which follows immediately by the rule

G1 v G3 G2 v G4

G1 ! G2 v G3 ! G4

Case (G1 ⇥G2 6 G3 ⇥G4). We know that
G1 6 G3 G2 6 G4

G1 ⇥G2 6 G3 ⇥G4

By the induction hypothesis on G1 6 G3 and G2 6 G4, we know that G1 v G3 and G2 v G4. We are
required to prove that G1 ⇥G2 v G3 ⇥G4, which follows immediately by the rule

G1 v G3 G2 v G4

G1 ⇥G2 v G3 ⇥G4

⇤

P���������� 5.15. If �1 6 t2 then t2 = �2.

P����. Exploring 6 rules. ⇤

P���������� 5.16. If �1 6 �2 then
• dom(�1) 6 dom(�2)
• cod(�1) 6 cod(�2)
• pi (�1) 6 pi (�2)
• schmu (�1) 6 schmu (�2)

P����. By inspecting the evidence shape and the de�nition of �1 6 �2. ⇤

P���������� 5.17. If � � �;� ` G 00 ⇠ G
0 and G 0 _ G, then � # �G = � .

P����. By Lemma 6.30 and de�nition of G 0 _ G and � # �G = � . ⇤

P���������� 5.18. If �1 ` t1 6 �2 ` t2 and �1 . t1 ��! � 0
1 . t

0
1, then �2 . t2 ��! � 0

2 . t
0
2 and

� 0
1 ` t 01 6 � 0

2 ` t 02.
P����. If �1 ` t1 6 �2 ` t2, we know that ` t1 6 t2 : G1 6 G2, �1 6 �2, �1 ` t1 : G1

and �2 ` t2 : G2. We follow by induction on ` t1 6 t2 : G1 6 G2. We avoid the notation
` t1 6 t2 : G1 6 G2, and use t1 6 t2 instead, for simplicity, when the typing environments are not
relevant.

Case (b 6 b). This case does not applies because b is not a term t , therefore it can not reduce.

Case (x 6 x). This case does not applies because x is not a term t , therefore it can not reduce.

Case ((�x : G⇤
1 .t

⇤
1) 6 (�x : G⇤

2 .t
⇤
2)). This case does not applies because �x : G⇤

1 .t
⇤
1 is not a term t ,

therefore it can not reduce.

Case ((�X .t⇤1) 6 (�X .t⇤2)). This case does not applies because �X .t⇤1 is not a term t , therefore it can
not reduce.

38 Elizabeth Labrada, Matías Toro, and Éric Tanter

Case (t⇤11 t
⇤
12 6 t

⇤
21 t

⇤
22). We know that

t
⇤
11 6 t

⇤
21 t

⇤
12 6 t

⇤
22

t
⇤
11 t

⇤
12 6 t

⇤
21 t

⇤
22

Also, since�1.t1 ��! � 0
1.t

0
1, we know that t⇤11 = �11�x : G⇤

1 .t11 :: G12 ! G11 and t⇤12 = �12 = �12u12 :
G12. By Proposition 5.15, we know that t⇤21 = �21�x : G⇤

2 .t21 :: G22 ! G21 and t⇤22 = �22 = �22u22 : G22.
By the reduction rules, we know that

�1 . (�11�x : G⇤
1 .t11 :: G12 ! G11) (�12u12 : G12) ��! �1 . cod(�11)(t11[((�12 # dom(�11))u11 :: G⇤

1)/x]) :: G11

By Proposition 5.16, we know that dom(�11) 6 dom(�21) and cod(�11) 6 cod(�21). Therefore, by
Proposition ?? and �12 6 �22, we know that (�12 # dom(�11)) 6 (�22 # dom(�21)).
Therefore, we know that

�2 . (�21�x : G⇤
2 .t21 :: G22 ! G21) (�22u22 : G22) ��! �2 . cod(�21)(t21[((�22 # dom(�21))u21 :: G⇤

2)/x]) :: G21

Thus, by the 6 rules, u11 6 u21 and G⇤
1 v G

⇤
2 , we know that

((�12 # dom(�11))u11 :: G⇤
1) 6 ((�22 # dom(�21))u21 :: G⇤

2)

By Proposition 5.13, we know that

(t11[((�12 # dom(�11))u11 :: G⇤
1)/x]) 6 (t21[((�22 # dom(�21))u21 :: G⇤

2)/x])

Finally, since cod(�11) 6 cod(�21) and G11 v G21 and the 6 rules the result holds.

�1 ` cod(�11)(t11[((�12 # dom(�11))u11 :: G⇤
1)/x]) :: G11 6 �2 ` cod(�21)(t21[((�22 # dom(�21))u21 :: G⇤

2)/x]) :: G21

Case (t⇤1 [G⇤
1] 6 t

⇤
2 [G⇤

2]). We know that

t
⇤
1 6 t

⇤
2 G

⇤
1 6 G

⇤
2

t
⇤
1 [G⇤

1] 6 t
⇤
2 [G⇤

2]
Also, since �1 . t1 ��! � 0

1 . t
0
1, we know that t⇤1 = �11�X .t11 :: 8X .G11. By Proposition 5.15, we

know that t⇤2 = �22�X .t22 :: 8X .G22. By the reduction rules, we know that

�1 . (�11�X .t11 :: 8X .G11)[G⇤
1] ��! � 0

1 . �11out (�11[�̂1]t11[�̂1/X] :: G11[�/X]) :: G11[G⇤
1/X]

where � 0
1 = �1,� := G⇤

1 and �̂1 = lift�0
1
(�).

By Proposition 5.7, we know that �11out 6 �22out and �11[�̂1] 6 �22[�̂2].
Therefore, we know that

�2 . (�22�X .t22 :: 8X .G22)[G⇤
2] ��! � 0

2 . �22out (�22[�̂2]t22[�̂2/X] :: G22[�/X]) :: G22[G⇤
2/X]

where � 0
2 = �2,� := G⇤

2 and �̂2 = lift�0
2
(�).

By Proposition 5.12 we know that t11[�̂1/X] 6 t22[�̂2/X]. By Proposition 5.8 and Proposition 5.9,
we know that G11[�/X] 6 G22[�/X] and G11[G⇤

1/X] 6 G22[G⇤
2/X], respectively.

Finally, by the 6 rules the result holds.

� 0
1 . �1out (�1[�̂1]t1[�̂1/X] :: G1[�/X]) :: G1[G⇤

1/X] 6 � 0
2 . �22out (�22[�̂2]t22[�̂2/X] :: G22[�/X]) :: G22[G⇤

2/X]

Gradual System F: Auxiliary Definitions and Proofs 39

Case (�1s1 :: G⇤
1 6 �2s2 :: G⇤

2). We know that

�1 6 �2 s1 6 s2 G
⇤
1 v G

⇤
2

�1s1 :: G⇤
1 6 �2s2 :: G⇤

2

Also, since �1 . t1 ��! � 0
1 . t

0
1, we know that s1 = (�11u11 :: G11). By Proposition 5.15, we know

that s2 = (�2u2 :: G2). By the reduction rules, we know that

�1 . �1(�11u11 :: G11) :: G⇤
1 ��! �1 . (�11 # �1)u11 :: G⇤

1

By the 6 rules, we know that �11 6 �22 and �1 6 �2. Therefore, by Proposition ??, we know that
(�11 # �1) 6 (�22 # �2).
Therefore, we know that

�2 . �2(�22u22 :: G22) :: G⇤
2 ��! �2 . (�22 # �2)u22 :: G⇤

2

Thus, by the 6 rules, u11 6 u22 and G⇤
1 v G

⇤
2 , the result holds.

�1 ` (�11 # �1)u11 :: G⇤
1 6 �2 ` (�22 # �2)u22 :: G⇤

2

Case (�G⇤
1
(�11u1 :: G⇤

1) :: G⇤
1 6 �G⇤

2
(�22u2 :: G⇤

2) :: G⇤
2). We know that

� ` u11 6 u22 : G⇤⇤
1 6 G

⇤⇤
2 G

⇤
1 v G

⇤
2 G

⇤⇤
1 _ G

⇤
1 G

⇤⇤
2 _ G

⇤
2

� ` �G⇤
1
(�11u11 :: G⇤⇤

1) :: G⇤
1 6 �G⇤

2
(�22u22 :: G⇤⇤

2) :: G⇤
2 : G

⇤
1 6 G

⇤
2

Also, since �1 . t1 ��! � 0
1 . t

0
1, we know that t1 = �G⇤

1
(�11u11 :: G⇤⇤

1) :: G⇤
1 . By Proposition 5.15,

we know that s2 = �G⇤
2
(�22u22 :: G⇤⇤

2) :: G⇤
2 . By the reduction rules, we know that

�1 . �G⇤
1
(�11u11 :: G⇤⇤

1) :: G⇤
1 ��! �1 . (�11 # �G⇤

1
)u11 :: G⇤

1

We know by the de�nition of � ` �G⇤
1
(�11u11 :: G⇤⇤

1) :: G⇤
1 6 �G⇤

2
(�22u22 :: G⇤⇤

2) :: G⇤
2 : G⇤

1 6 G
⇤
2

that �1 ` (�11u11 :: G⇤⇤
1) : G⇤⇤

1 and �2 ` (�22u22 :: G⇤⇤
2) : G⇤⇤

2 , and therefore, �11 � �1 ` G⇤⇤⇤
1 ⇠ G

⇤⇤
1

and �22 � �2 ` G⇤⇤⇤
2 ⇠ G

⇤⇤
2 . By the 6 rules, we know that �11 6 �22 and �G⇤

1
v �G⇤

2
. Therefore, by

Lemma 5.17 and G⇤⇤
1 _ G

⇤
1 and G

⇤⇤
2 _ G

⇤
2 , we know that (�11 # �G⇤

1
) = �11 and (�22 # �G⇤

2
) = �22.

Therefore, we know that
�2 . �G⇤

2
(�22u22 :: G⇤⇤

2) :: G⇤
2 ��! �2 . (�22 # �G⇤

2
)u22 :: G⇤

2

Then, by the 6 rules, u11 6 u22 and G⇤
1 v G

⇤
2 , the result holds.

�1 ` (�11 # �1)u11 :: G⇤
1 6 �2 ` (�22 # �2)u22 :: G⇤

2

⇤

P���������� 5.19. If �1 ` t1 6 �2 ` t2 and �1 . t1 7��! � 0
1 . t

0
1, then �2 . t2 7��! � 0

2 . t
0
2 and

� 0
1 ` t 01 6 � 0

2 ` t 02.

P����. If �1 ` t1 6 �2 ` t2, we know that ` t1 6 t2 : G1 6 G2, �1 6 �2, �1 ` t1 : G1 and
�2 ` t2 : G2. We avoid the notation ` t1 6 t2 : G1 6 G2, and use t1 6 t2 instead, for simplicity, when
the typing environments are not relevant.
By induction on reduction �1 . t1 7��! � 0

1 . t
0
1.

Case (�1 . t1 ��! � 0
1 . t

0
1). By Proposition 5.18, we know that �2 . t2 ��! � 0

2 . t
0
2, �

0
1 ` t 01 6 � 0

2 ` t 02;
and the result holds immediately.

40 Elizabeth Labrada, Matías Toro, and Éric Tanter

Case (�1 . �11t11 :: G11 7��! � 0
1 . �11t

0
11 :: G11). By inspection of 6, t2 = �22t22 :: G22, where �11 6 �22

or �11 v �22, t11 6 t22 and G11 v G22. By induction hypothesis on �1 . t11 7��! � 0
1 . t

0
11, then

�2 . t22 7��! � 0
2 . t

0
22, where �

0
1 ` t 011 6 � 0

2 ` t 022. Then, by 6, we know that � 0
1 ` �11t 011 :: G11 6 � 0

2 `
�22t

0
22 :: G22 and the result holds.

Case (�1 . t11 t12 7��! � 0
1 . t

0
11 t12). By inspection of 6, t2 = t21 t22, where t11 6 t21 and t12 6 t22. By

induction hypothesis on �1 . t11 7��! � 0
1 . t

0
11, we know that �2 . t21 7��! � 0

2 . t
0
21, where �

0
1 ` t 011 6

� 0
2 ` t 021. Then, by 6, we know that � 0

1 ` t 011 t12 6 � 0
2 ` t 021 t22 and the result holds.

Case (�1 . �11 t12 7��! � 0
1 . �11 t

0
12). By inspection of 6 and Proposition 5.15, t2 = �21 t22, where

�11 6 �21 and t12 6 t22. By induction hypothesis on �1 . t12 7��! � 0
1 . t

0
12, then �2 . t22 7��! � 0

2 . t
0
22,

where � 0
1 ` t

0
12 6 � 0

2 ` t
0
22. Then, by 6, we know that � 0

1 ` �11 t 012 6 � 0
2 ` �21 t 022 and the result

holds.

Case (�1 . t11 [G11] 7��! � 0
1 . t

0
11 [G11]). By inspection of 6, t2 = t22 [G22], where t11 6 t22 and

G11 6 G22. By induction hypothesis on �1 . t11 7��! � 0
1 . t

0
11, we know that �2 . t22 7��! � 0

2 . t
0
22,

where � 0
1 ` t 011 6 � 0

2 ` t 022. Then, by 6, we know that � 0
1 ` t 011 [G11] 6 � 0

2 ` t 022 [G22] and the result
holds.

P���������� 9.4 (S��������� DGG6 ��� GSF�). Suppose �1 . t1 6 �2 . t2.
a. If �1 . t1 7��! � 0

1 . t
0
1, then �2 . t2 7��! � 0

2 . t
0
2, and we have �

0
1 . t

0
1 6 � 0

2 . t
0
2.

b. If t1 = �1, then t2 = �2.

P����. Direct by Lemma 5.19 and 5.15. ⇤

⇤

P���������� 5.20. Let suppose �1 ` t1 6 �2 ` t2.
• �1 . t1 7��!⇤ � 0

1 . �1 implies �2 . t2 7��!⇤ � 0
2 . �2, �

0
1 ` �1 6 � 0

2 ` �2.
• t1 diverges implies t2 diverges.
• �2 . t2 7��!⇤ � 0

2 . �2 implies �1 . t1 7��!⇤ � 0
1 . �1 and �

0
1 ` �1 6 � 0

2 ` �2, or �1 . t1 7��!⇤ error.
• t2 diverges implies t1 diverges, or �1 . t1 7��!⇤ error.

P����. The proof is by case analysis on the reduction of t1 or t2.
• Suppose that �1 . t1 7��!⇤ � 0

1 . �1. Then �2 . t2 7��!⇤ � 0
2 . �2, �

0
1 ` �1 6 � 0

2 ` �2 by
Proposition 5.19 and Proposition 5.15.

• Suppose that t1 diverges. Then t2 diverges by Proposition 5.19.
• Suppose that �2 . t2 7��!⇤ � 0

2 . �2. Then, the only possibilities given the two previous results
are �1 . t1 7��!⇤ � 0

1 . �1 and � 0
1 ` �1 6 � 0

2 ` �2, or �1 . t1 7��!⇤ error, and the result holds.
• Suppose that t2 diverges. Then, the only possibilities given the two previous results are t1
diverges, or �1 . t1 7��!⇤ error, and the result holds.

⇤

T������ 9.5 (DGG6). Suppose t1 6 t2, ` t1 : G1, and ` t2 : G2.
a. If t1 + �1, then t2 + �2 and · ` �1 . �1 : G1 6 �2 . �2 : G2, for some �1 6 �2.

If t1 * then t2 *.
b. If t2 + �2, then t1 + �1 and · ` �1 . �1 : G1 6 �2 . �2 : G2, for some �1 6 �2, or t1 + error.

If t2 *, then t1 * or t1 + error.

P����. Direct by Lemma 5.26 and 5.20. ⇤

L���� 9.6. Let ` t : G, G v G
0, and t 0 = t :: G 0 :: G, then

Gradual System F: Auxiliary Definitions and Proofs 41

• t + � () t
0 + �

• t + error () t
0 + error

P����. Direct consequence of the weak dynamic gradual guarantee (Theorem 9.5). ⇤

L���� 9.8. Let ` t1 : G1 and ` t2 : G2 such that ` t1 t2 : G, t1 t2 + � , and let G1 v G
0
1,

G2 v G
0
2, and G v G

0, such that ` (t1 :: G 0
1) (t2 :: G 0

2) : G 0, then (t1 :: G 0
1) (t2 :: G 0

2) + �
0 such that

` �1 . � : G 6 �2 . � 0 : G 0, for some �1, �2.

P����. From ` (t1 :: G 0
1) (t2 :: G 0

2) : G, we know that ` G1 ⇠ G
0
1 and ` G2 ⇠ G

0
2, where ` t1 : G1

ad ` t2 : G2. As G1 v G
0
1, and G2 v G

0
2, then G1 u G1 v G1 u G

0
1 and G2 u G2 v G2 u G

0
2. Notice

that if t1 t2 + � , then (t1 :: G1) (t2 :: G2) + � (trivial ascriptions). Therefore, by (6ascv) or (6asct),
` (t1 :: G1) (t2 :: G2) : T 6 (t1 :: G 0

1) (t2 :: G 0
2) : G, then the result holds by DGG6 (Th.9.5). ⇤

L���� 9.7. Let ` t : G such that t + � , and let G v G
0, then t :: G 0 + �

0 such that ` � . � : G 6
� . � 0 : G 0, for some �.

Direct by Th.9.5. Similar to Lemma 9.8.

L���� 9.9. Let ` t : G1 such that ` t [G2] : G, t [G2] + � , and let G1 v G
0
1, G2 6 G 0

2, and G v G
0,

such that ` (t :: G 0
1) [G 0

2] : G 0, then (t :: G 0
1) [G 0

2] + �
0 such that ` �1 . � : G 6 �2 . � 0 : G 0, for some

�1,�2.

P����. Direct by Th.9.5. Similar to Lemma 9.8. ⇤

P���������� 9.10. Suppose t1 and t2 GSF terms such that · ` t1 : G1 6 t2 : G2, and their elaborations
· ` t1 { t�1 : G1 and · ` t2 { t�2 : G2. Then · ` · . t�1 : G1 6 · . t�2 : G2.

P����. Direct by Prop. 5.26. ⇤

5.4 Syntactic Strict Precision for GSF
Now, we present the proof of the weak dynamic gradual guarantee for GSF previously presented
and the auxiliary Propositions an De�nitions.

P���������� 5.21. I� (G1 uG2,G1 uG2) = I� (G1,G2)
P����. By the de�nition of u and I� (G1,G2). ⇤

P���������� 5.22. � ` s1 6 s2 : G1 6 G2 then G1 v G2.

P����. By the de�nition of u and I� (G1,G2). ⇤

P���������� 5.23. If G1 uG2 6 G 0
1 uG

0
2, then

I� (G1,G2) = I� (G1 uG2,G1 uG2) 6 I� (G 0
1 uG

0
2,G

0
1 uG

0
2) = I� (G 0

1,G
0
2)

P����. By Proposition 5.21 and the de�nition of 6 in evidence. ⇤

P���������� 5.24. If G1 6 G2, then

I� (G1,G1) v I� (G2,G2)
P����. By the de�nition of I� and the v in evidence. ⇤

De�nition 5.25. � ⌘ �1 v �2 () (� = �0, x : G1 v G2, �1 = �01 , x : G1, �2 = �02 , x : G2, G1 v G2
and �0 ⌘ �01 v �02) _(� = �1 = �2 = ·).

42 Elizabeth Labrada, Matías Toro, and Éric Tanter

P���������� 5.26. If � ` �1 . t
⇤
1 : G⇤

1 6 �2 . t
⇤
2 : G⇤

2 , � ⌘ �1 v �2, �1 6 �2 and �i ;�; �i ` t⇤i {
t
⇤⇤
i : G⇤

i , then � ` �1 . t
⇤⇤
1 : G⇤

1 6 �2 . t
⇤⇤
2 : G⇤

2 .

P����. We follow by induction on � ` �1 . t
⇤
1 : G⇤

1 6 �2 . t
⇤
2 : G⇤

2 . We avoid the notation
� ` �1 .t

⇤
1 : G⇤

1 6 �2 .t
⇤
2 : G⇤

2 , and use t
⇤
1 6 t

⇤
2 instead, for simplicity, when the typing environments

are not relevant. We use metavariable � or u in GSF to range over constants, functions and type
abstractions.
Remember that

norm(t,G1,G2) = �t :: G2, where � = I� (G1,G2)
By Proposition 5.21 we know that

I� (G1,G2) = I� (G1 uG2,G1 uG2) = I(lift� (G1), lift� (G2))

Case (� ` �1 . u1 : G⇤
1 6 �2 . u2 : G⇤

2). We know that

(6v)
� ` u1 : G⇤

1 6� u2 : G⇤
2 G

⇤
1 6 G

⇤
2

� ` �1 . u1 : G⇤
1 6 �2 . u2 : G⇤

2

(Gu)
�1;�; �1 ` u1 { u

0
1 : G

⇤
1 �G⇤

1
= I� (G⇤

1,G
⇤
1)

�1;�; �1 ` u1 { �G⇤
1
u
0
1 :: G

⇤
1 : G

⇤
1

(Gu)
�2;�; �2 ` u2 { u

0
2 : G

⇤
2 �G⇤

2
= I� (G⇤

2,G
⇤
2)

�2;�; �2 ` u2 { �G⇤
2
u
0
2 :: G

⇤
2 : G

⇤
2

We have to prove that � ` �G⇤
1
u
0
1 :: G⇤

1 6 �G⇤
2
u
0
2 :: G⇤

2 : G⇤
1 6 G

⇤
2 . By the rule (6asc�), we are

required to prove that �G⇤
1
6 �G⇤

2
, � ` u 0

1 6 u
0
2 : G

⇤
1 6 G

⇤
2 and G

⇤
1 v G

⇤
2 . Since G

⇤
1 6 G

⇤
2 , �1 6 �2

and Proposition 5.3, we know that �G⇤
1
6 �G⇤

2
. Also, by Proposition 5.14 and G⇤

1 6 G
⇤
2 we now that

G
⇤
1 v G

⇤
2 . Therefore, we only have required to prove that � ` u 0

1 6 u
0
2 : G

⇤
1 6 G

⇤
2 . We follow by case

analysis on � ` u1 : G⇤
1 6� u2 : G⇤

2 .
• Case (� ` b : B 6� b : B). We know that

(6b)
ty(b) = B

� ` b : B 6� b : B

(Gb)
ty(b) = B

�i ;�; �i ` b { b : B
We have to prove that � ` b 6 b : B 6 B. Then, by (6 b�) rule, we know that � ` b 6 b : B 6
B and the result holds.

• Case (� ` (�x : G1.t1) : G1 ! G2 6� (�x : G 0
1.t2) : G 0

1 ! G
0
2). We know that

(6�)
�, x : G1 v G

0
1 ` �1 . t1 : G2 6 �2 . t2 : G 0

2 G1 v G
0
1

� ` (�x : G1.t1) : G1 ! G2 6� (�x : G 0
1.t2) : G 0

1 ! G
0
2

(G�)
�1;�; �1, x : G1 ` t1 { t

0
1 : G2

�1;�; �1 ` (�x : G1.t1) { (�x : G1.t 01) : G1 ! G2

(G�)
�2;�; �2, x : G 0

1 ` t2 { t
0
2 : G

0
2

�2;�; �2 ` (�x : G 0
1.t2) { (�x : G 0

1.t
0
2) : G 0

1 ! G
0
2

Therefore, we are required to prove that � ` (�x : G1.t 01) 6 (�x : G 0
1.t

0
2) : G1 ! G2 6 G 0

1 !
G

0
2, or what is the same by the (6��) that �, x : G1 v G

0
1 ` t 01 6 t

0
2 : G2 6 G

0
2, but the result

Gradual System F: Auxiliary Definitions and Proofs 43

follows immediately by the induction hypothesis on �, x : G1 v G
0
1 ` �1.t1 : G2 6 �2.t2 : G 0

2,
with the translations t 01 and t

0
2(�, x : G1 v G

0
1 ⌘ �1, x : G1 v �2, x : G 0

1).
• Case (� ` (�X .t1) : 8X .G1 6� (�X .t2) : 8X .G2). We know that

(6�)
� ` �1 . t1 : G1 6 �2 . t2 : G2

� ` (�X .t1) : 8X .G1 6� (�X .t2) : 8X .G2

(G�)
�1;�,X ; �1 ` t1 { t

0
1 : G1

�1;�; �1 ` (�X .t1) { (�X .t 01) : 8X .G1

(G�)
�2;�,X ; �2 ` t2 { t

0
2 : G2

�2;�; �2 ` (�X .t2) { (�X .t 02) : 8X .G2

Therefore, we are required to prove that � ` (�X .t 01) 6 (�X .t 02) : 8X .G1 6 8X .G2, or what is
the same by the rule (6��) that � ` t 01 6 t

0
2 : G1 6 G2, but the result follows immediately by

the induction hypothesis on � ` �1 . t1 : G1 6 �2 . t2 : G2, with the translations t 01 and t
0
2.

Case (� ` �1 . x : G⇤
1 6 �2 . x : G⇤

2). We know that

(6x)
x : G⇤

1 v G
⇤
2 2 �

� ` �1 . x : G⇤
1 6 �2 . x : G⇤

2

(Gx)
x : G⇤

1 2 �1

�1;�; �1 ` x { x : G⇤
1

(Gx)
x : G⇤

2 2 �2

�2;�; �2 ` x { x : G⇤
2

We have to prove that � ` x 6 x : G⇤
1 6 G

⇤
2 . Then, by the rule (6x�), we know that � ` x 6 x :

G
⇤
1 6 G

⇤
2 and the result holds.

Case ((6ascv)). We know that

(6ascv)
� ` u1 : G⇤⇤

1 6� u2 : G⇤⇤
2 G

⇤⇤
1 uG

⇤
1 6 G

⇤⇤
2 uG

⇤
2 G

⇤
1 v G

⇤
2

� ` �1 . u1 :: G⇤
1 : G

⇤
1 6 �2 . u2 :: G⇤

2 : G
⇤
2

(Gascu)
�1;�; �1 ` u1 { u

0
1 : G

⇤⇤
1 �1 = I� (G⇤⇤

1 ,G
⇤
1)

�1;�; �1 ` u1 :: G⇤
1 { �1u

0
1 :: G

⇤
1 : G

⇤
1

(Gascu)
�2;�; �2 ` u2 { u

0
2 : G

⇤⇤
2 �2 = I� (G⇤⇤

2 ,G
⇤
2)

�2;�; �2 ` u2 :: G⇤
2 { �2u

0
2 :: G

⇤
2 : G

⇤
2

We have to prove that � ` �1u
0
1 :: G

⇤
1 6 �2u

0
2 :: G

⇤
2 : G⇤

1 6 G
⇤
2 , or what is the same by the rule

(6asc�), we have to prove that �1 6 �2,� ` u 0
1 6 u

0
2 : G

⇤⇤
1 6 G

⇤⇤
2 andG⇤

1 v G
⇤
2 . By Proposition 5.21, we

know that �1 = I� (G⇤⇤
1 ,G

⇤
1) = I� (G⇤⇤

1 uG⇤
1,G

⇤⇤
1 uG⇤

1) and �2 = I� (G⇤⇤
2 ,G

⇤
2) = I� (G⇤⇤

2 uG⇤
2,G

⇤⇤
2 uG⇤

2).
SinceG⇤⇤

1 uG⇤
1 6 G

⇤⇤
2 uG⇤

2 , then �1 = I� (G⇤⇤
1 ,G

⇤
1) = I� (G⇤⇤

1 uG⇤
1,G

⇤⇤
1 uG⇤

1) 6 I� (G⇤⇤
2 uG⇤

2,G
⇤⇤
2 uG⇤

2) =
I� (G⇤⇤

2 ,G
⇤
2) = �2, by Proposition 5.23. Thus, we only have to prove that � ` u 0

1 6 u
0
2 : G

⇤⇤
1 6 G

⇤⇤
2 ,

and we know that � ` u 0
1 : G

⇤⇤
1 6� u

0
2 : G

⇤⇤
2 . We follow by case analysis on � ` u1 : G⇤⇤

1 6� u2 : G⇤⇤
2 .

• Case (� ` b : B 6� b : B). We know that

(6b)
ty(b) = B

� ` b : B 6� b : B

(Gb)
ty(b) = B

�i ;�; �i ` b { b : B

44 Elizabeth Labrada, Matías Toro, and Éric Tanter

We have to prove that � ` b 6 b : B 6 B. Then, by (6 b�) rule, we know that � ` b 6 b : B 6
B and the result holds.

• Case (� ` (�x : G1.t1) : G1 ! G2 6� (�x : G 0
1.t2) : G 0

1 ! G
0
2). We know that

(6�)
�, x : G1 v G

0
1 ` �1 . t1 : G2 6 �2 . t2 : G 0

2 G1 v G
0
1

� ` (�x : G1.t1) : G1 ! G2 6� (�x : G 0
1.t2) : G 0

1 ! G
0
2

(G�)
�1;�; �1, x : G1 ` t1 { t

0
1 : G2

�1;�; �1 ` (�x : G1.t1) { (�x : G1.t 01) : G1 ! G2

(G�)
�2;�; �2, x : G 0

1 ` t2 { t
0
2 : G

0
2

�2;�; �2 ` (�x : G 0
1.t2) { (�x : G 0

1.t
0
2) : G 0

1 ! G
0
2

Therefore, we are required to prove that � ` (�x : G1.t 01) 6 (�x : G 0
1.t

0
2) : G1 ! G2 6 G 0

1 !
G

0
2, or what is the same by the (6��) that �, x : G1 v G

0
1 ` t 01 6 t

0
2 : G2 6 G

0
2, but the result

follows immediately by the induction hypothesis on �, x : G1 v G
0
1 ` �1.t1 : G2 6 �2.t2 : G 0

2,
with the translations t 01 and t

0
2(�, x : G1 v G

0
1 ⌘ �1, x : G1 v �2, x : G 0

1).
• Case (� ` (�X .t1) : 8X .G1 6� (�X .t2) : 8X .G2). We know that

(6�)
� ` �1 . t1 : G1 6 �2 . t2 : G2

� ` (�X .t1) : 8X .G1 6� (�X .t2) : 8X .G2

(G�)
�1;�,X ; �1 ` t1 { t

0
1 : G1

�1;�; �1 ` (�X .t1) { (�X .t 01) : 8X .G1

(G�)
�2;�,X ; �2 ` t2 { t

0
2 : G2

�2;�; �2 ` (�X .t2) { (�X .t 02) : 8X .G2

Therefore, we are required to prove that � ` (�X .t 01) 6 (�X .t 02) : 8X .G1 6 8X .G2, or what is
the same by the rule (6��) that � ` t 01 6 t

0
2 : G1 6 G2, but the result follows immediately by

the induction hypothesis on � ` �1 . t1 : G1 6 �2 . t2 : G2, with the translations t 01 and t
0
2.

Case (� ` �1 . t1 :: G⇤
1 : G

⇤
1 6 �2 . t2 :: G⇤

2 : G
⇤
2).

(6asct)
� ` �1 . t1 : G1 6 �2 . t2 : G2 G1 uG

⇤
1 6 G2 uG

⇤
2 G

⇤
1 v G

⇤
2

� ` �1 . t1 :: G⇤
1 : G

⇤
1 6 �2 . t2 :: G⇤

2 : G
⇤
2

(Gasct)
�1;�; �1 ` t1 { t

0
1 : G1 �1 = I� (G1,G⇤

1)
�1;�; �1 ` t1 :: G⇤

1 { �1t
0
1 :: G

⇤
1 : G

⇤
1

(Gasct)
�2;�; �2 ` t2 { t

0
2 : G2 �2 = I� (G2,G⇤

2)
�2;�; �2 ` t2 :: G⇤

2 { �2t
0
2 :: G

⇤
2 : G

⇤
2

We have to prove that � ` �1t
0
1 :: G⇤

1 6 �2t
0
2 :: G⇤

2 : G⇤
1 6 G

⇤
2 , or what is the same by the rule

(6asc�), we have to prove that �1 6 �2, � ` t
0
1 6 t

0
2 : G1 6 G2 and G⇤

1 v G
⇤
2 . By Proposition 5.21,

we know that �1 = I� (G1,G⇤
1) = I� (G1 uG

⇤
1,G1 uG

⇤
1) and �2 = I� (G2,G⇤

2) = I� (G2 uG
⇤
2,G2 uG

⇤
2).

Since G1 uG
⇤
1 6 G2 uG

⇤
2 , then �1 = I� (G1,G⇤

1) = I� (G1 uG
⇤
1,G1 uG

⇤
1) 6 I� (G2 uG

⇤
2,G2 uG

⇤
2) =

I� (G2,G⇤
2) = �2, by Proposition 5.23. Thus, we only have to prove that � ` t 01 6 t

0
2 : G1 6 G2, and

we know that � ` t 01 : G1 6� t
0
2 : G2, then by the induction hypothesis the result holds.

Gradual System F: Auxiliary Definitions and Proofs 45

Case (� ` �1 . t1 t
0
1 : cod

](G1) 6 �2 . t2 t
0
2 : cod

](G2)).

(6app)

� ` �1 . t1 : G1 6 �2 . t2 : G2 � ` �1 . t
0
1 : G

0
1 6 �2 . t

0
2 : G

0
2

G
0
1 u dom](G1) 6 G 0

2 u dom](G2)

� ` �1 . t1 t
0
1 : cod

](G1) 6 �2 . t2 t
0
2 : cod

](G2)

(Gapp)

�1;�; �1 ` t1 { t11 : G1 t
0
11 = norm(t11,G1, dom](G1) ! cod](G1))

�1;�; �1 ` t 01 { t12 : G 0
1 t

0
12 = norm(t12,G 0

1, dom
](G1))

�1;�; �1 ` t1 t 01 { t
0
11 t

0
12 : cod

](G1)

(Gapp)

�2;�; �2 ` t2 { t21 : G2 t
0
21 = norm(t21,G2, dom](G2) ! cod](G2))

�2;�; �2 ` t 02 { t22 : G 0
2 t

0
22 = norm(t22,G 0

2, dom
](G2))

�2;�; �2 ` t2 t 02 { t
0
21 t

0
22 : cod

](G2)
We have to prove that � ` t

0
11 t

0
12 6 t

0
21 t

0
22 : cod

](G1) 6 cod](G2), or what is the same by the
rule (6app�), we have to prove that � ` t 011 6 t

0
21 : dom

](G1) ! cod](G1) 6 dom](G2) ! cod](G2)
and � ` t 012 6 t

0
22 : dom

](G1) 6 dom](G2). We know that

t
0
11 = norm(t11,G1, dom](G1) ! cod](G1)) = �11t11 :: dom](G1) ! cod](G1)

where �11 = I�1 (G1, dom](G1) ! cod](G1)) = I�1 (dom](G1) ! cod](G1), dom](G1) ! cod](G1)) =
�dom] (G1)!cod] (G1)

t
0
21 = norm(t21,G2, dom](G2) ! cod](G2)) = �21t21 :: dom](G2) ! cod](G2)

where �21 = I�2 (G2, dom](G2) ! cod](G2)) = I�2 (dom](G2) ! cod](G2), dom](G2) ! cod](G2)) =
�dom] (G2)!cod] (G2)

By induction hypothesis on � ` �1 . t1 : G1 6 �2 . t2 : G2, we know that � ` t11 6 t21 : G1 6 G2,
and by Proposition 5.22, we know that G1 v G2, thus dom](G1) ! cod](G1) v dom](G2) !
cod](G2). Therefore, we only have to prove by rule (6Masc�) that �11 v �21. But, by Proposition 5.24
and dom](G1) ! cod](G1) v dom](G2) ! cod](G2) the results holds.
Also, we know that

t
0
12 = norm(t12,G 0

1, dom
](G1)) = �12t12 :: dom](G1) where �12 = I�1 (G 0

1, dom
](G1))

t
0
22 = norm(t22,G 0

2, dom
](G2)) = �22t22 :: dom](G2) where �22 = I�2 (G 0

2, dom
](G2))

By induction hypothesis on � ` �1 . t
0
1 : G

0
1 6 �2 . t

0
2 : G

0
2, we know that � ` t12 6 t22 : G 0

1 6
G

0
2. and and by Proposition 5.22, we know that dom](G1) v dom](G2). By Proposition 5.23 and

G
0
1 u dom](G1) 6 G 0

2 u dom](G2), we know that

�12 = I�1 (G 0
1, dom

](G1)) = I�1 (G 0
1 u dom](G1),G 0

1 u dom](G1)) 6

I�2 (G 0
2 u dom](G2),G 0

2 u dom](G2)) = I�2 (G 0
2, dom

](G2)) = �22

Therefore, the results holds.

Case (� ` �1 . t1 [G 0
1] : inst](G1,G 0

1) 6 �2 . t2 [G 0
2] : inst](G2,G 0

2)).

(6appG)
� ` �1 . t1 : G1 6 �2 . t2 : G2 G

0
1 6 G

0
2

� ` �1 . t1 [G 0
1] : inst](G1,G 0

1) 6 �2 . t2 [G 0
2] : inst](G2,G 0

2)

46 Elizabeth Labrada, Matías Toro, and Éric Tanter

(GappG)
�1;�; �1 ` t1 { t

0
1 : G1 t

00
1 = norm(t 01,G1,8var](G1).schm]

u (G1))
�1;�; �1 ` t1 [G 0

1] { t
00
1 [G 0

1] : inst](G1,G 0
1)

(GappG)
�2;�; �2 ` t2 { t

0
2 : G2 t

00
2 = norm(t 02,G2,8var](G2).schm]

u (G2))
�2;�; �2 ` t2 [G 0

2] { t
00
2 [G 0

2] : inst](G2,G 0
2)

We have to prove that � ` t 001 [G 0
1] 6 t

00
2 [G 0

2] : G⇤
1 6 G

⇤
2 , or what is the same by the rule (6appG�),

we have to prove that t 001 6 t
00
2 and G 0

1 6 G
0
2. G

0
1 6 G

0
2 follows by premise. We know that

t
00
1 = norm(t 01,G1,8var](G1).schm]

u (G1)) = �1t
0
1 :: 8var](G1).schm]

u (G1)
where �1 = I�1 (G1,8var](G1).schm]

u (G1)) = I�1 (8var](G1).schm]
u (G1),8var](G1).schm]

u (G1)) =
�8var] (G1).schm]

u (G1)

t
00
2 = norm(t 02,G2,8var](G2).schm]

u (G2)) = �2t
0
2 :: 8var](G2).schm]

u (G2)
where �2 = I�2 (G2,8var](G2).schm]

u (G2)) = I�2 (8var](G2).schm]
u (G2),8var](G2).schm]

u (G2)) =
�8var] (G2).schm]

u (G2)
By induction hypothesis on� ` �1.t1 : G1 6 �2.t2 : G2, we know that� ` t 01 6 t

0
2 : G1 6 G2, and

by Proposition 5.22, we know that G1 v G2, thus 8var](G1).schm]
u (G1) v 8var](G2).schm]

u (G2).
Therefore, we only have to prove by rule (6Masc�) that �1 v �2. But, by Proposition 5.24 and
8var](G1).schm]

u (G1) v 8var](G2).schm]
u (G2) the results holds.

⇤

Gradual System F: Auxiliary Definitions and Proofs 47

6 GSF: PARAMETRICITY
In this section we present the logical relation for parametricity of GSF, the proof of the fundamental
property, and the soundness of the logical relation wrt contextual approximation.

6.1 Auxiliary Definitions
In this section we show function de�nitions used in the logical relation of GSF (Figure 12).

De�nition 6.1. ev(�u :: G) = �

De�nition 6.2.

const(E) =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

B E = B

? ! ? E = E1 ! E2

8X .? E = 8X .E1
? ⇥ ? E = E1 ⇥ E2

� E = �
E1

X E = X

? E = ?

6.2 Fundamental Property
T������ 10.1 (F���������� P�������). If �;�; � ` t : G then �;�; � ` t � t : G.

P����. By induction on the type derivation of t .

Case (Easc). Then t = �s :: G, and therefore:

(Easc)
�;�; � ` s : G 0

� � �;� ` G 0 ⇠ G

�;�; � ` �s :: G : G

We follow by induction on the structure of s .
• If s = b then:

(Eb)
ty(b) = B �;� ` �

�;�; � ` b : B
Then we have to prove that �;�; � ` �b :: G � �b :: G : G, but the result follows directly by
Prop 6.3 (Compatibility of Constant).

• If s = �x : G1.t 0 then:

(E�)
�;�; �, x : G1 ` t 0 : G2

�;�; � ` �x : G1.t 0 : G1 ! G2
Then we have to prove that:

�;�; � ` �(�x : G1.t
0) :: G � �(�x : G1.t

0) :: G : G

By induction hypotheses we already know that �;�; �, x : G1 ` t 0 � t
0 : G2. But the result

follows directly by Prop 6.4 (Compatibility of term abstraction).
• If s = �X .t 0 then:

(E�)
�;�,X ; � ` t 0 : G⇤ �;� ` �

�;�; � ` �X .t 0 : 8X .G⇤

Then we have to prove that:
�;�; � ` �(�X .t 0) :: G � �(�X .t 0) :: G : G

By induction hypotheses we already know that �;�,X ; � ` t
0 � t

0 : G⇤. But the result
follows directly by Prop 10.2 (Compatibility of type abstraction).

48 Elizabeth Labrada, Matías Toro, and Éric Tanter

• If s = hu1,u2i then:

(Epair)
�;�; � ` u1 : G1 �;�; � ` u2 : G2

�;�; � ` hu1,u2i : G1 ⇥G2

Then we have to prove that:

�;�; � ` � hu1,u2i :: G � � hu1,u2i :: G : G

We know by premise that �;�; � ` �1(�)u1 :: G1 : G1 and �;�; � ` �2(�)u2 :: G2 : G2. Then
by induction hypotheses we already know that: �;�; � ` �1(�)u1 :: G1 � �1(�)u1 :: G1 : G1
and �;�; � ` �2(�)u2 :: G2 � �2(�)u2 :: G2 : G2. But the result follows directly by Prop 6.5
(Compatibility of pairs).

• If s = t
0, and therefore:

(Easc)
�;�; � ` t 0 : G 0

� ` �;� ` G 0 ⇠ G

�;�; � ` �t 0 :: G : G
By induction hypotheses we already know that �;�; � ` t 0 � t

0 : G 0, then the result follows
directly by Prop 6.8 (Compatibility of ascriptions).

Case (Epair). Then t = ht1, t2i, and therefore:

(Epair)
�;�; � ` t1 : G1 �;�; � ` t2 : G2

�;�; � ` ht1, t2i : G1 ⇥G2

where G = G1 ⇥G2 Then we have to prove that:

�;�; � ` ht1, t2i � ht1, t2i : G1 ⇥G2

By induction hypotheses we already know that: �;�; � ` t1 � t1 : G1 and �;�; � ` t2 � t2 : G2.
But the result follows directly by Prop 6.6 (Compatibility of pairs).

Case (Ex). Then t = x , and therefore:

(Ex)
x : G 2 � �;� ` �

�;�; � ` x : G

Then we have to prove that �;�; � ` x � x : G. But the result follows directly by Prop 6.7
(Compatibility of variables).

Case (Eop). Then t = op(t 0), and therefore:

(Eop)
�;�; � ` t 0 : G 0 ty(op) = G 0 ! G

�;�; � ` op(t 0) : G

Then we have to prove that: �;�; � ` op(t 0) � op(t 0) : G. By the induction hypothesis we obtain that:
�;�; � ` t 0 � t 0 : G . Then the result follows directly by Prop 6.9 (Compatibility of app operator).

Case (Eapp). Then t = t1 t2, and therefore:

(Eapp)
�;�; � ` t1 : G11 ! G12 �;�; � ` t2 : G11

�;�; � ` t1 t2 : G12

where G = G12. Then we have to prove that:

�;�; � ` t1 t2 � t1 t2 : G12

By the induction hypothesis we obtain that: �;�; � ` t1 � t1 : G11 ! G12 and �;�; � ` t2 � t2 : G11.
Then the result follows directly by Prop 6.10 (Compatibility of term application).

Gradual System F: Auxiliary Definitions and Proofs 49

Case (EappG). Then t = t
0 [G2], and therefore:

(EappG)
�;�; � ` t 0 : 8X .G1 �;� ` G2

�;�; � ` t 0 [G2] : G1[G2/X]
where G = G1[G2/X]. Then we have to prove that:

�;�; � ` t 0 [G2] � t
0 [G2] : G1[G2/X]

By induction hypotheses we know that:
�;�; � ` t 0 � t

0 : 8X .G1

Then the result follows directly by Prop 10.3 (Compatibility of type application).

Case (Epair1). Then t = �1(t 0), and therefore:

(Epair1)
�;�; � ` t 0 : G1 ⇥G2

�;�; � ` �1(t 0) : G1

whereG = G1. Then we have to prove that: �;�; � ` �1(t 0) � �1(t 0) : G1. By the induction hypothesis
we obtain that: �;�; � ` t 0 � t

0 : G1⇥G2 . Then the result follows directly by Prop 6.11 (Compatibility
of access to the �rst component of the pair).

Case (Epair2). Then t = �2(t 0), and therefore:

(Epair2)
�;�; � ` t 0 : G1 ⇥G2

�;�; � ` �2(t 0) : G2

whereG = G2. Then we have to prove that: �;�; � ` �2(t 0) � �2(t 0) : G2. By the induction hypothesis
we obtain that: �;�; � ` t 0 � t

0 : G1⇥G2 . Then the result follows directly by Prop 6.12 (Compatibility
of access to the second component of the pair).

⇤

In order to prove parametricity, we add an index to the evidence and we are more detailed in
the reduction rules. A brief explanation is given below. The index of an evidence is an integer
greater than cero. To know the index of an evidence � , we use the following operator � .n = k , which
speci�es that the index of the evidence � is the integer k > 0. The reduction rules always took a
step. Here we rede�ne them and they can take one or more steps. This will depend on whether or
not a transitivity of evidence is applied. If it does, the rule will take as many steps as the evidence
index on the right. Below we de�ne the steps in the rules
� . t ��! � . t or error Notion of reduction

(Rasc) � . �2(�1u :: G1) :: G2
k��!

(
� . (�1 # �2)u :: G2 if �2.n = k
error if not de�ned

(Rop) � . op(�u :: G) 1��! � . �B � (op,u) :: B where B , cod(ty(op))

(Rapp) � . (�1(�x : G11.t) :: G1 ! G2) (�2u :: G1)
k+1���!

8>>><
>>>:

� . cod(�1)(t[(�2 # dom(�1))u :: G11)/x]) :: G2
if dom(�1) = k

error if not de�ned

(Rpair) � . h�1u1 :: G1, �2u2 :: G2i
1��! � . (�1 ⇥ �2)hu1,u2i :: G1 ⇥G2

(Rproji) � . �i (� hu1,u2i :: G1 ⇥G2)
1��! � . pi (�)ui :: Gi

(RappG) � . (��X .t :: 8X .G) [G 0] 1��! � 0 . �out (�[�̂]t[�̂/X] :: G[�/X]) :: G[G 0/X]
where � 0 , �,� := G 0 for some � < dom(�)
and �̂ = lift�0(�)

50 Elizabeth Labrada, Matías Toro, and Éric Tanter

P���������� 6.3 (C�������������E�). If b 2 B, � ` �;� ` B ⇠ G and �;� ` � then:

�;�; � ` �b :: G � �b :: G : G

P����. As b is constant then it does not have free variables or type variables, then b = �(�i (b)).
Then we have to prove that for allW 2 SJ�K it is true that:

(W , �1(�)b :: �(G), �2(�)b :: �(G) 2 T� JGK

As �i (�)b :: G are values, then we have to prove that:

(W , �1(�)b :: �(G), �2(�)b :: �(G)) 2 V� JGK

(1) G = B, we know that hB,Bi = � ` �;� ` B ⇠ B, then �i (�) = � and the result follows
immediately by the de�nition ofV�JBK.

(2) If G 2 T���N��� then � = hH3,�E4i. Notice that as �E4 cannot have free type variables
therefore H3 neither. Then � = �i (�). As � is sync, then let us call G 00 =W.�i (�). We have to
prove that:

(W , hH3,�
E4i b :: �, hH3,�

E4i b :: �) 2 V�J�K
which, by de�nition of V�J�K, is equivalent to prove that:

(#W , hH3, E4i b :: G 00, hE3, E4i b :: G 00) 2 V�JG 00K

Then we proceed by case analysis on � :
• (Case � = hH3,� �E4 i). We know that hH3,� �E4 i ` �;� ` B ⇠ � , then by Lemma 6.29,
hH3, �E4i ` �;� ` B ⇠ G

00. As �E4 v G
00, then G 00 can either be ? or � .

If G 00 = ?, then by de�nition ofV�J?K, we have to prove that the resulting values belong
to V�J�K. Also as hH3, �E4i ` �;� ` B ⇠ ?, by Lemma 6.27, hH3, �E4i ` �;� ` B ⇠ � ,
and then we proceed just like this case once again (this is process is �nite as there are no
circular references by construction and it ends up in something di�erent to a type name).
If G 00 = � we use an analogous argument as for G 00 = ?.

• (Case � = hH3,�H4i). We have to prove that

(#W , hH3,H4i b :: G 00, hH3,H4i b :: G 00) 2 V�JG 00K

By Lemma 6.29, hH3,H4i ` �;� ` B ⇠ G
00. Then if G 00 = ?, we proceed as the case G = ?,

with the evidence � = hH3,H4i. IfG 00 2 H���T���, we proceed as the previous case where
G = B, and the evidence � = hH3,H4i.
Also, we have to prove that (8� 0, � 0,G⇤

1 , such that � 0.n = k , � 0 = h�E⇤⇤
1 , E⇤⇤2 i (#W 2

SJ� 0K ^ �
0 ` � 0 ` � ⇠ G

⇤
1), we get that

(#1W , � 0(hH3,�
H4iu1 :: �) :: G⇤

1, �
0(hH4,�

E22iu2 :: �) :: G⇤
1) 2 T�JG⇤

1K)
or what is the same ((hH3,�H4i # � 0) fails the result follows immediately)

(#1+kW , (hH3,�
H4i # � 0)u1 :: G⇤

1, (hH2,�
H4i # � 0)u2 :: G⇤

1) 2 V�JG⇤
1K)

By de�nition of transitivity and Lemma 6.30, we know that

hH3,�
H4i # h�E⇤⇤

1 , E⇤⇤2 i = hH3,H4i # hE⇤⇤1 , E⇤⇤2 i
We know that hE⇤⇤1 , E⇤⇤2 i ` � 0 ` G 00 ⇠ G

⇤
1 . Since hE⇤⇤1 , E⇤⇤2 i ` � ` G 00 ⇠ G

⇤
1 , #1W 2 SJ� 0K,

(#1W , hH3,H4iu1 :: G 00, hH1,H4iu2 :: G 00) 2 V�JG 00K, by Lemma 6.17, we know that (since

Gradual System F: Auxiliary Definitions and Proofs 51

(hH3,�H4i # � 0) does not fail then (hH3,H4i # hE⇤⇤1 , E⇤⇤2 i) also does not fail by the transitivity
rules)
(#1+kW , (hH3,H4i # hE⇤⇤1 , E⇤⇤2 i)u1 :: G⇤

1, (hH3,H4i # hE⇤⇤1 , E⇤⇤2 i)u2 :: G⇤
1) 2 V�JG⇤

1K)
The result follows immediately.

(3) If G = ? we have the following cases:
• (G = ?, � = hH3,H4i). By the de�nition of V�J?K in this case we have to prove that:

(W , �1(�)b :: const(H4), �2(�)b :: const(H4)) 2 V�Jconst(H4)K
but as const(H4) = B (note that H3 = B then since H4 2 H���T��� has to be B). The the
result follows immediately since is part of the premise.

• (G = ?, � = hH3,�E4i). Notice that as �E4 cannot have free type variables therefore E3
neither. Then � = �i (�). By the de�nition of V�J?K we have to prove that

(W , hH3,�
E4iu1 :: �, hH3,�

E4iu2 :: �) 2 V�J�K
Note that by Lemma 6.27 we know that � ` �;� ` B ⇠ � . Then we proceed just like the
case G 2 T���N���.

⇤

P���������� 6.4 (C�������������E�). If �;�; �, x : G1 ` t � t
0 : G2, � ` �;� ` G1 ! G2 ⇠ G

then:
�;�; � ` �(�x : G1.t) :: G � �(�x : G1.t

0) :: G : G

P����. First, we are required to show that �;�; � ` �(�x : G1.t) :: G : G and �;�; � ` �(�x :
G1.t 0) :: G : G, which follow from � ` �;� ` G1 ! G2 ⇠ G and �;�; � ` �x : G1.t : G1 ! G2 and
�;�; � ` �x : G1.t 0 : G1 ! G2 respectively, which follow (respectively) from �;�; �, x : G1 ` t : G2
and �;�; �, x : G1 ` t 0 : G2, which follow from �;�; �, x : G1 ` t � t

0 : G2.
Consider arbitraryW , �,� such thatW 2 SJ�K, (W , �) 2 DJ�K and (W ,�) 2 G�J�K. We are

required to show that:
(W , �(�1(�(�x : G1.t) :: G)), �(�2(�(�x : G1.t) :: G))) 2 T�JGK

Consider arbitrary i , �1 and �1 such that i <W.j and:
W.�1 . �(�1(�(�x : G1.t) :: G)) �!i �1 . �1

Since �(�1(�(�x : G1.t) :: G)) = �
�
1 (�x : �(G1).�(�1(t))) :: �(G) and �

�
2 (�x : �(G1).�(�2(t 0))) :: �(G)

is already a value, where ��i = �i (�), we have i = 0 and �1 = �
�
1 (�x : �(G1).�(�1(t))) :: �(G) and

�1 =W.�1. Since �
�
2 (�x : �(G1).�(�2(t 0))) :: �(G) is already a value, we are required to show that

9W 0, such thatW 0.j + i =W.j,W 0 ⌫W ,W 0.�1 = �1,W 0.�2 = �2 and:
(W 0, ��1 (�x : �(G1).�(�1(t))) :: �(G), ��2 (�x : �(G1).�(�2(t 0))) :: �(G)) 2 V�JGK

LetW 0 =W , then we have to show that:
(W , ��1 (�x : �(G1).�(�1(t))) :: �(G), ��2 (�x : �(G1).�(�2(t 0))) :: �(G)) 2 V�JGK

Let’s suppose that ��1 .n = k .
First we have to prove that:

W.�1;�; � ` ��1 (�x : �(G1).�(�1(t))) :: �(G) : �(G)
As we know that �;�; � ` �(�x : G1.t) :: G : G, by Lemma 6.25 the result follows immediately. The
caseW.�2;�; � ` ��2 (�x : �(G1).�(�2(t 0))) :: �(G) : �(G) is similar.
The type G can be G 0

1 ! G
0
2, for some G 0

1 and G
0
2, or ? or a T���N���.

52 Elizabeth Labrada, Matías Toro, and Éric Tanter

(1) G = G 0
1 ! G

0
2, we are required to show that 8W 00,� 0

1 = �
0
1u

0
1 :: �(G 0

1),� 0
2 = �

0
2u

0
2 :: �(G 0

1), such
thatW 00 ⌫W and (#W 00,� 0

1,�
0
2) 2 V�JG 0

1K, it is true that:
(W 00, ��1 (�x : �(G1).�(�1(t))) :: �(G 0

1 ! G
0
2) � 0

1, �
�
2 (�x : �(G1).�(�2(t 0))) :: �(G 0

1 ! G
0
2) � 0

2) 2 T�JG 0
2K

If (� 01 # dom(��1)) fails, then by Lemma 6.26 (� 02 # dom(��2)) and the result follows immediately.
Else, if (� 0i # dom(��i)) follows, where dom(��1).n = k , we know that

W
00.�1 . �

�
1 (�x : �(G1).�(�1(t))) :: �(G 0

1 ! G
0
2) � 0

1 �!k+1

W
00.�1 . cod(��1)(�(�1(t))[(� 01 # dom(��1)u 0

1 :: �(G1))/x]) :: �(G 0
2) � 0

1 �!k⇤

�1 . cod(��1)�1f :: �(G 0
2) �! k

�1 . �
⇤
1

Thus, we have to prove that there existsW ⇤, such that:

W
00.�2 . �

�
2 (�x : �(G1).�(�2(t 0))) :: �(G 0

1 ! G
0
2) � 0

2 �!⇤ �2 . �
⇤
2

and (W ⇤,�⇤
1,�

⇤
2) 2 V�JG 0

2K,W ⇤.j + 1 + 2k + k⇤ =W 00.j,W ⇤.�1 = �1 andW ⇤.�2 = �2.
Note that dom(��i) `W 00.�i ` �(G 0

1) ⇠ �(G1). By the Lemma 6.17 (with the type G1 and the
evidences dom(��i) `W 00.�i ` �(G 0

1) ⇠ �(G1)) it is true that:
(#1W 00, dom(��1)�

0
1 :: G1, dom(��2)�

0
2 :: G1) 2 T� JG1K

Since (� 0i # dom(��i)) does not fail, it is true that:
((#k+1W 00), (� 01 # dom(��1))u

0
1 :: G1, (� 02 # dom(��2))u

0
2 :: G1) 2 V� JG1K

We instantiate the hypothesis �;�; � ` t � t
0 : G2, with (#k+1W 00), � and � [x : �(G1) 7!

(� 00
1 ,�

00
2)], where � 00

i = (� 0i # dom(��i))u 0
i :: �(G1). Note that SJ�K 3 (#k+1W 00) ⌫ W by the

de�nition of SJ�K, ((#k+1W 00), �) 2 DJ�K by the de�nition of DJ�K and ((#k+1W 00),� [x 7!
(� 00

1 ,�
00
2)]) 2 G�J�, x : �(G1)K, which follow from: ((#k+1 W 00),�) 2 G�J�K and ((#k+1

W
00),� 00

1 ,�
00
2) 2 V�JG1K which follows from above. Then, we have that:

((#k+1W 00), �(�1(t))[� 00
1 /x], �(�2(t 0))[� 00

2 /x]) 2 T�JG2K
If the following term reduces to error, then the result follows immediately.

W
00.�1 . �(�1(t))[� 00

1 /x]

If the above is not true, then the following terms reduce to values (�i f) and 9W 000 ⌫ (#k+1W 00)
such that (W 000,�1f ,�2f) 2 V�JG2K and W

000.j + k
⇤ = (#k+1W 00).j, or what is the same

W
000.j + k⇤ + k + 1 = (W 00).j.

W
00.�1 . �(�1(t))[� 00

1 /x] �!k⇤
W

000.�1 . �1f

W
00.�2 . �(�2(t 0))[� 00

2 /x] �!⇤
W

000.�2 . �2f

We instantiate the induction hypothesis in the previous result ((W 000,�1f ,�2f)) with the type
G

0
2 and the evidence cod(��i) `W 0.�i ` G 00

2 ⇠ G
0
2, then we obtain that:

(W 000, cod(��1)�1f :: �(G 0
2), cod(�

�
2)�2f :: �(G 0

2)) 2 T� JG 0
2K

Therefore, we get (#kW 000,�⇤
1,�

⇤
2) 2 V�JG 0

2K. TakingW ⇤ = (#kW 000), the result follows
immediately. Note thatW 000.j+k+k⇤+1 =W 00.j and therefore (#kW 000).j+1+2k+k⇤ =W 00.j .

Gradual System F: Auxiliary Definitions and Proofs 53

For the other cases ofG , let’s considerer thatu1 = �x : �(G1).�(�1(t)),u2 = �x : �(�(G1).�(�2(t 0))
and G⇤ = G1 ! G2, we have to prove that:

(W , �1(�)u1 :: �(G), �2(�)u2 :: �(G)) 2 V�JGK
(2) If G 2 T���N��� then � = hH3,�E4i. Notice that as �E4 cannot have free type variables

therefore H3 neither. Then � = �i (�). As � is sync, then let us call G 00 =W.�i (�). We have to
prove that:

(W , hH3,�
E4iu1 :: �, hH3,�

E4iu2 :: �) 2 V�J�K
which, by de�nition of V�J�K, is equivalent to prove that:

(#W , hH3, E4iu1 :: G 00, hE3, E4iu2 :: G 00) 2 V�JG 00K
Then we proceed by case analysis on � :
• (Case � = hH3,� �E4 i). We know that hH3,� �E4 i ` �;� ` G

⇤ ⇠ � , then by Lemma 6.29,
hH3, �E4i ` �;� ` G⇤ ⇠ G

00. As �E4 v G
00, then G 00 can either be ? or � .

If G 00 = ?, then by de�nition ofV�J?K, we have to prove that the resulting values belong
to V�J�K. Also as hH3, �E4i ` �;� ` G

⇤ ⇠ ?, by Lemma 6.27, hH3, �E4i ` �;� ` G
⇤ ⇠ � ,

and then we proceed just like this case once again (this is process is �nite as there are no
circular references by construction and it ends up in something di�erent to a type name).
If G 00 = � we use an analogous argument as for G 00 = ?.

• (Case � = hH3,�H4i). We have to prove that

(#W , hH3,H4iu1 :: G 00, hH3,H4iu2 :: G 00) 2 V�JG 00K
By Lemma 6.29, hH3,H4i ` �;� ` G⇤ ⇠ G

00. Then if G 00 = ?, we proceed as the case G = ?,
with the evidence � = hH3,H4i. IfG 00 2 H���T���, we proceed as the previous case where
G = G 0

1 ! G
0
2, and the evidence � = hH3,H4i.

Also, we have to prove that (8� 0, � 0,G⇤
1 , such that � 0.n = k , � 0 = h�E⇤⇤

1 , E⇤⇤2 i (#W 2
SJ� 0K ^ �

0 ` � 0 ` � ⇠ G
⇤
1), we get that

(#1W , � 0(hH3,�
H4iu1 :: �) :: G⇤

1, �
0(hH4,�

E22iu2 :: �) :: G⇤
1) 2 T�JG⇤

1K)
or what is the same ((hH3,�H4i # � 0) fails the result follows immediately)

(#1+kW , (hH3,�
H4i # � 0)u1 :: G⇤

1, (hH2,�
H4i # � 0)u2 :: G⇤

1) 2 V�JG⇤
1K)

By de�nition of transitivity and Lemma 6.30, we know that

hH3,�
H4i # h�E⇤⇤

1 , E⇤⇤2 i = hH3,H4i # hE⇤⇤1 , E⇤⇤2 i
We know that hE⇤⇤1 , E⇤⇤2 i ` � 0 ` G 00 ⇠ G

⇤
1 . Since hE⇤⇤1 , E⇤⇤2 i ` � ` G 00 ⇠ G

⇤
1 , #1W 2 SJ� 0K,

(#1W , hH3,H4iu1 :: G 00, hH1,H4iu2 :: G 00) 2 V�JG 00K, by Lemma 6.17, we know that (since
(hH3,�H4i # � 0) does not fail then (hH3,H4i # hE⇤⇤1 , E⇤⇤2 i) also does not fail by the transitivity
rules)

(#1+kW , (hH3,H4i # hE⇤⇤1 , E⇤⇤2 i)u1 :: G⇤
1, (hH3,H4i # hE⇤⇤1 , E⇤⇤2 i)u2 :: G⇤

1) 2 V�JG⇤
1K)

The result follows immediately.
(3) If G = ? we have the following cases:

• (G = ?, � = hH3,H4i). By the de�nition of V�J?K in this case we have to prove that:

(W , �1(�)u1 :: �(G), �2(�)u2 :: �(G)) 2 V�Jconst(H4)K

54 Elizabeth Labrada, Matías Toro, and Éric Tanter

but as const(H4) = ? ! ?, we proceed just like this case whereG = G 0
1 ! G2, whereG 0

1 = ?
and G 0

2 = ?.
• (G = ?, � = hH3,�E4i). Notice that as �E4 cannot have free type variables therefore E3
neither. Then � = �i (�). By the de�nition of V�J?K we have to prove that

(W , hH3,�
E4iu1 :: �, hH3,�

E4iu2 :: �) 2 V�J�K
Note that by Lemma 6.27 we know that � ` �;� ` G⇤ ⇠ � . Then we proceed just like the
case G 2 T���N���.

⇤

L���� 10.2 (C�������������E�). If �;�,X ` t1 � t2 : G, � ` �;� ` 8X .G ⇠ G
0 and �;� ` �

then �;�; � ` �(�X .t1) :: G 0 � �(�X .t2) :: G 0 : G 0.

P����. First, we are required to prove that �;�; � ` �(�X .ti) :: G 0 : G 0, but by unfolding the
premises we know that �;�,X ` ti : G, therefore:

�;�,X ; � ` ti : G �;� ` �

�;�; � ` �X .ti 2 8X .G
Then we can conclude that:

�;�; � ` �X .ti 2 8X .G � ` �;� ` 8X .G ⇠ G
0

�;�; � ` �(�X .ti) :: G 0 : G 0

Consider arbitraryW , �,� such thatW 2 SJ�K, (W , �) 2 DJ�K and (W ,�) 2 G�J�K. We are
required to show that:

(W , �(�1(�(�X .t1) :: G 0)), �(�2(�(�X .t2) :: G 0))) 2 T�JG 0K
First we have to prove that:

W.�i ` �(�i (�(�X .ti) :: G 0)) : �(G 0)
As we know that �;�; � ` �(�X .ti) :: G 0 : G 0, by Lemma 6.25 the result follows immediately.

By de�nition of substitutions �(�i (�(�X .t1) :: G 0)) = �
�
i (�X .�(�i (ti)))) :: �(G 0), where ��i = �i (�),

therefore we have to prove that:

(W , ��1 (�X .�(�1(t1)))) :: �(G 0), ��2 (�X .�(�2(t2)))) :: �(G 0)) 2 T�JG 0K
We already know that both terms are values and therefore we only have to prove that:

(W , ��1 (�X .�(�1(t1)))) :: �(G 0), ��2 (�X .�(�2(t2)))) :: �(G 0)) 2 V�JG 0K

Let’s suppose that ��1 .n = k .
The typeG 0 can be8X .G 0

1, for someG 0
1, ? or aT���N���. Letu1 = �X .�(�1(t1)),u2 = �X .�(�2(t2))

and G⇤ = 8X .G, we have to prove that:

(W , �1(�)u1 :: �(G), �2(�)u2 :: �(G)) 2 V�JG 0K
(1) If G 0 = 8X .G 0

1, then considerW 0 ⌫ W , and G1,G2,R and � , such thatW 0.�i ` Gi , and
R 2 R��W 0.j [G1,G2].

W
0.�i . �

�
i (�X .�(�i (ti)))) :: 8X .�(G

0
1) [Gi] �!

W
0.�i ,� := Gi . �

Ei /� Ei
8X .�(G0

1)
(��i [�

Ei]�(�i (ti))[�Ei /X] :: �(G 0
1)[�/X]) :: �(G 0

1)[Gi/X]

where E 0
i = lift(W 0.�i)(Gi).

Gradual System F: Auxiliary Definitions and Proofs 55

Note that � ` �;� ` 8X .G ⇠ 8X .G 0
1, then � = h8X .E1,8X .E2i, for some E1, E2,K and L . By the

Lemma 6.24 we know that ��i `W.�i ;� ` 8X .�(G) ⇠ 8X .�(G 0
1), then �

�
i = h8X .Ei1,8X .Ei2i,

where 8X .Ei1 = �i (E1) and Ei2 = �i (E2).
Then we have to prove that:

(W 00, (��1 [�E1])�(�1(t1))[�E1/X] :: �(G 0
1)[�/X],

(��2 [�E2])�(�2(t2))[�E2/X] :: �(G 0
1)[�/X]) 2 T�[X 7!�]JG 0

1K
whereW 00 =#(W 0 ⇥ (�,G1,G2,R)).
Note that

W
00.�1 . (��1 J�E1K)�(�1(t1)) :: �(G 0

1)[�/X] 7��!k⇤

�1 . (��1 J�E1K)�1f 7��!k

�1 . �
⇤
1

Let � 0 = �[X 7! �]. We instantiate the premise �;�; � ` t1 � t2 : G withW 00, � 0 and � , such
thatW 00 2 SJ�K , as � 2 dom(W 0.�[� 7! R]) then (W 00, � 0) 2 DJ�,X K. Also note that as X
is fresh, then 8(�⇤

1,�
⇤
2) 2 cod(�), such that �;�; � ` �⇤

i : G⇤, X < FV (G⇤), then it is easy to
see that (W 00,�) 2 G�[X 7!�]J�K. Then we know that:

(W 00, � 0(�1(t1)), � 0(�2(t2))) 2 T�0JGK

But note that:
�
0(�i (ti)) = �[�/X](�i (ti)) = �(�i (ti))[�Ei /X]

Then we have that:

(W 00, �(�1(t1))[�E1/X], �(�2(t2))[�E2/X]) 2 T�[�/X]JGK

If the following term reduces to error, then the result follows immediately.

W
00.�1 . �(�1(t1))[�E1/X]

If the above is not true, then the following terms reduce to values (�i f = �i f ui f :: � 0(G)) and
9W 000 ⌫W

00 such that (W 000,�1f ,�2f) 2 V�[� 7!X]JGK andW 000.j + k⇤ =W 00.j.

W
00.�i . �(�i (ti))[�Ei /X] �!⇤

W
000.�i . �i f

We instantiate the Lemma 6.17 with the typeG 0
1 and the evidence hE1, E2i ` �;�,X ` G ⇠ G

0
1

(remember that � = h8X .E1,8X .E2i). Note that ��i J�Ei K = �[X 7! �]W 000.�i (hE1, E2i), �[X 7!
�](G 0

1) = �(G 0
1)[�/X],W 000 2 SJ�K and (W 000, �[X 7! �]) 2 DJ�,X K. Then we obtain that:

(W 000, (��1 J�E1K)�1f :: �(G 0
1)[�/X], (��2 J�E2K)�2f :: �(G 0

1)[�/X]) 2 T�0JG 0
1K

and

(#kW 000,�⇤1,�
⇤
2) 2 T� JG 0

1K

where (#kW 000).j +k +k⇤ =W 00.j and�⇤
i = (�i f # (��1 J�E1K))ui f :: �(G 0

1)[�/X], and the result
follows immediately.

56 Elizabeth Labrada, Matías Toro, and Éric Tanter

(2) If G 0 2 T���N��� then � = hH3,�E4i. Notice that as �E4 cannot have free type variables
therefore H3 neither. Then � = �i (�). As � is sync, then let us call G 00 =W.�i (�). We have to
prove that:

(W , hH3,�
E4iu1 :: �, hH3,�

E4iu2 :: �) 2 V�J�K
which, by de�nition of V�J�K, is equivalent to prove that:

(#W , hH3, E4iu1 :: G 00, hE3, E4iu2 :: G 00) 2 V�JG 00K
Then we proceed by case analysis on � :
• (Case � = hH3,� �E4 i). We know that hH3,� �E4 i ` �;� ` G

⇤ ⇠ � , then by Lemma 6.29,
hH3, �E4i ` �;� ` G⇤ ⇠ G

00. As �E4 v G
00, then G 00 can either be ? or � .

If G 00 = ?, then by de�nition ofV�J?K, we have to prove that the resulting values belong
to V�J�K. Also as hH3, �E4i ` �;� ` G

⇤ ⇠ ?, by Lemma 6.27, hH3, �E4i ` �;� ` G
⇤ ⇠ � ,

and then we proceed just like this case once again (this is process is �nite as there are no
circular references by construction and it ends up in something di�erent to a type name).
If G 00 = � we use an analogous argument as for G 00 = ?.

• (Case � = hH3,�H4i). We have to prove that

(#W , hH3,H4iu1 :: G 00, hH3,H4iu2 :: G 00) 2 V�JG 00K
By Lemma 6.29, hH3,H4i ` �;� ` G⇤ ⇠ G

00. Then if G 00 = ?, we proceed as the case G 0 = ?,
with the evidence � = hH3,H4i. IfG 00 2 H���T���, we proceed as the previous case where
G

0 = 8X .G, and the evidence � = hH3,H4i.
Also, we have to prove that (8� 0, � 0,G⇤

1 , such that � 0.n = k , � 0 = h�E⇤⇤
1 , E⇤⇤2 i (#W 2

SJ� 0K ^ �
0 ` � 0 ` � ⇠ G

⇤
1), we get that

(#1W , � 0(hH3,�
H4iu1 :: �) :: G⇤

1, �
0(hH4,�

E22iu2 :: �) :: G⇤
1) 2 T�JG⇤

1K)
or what is the same ((hH3,�H4i # � 0) fails the result follows immediately)

(#1+kW , (hH3,�
H4i # � 0)u1 :: G⇤

1, (hH2,�
H4i # � 0)u2 :: G⇤

1) 2 V�JG⇤
1K)

By de�nition of transitivity and Lemma 6.30, we know that

hH3,�
H4i # h�E⇤⇤

1 , E⇤⇤2 i = hH3,H4i # hE⇤⇤1 , E⇤⇤2 i
We know that hE⇤⇤1 , E⇤⇤2 i ` � 0 ` G 00 ⇠ G

⇤
1 . Since hE⇤⇤1 , E⇤⇤2 i ` � ` G 00 ⇠ G

⇤
1 , #1W 2 SJ� 0K,

(#1W , hH3,H4iu1 :: G 00, hH1,H4iu2 :: G 00) 2 V�JG 00K, by Lemma 6.17, we know that (since
(hH3,�H4i # � 0) does not fail then (hH3,H4i # hE⇤⇤1 , E⇤⇤2 i) also does not fail by the transitivity
rules)

(#1+kW , (hH3,H4i # hE⇤⇤1 , E⇤⇤2 i)u1 :: G⇤
1, (hH3,H4i # hE⇤⇤1 , E⇤⇤2 i)u2 :: G⇤

1) 2 V�JG⇤
1K)

The result follows immediately.
(3) If G 0 = ? we have the following cases:

• (G 0 = ?, � = hH3,H4i). By the de�nition ofV�J?K in this case we have to prove that:

(W , �1(�)u1 :: �(G), �2(�)u2 :: �(G)) 2 V�Jconst(H4)K
but as const(H4) = 8X .?, we proceed just like the case where G 0 = 8X .G 0

1, where G
0
1 = ?.

• (G 0 = ?, � = hH3,�E4i). Notice that as �E4 cannot have free type variables therefore E3
neither. Then � = �i (�). By the de�nition of V�J?K we have to prove that

(W , hH3,�
E4iu1 :: �, hH3,�

E4iu2 :: �) 2 V�J�K

Gradual System F: Auxiliary Definitions and Proofs 57

Note that by Lemma 6.27 we know that � ` �;� ` G⇤ ⇠ � . Then we proceed just like the
case G 0 2 T���N���.

⇤

P���������� 6.5 (C�������������E����U). If �;�; � ` �1(�)u1 :: G1 � �1(�)u 0
1 :: G1 : G1,

�;�; � ` �2(�)u 0
2 :: G2 � �2(�)u 0

2 :: G2 : G2, and � � �;� ` G1 ⇥G2 ⇠ G then:

�;�; � ` � hu1,u2i :: G � � hu 0
1,u

0
2i :: G : G

P����. Straightforward as the de�nition of related pairs depends on a weaker property of the
premise: �;�; � ` �1(�)u1 :: G1 � �1(�)u 0

1 :: G1 : G1 and �;�; � ` �2(�)u 0
2 :: G2 � �2(�)u 0

2 :: G2 :
G2. ⇤

P���������� 6.6 (C�������������E����). If �;�; � ` t1 � t
0
1 : G1 and �;�; � ` t2 � t

0
2 : G2,

then �;�; � ` ht1, t2i � ht 01, t 02i : G1 ⇥G2.

P����. We proceed by induction on subterms ti , analogous to the function application case, but
using Prop 6.5 instead. ⇤

P���������� 6.7 (C�������������E�). If x : G 2 � and �;� ` � then �;�; � ` x � x : G.

P����. First, we are required to show �;�; � ` x : G, which is immediate. Consider arbitrary
W , �,� such thatW 2 SJ�K, (W , �) 2 DJ�K and (W ,�) 2 G�J�K. We are required to show that:

(W , �(�1(x)), �(�2(x))) 2 T�JGK
Consider arbitrary i , �1 and �1 such that i < W.j and W.�1 . �(�1(x)) �!i �1 . �1. Since

�(�1(x))) = �1(x) and �1(x) is already a value, we have i = 0 and �1(x) = �1. We are required to
show that exists �2,�2 such thatW.�2 . �2(x) �!⇤ �2 . �2 which is immediate (since �(�2(x)) =
�2(x) is a value and �2 = W.�2). Also, we are required to show that 9W 0, such thatW 0.j + i =
W.j ^W

0 ⌫ W ^W
0.�1 = �1 ^W

0.�2 = �2 ^ (W 0,�1(x),�2(x)) 2 V�JGK. LetW 0 = W , then
(W ,�1(x),�2(x)) 2 V�JGK because of the de�nition of (W ,�) 2 G�J�K. ⇤

P���������� 6.8 (C�������������E���). If �;�; � ` t1 � t2 : G and � ` �;� ` G ⇠ G
0 then

�;�; � ` �t1 :: G 0 � �t2 :: G 0 : G 0.

P����. First we are required to prove that �;�; � ` �ti :: G 0 : G 0, but by �;�; � ` t1 � t2 : G we
already know that �;�; � ` ti : G, therefore:

(Easc)
�;�; � ` ti : G � ` �;� ` G ⇠ G

0

�;�; � ` �ti :: G 0 : G 0

Consider arbitraryW , �,� such thatW 2 SJ�K, (W , �) 2 DJ�K and (W ,�) 2 G�J�K. We are
required to show that:

(W , �(�1(�t1 :: G 0)), �(�2(�t2 :: G 0))) 2 T� JG 0K
Let’s suppose that ��1 .n = k . By de�nition of substitutions �(�i (�ti :: G 0)) = �(�)�(�i (ti)) :: �(G 0),
therefore we have to prove that:

(W , �(�)�(�1(t1)) :: �(G 0), �(�)�(�2(t2)) :: �(G 0)) 2 T� JG 0K
First we have to prove that:

W.�i ` �(�)�(�i (ti)) :: �(G 0) : G 0

As we know that �;�; � ` �ti :: G 0 : G 0, by Lemma 6.25 the result follows immediately.

58 Elizabeth Labrada, Matías Toro, and Éric Tanter

Second, consider arbitrary i <W.j,�1. Either there exist �1 such that:
W.�1 . �(�)�(�1(t1)) :: �(G 0) 7��!i �1 . �1

or
W.�1 . �(�)�(�1(t1)) :: �(G 0) 7��!i error

Let us suppose thatW.�1 . �(�1(t1)) :: �(G 0) 7��!i �1 .�1. Hence, by inspection of the operational
semantics, it follows that there exist i1 + 1 < i , �11 and �11 such that:

W.�1 . �(�)�(�1(t1)) :: �(G 0) 7��!i1 �11 . �(�)�11 :: �(G 0) 7��!k �11 . �1

We instantiate the hypothesis �;�; � ` t1 � t2 : G withW , � and � to obtain that:
(W , �(�1(t1)), �(�2(t2))) 2 T� JGK

We instantiate T�JGK with i1, �11 and �11 (note that i1 < i < W.j), hence there exists �12 and
W1, such thatW1 ⌫ W ,W1.j + i1 = W .j,W.�2 . �(�2(t2)) 7��!⇤

W1.�2 . �12,W1.�1 = �11, �12 and
(W1,�11,�12) 2 V�JGK.
Since we have that (W1,�11,�12) 2 V�JGK, then it is true that (W1, �(�)�11 :: G 0, �(�)�12 :: G 0) 2

T�JG 0K by the Lemma 6.17.
By the inspection of the operational semantics:

W.�1 . �(�)�(�1(t1)) :: �(G 0) 7��!i1
W1.�1 . �(�)�11 :: �(G 0) 7��!k �1 . �1

We instantiate (W1, �(�)�11 :: G 0, �(�)�12 :: G 0) 2 T�JG 0K with k , �1 and �1. Therefore there must
exist �2 andW 0 such thatW 0 ⌫W1 (note thatW 0 ⌫W),W 0.j + i1 + k =W 0.j + i =W .j.

W1.�2 . �(�)�12 :: �(G 0) 7��!⇤ �2 . �2

and (W 0,�1,�2) 2 V�JG 0K then the result follows. ⇤

P���������� 6.9 (C�������������E��). If �;�; � ` t � t 0 : G and ty(op) = G ! G then
�;�; � ` op(t) � op(t 0) : G.
P����. Similar to the term application. ⇤

P���������� 6.10 (C�������������E���). If �;�; � ` t1 � t
0
1 : G11 ! G12 and �;�; � ` t2 �

t
0
2 : G11 then �;�; � ` t1 t2 � t

0
1 t

0
2 : G12.

P����. First, we are required to show that:
�;�; � ` t1 t2 : G12

which follows directly from (Eapp) as �;�; � ` t1 : G1, and �;�; � ` t2 : G2. Also, we are required
to prove that:

�;�; � ` t 01 t 02 : G12

which follows analogously.
Second, consider arbitraryW , �,� such thatW 2 SJ�K, (W , �) 2 DJ�K and (W ,�) 2 G�J�K. We

are required to show that:

(W , �(�1(t1 t2)), �(�2(t 01 t 02)) 2 T� JG12K

Consider arbitrary i , �1 and �1 such that i <W .j and:
W.�1 . �(�1(t1 t2)) �!i �1 . �1 _W.�1 . �(�1(t1 t2)) �!i error

Gradual System F: Auxiliary Definitions and Proofs 59

Hence, by inspection of the operational semantics, it follows that there exist i1 < i , �11 and �11
such that:

W.�1 . �(�1(t1)) �!i1 �11 . �11 _W.�1 . �(�1(t1)) �!i1 error

IfW.�1 . �(�1(t1)) �!i1 error thenW.�1 . �(�2(t 01)) �!⇤ error and the result holds immediately.
Let us assume that the reduction does not fail. We instantiate the hypothesis �;�; � ` t1 � t

0
1 :

G11 ! G12 withW , � and � we obtain that:

(W , �(�1(t1))), �(�2(t 01))) 2 T� JG11 ! G12K

We instantiate this with i1,�11 and�11 (note that i1 < i <W .j), hence there exists� 0
11 andW1, such

thatW1 ⌫W ,W1.j+ i1 =W .j , or what is the sameW1.j+ i1 =W .j ,W.�2 .�(�2(t 01)) �!⇤
W1.�2 .�

0
11,

W1.�1 = �11 and (W1,�11,� 0
11) 2 V�JG11 ! G12K.

Note that:
W.�1 . �(�1(t1 t2)) �!i1 �11 . �11(�(�1(t2))) �!i�i1 �1 . �1

or
W.�1 . �(�1(t1 t2)) �!i1 �11 . �11(�(�1(t2))) �!i�i1 error

Hence, by inspection of the operational semantics, it follows that there exist i2 < i � i1, �22 and
�22 such that:

�11 . �(�1(t2)) �!i2 �22 . �22 _ �11 . �(�1(t2)) �!i2 error

We instantiate the hypothesis �;�; � ` t2 � t
0
2 : G11 with (W1), � and � , then we obtain that:

(W1, �(�1(t2)), �(�2(t 02))) 2 T� JG11K

If �11 . �(�1(t2)) �!i2 error then we instantiate with �22 and �22 . �(�2(t 02)) �!⇤ error and the
result holds immediately. Let us assume that the reduction does not fail. We instantiate this with
i2 (note that i2 < i � i1 < W1.j =W.j � i1), �22 and �22, hence there exists � 0

22 andW2, such that
W2.�1 = �22,W2 ⌫W1, or what is the same,W2 ⌫W1,W2.j =W1.j � i2 (W2.j + i2 + i1 =W .j) and

W1.�2 . �(�2(t 02)) �!⇤
W2.�2 . �

0
22

and (W2,�22,� 0
22) 2 V�JG11K.

Note that:
W.�1 . �(�1(t1 t2)) �!i1 �11 . �11 (�(�1(t2))) �!i2 �22 . �11 �22 �!i�i1�i2 �1 . �1

Since (W1,�11,� 0
11) 2 V�JG11 ! G12K, we instantiate this withW2, �(G11 ! G12), �22 and � 0

22
(note that (W2,�22,� 0

22) 2 V�JG11K, (#1W2,�22,� 0
22) 2 V�JG11K andW2 ⌫W1). Then (W2,�11�22,� 0

11�
0
22) 2

T�JG2K.
Since (W2,�11 �22,� 0

11 �
0
22) 2 T�JG2K, we instantiate this with i � i1 � i2 (note that i � i1 � i2 <

W2.j =W .j � i1 � i2 since i <W .j), �1 and �1.
IfW2.�1 . �11 �22 �!i�i1�i2 error thenW2.�2 . �

0
11 �

0
22 �!⇤ error and the result holds. Let us

assume that the reduction does not fail. Hence there exists �2 andW 0, such thatW 0 ⌫W2 (note
thatW 0 ⌫ W),W 0.j =W2.j � (i � i1 � i2) =W .j � i ,W2.�2 . �

0
11 �

0
22 �!⇤

W
0.�2 . �2,W 0.�1 = �1

and (W 0,�1,�2) 2 V�JG12K, then the proof is complete. ⇤

L���� 10.3 (C�������������E���G). If �;�; � ` t1 � t2 : 8X .G and �;� ` G 0, then
�;�; � ` t1[G 0] � t2[G 0] : G[G 0/X].

60 Elizabeth Labrada, Matías Toro, and Éric Tanter

P����. First we are required to prove that �;�; � ` ti [G 0] : G[G 0/X], but by �;�; � ` t1 � t2 :
8X .G we already know that �;�; � ` ti : 8X .G, therefore:

(EappG)
�;�; � ` ti : 8X .G �;� ` G 0

�;�; � ` ti [G 0] : G[G 0/X]

Consider arbitraryW , �,� such thatW 2 SJ�K, (W , �) 2 DJ�K and (W ,�) 2 G�J�K. We are
required to show that:

(W , �(�1(t1[G 0])), �(�2(t2[G 0]))) 2 T�JG[G 0/X]K
But by de�nition of substitutions �(�i (ti [G 0])) = �(�i (ti))[�(G 0)], therefore we have to prove that:

(W , �(�1(t1))[�(G 0)], �(�2(t2))[�(G 0)]) 2 T�JG[G 0/X]K
First we have to prove that:

W.�i ` �(�i (ti))[�(G 0)] : �(G)[�(G 0)/X]
As we know that �;�; � ` ti [G 0] : G[G 0/X], by Lemma 6.25 the result follows immediately. Second,
consider arbitrary i <W.j and �1. Either there exist�1 such thatW.�1 .�(�1(t1))[�(G 0)] 7��!i �1 .�1
orW.�1 . �(�1(t1))[�(G 0)] 7��!i �1 . error. First, let us suppose that:

W.�1 . �(�1(t1))[�(G 0)] 7��!i �1 . �1

Hence, by inspection of the operational semantics, it follows that there exist i1 < i , and �11 such
that

W.�1 . �(�1(t1))[�(G 0)] 7��!i1 �11 . �11[�(G 0)]
We instantiate the premise �;�; � ` t1 � t2 : 8X .G withW , � and � to obtain that:

(W , �(�1(t1)), �(�2(t2))) 2 T�J8X .GK
We instantiate T�J8X .GK with i1, �11 and �11 (note that i1 < i <W.j), hence there exists �12 and

W1, such thatW1 ⌫W ,W1.j =W .j � i1,W.�2 . �(�2(t2)) 7��!⇤
W1.�2 . �12,W1.�1 = �11, �12 and:

(W1,�11,�12) 2 V�J8X .GK
Then by inspection of the operational semantics:

W.�i . �(�i (ti))[�(G 0)] 7��!⇤
W1.�i . �1i [�(G 0)]

7��!W1.�i ,� := �(G 0) . �i (� 0i t 0i :: �(G)[�/X]) :: �(G)[�(G 0)/X]
for some �1, �2, � 01, �

0
2, t

0
i and � < dom(W1.�i). Let us call t 00i = (� 0i t 0i :: �(G)[�/X]). We instantiate

V�J8X .GK with � , t 00i , �(G 0), R = V�JG 0K, �1, �2 andW1.
Then (W 0

1 , t
00
1 , t

00
2) 2 T�[X 7!�]JGK, whereW 0

1 = (#W1) ⇥ (�, �(G 0), �(G 0),V�JG 0K).
We instantiate T�[X 7!�]JGK with i2, �1, � 0

1, such that

W1.�1 . (� 01t 01 :: �(G)[�/X]) 7��!i2 �1 . �
0
1

Note that i2 <W 0
1 .j =W .j � i1 � 1, since i <W .j. Therefore there must exist � 0

2, andW
0 such that

W
0 ⌫W

0
1 (note thatW 0 ⌫W),W 0.j + i1 + 1 + i2 =W .j � i ,

W1.�2 . (� 02t 02 :: �(G)[�/X]) 7��!⇤
W

0.�2 . (� 02� 00
2 :: �(G)[�/X]) 7��!W

0.�2 . �
0
2

W
0.�1 = �1 and (W 0,� 0

1,�
0
2) 2 V�[X 7!�]JGK.

Notice that ti reduce to a type abstraction of the form �1i = h8X .Ei1,8X .Ei2i�X .t 000i :: 8X .�(G).
Let us call � 0

i = �
000
i u

000
i :: �(G)[�/X]), as �2(� 0001) ⌘ �2(� 0002), then Gp = unlift(�2(� 000i)), then Ei =

Gradual System F: Auxiliary Definitions and Proofs 61

liftW2.�i
(Gp), and E

0
i = liftW1.�i

(�(G 0)), and �i = hEi [�E0
i /X], Ei [E 0

i/X]i. Then as (W 0,� 0
1,�

0
2) 2

V�[X 7!�]JGK by Lemma 6.15,
(#kW 0, (� 0001 # �1)u 000

1 :: �(G)[�(G 0)/X], (� 0002 # �2)u 000
2 :: �(G)[�(G 0)/X]) 2 V�JG[G 0/X]K

where �1.n = k . Let us call �i = (� 000i # �i)u 000
1 :: �(G)[�(G 0)/X]. Where the lemma holds by

instantiating T�JG[G 0/X]K with �1, �1, i = k and thereforeW 0.�1 . �1�
0
1 :: �(G)[�(G 0)/X] 7��!k

W
0.�1 .�1. Then there must exists some�2 such thatW 0.�2 . �2�

0
2 :: �(G)[�(G 0)/X] 7��!W

0.�2 .�2,
and the result follows.

⇤

P���������� 6.11 (C�������������E����1). If �;�; � ` t1 � t2 : G1 ⇥ G2 then �;�; � `
�1(t1) � �1(t2) : G1.

P����. Similar to the function application case, using the de�nition of related pairs instead. ⇤

P���������� 6.12 (C�������������E����2). If �;�; � ` t1 � t2 : G1 ⇥ G2 then �;�; � `
�2(t1) � �2(t2) : G2.

P����. Similar to the function application case, using the de�nition of related pairs instead. ⇤

L���� 6.13. Let Ei = lift�i (Gp) for some Gp v G, hEi1, Ei2i � �i ` Gu ⇠ G, and E12 ⌘ E22, then
hE11, E12i # hE1, E1i () hE21, E22i # hE2, E2i.
P����. Note that by de�nition E1 ⌘ E2. Also, 8�E 2 FTN (Ei), E = lift�i (�i (�)). Then we prove

the) direction (the other is analogous), by induction on the structure of the evidences hEi1, Ei2i.
We skip cases where Ei = ? or Ei1 = ?, as the result is trivial (combination never fails).

Case (hE11, E12i = hE11,�E0
12i). Then hE21, E22i = hE21,�E0

22i , and Ei = h�E0
i ,�E0

i i, where E
0
i =

lift�i (�i (�)), and therefore E 0
i2 v E

0
i . And then by Lemma 6.30, the result holds immediately as

both combinations are de�ned.

Case (hE11, E12i = hE11,Bi). Then hE21, E22i = hE12,Bi, and hEi , Ei i = hB,Bi, and the result trivially
holds.

Case (hE11, E12i = h�E0
11, E12i). The result holds by de inspection of consistent transitivity rule

(sealR) and induction on evidence hE 0
i1, Ei2i.

Case (hE11, E12i = hE111 ! E112, E121 ! E122i). Then hE11, E12i = hE111 ! E112, E121 ! E122i, and
hEi , Ei i = hE 0

i1 ! E
0
i2, E

0
i1 ! E

0
i2i. As consistent transitivity is a symmetric relation, then the

result holds by induction hypothesis on combinations of evidence hEi11 ! Ei12i # hE 0
i1, E

0
i1i and

hEi21 ! Ei22i # hE 0
i2, E

0
i2i.

For the other cases we proceed analogous to the function case. ⇤

P���������� 6.14. If (W ,�1,�2) 2 V�JGK andW 0 ⌫W then (W ,�1,�2) 2 V�JGK.

P���������� 6.15 (C���������������). If
• W.�i (�) = �(G 0) andW.�(�) = V�JG 0K,
• E

0
i = liftW.�i

(�(G 0)),
• Ei = liftW.�i

(Gp) for some Gp v �(G),
• �

0 = �[X 7! �],
• �i = hEi [�E0

i /X], Ei [E 0
i/X]i, such that �i `W.�i ` �(G[�/X]) ⇠ �(G[G 0/X]), and

62 Elizabeth Labrada, Matías Toro, and Éric Tanter

• �i
�1 = hEi [E 0

i/X], Ei [�E0
i /X]i, such that �i�1 `W.�i ` �(G[G 0/X]) ⇠ �(G[�/X]), then

(1)

(W , � 01u1 :: � 0(G), � 02u2 :: � 0(G)) 2 V�0JGK)
(W , �1(� 01u1 :: �(G)) :: �(G [G 0/X]), �2(� 02u2 :: �(G)) :: �(G [G 0/X])) 2 T� JG [G 0/X]K

(2)

(W , � 01u1 :: �(G [G 0/X]), � 02u2 :: �(G [G 0/X])) 2 V� JG [G 0/X]K)
(W , �1�1(� 01u1 :: �(G [G 0/X])) :: � 0(G), �2�1(� 02u2 :: �(G [G 0/X])) :: � 0(G)) 2 T�0JGK

P����. We proceed by induction on G. Let suppose that �1.n = k , ��11 .n = l and �
0
1.n = m. Let

�i = �
0
iui :: �

0(G). We prove (1) �rst.

Case (Type Variable X: G = X). Let �i = hHi1,�Ei2iui :: � . Then we know that

(W , hH11,�
E12iu1 :: �, hH21,�

E22iu2 :: �) 2 V�[X 7!�]JX K
which is equivalent to

(W , hH11,�
E12iu1 :: �, hH21,�

E22iu2 :: �) 2 V�[X 7!�]J�K
AsW.�i (�) = �(G 0) andW.�(�) = V�JG 0K, we know that:

(#1W , hH11, E12iu1 :: �(G 0), hH21, E22iu2 :: �(G 0)) 2 V�JG 0K
Then �i `W.�i ` � ⇠ �(G 0), and �i has to have the form �i = h�E0

i , E 0
i i. As E 0

i = liftW.�i
(�(G 0))

(initial evidence for�), then Ei2 v E
0
i , and therefore by Lemma 6.30: hHi1,�Ei2i#h�E0

i , E 0
i i = hHi1, Ei2i,

and then we have to prove that
(#kW , hH11, E12iu1 :: �(G 0), hH21, E22iu2 :: �(G 0)) 2 V�JG 0K

which follow by Lemma 6.14 and the fact that k > 0.

Case (Type Variable Y: G = Y). Let �i = hHi1, �Ei2iui :: � , where � 0(Y) = � . Then we know that

(W , hH11, �
E12iu1 :: �, hH21, �

E22iu2 :: �) 2 V�[X 7!�]JY K
which is equivalent to

(W , hH11, �
E12iu1 :: �, hH21, �

E22iu2 :: �) 2 V�[X 7!�]J�K
Then �i ` W.�i ` � ⇠ � , and �i has to have the form �i = h�E0

i , �E
0
i i, and �

E0
i = liftW.�i

(�). By
Lemma 6.13, we assume that both combinations of evidence are de�ned (otherwise the result holds
immediately). Therefore, by Lemma 6.30, we know that

hHi1, �
Ei2i # h�E0

i , �E
0
i i = hHi1, �

Ei2i
Then we have to prove that

(#kW , hH11, �
E12iu1 :: �, hH21, �

E22iu2 :: �) 2 V�J�K
which follows Lemma 6.14.

Case (Unknown Type: G = ?). Let �i = hHi1, Ei2iui :: ?. Then by de�nition of V�J?K, let G 00 =
const(Ei2) (where G 00 , ?). Then we know

(W , hH11, E12iu1 :: G 00, hH21, E22iu2 :: G 00) 2 V�JG 00K
We are required to prove that:

(W , �1(hH11, E12iu1 :: ?) :: ?, �2(hH21, E22iu2 :: ?) :: ?) 2 T�J?K

Gradual System F: Auxiliary Definitions and Proofs 63

If �i = h?, ?i, then, hHi1, Ei2i # h?, ?i = hHi1, Ei2i, by Lemma 6.30, the result holds immediately.
If �i , h?, ?i. Then we proceed similar to the other cases where G , ?. Note that we know that

(W , hH11, E12iu1 :: G 00, hH21, E22iu2 :: G 00) 2 V�JG 00K
where G 00 , ? and we are required to prove that

(W , �1(hH11, E12iu1 :: G 00) :: G 00, �2(hH21, E22iu2 :: G 00)) 2 V�JG 00K

Case (Function Type: G = G1 ! G2). We know that

(W ,�1,�2) 2 V�0JG1 ! G2K
Then we have to prove that

(#kW , (� 01 # �1)(�x : G 0
1.t1) :: �(G1[G 0/X]) ! �(G2[G 0/X]),

(� 02 # �2)(�x : G 0
2.t2) :: �(G1[G 0/X]) ! �(G2[G 0/X])) 2 V� JG1[G 0/X] ! G2[G 0/X]K

Let us call � 00
i = (� 0i # �i)(�x : G 0

i .ti) :: � 0(G1) ! �
0(G2). By unfolding, we have to prove that

8W 0 ⌫ (#kW).8� 0
1,�

0
2.(#1W 0,� 0

1,�
0
2) 2 V�JG1[G 0/X]K) (W 0,� 00

1 �
0
1,�

00
2 �

0
2) 2 T�JG2[G 0/X]K

Suppose that � 0
i = �

00
i u

0
i :: �(G1[G 0/X]), by inspection of the reduction rules, we know that

W
0.�i .�

00
i �

0
i 7��!⇤

W
0.�i .(cod(� 0i) # cod(�i))ti [(� 00i # (dom(�i)#dom(� 0i)))u 0

i :: G
0
i)/x] :: �(G2[G 0/X]))

This is equivalent by Lemma 6.18,

W
0.�i .�

00
i �

0
i 7��!⇤

W
0.�i .(cod(� 0i) # cod(�i))ti [((� 00i # dom(�i))#dom(� 0i))u 0

i :: G
0
i)/x] :: �(G2[G 0/X]))

Therefore, we know that

W
0.�1 . �

00
1 �

0
1 7��!m+k+1

W
0.�1 . (cod(� 01) # cod(�1))t1[(� 001 # (dom(�1) # dom(� 0i)))u 0

1 :: G
0
i)/x] :: �(G2[G 0/X])) 7��!k⇤

�1 . (cod(� 01) # cod(�1))�1f :: �(G2[G 0/X])) 7��!m+k

�1 . �
⇤
1

where �1f = �1f u1f :: � 0(G2) and �⇤
1 = �1f # (cod(� 01) # cod(�1))u1f :: �(G2[G 0/X]).

Notice that dom(�i) `W.�i ` �(G1[G 0/X]) ⇠ �(G1[�/X]), by Lemma 6.13, we assume that both
combinations of evidence are de�ned (otherwise the result holds immediately) , then let us assume
that (� 00i # dom(�i)) is de�ned. We can use induction hypothesis on� 0

i , with evidences dom(�i). Then
we know that (#k+1W 0, (� 001 # dom(�1))u 0

1 :: �
0(G1), (� 002 # dom(�2))u 0

2 :: �
0(G1)) 2 V�0JG1K. Let us call

�
000
i = (� 00i # dom(�i))u 0

i :: �
0(G1).

Now we instantiate
(W ,�1,�2) 2 V�0JG1 ! G2K

with #kW 0 and � 000
i and

(#k+1W 0, (� 001 # dom(�1))u 0
1 :: �

0(G1), (� 002 # dom(�2))u 0
2 :: �

0(G1)) 2 V�0JG1K
to obtain that either both executions reduce to an error (then the result holds immediately), or
9W 00 ⌫#kW 0 such thatW 00.j + 2m + 1 + k⇤ + k =W 0.j and (W 00,� 0

f 1,�
0
f 2) 2 V�0JG2K

W
0.�i . �i �

000
i 7��!⇤

W
0.�i . cod(� 0i)t[((� 00i # dom(�i)) # dom(� 0i))u 0

i :: G
0
i)/x] :: � 0(G2))

7��!⇤
W

00.�i . �
0
f i

Suppose that � 0
f i = �

0
f iuf i :: �

0(G2).

64 Elizabeth Labrada, Matías Toro, and Éric Tanter

Also, we know that
W

0.�1 . �1 �
000
1 7��!m+1

W
0.�1 . cod(� 01)t1[(� 001 # (dom(�1) # dom(� 0i)))u 0

1 :: G
0
i)/x] :: � 0(G2) 7��!k⇤

�1 . cod(� 01)�1f :: � 0(G2) 7��!m

�1 . �
0
1f

Then we use induction hypothesis once again using evidences cod(�i) over � 0
i f (noticing that by

Lemma 6.13, the combination of evidence either both fail or both are de�ned), to obtain that,

(#kW 00, (�f 1 # cod(� 01) # cod(�1))uf 1 :: �(G2[G 0/X]),
(�f 2 # cod(� 02) # cod(�2))uf 2 :: �(G2[G 0/X])) 2 V�JG2[G 0/X]K

and the result holds. Note that (#kW 00).j + 1 + 2m + 2k + k⇤ =W 0.j

Case (Universal Type: 8Y .G1). We know that

(W ,�1,�2) 2 V�0J8Y .G1K
Then we have to prove that

(#kW , (� 01 # �1)(�Y .t1) :: 8Y .�(G1[G 0/X]),
(� 02 # �2)(�Y .t2) :: 8Y .�(G1[G 0/X])) 2 V� J8Y .G1[G 0/X]K

Let � 0i = h8Y .Ei1,8Y .Ei2i and �i = h8Y .E 0
i1,8Y .E 0

i2i = h8Y .E 00
i [�E0

i /X],8Y .E 00
i [E 0

i/X]i, where
Ei = 8Y .E 00

i . Let us call �
00
i = (� 0i # �i)(�Y .ti) :: 8Y .�(G1[G 0/X]). By unfolding, we have to prove

that
8W 0 ⌫ (#kW).8t 001 , t 002 ,G 0

1,G
0
2, �, �

00
1 , �

00
2 .8R 2 R��W 0.j [G 0

1,G
0
2].

(W 0.�1 ` G 0
1 ^W

0.�2 ` G 0
2^

W
0.�1 . �

00
1 [G 0

1] 7��!W
0.�1, � := G 0

1 . �
00
1 t

00
1 :: �(G1)[G 0/X][G 0

1/Y]^
W

0.�2 . �
00
2 [G 0

2] 7��!W
0.�2, � := G 0

2 . �
00
2 t

00
2 :: �(G1)[G 0/X][G2/Y]))

(W ⇤, t 001 , t
00
2) 2 T�[Y 7!�]JG1[G 0/X]K

where E⇤i = liftW 0.�i
(G 0

i) andW ⇤ =#(W 0 ⇥ (�,G 0
1,G

0
2,R)

By inspection of the reduction rules we know that

t
00
i = (hEi1[�E

⇤
i /Y], Ei2[�E

⇤
i /Y]i # hE 00i [�E

0
i /X][�E⇤

i /Y], E 00i [E 0i/X][�E⇤
i /Y]i)ti [�E

⇤
i /Y] :: �(G1[G 0/X][�/Y])

Note that (hEi1[�E
⇤
i /Y], Ei2[�E

⇤
i /Y]i # hE 00

i [�E0
i /X][�E⇤

i /Y], E 00
i [E 0

i/X][�E⇤
i /Y]i).n =m + k . There-

fore, we know that
W

⇤.�1 . t
00
1 7��!k⇤

�1 . (hEi1[�E
⇤
i /Y], Ei2[�E

⇤
i /Y]i # hE 00

i [�E0
i /X][�E⇤

i /Y], E 00
i [E 0

i/X][�E⇤
i /Y]i)

�m1 :: �(G1[G 0/X][�/Y]) 7��!k+m �1 . �
⇤
1

By the reduction rule of the type application we know that:

W
0.�i . �i [G 0

i] 7��!W
0.�i , � := G 0

i . hE#i [�E
⇤
i /Y], E#i [E⇤i /Y]it 0i :: �(G1[G 0/X][G 0

i/Y])

where t 0i = (hEi1[�E
⇤
i /Y], Ei2[�E

⇤
i /Y]iti [�E

⇤
i /Y] :: �(G1[G 0/X][�/Y])). Now we instantiate

(W ,�1,�2) 2 V�0J8Y .G1K

withW 0, G 0
1, G

0
2, R, t

0
1, t

0
2, � , and evidences hEi1[�E

⇤
i /Y], Ei2[E⇤i /Y]i, to obtain that

(W ⇤, t 01, t
0
2) 2 T�0[Y 7!�]JG1K

Gradual System F: Auxiliary Definitions and Proofs 65

then either both executions reduce to an error (then the result holds immediately), or 9W 00 ⌫
W

⇤,�f i , such that (W 00,�f 1,�f 2) 2 V�0[Y 7!�]JG1K and

W
⇤.�i . (hEi1[�E

⇤
i /Y], Ei2[�E

⇤
i /Y]iti [�E

⇤
i /Y] :: � 0(G1[�/Y]))

7��!⇤
W

00.�i . (hEi1[�E
⇤
i /Y], Ei2[�E

⇤
i /Y]i�mi :: � 0(G1[�/Y]))

7��!W
00.�i . �f i

W
⇤.�1 . (hE11[�E

⇤
1/Y], Ei2[�E

⇤
1/Y]it1[�E

⇤
1/Y] :: � 0(G1[�/Y]))

7��!k⇤
W

00.�1 . (hE11[�E
⇤
1/Y], Ei2[�E

⇤
1/Y]i�m1 :: � 0(G1[�/Y]))

7��!m
W

00.�1 . �f 1

Suppose that�f i = (�f i # hEi1[�E
⇤
i /Y], Ei2[�E

⇤
i /Y]i)uf i :: � 0(G1[�/Y]). AsE12[�E

⇤
1/Y] ⌘ E22[�E

⇤
2/Y],

then unlift(E12[�E
⇤
1/Y]) = unlift(E22[�E

⇤
2/Y]). Then we use induction hypothesis using �

0[Y 7! �],
evidences hE 00

i [E⇤i /Y], E 00
i [E⇤i /Y]i, where E 00

i [E⇤i /Y] = liftW 00.�i
(unlift(Ei2[�E

⇤
i /Y])) as Ei = 8Y .E 00

i ,

I(liftW 00.�i
(G1[�/Y]), liftW 00.�i

(G1[�/Y])) = hE 00
i [E⇤i /Y], E 00

i [E⇤i /Y]i
also we know that:

hE 00
i [E⇤i /Y][�E0

i /X], E 00
i [E⇤i /Y][E 0

i/X]i = hE 00
i [�E0

i /X][E⇤i /Y], E 00
i [E 0

i/X][E⇤i /Y]i
Note that �(G1[�/Y]) = �[Y 7! �](G1). Then we know that

(#kW 00,((�f 1 # hE11[�E
⇤
1 /Y], E12[�E

⇤
1 /Y]i) # hE 001 [�E

0
1/X][E⇤1/Y], E 001 [E 01/X][E⇤1/Y]i)uf 1 :: �[Y 7! �](G1[G 0/X]),

((�f 2 # hE21[�E
⇤
2 /Y], E22[�E

⇤
2 /Y]i) # hE 002 [�E

0
2/X][E⇤2/Y], E 002 [E 02/X][E⇤2/Y]i)uf 2 :: �[Y 7! �](G1[G 0/X]))

2 V�[Y 7!�]JG1[G 0/X]K
then by inspection of the reduction rules:

W
⇤.�i . t

00
i

7��!⇤
W

00.�i . ((hEi1[�E
⇤
i /Y], Ei2[�E

⇤
i /Y]i # hE 00i [�E

0
i /X][�E⇤

i /Y], E 00i [E 0i/X][�E⇤
i /Y]i)�mi :: � 0(G1[�/Y]))

7��!W
00.�i . (�f i # (hEi1[�E

⇤
i /Y], Ei2[�E

⇤
i /Y]i # hE 00i [�E

0
i /X][E⇤i /Y], E 00i [E 0i/X][E⇤i /Y]i))uf i :: �[Y 7! �](Gi [G 0/X])

and by Lemma 6.18, we know that those two values belong to the interpretation ofV�[Y 7!�]JG1[G 0/X]K,
and the result holds. Note that #kW 00.k +m + k⇤ =W ⇤.

Case (Pair Type: G1 ⇥G2). Analogous to the function case.

Case (Base Type: B). Trivial.

Then we prove as (2):

Case (Type Variable X: G = X). Let �i = hHi1, Ei2iui :: X [G 0/X] = hHi1, Ei2iui :: G 0. Then we
know that

(W , hH11, E12iu1 :: G 0, hH21, E22iu2 :: G 0) 2 V�JG 0K
and �i�1 = hE 0

i ,�
E0
i i. Then we have to prove that

(#lW , (hH11, E12i # hE 0
1,�

E0
1i)u1 :: �, (hH21, E22i # hE 0

2,�
E0
2i)u2 :: �) 2 V�[X 7!�]J�K

By Lemma 6.13, we assume that both combinations of evidence are de�ned (otherwise the result
holds immediately). Then by de�nition of transitivity and Lemma 6.30, we know that (hHi1, Ei2i #
hE 0

i ,�
E0
i i) = hHi1,�Ei2i. Then we have to prove that

66 Elizabeth Labrada, Matías Toro, and Éric Tanter

(#lW , hH11,�
E12iu1 :: �, hH21,�

E22iu2 :: �) 2 V�[X 7!�]J�K
but as � is sync, then that is equivalent to

(#l�1W , hH11, E12iu1 :: G 0, hH21, E22iu2 :: G 0) 2 V�JG 0K
which follows by the premise and Lemma 6.14.

Also, we have to prove that (8� 0, � 0,G⇤ such that (#l�1W 2 SJ� 0K ^ �
0 ` � 0 ` � ⇠ G

⇤), we get
that

(#l�1W , � 0(hH11,�
E12iu1 :: �) :: G⇤, � 0(hH21,�

E22iu2 :: �) :: G⇤) 2 T�JG⇤K)
or what is the same ((hH11,�E12i # � 0) fails the result follows immediately)

(#l�1�k 0W , (hH11,�
E12i # � 0)u1 :: G⇤, (hH21,�

E22i # � 0)u2 :: G⇤) 2 V�JG⇤K)
where � 0 = h�E⇤

1 , E⇤2i and � 0.n = k 0. By de�nition of transitivity and Lemma 6.30, we know that

hHi1,�
Ei2i # h�E⇤

1 , E⇤2i = hHi1, Ei2i # hE⇤1, E⇤2i
We know that hE⇤1, E⇤2i ` � 0 ` G

0 ⇠ G
⇤. Since hE⇤1, E⇤2i ` � ` G

0 ⇠ G
⇤, #l�1W 2 SJ� 0K,

(#l�1W , hH11, E12iu1 :: G 0, hH21, E22iu2 :: G 0) 2 V�JG 0K, by Lemma 6.17, we know that (since
(hH11,�E12i # � 0) does not fail then (hH11, E12i # hE⇤1, E⇤2i) also does not fail by the transitivity rules)

(#l�1�k 0W , (hH11, E12i # hE⇤1, E⇤2i)u1 :: G⇤, (hH21, E22i # hE⇤1, E⇤2i)u2 :: G⇤) 2 V�JG⇤K)
The result follows immediately.

Case (Type Variable Y: G = Y). Let �i = hHi1, �Ei2iui :: �(Y [G 0/X]) = hHi1, �Ei2iui :: � (where
�(Y) = �). Then we know that

(W , hH11, �
E12iu1 :: �, hH21, �

E22iu2 :: �) 2 V�J�K
We know that �i�1 `W.�i ` � ⇠ � , therefore �i�1 has to have the form �i

�1 = h�E0
i , �E

0
i i =

I(liftW.�i
(�), liftW.�i

(�)). As �i�1 is the initial evidence for � , then Ei2 v E
0
i , and therefore by

de�nition of the transitivity and Lemma 6.30:

hHi1, �
Ei2i # h�E0

i , �E
0
i i = hHi1, �

Ei2i
Then we have to prove that:

(#lW , (hH11, �
E12i # h�E0

1, �E
0
1i)u1 :: �, (hH21, �

E22i # hE 0
2, �

E0
2i)u2 :: �) 2 V�[X 7!�]J�K

or what is the same

(#lW , hH11, �
E12iu1 :: �, hH21, �

E22iu2 :: �) 2 V�J�K
which follows by the premise and Lemma 6.14.

Case (Unknown Type: G = ?). Let �i = hHi1, Ei2iui :: ?. Then by de�nition of V�J?K, let
G

00 = const(Ei2) (where G 00 , ?). Then we know

(W , hH11, E12iu1 :: G 00, hH21, E22iu2 :: G 00) 2 V�JG 00K
If �i�1 = h?, ?i, then, hHi1, Ei2i # h?, ?i = hHi1, Ei2i, by Lemma 6.30, the result holds immediately.
If �i�1 , h?, ?i. Then we proceed similar to the other cases where G , ?. Note that we know that

(W , hH11, E12iu1 :: G 00, hH21, E22iu2 :: G 00) 2 V�JG 00K
where G 00 , ? and we are required to prove that

(W , �1(hH11, E12iu1 :: G 00) :: G 00, �2(hH21, E22iu2 :: G 00)) 2 V�JG 00K

Gradual System F: Auxiliary Definitions and Proofs 67

Case (Function Type: G = G1 ! G2). Let �i = �
0
i (�x : G 0

i .ti) :: �(G[G 0/X]) We know that

(W ,�1,�2) 2 V�JG1[G 0/X] ! G2[G 0/X]K
Then we have to prove that

(#lW , (� 01 # �1�1)(�x : G 0
1.t1) :: � 0(G1) ! �

0(G2),
(� 02 # �2�1)(�x : G 0

2.t2) :: � 0(G1) ! �
0(G2)) 2 V�0JG1 ! G2K

Let us call � 00
i = (� 0i # �i�1)(�x : G 0

i .ti) :: � 0(G1) ! �
0(G2). By unfolding, we have to prove that

8W 0 ⌫ (#lW).8� 0
1,�

0
2.(#1W 0,� 0

1,�
0
2) 2 V�0JG1K) (W 0,� 00

1 �
0
1,�

00
2 �

0
2) 2 T�0JG2K

Suppose that � 0
i = �

00
i u

0
i :: �

0(G1), by inspection of the reduction rules, we know that

W
0.�i .�

00
i �

0
i 7��!⇤

W
0.�i . (cod(� 0i) # cod(�i�1))ti [(� 00i # (dom(�i�1) # dom(� 0i)))u 0

i :: G
0
i)/x] :: � 0(G2))

This is equivalent by Lemma 6.18,

W
0.�i .�

00
i �

0
i 7��!⇤

W
0.�i . (cod(� 0i) # cod(�i�1))ti [((� 00i # dom(�i�1)) # dom(� 0i))u 0

i :: G
0
i)/x] :: � 0(G2))

Also, we know that
W

0.�1 . �
00
1 �

0
1 7��!l+m+1

W
0.�1 . (cod(� 01) # cod(�1�1))t1[((� 001 # dom(�1�1)) # dom(� 01))u 0

1 :: G
0
1)/x] :: � 0(G2)) 7��!k⇤

�1 . (cod(� 01) # cod(�1�1))�1f :: � 0(G2)) 7��!l+m

�1 . �
⇤
1

where �1f = �1f u1f :: �(G2[G 0/X]) and �⇤
1 = (�1f # cod(� 01) # cod(�1�1))u1f :: � 0(G2).

Notice that dom(�i�1) ` W.�i ` �(G1[�/X]) ⇠ �(G1[G 0/X]), and as dom(�i�1) is constructed
using the interior (and thus �2(� 00i) v �1(dom(�i�1))), then by de�nition of evidence (� 00i # dom(�i�1))
is always de�ned. We can use induction hypothesis on � 0

i , with evidences dom(�i�1).
Then we know that

(#l+1W 0, (� 001 # dom(�1�1))u 0
1 :: �(G1[G 0/X]), (� 002 # dom(�2�1))u 0

2 :: �(G1[G 0/X])) 2 V�JG1[G 0/X]K
Let us call � 000

i = (� 00i # dom(�i�1))u 0
i :: �(G1[G 0/X]).

Now we instantiate
(W ,�1,�2) 2 V�JG1[G 0/X] ! G2[G 0/X]K

with (#lW 0) and � 000
i , to obtain that either both executions reduce to an error (then the result holds

immediately), or 9W 00 ⌫ (#lW 0) such that (W 00,� 0
f 1,�

0
f 2) 2 V�JG2[G 0/X]K,W 00.j + 2m + k⇤ = (#l

W
0).j (W 00.j + 1 + l + 2m + k⇤ =W 0.j) and

W
0.�i . �i �

000
i 7��!W

0.�i . cod(� 0i)ti [((� 00i # dom(�i�1)) # dom(� 0i))u 0
i :: G

0
i)/x] :: �(G2[G 0/X]))

7��!⇤
W

00.�i . �
0
f i

Therefore, we know that
W

0.�1 . �1 �
000
1 7��!m+1

W
0.�1 . cod(� 01)t1[((� 001 # dom(�1�1)) # dom(� 01))u 0

1 :: G
0
1)/x] :: �(G2[G 0/X])) 7��!k⇤

�1 . cod(� 01)�f 1 :: �(G2[G 0/X])) 7��!m

W
00.�1 . �

0
f 1

Suppose that � 0
f i = �

0
f iuf i :: �(G2[G 0/X]) and �

0
f 1 = �f 1 # cod(� 01). Then we use induction

hypothesis once again using evidences cod(�i�1) and (W 00,� 0
f 1,�

0
f 2) 2 V�JG2[G 0/X]K, (noticing

68 Elizabeth Labrada, Matías Toro, and Éric Tanter

that the combination of evidence does not fail as the evidence is obtained via the interior function
i.e. the less precise evidence possible), to obtain that,

(#lW 00, (�f 1 # cod(� 01) # cod(�1�1))uf 1 :: � 0(G2), (�f 2 # cod(� 02) # cod(�2�1))uf 2 :: � 0(G2)) 2 V�0JG2K
Note that (#lW 00).j + 1 + 2l + 2m + k⇤ =W 0.j, and the result holds.
The remaining cases are similar.

⇤

L���� 10.4 (C���������������). If
• W.�i (�) = �(G 0) andW.�(�) = V�JG 0K,
• E

0
i = liftW.�i

(�(G 0)),
• Ei = liftW.�i

(Gp) for some Gp v �(G),
• �

0 = �[X 7! �],
• �i = hEi [�E0

i /X], Ei [E 0
i/X]i, such that �i `W.�i ` �(G[�/X]) ⇠ �(G[G 0/X]), and

• �i
�1 = hEi [E 0

i/X], Ei [�E0
i /X]i, such that �i�1 `W.�i ` �(G[G 0/X]) ⇠ �(G[�/X]), then

(1) (W ,�1,�2) 2 V�0JGK) (W , �1�1 :: �(G [G 0/X]), �2�2 :: �(G [G 0/X])) 2 T�JG [G 0/X]K
(2) (W ,�1,�2) 2 V�JG [G 0/X]K) (W , �1�1�1 :: � 0(G), �2�1�2 :: � 0(G)) 2 T�0JGK

P����. Direct by Prop. 10.4. ⇤

De�nition 6.16. � ` �1 ⌘ �2 if unlift(�2(�1)) = unlift(�2(�2))

P���������� 6.17. If
� (W ,�1,�2) 2 V�JGK
� � � �;� ` G ⇠ G

0

� W 2 SJ�K and (W , �) 2 DJ�K
� 8� 2 dom(�).sync(�,W)

then:
(W , �1(�)�1 :: �(G 0), �2(�)�2 :: �(G 0)) 2 T�JG 0K

where sync(�,W) () W.�1(�) =W.�2(�) ^W.�(�) = bV;JW.�i (�)KcW.j .

P����. We proceed by induction on G andW .j. We know that ui 2 Gi for some Gi , notice that
Gi 2 H���T���[T���V��. In every case we apply Lemma 6.26 to show that (�1 #��1) () (�2 #��2),
so in all cases we assume that the transitivity does not fail (otherwise the proof holds immediately).
Let us call ��1 = �1(�) and ��2 = �2(�). Let’s suppose that ��1 .n = k and �1.n = l .

Case (Base type: G = B and G 0 = B). We know that �i has the form hB,Biu :: B, and we know
that (W , hB,Biu :: B, hB,Biu :: B) 2 V�JBK. Also as � ` �;� ` B ⇠ B, then � = hB,Bi, then as
�i (B) = B, �i # �i (�) = �i , and we have to prove that (#kW , hB,Biu :: B, hB,Biu :: B) 2 V�JBK,
which follows immediately because the premise and Lemma 6.14.

Case (Function type: G = G
00
1 ! G

00
2 , and G

0 = G 0
1 ! G

0
2). We know that:

(W ,�1,�2) 2 V� JG 00
1 ! G

00
2 K

Where �i = �i (�x : G1i .ti) :: �(G 00
1 ! G

00
2) and �i `W.�i ` Gi ⇠ �(G 00

1 ! G
00
2).

We have to prove that:
(W , ��1 �1 :: �(G

0
1 ! G

0
2), �

�
2 �2 :: �(G

0
1 ! G

0
2)) 2 T� JG 0

1 ! G
0
2K

Or what is the same:
(#lW , (�1 # ��1)(�x : G11.t1) :: �(G 0

1 ! G
0
2), (�2 # ��2)(�x : G12.t2) :: �(G 0

1 ! G
0
2)) 2 T� JG 0

1 ! G
0
2K

Gradual System F: Auxiliary Definitions and Proofs 69

First we suppose that (�i # ��i) does not fail and (�i # ��i).n = k + l , then we have to prove that:
8W 0 ⌫#lW .8� 0

1,�
0
2.(#1W 0,� 0

1,�
0
2) 2 V� JG 0

1K)
(W 0, [(�1 # ��1)(�x : G11.t1) :: �(G 0

1 ! G
0
2)] � 0

1, [(�2 # ��2)(�x : G12.t2) :: �(G 0
1 ! G

0
2]) � 0

2) 2 T� JG 0
2K

where � 0
i = �

0
iu

0
i :: �(G 0

1). Note that by the reduction rule of application terms, we obtain that:

W
0.�i . ((�i # ��i)(�x : G1i .ti) :: �(G 0

1 ! G
0
2) (� 0iu 0i :: �(G 0

1) �!⇤

W
0.�i . cod(�i # ��i)([(�

0
i # dom(�i # ��i))u

0
i :: G1i)/x]ti) :: �(G 0

2)

We know by the Proposition 6.20 that dom(�i # ��i) = dom(��i) # dom(�i) . Then by the Proposi-
tion 6.18 we know that:

�
0
i # (dom(�i # ��i)) = �

0
i # (dom(��i) # dom(�i)) = (� 0i # dom(��i)) # dom(�i)

Also, by the Proposition 6.21 it is follows that: cod(�i # ��i) = cod(�i) # cod(��i).
Then the following result is true:

W
0.�i . cod(�i # ��i)([(�

0
i # dom(�i # ��i))u

0
i :: G1i)/x]ti) :: �(G 0

2) =
W

0.�i . cod((�i) # cod(��i))([((�
0
i # dom(��i)) # dom(�i))u 0i :: G1i)/x]ti) :: �(G 0

2)

So, we know that:
W

0.�1 . ((�1 # ��i)(�x : G11.t1) :: �(G 0
1 ! G

0
2) (� 01u 01 :: �(G 0

1) �!l+k+1

W
0.�1 . cod(�1 # ��i)([(�

0
1 # dom(�1 # ��i))u

0
1 :: G11)/x]t1) :: �(G 0

2) =
W

0.�1 . cod((�1) # cod(��i))([((�
0
1 # dom(��i)) # dom(�1))u 01 :: G11)/x]t1) :: �(G 0

2) �!k⇤

�1 . (cod(�1) # cod(��i))�
⇤
1 :: �(G 0

2) �!l+k

�1 . (� 001 # (cod(�1) # cod(��i)))u1f :: �(G 0
2)

where �⇤
1 = �

00
1 u1f :: �(G 00

2) and �1f = (� 001 # (cod(�1) # cod(��i)))u1f :: �(G 0
2).

We instantiate the induction hypothesis in (#1W 0,� 0
1,�

0
2) 2 V�JG 0

1K with the type G 00
1 and the

evidences dom(�) ` �;� ` G 0
1 ⇠ G

00
1 , where dom(�).n = l . We obtain that:

(#1W 0, dom(��1)�
0
1 :: G

00
1 , dom(��2)�

0
2 :: G

00
1) 2 T� JG 00

1 K

In particular we focus on a pair of values such that (� 0i # dom(��i)) does not fail (otherwise the result
follows immediately). Then it is true that:

(#l+1W 0, (� 01 # dom(��1))u
0
1 :: G

00
1 , (� 02 # dom(��2))u

0
2 :: G

00
1) 2 V� JG 00

1 K

By the de�nition ofV�JG 00
1 ! G

00
2 K we know that:

8W 00 ⌫W .8� 00
1 ,�

00
2 .(#1W 00,� 00

1 ,�
00
2) 2 V� JG 00

1 K) (W 00,�1 � 00
1 ,�2 �

00
2) 2 T� JG 00

2 K

We instantiate � 00
i = (� 0i # dom(��i))u 0

i :: �(G 00
1) andW 00 =#lW 0. Then we obtain that:

(#lW 0, ((�1(�x : G11.t1) :: �(G 00
1 ! G

00
2)) ((� 01 # dom(��i))u 0

i :: �(G 00
1)),

(�2(�x : G12.t2) :: �(G 00
1 ! G

00
2)) ((� 02 # dom(��i))u 0

i :: �(G 00
1))) 2 T�JG 00

2 K

Then by Lemma 6.18, as (� 01 # dom(��1)) # dom(�1) = �
0
1 # (dom(��1)) # dom(�1)), then if (dom(��1)) #

dom(�1)) is not de�ned and (dom(��2)) # dom(�2)) is de�ned, we get a contradiction as both must
behave uniformly as the terms belong to T�JG 00

2 K. Then if both combination of evidence fail, then
the result follows immediately. Let us suppose that the combination does not fail, then

70 Elizabeth Labrada, Matías Toro, and Éric Tanter

W
0.�i . (�i (�x : G1i .ti) :: �(G 00

1 ! G
00
2)) ((� 0i # dom(��i))u

0
i :: �(G 00

1)) �!⇤

W
0.�i . cod(�i)([((� 0i # dom(��i)) # dom(�i))u 0i :: G1i)/x]ti) :: �(G 00

2)

So, we know that:
W

0.�1 . ((�1(�x : G11.t1) :: �(G 00
1 ! G

00
2)) ((� 01 # dom(��i))u

0
i :: �(G 00

1)) �!k+1

W
0.�1 . cod(�1)([(� 01 # dom(��i) # dom(�1))u 01 :: G11)/x]t1) :: �(G 0

2) �!k⇤

�1 . cod(�1)�⇤1 :: �(G 0
2) �!k

�1 . (� 001 # cod(�1))u1f :: �(G 0
2)

where � 0⇤
1 = (� 001 # cod(�1))u1f :: �(G 0

2).
Thus, we know that 9W 000 ⌫#l W 0 such that (W 000,� 0⇤

1,�
0⇤
2) 2 V�JG 00

2 K, W 000.�1 = �1 and
W

000.j + 1 + 2k + k⇤ = (#lW 0).j , or what is the sameW 000.j + 1 + 2k + k⇤ + l =W 0.j . Then, we know
that

W
0.�i . cod(�i)([((� 0i # dom(��i)) # dom(�i))u 0i :: G1i)/x]ti) :: �(G 00

2) �!⇤
W

000.�i . �
0⇤
i

We instantiate the induction hypothesis in the previous result ((W 000,� 0⇤
1,�

0⇤
2) 2 V�JG 00

2 K) with
the type G 0

2 and the evidence cod(�) ` �;� ` G 00
2 ⇠ G

0
2, where cod(�

�
1).n = l , then we obtain that:

(W 000, cod(��1)�
0⇤
1 :: �(G 0

2), cod(�
�
2)�

0⇤
2 :: �(G 0

2))0 2 T� JG 0
2K

Then �
0⇤
i has to have the form: � 0⇤

i = (� 00i # cod(�i))ui f :: �(G 00
2) form some �

00
i ,ui f . Then as

(� 001 #cod(�1))#cod(��1) = �
00
1 #(cod(�1)#cod(��1)), then (cod(�1)#cod(�

�
1))must behave uniformly (either

the two of them fail, or the two of them does not fail). Thus, we get that (#lW 000,�1f ,�2f) 2 V�JG 0
2K

where �i f = (� 00i # (cod(�i) # cod(��i)))ui f :: �(G 0
2) andW 000.j + 1+ 2k + 2l +k =W 0.j . Therefore, the

result immediately.

Case (Universal Type: G = 8X .G 00
1 and G 0 = 8X .G 0

1). We know that:
(W ,�1,�2) 2 V� J8X .G 00

1 K
Where �i = �i (�X .ti) :: 8X .�(G 00

1) and �i `W.�i ` Gi ⇠ 8X .�(G 00
1).

We have to prove that:
(W , ��1 �1 :: 8X .�(G

0
1), �

�
2 �2 :: 8X .�(G

0
1)) 2 T� J8X .G 0

1K

As (�i # ��i) does not fail, then by the de�nition of T�J8X .G 0
1K we have to prove that:

(#kW , (�1 # ��1)(�X .t1) :: 8X .�(G
0
1), (�2 # ��2)(�X .t2) :: 8X .�(G

0
1)) 2 V� J8X .G 0

1K
or what is the same:

8W 00 ⌫ (#kW).8t 01, t 02,G⇤
1,G

⇤
2,�, �11, �21.8R 2 R��W 00.j [G⇤

1,G
⇤
2].

(W 00.�1 ` G⇤
1 ^W

00.�2 ` G⇤
2^

W
00.�1 . ((�1 # ��1)u1 :: 8X .G 0

1)[G⇤
1] �!W

00.�1,� := G⇤
1 . �11t

0
1 :: G

0
1[G⇤

1/X]^
W

00.�2 . ((�2 # ��2)u2 :: 8X .G 0
1)[G⇤

2] �!W
00.�2,� := G⇤

2 . �21t
0
2 :: G

0
1[G⇤

2/X]))
(W 000, t 01, t

0
2) 2 T�[X 7!�]JG 0

1K
whereW 000 =#(W 00 ⇥ (�,G⇤

1,G
⇤
2,R)). Note that by the reduction rule of type application, we obtain

that:

W
00.�i . ((�i # ��i)�X .ti :: 8X .�(G

0
1)) [G⇤

i] �!

W
00.�i ,� := G⇤

i . �
Ei /� Ei
8X .�(G0

1)
((�i # ��i)[�

Ei]ti [�Ei /X] :: �(G 0
1)[�/X]) :: �(G 0

1)[G⇤
i /X]

Gradual System F: Auxiliary Definitions and Proofs 71

where Ei = lift(W 00.�i)(G
⇤
i). The resulting evidences �i # ��i have the form: h8X .Ei1,8X .Ei2i, then:

�
Ei /� Ei
8X .�(G0

1)
((�i # ��i)[�

Ei]ti [�Ei /X] :: �(G 0
1)[�/X]) :: �(G 0

1)[G⇤
i /X] =

�
Ei /� Ei
�8X .� (G0

1)
(hEi1[�Ei /X], Ei2[�Ei /X]iti [�Ei /X] :: �(G 0

1)[�/X])

Then we have to prove that:
(W 000, (hE11[�E1/X], E12[�E1/X]it1[�E1/X] :: �(G 0

1)[�/X]), (hE21[�E2/X], E22[�E2/X]it2[�E2/X] :: �(G 0
1)[�/X]))

2 T�[X 7!�]JG 0
1K

Also by the Proposition 6.22 we know that:
(�i # ��i)[�

Ei] = (�i [�Ei]) # (��i [�
Ei])

Note that:
(�i # ��i)[�

Ei] = hEi1[�Ei /X], Ei2[�Ei /X]i = (�i [�Ei]) # (��i [�
Ei])

Then we have to prove that:
(W 000, (�1[�E1] # ��1 [�

E1])t1[�E1/X] :: G 0
1[�/X]), (�2[�E2] # ��2 [�

E2])t2[�E2/X] :: �(G 0
1)[�/X]))

2 T�[X 7!�]JG 0
1K

We know that

W
000.�1 . (�1[�E1] # ��1 [�E1])t1 :: G 0

1[�/X]) 7��!k⇤

�1 . (�1[�E1] # ��1 [�E1])�1f :: G 0
1[�/X]) 7��!k+l

�1 . �
⇤
1

Note that by the reduction rule of type application, we obtain that:

W
00.�i . (�i�X .ti :: 8X .�(G 00

1)) [G⇤
i] �!

W
00.�i ,� := G⇤

i . �
Ei /� Ei
8X .�(G00

1)
(�i [�Ei]ti [�Ei /X] :: �(G 00

1)[�/X]) :: �(G 00
1)[G⇤

i /X]

Note that the evidence �i has the form: h8X .E 00
i1,8X .E 00

i2i, then:

�
Ei /� Ei
8X .�(G00

1)
(�i [�Ei]ti [�Ei /X] :: �(G 00

1)[�/X]) :: �(G 00
1)[G⇤

i /X] =

�
Ei /� Ei
�8X .� (G00

1)
(hE 00i1[�Ei /X], E 00i2[�Ei /X]iti [�Ei /X] :: �(G 00

1)[�/X])

As we know that (W ,�1,�2) 2 V� J8X .G 00
1 K, then we can instantiate with 8W 00 ⌫ W , G⇤

1 , G⇤
2 , R,

�1[�E1]t1[�E1/X] :: �(G 00
1)[�/X] , �2[�E2]t2[�E2/X] :: �(G 00

1)[�/X], �E1/�
E1

�8X .� (G00
1)
and �E2/�

E2
�8X .� (G00

1)
.

Then we know that:
(W 000, �1[�E1]t1[�E1/X] :: �(G 00

1)[�/X]), �2[�E2]t2[�E2/X] :: �(G 00
1)[�/X])) 2 T�[X 7!�]JG 00

1 K

If the following term reduces to error, then the result follows immediately.
W

000.�1 . �1[�E1]t1[�E1/X] :: �(G 00
1)[�/X])

72 Elizabeth Labrada, Matías Toro, and Éric Tanter

If the above is not true, then the following terms reduce to values (� 0
i f) and 9W 0000 ⌫W

000 such
that (W 0000,� 0

1f ,�
0
2f) 2 V �[X 7!�]JG 00

1 K andW 0000.j + k⇤ +m =W 000.j.

W
000.�i . �i [�Ei]ti [�Ei /X] :: �(G 00

1)[�/X]) �!⇤
W

0000.�i . �
0
i f

Note that
W

000.�1 . �1[�E1]t1[�E1/X] :: �(G 00
1)[�/X]) �!k⇤

W
0000.�1 . �1[�E1]�1f :: �(G 00

1)[�/X]) �!m

W
0000.�i . �

0
1f

By de�nition of consistency and the evidence we know that �[X] ` W 0000.� ;�,X ` G
00
1 ⇠ G

0
1.

Then we instantiate the induction hypothesis in the previous result with G = G
0
1 and � = �[X].

Calling �
0 = �[X 7! �], then we obtain that:

(W 0000, � 01(�[X])�1f :: � 0(G 0
1), � 02(�[X])�2f :: � 0(G 0

1)) 2 T�0JG 0
1K

but as � 01(�[X]) = �
�
i [�Ei] which is equivalent to

(W 0000, (��1 [�E1])�1f :: �(G 0
1)[�/X], (��2 [�E2])�2f :: �(G 0

1)[�/X]) 2 T�0JG 0
1K

Therefore,
(#kW 0000,�⇤

1,�
⇤
2) 2 T�0JG 0

1K
where (#kW 0000).j + k⇤ + k +m =W 000.j, and the result follows immediately.

Case (Pairs: G = G1 ⇥G2). Similar to function case.

Case (A)(Type Names: G = �). This means that � 2 dom(�). We know that (W , �1u1 :: �, �2u2 ::
�) 2 V�J�K and �i ` W.�i ` Gi ⇠ � , then �i = hEi ,�E0

i i. Also we know that � ` �;� ` � ⇠ G
0,

therefore � = h�E⇤
1 , E⇤2i, and �

�
i = h�E⇤

1 , E⇤2i = � , because � can not have free type variable, so
� ` � ` � ⇠ G

0. Since (W ,�1,�2) 2 V�J�K, we instantiate its de�nition with � ` � ` � ⇠ G
0,

�, such thatW 2 SJ�K and G 0. Therefore, we know that (W , ��1 :: G 0, ��2 :: G 0), and the results
follows immediately.

Case (B)(Type Variables:G = X). Suppose that �(X) = � . We know that � < �, i.e. � may not be
in sync, that (W , �1u1 :: �, �2u2 :: �) 2 V�JX K and that �i `W.�i ` Gi ⇠ � , then �i = hEi ,�E0

i i.
Then by construction of evidences, � must be either hX ,X i or h?, ?i (any other case will fail when

the meet is computed).
• (� = hX ,X i). Then ��i = h�i (X), �i (X)i. But �i (X) is the type that contains the initial precision
for � . Therefore �E0

i v �i (X), and by Lemma 6.30, �i #��i = �i and the result holds immediately
by Lemma 6.14 (notice that if G 0 = ? then we have to show that they are related to � which
is part of the premise).

• (� = h?, ?i). By Lemma 6.30 (��i = h?, ?i), �i # h?, ?i = �i and the result holds immediately by
Lemma 6.14.

Case (C)(Unknown: G = ?). We know that (W , �1u1 :: ?, �2u2 :: ?) 2 V�J?K and �i `W.�i ` Gi ⇠ ?.
We are going to proceed by case analysis on �i :
(C.i) (�i = hEi ,�E0

i i). Then this means we know that

(W , �1u1 :: �, �2u2 :: �) 2 V�J�K

and �i `W.�i ` Gi ⇠ � , then �i = hEi ,�E0
i i.

Gradual System F: Auxiliary Definitions and Proofs 73

(a) (Case � = h�E3, E4i). Then as hEi ,�E0
i i � �;� ` Gi ⇠ ?, then by Lemma 6.27 hEi ,�E0

i i �
�;� ` Gi ⇠ � . Also we know that ? v G, then G = ?, and � v G. Finally, we reduce this
case to the Case A if � 2 � or Case B if � < �.

(b) (� = h?, ?i). Then G
0 = ?, and does �i # � = �i . Then we have to prove that (#kW , �1u1 ::

?, �2u2 :: ?) 2 V�J?K, and as const(�E0
i) = � that is equivalent to prove that (#kW , �1u1 ::

�, �2u2 :: �) 2 V�J�K which follows by the premise and Lemma 6.14.

(c) (� = h?, �� 0 . . .? i). Where � cannot transitively point to some unsync variable. Then by
de�nition of the transitivity operator, �i # � = hE 00

i , �
E000
i i (where hEi ,�E0

i i # h?, � 0...?i =
hE 00

i , E
000
i i). Then we have to prove that

(#kW , hE 00
1 , �

E000
1 iu1 :: G 0, hE 00

2 , �
E000
2 iu2 :: G 0) 2 V�JG 0K

where G 0 is either ? or � . In any case this is equivalent to prove that

(#kW , hE 00
1 , �

E000
1 iu1 :: �, hE 00

2 , �
E000
2 iu2 :: �) 2 V�J�K

Therefore, we have to prove

(#k�1W , hE 00
1 , E

000
1 iu1 :: G 00, hE 00

2 , E
000
2 iu2 :: G 00) 2 V�JG 00K

where G 00 =W.�1(�) =W.�2(�) (note that � is sync). As hEi ,�E0
i i # h?, � 0...?i = hE 00

i , E
000
i i,

then we can reduce the demonstration to prove that:

(#k�1W , (hE1,�E0
1i # h?, � 0...?i)u1 :: G 00, (hE2,�E0

2i # h?, � 0...?i)u2 :: G 00) 2 V�JG 00K

Thus, we reduce this case to this same case (note that we have base case because the
sequence ends in ?).
Also, we have to prove that (8� 0, � 0,G⇤ such that (#k�1W 2 SJ� 0K ^ �

0 ` � 0 ` � ⇠ G
⇤), we

get that

(#k�1W , � 0(hE 00
1 , �

E000
1 iu1 :: �) :: G⇤, � 0(hE 00

2 , �
E000
2 iu2 :: �) :: G⇤) 2 T�JG⇤K)

or what is the same ((hE 00
1 , �

E000
1 i # � 0) fails the result follows immediately)

(#k�1�k 0W , (hE 00
1 , �

E000
1 i # � 0)u1 :: G⇤, (hE 00

2 , �
E000
2 i # � 0)u2 :: G⇤) 2 V�JG⇤K)

where � 0 = h�E⇤
1 , E⇤2i, � 0.n = k 0 andG 00 =W 0.�1(�) =W 0.�2(�). By de�nition of transitivity

and Lemma 6.30, we know that

hE 00
i , �

E000
i i # h�E⇤

1 , E⇤2i = hE 00
i , E

000
i i # hE⇤1, E⇤2i

hEi ,�E0
i i # h?, � 0...?i = hE⇤1i , � 0E⇤

2i i = hE 00
i , E

000
i i

Thus G 00 = �
0 or G 00 = ?, in any case we know that (#k�1W , hE 00

1 , E
000
1 iu1 :: � 0, hE 00

2 , E
000
2 iu2 ::

�
0) 2 V�J� 0K.

We know that hE⇤1, E⇤2i ` � 0 ` G
00 ⇠ G

⇤. Since hE⇤1, E⇤2i ` � ` G
00 ⇠ G

⇤, #k�1W 2 SJ� 0K,
(#k�1W , hE 00

1 , E
000
1 iu1 :: � 0, hE 00

2 , E
000
2 iu2 :: � 0) 2 V�J� 0K, by the de�nition of V�J� 0K, we

know that (since (hE 00
1 , E

000
1 i # � 0) does not fail then (hE 00

1 , E
000
1 i # hE⇤1, E⇤2i) also does not fail

by the transitivity rules and hE⇤1, E⇤2i ` � 0 ` �
0 ⇠ G

⇤)

(#k�1�k 0W , (hE 00
1 , E

000
1 i # hE⇤1, E⇤2i)u1 :: G⇤, (hE 00

2 , E
000
2 i # hE⇤1, E⇤2i)u2 :: G⇤) 2 V�JG⇤K)

The result follows immediately.

74 Elizabeth Labrada, Matías Toro, and Éric Tanter

(d) (� = h?, �?i). Then by de�nition of the transitivity operator, �i # � = hEi , ��
E0i i. Then we

have to prove that

(#kW , hE1, ��
E01 iu1 :: G 0, hE2, ��

E02 iu2 :: G 0) 2 V�JG 0K
where G 0 is either ? or � . In any case this is equivalent to prove that
(#kW , hE1, ��

E01 iu1 :: �, hE2, ��
E02 iu2 :: �) 2 V�J�K

Therefore, we have to prove that
(#k�1W , hE1,�E0

1iu1 :: G 00, hE2,�E0
2iu2 :: G 00) 2 V�JG 00K whereG 00 =W.�1(�) =W.�2(�) =

? (note that � is sync). Therefore, we have to prove that (#k�1W , hE1,�E0
1iu1 :: �, hE2,�E0

2iu2 ::
�) 2 V�J�K which follows immediately by premise and Lemma 6.14.
Also, we have to prove that (8� 0, � 0,G⇤ such that (#k�1W 2 SJ� 0K ^ �

0 ` � 0 ` � ⇠ G
⇤), we

get that

(#k�1W , � 0(hE1, ��
E01 iu1 :: �) :: G⇤, � 0(hE2, ��

E02 iu2 :: �) :: G⇤) 2 T�JG⇤K)

or what is the same ((hE1, ��
E01 i # � 0) fails the result follows immediately)

(#k�1�k 0W , (hE1, ��
E01 i # � 0)u1 :: G⇤, (hE2, ��

E02 i # � 0)u2 :: G⇤) 2 V�JG⇤K)

where �
0 = h�E⇤

1 , E⇤2i, � 0.n = k
0 and G

00 = W
0.�1(�) = W

0.�2(�) = ?. By de�nition of
transitivity and Lemma 6.30, we know that

hEi , ��
E0i i # h�E⇤

1 , E⇤2i = hEi ,�E0
i i # hE⇤1, E⇤2i

We know that hE⇤1, E⇤2i ` � 0 ` G
00 ⇠ G

⇤. Since hE⇤1, E⇤2i ` � ` G
00 ⇠ G

⇤, #k�1W 2 SJ� 0K,
(#k�1W , hE1,�E0

1iu1 :: �, hE2,�E0
2iu2 :: �) 2 V�J�K, by the de�nition of SJ�K� , we know

that (since (hE1,�E0
1i # � 0) does not fail then (hE1,�E0

1i # hE⇤1, E⇤2i) also does not fail by the
transitivity rules and hE⇤1, E⇤2i ` � 0 ` � ⇠ G

⇤)

(#k�1�k 0W , (hE1,�E0
1i # hE⇤1, E⇤2i)u1 :: G⇤, (hE2,�E0

2i # hE⇤1, E⇤2i)u2 :: G⇤) 2 V�JG⇤K)
The result follows immediately.

(C.ii) (�i = hHi1,Hi2i). Let G 00 = const(Hi2), and we know that G 00 2 H���T���. By unfolding of
the logical relation for ?, we also know that

(W , hH11,H12iu1 :: G 00, hH21,H22iu2 :: G 00) 2 V� JG 00K

and we have to prove that

(#kW , (hH11,H12i # ��1)u1 :: G 0, (hH21,H22i # ��2)u2 :: G 0) 2 V�JG 0K
Note that for consistent transitivity to hold, then � has to take the following forms:

(a) � = hH3, E4i. Then as � � �;� ` ? ⇠ G
0, by Lemma 6.27, � � �;� ` const(H3) ⇠ G

0, and we
proceed just like Case D, where G 2 H���T��� (G = G 00).

(b) � = h?, ?i. Then G 0 = ? and hHi1,Hi2i # h?, ?i = hHi1,Hi2i. The result follows immediately
by premise and Lemma 6.14.

(c) � = h?,� ?i. Then we know thatW.�i (�) = ?, and by inspection of the consistent transitivity
rules, hHi1,Hi2i # h?,� ?i = hHi1,�Hi2i. Then by de�nition of the interpretation ofG 0, which
may be ? or �), in any case, we have to prove that
(#kW , hH11,�H12iu1 :: �, hH21,�H22iu2 :: �) 2 V�J�K
Therefore, we have to prove that (#k�1W , hH11,H12iu1 :: ?, hH21,H22iu2 :: ?) 2 V�J?K
which follows by premise and Lemma 6.14.

Gradual System F: Auxiliary Definitions and Proofs 75

Also, we have to prove that (8� 0, � 0,G⇤ such that (#k�1W 2 SJ� 0K ^ �
0 ` � 0 ` � ⇠ G

⇤), we
get that

(#k�1W , � 0(hH11,�
H12iu1 :: �) :: G⇤, � 0(hH21,�

H22iu2 :: �) :: G⇤) 2 T�JG⇤K)
or what is the same ((hH11,�H12i # � 0) fails the result follows immediately)

(#k�1�k 0W , (hH11,�
H12i # � 0)u1 :: G⇤, (hH21,�

H22i # � 0)u2 :: G⇤) 2 V�JG⇤K)
where � 0 = h�H ⇤

1 , E⇤2i, � 0.n = k 0. By de�nition of transitivity and Lemma 6.30, we know that

hHi1,�
Hi2i # h�H ⇤

1 , E⇤2i = hHi1,Hi2i # hH ⇤
1 , E

⇤
2i

Therefore, we have to prove that
(#k�1�k 0W , (hH11,H12i # hH ⇤

1 , E
⇤
2i)u1 :: G⇤, (hH21,H22i # hH ⇤

1 , E
⇤
2i)u2 :: G⇤) 2 V�JG⇤K)

We know that hE⇤1, E⇤2i ` � 0 ` ? ⇠ G
⇤. Since hE⇤1, E⇤2i ` � ` ? ⇠ G

⇤, #k�1W 2 SJ� 0K, we
follow by this Case(a), but with evidence hH ⇤

1 , E
⇤
2i. The result follows immediately.

(d) � = h?,� �E4 i. Then we know thatW.�i (�) 2 {�, ?} (W.�i (�) = G123) and by inspection
of the consistent transitivity rules, hHi1,Hi2i # h?,� �Ei4 i = hH 0

i1,�
�E

0
i4 i, where hHi1,Hi2i #

h?, Ei4i = hHi1, E 0
i4i.

Then by de�nition of the interpretation of � (after one or two unfolding of G 0 = ?), we
have to prove that
(#k�1W , (hH 0

11, �
E0
14iu1 :: G123), (hH 0

21, �
E0
24iu2 :: G123)) 2 T�JG123K)

or what is the same
(#k�1W , (hH11,H12i # h?, �E14i)u1 :: �,
(hH21,H22i # h?, �E24i)u2 :: �) 2 V�J�K

and then we proceed to the same case one more time (notice that the recursion is �nite,
until we get to the previous sub case).
Also, we have to prove that (8� 0, � 0,G⇤ such that (#k�1W 2 SJ� 0K ^ �

0 ` � 0 ` � ⇠ G
⇤), we

get that

(#k�1W , � 0(hH 0
11,�

�E
0
14 iu1 :: �) :: G⇤, � 0(hH 0

21,�
�E

0
24 iu2 :: �) :: G⇤) 2 T�JG⇤K)

or what is the same ((hH 0
11,�

E0
14i # � 0) fails the result follows immediately)

(#k�1�k 0W , (hH 0
11,�

�E
0
14 i # � 0)u1 :: G⇤, (hH 0

21,�
�E

0
24 i # � 0)u2 :: G⇤) 2 V�JG⇤K)

where � 0 = h�E⇤
1 , E⇤2i, � 0.n = k 0. By de�nition of transitivity and Lemma 6.30, we know that

hH 0
i1,�

�E
0
i4 i # h�E⇤

1 , E⇤2i = hH 0
i1, �

E0
i2i # hE⇤1, E⇤2i

Therefore, we have to prove that

(#k�1�k 0W , (hH 0
11, �

E0
14i # hE⇤1, E⇤2i)u1 :: G⇤, (hH21, �

E24i # hE⇤1, E⇤2i)u2 :: G⇤) 2 V�JG⇤K)
We know that hE⇤1, E⇤2i ` � 0 ` G123 ⇠ G

⇤. Since hE⇤1, E⇤2i ` � ` G123 ⇠ G
⇤, #k�1W 2 SJ� 0K,

and (#k�1W , (hH 0
11, �

E0
14iu1 :: G123), (hH 0

21, �
E0
24iu2 :: G123)) 2 T�JG123K), by instantiating the

de�nition of V�J�K, the result follows immediately.

Case (D) (Head Types: G 2 H���T���). We know that (W , �1u1 :: �(G), �2u2 :: �(G)) 2 V�JGK
and �i `W.�i ` Gi ⇠ G. Also �i = hHi1,Hi2i, for some Hi1,Hi2. We proceed by case analysis on G 0

and � .

76 Elizabeth Labrada, Matías Toro, and Éric Tanter

(D.i) (� = hH3,�E4i). Then G
0 = � , or G 0 = ?. Notice that as �E4 cannot have free type variables

therefore H3 neither. Then � = �i (�). As � is sync, then let us call G 00 =W.�i (�). In either
case G 0 = � , or G 0 = ?, what we have to prove boils down to

(#kW , (�1 # hH3,�
E4i)u1 :: �, (�2 # hH3,�

E4i)u2 :: �) 2 V�J�K

Therefore, we have to prove that

(#k�1W , (�1 # hH3, E4i)u1 :: G 00, (�2 # hH3, E4i)u2 :: G 00) 2 V�JG 00K

Then we proceed by case analysis on � :
• (Case � = hH3,� �E4 i). We know that � v G

0 and that hH3,� �E4 i � �;� ` G ⇠ G
0,

then by Lemma 6.27, we know that hH3,� �E4 i ` �;� ` G ⇠ � . Also by Lemma 6.29,
hH3, �E4i ` �;� ` G ⇠ G

00. As �E4 v G
00, then G 00 can either be ? or � .

If G 00 = ?, then by de�nition ofV�J?K, we have to prove that the resulting values belong
to V�J�K. Also as hH3, �E4i ` �;� ` G ⇠ ?, by Lemma 6.27, hH3, �E4i ` �;� ` G ⇠ � ,
and then we proceed just like this case once again (this is process is �nite as there are no
circular references by construction and it ends up in something di�erent to a type name).
If G 00 = � we use an analogous argument as for G 00 = ?.

• (Case � = hH3,�H4i). Then we have to prove that

(#k�1W , (�1 # hH3,H4i)u1 :: G 00, (�2 # hH3,H4i)u2 :: G 00) 2 V�JG 00K

By Lemma 6.29, hH3,H4i ` �;� ` G ⇠ G
00. Then if G 00 = ?, we proceed as the case

G 2 H���T���, G 0 = ? with � = hH3,H4i (Case (D.ii)). If G 00 2 H���T���, we proceed as
the case G 2 H���T���, G 0 2 H���T��� with � = hH3,H4i, where H3,H4 2 H���T���
(Case (D.iii)).

Also, we have to prove that (8� 0, � 0,G⇤ such that (#kW 2 SJ� 0K ^ �
0 ` � 0 ` � ⇠ G

⇤) ^ �
0 =

h�E5, E6i ^ �
0.n = k 0, we get that

(#kW , � 0((�1 # hH3,�
H4i)u1 :: �) :: G⇤, � 0((�2 # hH3,�

H4i)u2 :: �) :: G⇤) 2 T�JG⇤K)
or what is the same (((�1 # hH3,H4i) # hE5, E6i) fails the result follows immediately)

(#k�k 0W , (�1 # (hH3,H4i # hE5, E6i))u1 :: G⇤, (�2 # (hH3,H4i # hE5, E6i))u2 :: G⇤) 2 V�JG⇤K)
where (hH3,H4i # hE5, E6i).n = (k +k 0)We know that (W , �1u1 :: �(G), �2u2 :: �(G)) 2 V�JGK,
therefore (#kW , �1u1 :: �(G), �2u2 :: �(G)) 2 V�JGK, by Lemma 6.14, where now �1.n = l + k .
Then we apply the induction hypothesis on (#kW , �1u1 :: �(G), �2u2 :: �(G)) 2 V�JGK and the
evidence (hH3,H4i # hG5,G6i), but where (hH3,H4i # hG5,G6i).n = k

0. Therefore the results
follows immediately:

(#k�k 0W , (�1 # (hH3,H4i # hG5,G6i))u1 :: G⇤, (�2 # (hH3,H4i # hG5,G6i))u2 :: G⇤) 2 V�JG⇤K)
(D.ii) (G 0 = ?, � = hH3,H4i). We have to prove that

(#kW , (�1 # �1(�))u1 :: ?, (�2 # �2(�))u2 :: ?) 2 V�J?K
which is equivalent to prove that

(#kW , (�1 # �1(�))u1 :: H , (�2 # �2(�))u2 :: H) 2 V� JHK

for H = const(Hi2) (and H 2 H���T���). But notice that as � ` �;� ` G ⇠ ?, then as
H4 v H v ?, then by Lemma 6.27, � ` �;� ` G ⇠ H , then we proceed just like the case
G 2 H���T��� and G 0 2 H���T��� (Case (D.iii)).

Gradual System F: Auxiliary Definitions and Proofs 77

(D.iii) (G 0 2 H���T���). These cases are already analyzed, by structural analysis of types (Case
G = G 00

1 ! G
00
2 andG 0 = G 0

1 ! G
0
2), (CaseG = 8X .G 00

1 andG 0 = 8X .G 0
1), (CaseG = hG 00

1 ,G
00
2 i

and G 0 = hG 0
1,G

0
2i) and (Case G = B and G 0 = B).

⇤

L���� 10.5 (A���������� P������� R��������). If (W ,�1,�2) 2 V�JGK, � � �;� ` G ⇠ G
0,

W 2 SJ�K, and (W , �) 2 DJ�K, then (W , �1(�)�1 :: �(G 0), �2(�)�2 :: �(G 0)) 2 T�JG 0K.
P����. Direct by Prop. 6.17. ⇤

L���� 6.18 (A������������ �� ��� ��������).
(�1 # �2) # �3 = �1 # (�2 # �3)

P����. By induction on the structure of evidences.

Case (�1 = hE11,�E12i, �2 = h�E21, E22i, �3 = hE31, E32i). By de�nition of consistent transitivity, we
know that

• (�1 # �2) # �3 = (hE11, E12i # hE21, E22i) # hE31, E32i
• �1 # (�2 # �3) = hE11, E12i # (hE21, E22i # hE31, E32i)

Then by the induction hypothesis (hE11, E12i # hE21, E22i) # hE31, E32i = hE11, E12i # (hE21, E22i #
hE31, E32i), and the result follows immediately.

Case (�1 = hE11, E12i, �2 = hE21,�E22i, �3 = h�E31, E32i). Similar to the previous.

Case (�1 = h�E11, E12i, �2 = hE21, E22i, �3 = hE31, E32i). By de�nition of consistent transitivity, we
know that

• (�1 # �2) # �3 = h�E1, E2i # hE31, E32i = h�E0
1, E 0

2i, where hE1, E2i = (hE11, E12i # hE21, E22i),
hE 0

1, E
0
2i = (hE11, E12i # hE21, E22i) # hE31, E32i.

• �1 # (�2 # �3) = h�E11, E12i # (hE21, E22i # hE31, E32i)
• Note that by the induction hypothesis hE 0

1, E
0
2i = (hE11, E12i # hE21, E22i) # hE31, E32i =

hE11, E12i # (hE21, E22i # hE31, E32i)
Then, the result follows immediately because h�E11, E12i # (hE21, E22i # hE31, E32i) = h�E0

1, E 0
2i.

Case (�1 = hE11, E12i, �2 = hE21, E22i, �3 = hE31,�E32i). Similar to the previous.

Case (�1 = h?, ?i, �2 = hE21, E22i, �3 = hE31, E32i). Trivially, by de�nition of consistent transitivity.

Case (�1 = hE11, E12i, �2 = h?, ?i, �3 = hE31, E32i). Trivially, by de�nition of consistent transitivity.

Case (�1 = hE11, E12i, �2 = hE21, E22i, �3 = h?, ?i). Trivially, by de�nition of consistent transitivity.

Case (�1 = hE11, E12i, �2 = hE21, E22i, �3 = h?, ?i). Trivially, by de�nition of consistent transitivity.

The other cases are pretty similar.
⇤

L���� 6.19. If (W , t1, t2) 2 T�JGK, then (#W , t1, t2) 2 T�JGK
P����. By de�nition of T�JGK. ⇤

P���������� 6.20. dom(�1 # �2) = dom(�2) # dom(�1)
P����. Direct by inspection on the inductive de�nition of consistent transitivity. ⇤

78 Elizabeth Labrada, Matías Toro, and Éric Tanter

P���������� 6.21. cod(�1 # �2) = cod(�1) # cod(�2)
P����. Direct by inspection on the inductive de�nition of consistent transitivity. ⇤

P���������� 6.22. (�1 # �2)[E] = �1[E] # �2[E].
P����. Direct by inspection on the inductive de�nition of consistent transitivity. ⇤

L���� 6.23. (Optimality of consistent transitivity).
If �3 = �1 # �2 is de�ned, then �1(�3) v �1(�1) and �2(�3) v �2(�2).
P����. Direct by inspection on the inductive de�nition of consistent transitivity. ⇤

L���� 6.24. If � ` �;� ` G1 ⇠ G2,W 2 SJ�K and (W , �) 2 DJ�K then �
�
i `W.�i ;� ` �(G1) ⇠

�(G2), where ��i = �i (�).
P����. Direct by induction on the structure of the types G1 and G2. ⇤

L���� 6.25. If �;�; � ` t : G,W 2 SJ�K, (W , �) 2 DJ�K and (W ,�) 2 G�J�K thenW.�i `
�(�i ((t)) : �(G).
P����. Direct by induction on the structure of the term. ⇤

L���� 6.26. If
� �i �W.�i ` Gi ⇠ �(G), �1 ⌘ �2
� � � �;� ` G ⇠ G

0

� W 2 SJ�K, (W , �) 2 DJ�K
� 8� 2 �.�E⇤

i 2 p2(�i)) E
⇤
1 ⌘ E

⇤
2

then �1 # �1(�) () �2 # �2(�).
P����. We proceed by induction on the judgment �i `W.�i ` Gi ⇠ G.

Case (�i = hBi ,Bi i). Then the result is trivial as by de�nition of �1 ⌘ �2, B1 = B2, therefore
�1 = �2. As � cannot have free type variables (otherwise the result holds immediately), proving that
�1 # � () �1 # � is trivial.

Case (�i = h?, ?i). As the combination with h?, ?i never produce runtime errors, the result follows
immediately as both operation never fail.

Case (�i = hE1i ,�E2i i). We branch on two sub cases:
• Case� 2 �. Then � has to have the form h�E3, E4i, h?, ?i or h?, � ...?i (otherwise the transitivity
operator will always fails in both branches). Also E4 cannot be a type variable X for instance,
because X is consistent with only X or ?, and in either case the evidence gives you X on both
sides of the evidence. And � cannot point to a type variable by construction (e.g, type �X
does not exists). Then � cannot have free type variables, therefore �i (�) = � , and therefore
we have to prove: �1 # � () �2 # � . For cases where � = h?, ?i or � = h?, � ...?i, then as they
never produce runtime errors, the result follows immediately as both operation never fail.
The interesting case is � = h�E3, E4i. By de�nition of transitivity hE1i ,�E2i i # h�E3, E4i =
hE1i , E2i i # hE3, E4i. By Lemma 6.29, hE1i , E2i i ` W.�i ` Gi ⇠ �(�) and hE3, E4i ` W.�i `
�(�) ⇠ G

0. Also we know by premise that E2i ⌘ E2i , then by induction hypothesis hE11, E21i #
hE3, E4i () hE12, E22i # hE3, E4i, and the result follows immediately.

Gradual System F: Auxiliary Definitions and Proofs 79

• Case� < �. In this case � has to have the form hX ,X i (where �i (�) = hliftW.�i
(�), liftW.�i

(�)i),
h?, ?i or h?, � ...?i, (otherwise the transitivity always fail in both cases). For cases where
� = h?, ?i or � = h?, � ...?i, by the de�nition of transitivity, they never produce runtime errors,
then the result follows immediately as both operation never fail.
If � = hX ,X i, by construction of evidence, �E2i v liftW.�i

(�) v ?, then by Lemma 6.30, we
know that �i # �i (�) = �i , and the result holds.

Case (�i = h�Ei1, Ei2i). Then � has the form hE3, E4i, where �i (�) = hEi3, Ei4i. By the de�nition of
transitivity we know that:

h�Ei1,Ei2i # hEi3, Ei4i () hEi1, Ei2i # hEi3, Ei4i
Then by the induction hypothesis with:

hEi1, Ei2i �W.�i `W.�i (�) ⇠ �(G)

� � �;� ` G ⇠ G
0

we know that:
hE11, E22i # hE13, E14i () hE21, E22i # hE23, E24i

Then the result follows immediately.

Case (�i = hE11i ! E12i , E21i ! E22i i). We analyze cases for � :
• Case � = h?, ?i or � = h?, � ...?i, then transitivity never fails as explained in previous cases.
• Case � = hE31 ! E32, E41 ! E42i. Then �i (�) = hE31i ! E32i , E41i ! E42i i. By de�nition of
interior and meet, the de�nition of transitivity for functions, can be rewritten like this:

hE41i , E31i i # hE21i , E11i i = hEi3, Ei1i hE12i , E22i i # hE32i , E42i i = hEi2, Ei4i
hE11i ! E12i , E21i ! E22i i # hE31i ! E32i , E41i ! E42i i = hEi1 ! Ei2, Ei3 ! Ei4i

Also notice as the de�nition of interior is symmetrical (as consistency is symmetric), hE41i , E31i i#
hE21i , E11i i = hEi3, Ei1i can be computed as hE11i , E21i i # hE31i , E41i i = hEi1, Ei3i . Also �1 ⌘ �2
implies that dom(�1) ⌘ dom(�2) and cod(�1) ⌘ cod(�2). And that dom(�) � �;� ` dom(G 0) ⇠
dom(G) is equivalent to:

h�2(dom(�)), �1(dom(�))i � �;� ` dom(G) ⇠ dom(G 0)
where cod(�) � �;� ` cod(G) ⇠ cod(G 0). The result holds by applying induction hypothesis
on:

hE11i , E21i i � �;� ` dom(Gi) ⇠ dom(�(G))
h�2(dom(�)), �1(dom(�))i � �;� ` dom(G) ⇠ dom(G 0)

and
hE12i , E22i i � �;� ` cod(Gi) ⇠ cod(�(G))

cod(�) � �;� ` cod(G) ⇠ cod(G 0)
• Case � = hE31 ! E32,�E41!E42i. Then �i (�) = hE31i ! E32i ,�E41i!E42i i. We use a similar
argument to the previous item noticing that

hE41i , E31i i # hE21i , E11i i = hEi3, Ei1i hE12i , E22i i # hE32i , E42i i = hEi2, Ei4i
hE11i ! E12i , E21i ! E22i i # hE31i ! E32i , E41i ! E42i i = hEi1 ! Ei2, Ei3 ! Ei4i

hE11i ! E12i , E21i ! E22i i # hE31 ! E32,�E41!E42i = hEi1 ! Ei2,�Ei3!Ei4i

80 Elizabeth Labrada, Matías Toro, and Éric Tanter

and that if G 0 = � by Lemma 6.29
hE31 ! E32, E41 ! E42i ` �;� ` G ⇠ �(�)

hE31 ! E32,�E41!E42i ` �;� ` G ⇠ �

and if G 0 = ? by Lemma 6.29
hE31 ! E32, E41 ! E42i ` �;� ` G ⇠ ?

hE31 ! E32,�E41!E42i ` �;� ` G ⇠ ?
Case (�i = h8X .E1i ,8X .E2i i).
We proceed similar to the function case using induction hypothesis on the subtypes.

Case (�i = hE1i ⇥ E2i , E3i ⇥ E4i i).
We proceed similar to the function case using induction hypothesis on the subtypes. ⇤

L���� 6.27. If hE1, E2i ` �;� ` G1 ⇠ G2, then
(1) 8G3, unlift(E2) v G3 v G2, hE1, E2i ` �;� ` G1 ⇠ G3, and
(2) 8G3, unlift(E1) v G3 v G1,hE1, E2i ` �;� ` G3 ⇠ G2

P����. By de�nition of evidence and interior noticing that always Ei v Gi . ⇤

L���� 6.28. If h�E1, E2i ` �;� ` � ⇠ G, then hE1, E2i ` �;� ` �(�) ⇠ G.

P����. Direct by de�nition of interior and evidence. ⇤

L���� 6.29. If hE1,�E2i ` �;� ` G ⇠ � , then hE1, E2i ` �;� ` G ⇠ �(�).
P����. Direct by de�nition of interior and evidence. ⇤

L���� 6.30. If E2 v E3 then hE1, E2i # hE3, E3i = hE1, E2i.
P����. We proceed by induction on hE1, E2i. If hE3, E3i = h?, ?i by de�nition of transitivity the

result holds immediately so we do not consider this case in the following.

Case (hE1, E2i = h?, ?i). Then we know that E3 = ?, and the result follows immediately.

Case (hE1, E2i = hE1,�E0
2i). Then hE3, E3i = h�E0

3,�E0
3i. Then hE1,�E0

2i # h�E0
3,�E0

3i boils down to
hE1, E 0

2i # hE 0
3, E

0
3i, if E 0

2 = �
E00
2 , then E

0
3 has to be �

E00
3 and we repeat this process. Let us assume

that E 0
2 < SIT���N���, then by de�nition of meet E 0

3 < SIT���N���. By de�nition of precision
if �E0

2 v �
E0
3 , then E

0
2 v E

0
3. Then by induction hypothesis hE1, E 0

2i # hE 0
3, E

0
3i = hE1, E 0

2i, then
hE1,�E0

2i # h�E0
3,�E0

3i = hE1,�E0
2i and the result holds.

Case (hE1, E2i = h�E0
1, E2i). Then h�E0

1, E2i # hE3, E3i boils down to hE 0
1, E2i # hE3, E3i. We know that

E2 v E3. Then by induction hypothesis hE 0
1, E2i # hE3, E3i = hE1, E 0

2i, then h�E0
1, E2i # hE3, E3i =

h�E0
1, E2i and the result holds.

Case (hE1, E2i = hB,Bi). Then by de�nition of precision E3 is either ? (case we wont analyze) or B.
But hB,Bi # hB,Bi = hB,Bi and the result holds.

Case (hE1, E2i = hE11 ! E12, E21 ! E22i). Then E3 has to have the form E31 ! E32. By de�ni-
tion of precision, if E21 ! E22 v E31 ! E32 then E21 v E31 and E22 v E32. As hE31, E31i #
hE21, E11i = (hE11, E21i # hE31, E31i)�1. By induction hypothesis hE11, E21i # hE31, E31i = hE11, E21i and
hE12, E22i # hE32, E32i = hE12, E22i. Therefore hE11 ! E12, E21 ! E22i # hE31 ! E32, E31 ! E32i =
hE11 ! E12, E21 ! E22i and the result holds.

Gradual System F: Auxiliary Definitions and Proofs 81

C ::= [·] | �Cu :: G | hC, ti | ht,Ci | C t | t C | �C :: G | op(t,C, t) | C [G] | �i (C) (GSF� Contexts)
Cu ::= �x : G .C | �X .C | hCu ,ui | hu,Cu i
Cs ::= C | Cu

` C : (�;�; � ` G) (� 0;�0; �0 ` G 0) Well-typed contexts

(Cid)
� ✓ � 0 � ✓ �0 � ✓ �0 �;� ` � � 0;�0 ` �0

` [·] : (�;�; � ` G) (� 0;�0; �0 ` G)

(C�)
` C : (�;�; �, x : G1 ` G) (� 0;�0; �0, x : G1 ` G2)

` �x : G1.C : (�;�; �, x : G1 ` G) (� 0;�0; �0 ` G1 ! G2)

(C�)
` C : (�;�,X ; � ` G) (� 0;�0,X ; �0 ` G 0) �;� ` � � 0;�0 ` �0

` �X .C : (�;�,X ; � ` G) (� 0;�0; �0 ` 8X .G 0)

(CpairL)
` C : (�;�; � ` G) (� 0;�0; �0 ` G1) � 0;�0; �0 ` t : G2

` hC, ti : (�;�; � ` G) (� 0;�0; �0 ` G1 ⇥G2)

(CpairR)
� 0;�0; �0 ` t : G1 ` C : (�;�; � ` G) (� 0;�0; �0 ` G2)

` ht,Ci : (�;�; � ` G) (� 0;�0; �0 ` G1 ⇥G2)

(Casc)
` Cs : (�;�; � ` G) (� 0;�0; �0 ` G 0) � � �;� ` G 0 ⇠ G

00

` �Cs :: G 00 : (�;�; � ` G) (� 0;�0; �0 ` G 00)

(Cop)

� 0;�0; �0 ` t1 : G1 ` C : (�;�; � ` G) (� 0;�0; �0 ` G3)
� 0;�0; �0 ` t2 : G2 ty(op) = (G1,G3,G2) ! G

00

` op(t1,C, t2) : (�;�; � ` G) (� 0;�0; �0 ` G 00)

(CappL)
` C : (�;�; � ` G) (� 0;�0; �0 ` G1 ! G2) � 0;�0; �0 ` t : G1

` C t : (�;�; � ` G) (� 0;�0; �0 ` G2)

(CappR)
� 0;�0; �0 ` t : G1 ! G2 ` C : (�;�; � ` G) (� 0;�0; �0 ` G1)

` t C : (�;�; � ` G) (� 0;�0; �0 ` G2)

(CappG)
` C : (�;�; � ` G) (� 0;�0; �0 ` 8X .G 0) � 0;�0 ` G 00

` C [G 00] : (�;�; � ` G) (� 0;�0; �0 ` G 0[G 00/X])

(Cpairi)
` C : (�;�; � ` G) (� 0;�0; �0 ` G1 ⇥G2)
` �i (C) : (�;�; � ` G) (� 0;�0; �0 ` Gi)

Fig. 24. GSF� : Syntax and Static Semantics - Contexts

Case (hE1, E2i = h8X .E11,8X .E21i or hE1, E2i = hE11 ⇥ E12, E21 ⇥ E22i). Analogous to function case.

⇤

6.3 Contextual Equivalence
In this section we show that the logical relation is sound with respect to contextual approximation
(and therefore contextual equivalence). Figure 24 presents the syntax and static semantics of
contexts.

82 Elizabeth Labrada, Matías Toro, and Éric Tanter

De�nition 6.31 (Contextual Approximation and Equivalence).

�;�; � ` t1 �ctx
t2 : G , �;�; � ` t1 : G ^ �;�; � ` t2 : G ^ 8C,� 0,G 0.

` C : (�;�; � ` G) (� 0; ·; · ` G 0))
�
(� 0 . t1 + =) � 0 . t2 +) ^

(9�1.�
0 .C[t1] 7��!⇤ �1 . error) 9�2.�

0 .C[t2] 7��!⇤ �2 . error)
�

�;�; � ` t1 ⇡ctx
t2 : G , �;�; � ` t1 �ctx

t2 : G ^ �;�; � ` t2 �ctx
t1 : G

T������ 6.32 (S�������� �.�.�. C��������� A������������). If �;�; � ` t1 � t2 : G then
�;�; � ` t1 �ctx

t2 : G.

P����. The proof follows the usual route of going through congruence and adequacy. ⇤

Gradual System F: Auxiliary Definitions and Proofs 83

7 PARAMETRICITY VS. THE DGG IN GSF
In this section, we present the proofs of the auxiliary Lemmas need to show that the de�nition of
parametricity for GSF is incompatible with the DGG.

L���� 10.6. Let ` (�X .�x : ?.t) { �a : 8X .? ! X and ` � { �b : ?. For any G1 and G2, such
that const(G1) , const(G2), if · . �a [Gi] 7��! � := Gi . � i�i :: ? ! Gi , �i � ? ! � ⇠ ? ! Gi
then 8W 2 SJ·K,8R 2 R��W.j [G1,G2], (W ⇥ (�,G1,G2,R), dom(�1)�b :: ?, dom(�2)�b :: ?) 2 TX 7!� J?K

P����. Notice that �a has to be of the form (� 0(�X .� 00(�x : ?.t 0) :: ? ! X) :: 8X .? ! X), where
�
0 = h8X .? ! X ,8X .? ! X i and � 00 = h? ! X , ? ! X i. Then ·.�a [Gi] 7��! h? ! �̂i , ? ! Ei it 0 for
some t 0, where �̂i = lift� 7!Gi

(�) and Ei = lift·(Gi). We know that ·; ·; · ` �b : ? then as X < FTV (�),
·;X ; · ` �b : ?, therefore by the fundamental property (Thm 10.1), ·;X ; · ` �b � �b : ?, therefore
asW 2 SJ·K, we can pickW 0 = W ⇥ (�,G1,G2,R) 2 SJ·K, and (W 0,X 7! �) 2 DJX K and thus
conclude that (W 0,�b ,�b) 2 TX 7!� J?K. Now notice that dom(�i) = h?, ?i, but � # h?, ?i = � for
any evidence � , therefore � := Gi . dom(�i)�b :: ? 7��! � := Gi . �b , then we have to prove that
(#W 0,�b ,�b) 2 TX 7!� J?K which follows directly from the weakening lemma. ⇤

L���� 10.7. For any ` � : ? and ` G, we have (�X .�x : ?.x :: X) [G] � + error.

P����. Let id? , �X .�x : ?.x :: X , ` id? { �a : 8X .? ! X , and � s.t. ` � { �b : ?.
By the fundamental property (Th. 10.1), ` �a � �a : 8X .? ! X so for any W0 2 SJ·K,

(W0,�a,�a) 2 T;J8X .? ! X K. Because �a is a value, (W0,�a,�a) 2 V;J8X .? ! X K. By reduc-
tion, · . �a [Gi] 7��!⇤ � 0

i . �
0
i�i :: ? ! Gi for some �

0
i , �i and �i� , where � 0

i = {� := Gi } and
�i = �i (�x : ?.(�i�x :: �)) :: ? ! � . We can instantiate the de�nition of V;J8X .? ! X K withW0,
G1 = G andG2 structurally di�erent (and di�erent from ?), some R 2 R��W0 .j [G1,G2], �1, �2, � 01 and
�
0
2, then we have that (W1,�1,�2) 2 TX 7!� J? ! X K, whereW1 = (#(W0 ⇥ (�,G1,G2,R)). As �1 and
�2 are values, (W1,�1,�2) 2 VX 7!� J? ! X K. Also, by associativity of consistent transitivity, the
reduction of � 0

i . (� 0i�i :: ? ! Gi) �? is equivalent to that of � 0
i . cod(� 0i)(�i (dom(� 0i)�? :: ?)) :: Gi .

By the fundamental property (Th. 10.1) we know that ` �b � �b : ?; we can instantiate this
de�nition with W0, and we have that (W0,�b ,�b) 2 V;J?K. By Lemma 10.6, (W1, dom(� 01)�? ::
?, dom(� 02)�? :: ?) 2 TX 7!� J?K. If dom(� 01)�? :: ? reduces to error then the result follows immediately.
Otherwise, � 0

i . dom(� 01)�? :: ? 7��!⇤ � 0
i . �

00
i , and (W2,� 00

1 ,�
00
2) 2 VX 7!� J?K, where W2 =#W1,

and some � 00
1 and �

00
2 . We can instantiate the de�nition of VX 7!� J? ! X K withW2, � 00

1 and �
00
2 ,

obtaining that (W2,�1 � 00
1 ,�2 �

00
2) 2 TX 7!� JX K. We then proceed by contradiction. Suppose that

� 0
i . �i �

00
i 7��!⇤ � 00

i . �
0
i (for a big-enough step index). If � 00

i = �
00
i�u :: ?, then by evaluation

�
0
i = �

0
i�u :: � , for some � 0i� . But by de�nition of VX 7!� JX K, it must be the case that for some

W3 ⌫ W2, (W3, � 01�u :: G1, � 02�u :: G2) 2 R, which is impossible because u cannot be ascribed to
structurally di�erent types G1 and G2. Therefore �1 � 00

1 cannot reduce to a value, and hence the
term �a [G] �b cannot reduce to a value either. Because �a is non-diverging, its application must
produce error. ⇤

84 Elizabeth Labrada, Matías Toro, and Éric Tanter

8 A CHEAP THEOREM IN GSF
This section shows the proof of the cheap theorem presented in the paper and some auxiliary
results.

De�nition 8.1. Let X(t,�) a predicate that holds if and only if in each evidence of term t , if �
is present, then it appears on both sides of the evidence and in the same structural position. This
predicate is de�ned inductively as follows:

8� 2 t,X(�,�)
X(t,�)

where

X(h�E ,�E i ,�)
� < FTN (E1) [FTN (E2)

X(hE1, E2i ,�)
X(hE1, E3i ,�) X(hE2, E4i ,�)

X(hE1 ! E2, E3 ! E4i ,�)

X(hE1, E3i ,�) X(hE2, E4i ,�)
X(hE1 ⇥ E2, E3 ⇥ E4i ,�)

X(hE1, E2i ,�)
X(h8X .E1,8X .E2i ,�)

C�������� 10.9. Let t and � be static terms such that ` t : 8X .T , ` � : T 0, and t[T 0] � + �
0.

(1) If 8X .T v 8X .X ! ? then (t :: 8X .X ! ?)[T 0] � + �
00, and � 0 6 � 00.

(2) If 8X .T v 8X .? ! X then (t :: 8X .? ! X)[T 0] � + �
00, and � 0 6 � 00.

P����. Direct by Lemmas 9.4 and 9.7. ⇤

L���� 8.2. 8W 2 SJ�K, �,� .((W , �) 2 DJ�K^ (W ,�) 2 G�J�K), such that 8� 2 cod(�i),X(�,�).
If X(�(�i (ti)),�), then � . �(�i (ti)) 7��! � 0 . t 0i and X(t 0,�)

P����. By induction on the structure of ti . The proof is direct by looking at the inductive
de�nition of construction of evidences (interior), noticing that 8G,I(X ,G) = I(G,X) = hX ,X i.
Then by inspection of consistent transitivity we know that, for any evidence of a value hE1, E2i

hE1, E2i # h�E ,�Ei = hE 0
1,�

E0 i ^ E
0
1 , �

⇤ () E2 = �
E00 ^ E1 , �

⇤

but if that is the case ¬(X(hE1, E2i ,�)), which contradicts the premise. ⇤

T������ 10.10. Let � , �X .�x : ?.t for some t , such that ` � : 8X .? ! X . Then for any ` � 0 : G,
we either have � [G] � 0 + error or � [G] � 0 *.
P����. Let ` � { �8 : 8X .? ! X , ` � 0 { �? : ?. Because ` �8 : 8X .? ! X and ` �? : ?, by the

fundamental property (Theorem 10.1) we know that

(W0,�8,�8) 2 V;J8X .? ! X K
(W0,�?,�?) 2 V;J?K

Let �8 = �(�X .(�x : ?.t)) :: 8X .? ! X , where � � ·; · ` 8X .? ! X ⇠ 8X .? ! X , and therefore
� = h8X .? ! X ,8X .? ! X i.

Note that by the reduction rules we know that

� . �8 [G] 7��!⇤ � 0
1 . �1(�2(�x : ?.t 0) :: ? ! �) :: ? ! G

for some t 0, where �1 = h? ! �
E , ? ! Ei , �2 = h? ! �

E , ? ! �
Ei, E = lift·(G), � 0

1 = �,� = G.
By de�nition ofV;J8X .? ! X K if we pickG1 = G2 = G , and some R, then for someW1 we know

that (W1,�1,�2) 2 VX 7!� J? ! X K, where �i = �2(�x : ?.t 0) :: ? ! � .
Also, by the reduction ruleswe know that� 0

i.(�1�i :: ? ! G) �? () � 0
i.cod(�1)(�i (dom(�1)�? ::

?)) :: G . As dom(�1) = h?, ?i, then � 0 . dom(�1)�? :: ? 7��! � 0 .�? :: ?. As � < FTN (�?), then X(�?,�).

Gradual System F: Auxiliary Definitions and Proofs 85

Also we know that X(�i ,�). Then by Lemma 8.2, if � 0 . t 0[�?] 7��!⇤
�
0, then X(� 0,�), but that is a

contradiction because if (W4,� 0,� 0) 2 V�J�K, then ¬X(� 0,�) and the result holds. ⇤

86 Elizabeth Labrada, Matías Toro, and Éric Tanter

9 EMBEDDING DYNAMIC SEALING IN GSF
In this section, we prove Theorem 11.1, using the simulation relation ⇡ between �seal and GSF� ,
de�ned in Figure 15. We also de�ne a direct embedding of �seal into GSF� to make the proof simpler.

dx e� = x
d� e� = su��
db e� = �B (�Bb :: B) :: ?

d�x .t e� = �?!?(�?!?�x . dt e� :: ? ! ?) :: ?
dht1, t2 ie� = �?⇥? h dt1 e� , dt2 e� i :: ?
d�i (t)e� = �i (�?⇥? dt e� :: ? ⇥ ?)
dop(t)e� = let x : ? = dt e in �Bop(�Bx :: B) :: ?
d�x .t e� = let x = su� in dt e�
dt1 t2 e� = let x = dt1 e� in let � = dt2 e� in (�?!?x :: ? ! ?) �

d{t1 }t2 e� = let x = dt1 e� in let � = dt2 e� in (�?!?�1(�?⇥?� :: ? ⇥ ?) :: ? ! ?) x
dlet {z }t1 = t2 in t3 e� = let x = dt1 e� in let � = dt2 e� in let z = �?!?�2(�?⇥?x :: ? ⇥ ?) :: ? ! ? � in dt3 e�

Fig. 25. Compilation from �seal to GSF�

De�nition 9.1. We said that µ and � are synchronized, denoted µ ⌘ �, if and only if � 2 µ ()
� := ? 2 �.

L���� 9.2. Let t be a �seal term. If �; � ` dte { t� : ? then dte� = t� .

P����. The proof is straightforward by induction on the syntax of t , and following de�nitions
of dte, �; � ` dte { t� : ? and dte� . ⇤

L���� 9.3. If �; � ` dte { t� : ?, then µ;�; � ` t ⇡ t� : ?, for some µ ⌘ �.

P����. By Lemma 9.2, we know that t� = dte� . Therefore, we are required to prove that
µ;�; � ` t ⇡ dte� : ?. We follow by induction on the syntax of t . Since translation preserves
typing (Theorem ??), we know that �; � ` dte� : ?.
Case (x). Then, we know that

dxe� = x

We have t = x . By premise we know that �; � ` x : ? which implies that x : ? 2 � and �; ` �.
Therefore, µ;�; � ` t ⇡ dte� : ? by Rule (Rx) and the result follows immediately.

Case (b). Then, we know that
dbe� = �B (�Bb :: B) :: ?

We have t = b. Then, we have to prove that µ;�; � ` b ⇡ �B (�Bb :: B) :: ? : ?. We know by the Rule
(Rb) that µ;�; � ` b ⇡ �Bb :: ? : ?. Therefore, by the Rule (Ru) the result follows immediately.

Case (�x .t 0). Then, we know that
d�x .t 0e� = �?!?(�?!?�x .dt 0e� :: ? ! ?) :: ?

We have t = �x .t 0. Then, we have to prove that µ;�; � ` �x .t 0 ⇡ �?!?(�?!?�x .dt 0e� :: ? ! ?) :: ? : ?.
Since �; � ` dte� : ? and by Lemma 9.13, we know that �; �, x : ? ` dt 0e� : ?, thus by the
induction hypothesis µ;�; �, x : ? ` t 0 ⇡ dt 0e� : ?. Therefore, by the Rule (R�) that µ;�; � ` �x .t 0 ⇡
�?!?�x .dt 0e� :: ? : ?. Therefore, by the Rule (Ru) the result follows immediately.

Gradual System F: Auxiliary Definitions and Proofs 87

Case (�). Then, we know that
d� e� = su��

We have t = � . Then, we have to prove that µ;�; � ` � ⇡ su�� : ?. By premise we know that
�; � ` su�� : ? which implies that � := ? 2 � and � ` �. Therefore, by the Rule (Rs) the result
follows immediately.

Case (t1 t2). Then, we know that

dt1 t2e� = let x = dt1e� in let � = dt2e� in (�?!?x :: ? ! ?) �
We have t = t1 t2. Then, we have to prove that

µ;�; � ` t1 t2 ⇡ let x = dt1e� in let � = dt2e� in (�?!?x :: ? ! ?) � : ?

Since �; � ` dte� : ? and by Lemma 9.13, we know that �; � ` dt1e� : ? and �; � ` dt2e� : ?. By the
induction hypothesis, we know that µ;�; � ` t1 ⇡ dt1e� : ? and µ;�; � ` t2 ⇡ dt2e� : ?. Therefore, by
the Rule (RappL) the result follows immediately.

Case (�i (t 0)). Then, we know that

d�i (t 0)e� = �i (�?⇥?dt 0e� :: ? ⇥ ?)
We have t = �i (t 0). Then, we have to prove that µ;�; � ` �i (t 0) ⇡ �i (�?⇥?dt 0e� :: ? ⇥ ?) : ?. Since
�; � ` dte� : ? and by Lemma 9.13, we know that �; � ` dt 0e� : ?. By the induction hypothesis, we
know that µ;�; � ` t 0 ⇡ dt 0e� : ?. Therefore, by the Rule (Rpi) the result follows immediately.

Case ({t1}t2). Then, we know that

d{t1}t2e� = let x = dt1e� in let � = dt2e� in (�?!?�1(�?⇥?� :: ? ⇥ ?) :: ? ! ?) x
We have t = {t1}t2 . Then, we have to prove that

µ;�; � ` {t1}t2 ⇡ let x = dt1e� in let � = dt2e� in (�?!?�1(�?⇥?� :: ? ⇥ ?) :: ? ! ?) x : ?

Since �; � ` dte� : ? and by Lemma 9.13, we know that �; � ` dt1e� : ? and �; � ` dt2e� : ?.By the
induction hypothesis, we know that µ;�; � ` t1 ⇡ dt1e� : ? and µ;�; � ` t2 ⇡ dt2e� : ?. Therefore, by
the Rule (Rsed1L) the result follows immediately.

Case (let {x}t1 = t2 in t3). Then, we know that
dlet {x}t1 = t2 in t3e� = let x = dt1e� in let � = dt2e� in let z = �?!?�2(�?⇥?x :: ? ⇥ ?) :: ? ! ? � in dt3e�

We have t = let {x}t1 = t2 in t3. Then, we have to prove that
µ;�; � ` let {x}t1 = t2 in t3 ⇡ let x = dt1e� in let � = dt2e� in let z = �?!?�2(�?⇥?x :: ? ⇥ ?) :: ? ! ? � in dt3e� : ?

Since �; � ` dte� : ? and by Lemma 9.13, we know that �; � ` dt1e� : ?, �; � ` dt2e� : ?
and �; �, x : ? ` dt3e� : ?. By the induction hypothesis, we know that µ;�; � ` t1 ⇡ dt1e� : ?,
µ;�; � ` t2 ⇡ dt2e� : ? and µ;�; �, x : ? ` t3 ⇡ dt3e� : ?. Therefore, by the Rule (RunsL) the result
follows immediately.

Case (ht1, t2i). Then, we know that

dht1, t2ie� = �?⇥?hdt1e� , dt2e� i :: ?
We have t = ht1, t2i. Then, we have to prove that µ;�; � ` ht1, t2i ⇡ �?⇥?hdt1e� , dt2e� i :: ? : ?. Since
�; � ` dte� : ? and by Lemma 9.13, we know that �; � ` dt1e� : ? and �; � ` dt2e� : ?. By the
induction hypothesis, we know that µ;�; � ` t1 ⇡ dt1e� : ? and µ;�; � ` t2 ⇡ dt2e� : ?. Therefore, by
the Rule (Rpt) the result follows immediately.

88 Elizabeth Labrada, Matías Toro, and Éric Tanter

Case (op(t 0)). Then, we know that

dop(t 0)e� = let x : ? = dt 0e in �Bop(�Bx :: B) :: ?
We have t = op(t 0). Then, we have to prove that

µ;�; � ` op(t 0) ⇡ let x : ? = dt 0e in �Bop(�Bx :: B) :: ? : ?
Since �; � ` dte� : ? and by Lemma 9.13, we know that �; � ` dt 0e� : ?. By the induction hypothesis,
we know that µ;�; � ` t 0 ⇡ dt 0e� : ?. Therefore, by the Rule (Rop) the result follows immediately.

Case (�x .t 0). Then, we know that

d�x .t 0e� = let x = su� in dt 0e�
We have t = �x .t 0. Then, we have to prove that µ;�; � ` �x .t 0 ⇡ let x = su� in dt 0e� : ?. Since
�; � ` let x = su� in dt 0e� : ?, we know that �; �, x : ? ` dt 0e� : ?. By the induction hypothesis, we
know that µ;�; �, x : ? ` t 0 ⇡ dt 0e� : ?. Therefore, by the Rule (RsG) the result follows immediately.

⇤

L���� 11.7. If ` dte { t� : ?, then ` t ⇡ t� : ?.

P����. Direct by 9.3. ⇤

L���� 9.4. If µ;� ` � ⇡ t : ? , then � . t 7��!⇤ � . � 0, and µ;� ` � ⇡ �
0 : ?, for some � 0.

P����. The proof is a straightforward induction on the derivation of the rule µ;� ` � ⇡ t : ?.
We only take into account rule cases where the term on the left can be a value.

Case (Rb). Trivial case because both terms in the relation are values.

(Rb)
ty(b) = B

µ;� ` b ⇡ �Bb :: ? : ?

Case (Rs). Trivial case because both terms in the relation are values.

(Rs)
� := ? 2 �

µ;� ` � ⇡ su� : ?

Case (Ru).

(Ru)
µ;� ` � ⇡ �Du :: ? : ?

µ;� ` � ⇡ �D (�Du :: D) :: ? : ?
If t = �D (�Du :: D) :: ?, then we know by the reduction rules of GSF� that:

� . t 7��! � . �Du :: ?

Note that �D # �D = �D by Lemma 9.12. Then, we have to prove that µ;� ` � ⇡ �Du :: ? : ?, which is
a premise. Therefore, the result follows immediately.

Case (Rp). Trivial case because both terms in the relation are values.

(Rp)
µ;� ` �1 ⇡ �D1u1 :: ? : ? µ;� ` �2 ⇡ �D2u2 :: ? : ?

µ;� ` h�1,�2i ⇡ �D1⇥D2 hu1,u2i :: ? : ?
Case (R�). Trivial case because both terms in the relation are values.

(R�)
µ;�;x : ? ` t1 ⇡ t2 : ?

µ;� ` (�x .t1) ⇡ �?!?(�x .t2) :: ? : ?

Gradual System F: Auxiliary Definitions and Proofs 89

Case (Rpt).

(Rpt)
µ;� ` t1 ⇡ t

0
1 : ? µ;� ` t2 ⇡ t

0
2 : ?

µ;� ` ht1, t2i ⇡ �?⇥?ht 01, t 02i :: ? : ?
We have t = �?⇥?ht 01, t 02i :: ?. We know that ht1, t2i = h�1,�2i for some �1 and �2. Also, we know
by premise that µ;� ` �1 ⇡ t

0
1 : ? and µ;� ` �2 ⇡ t

0
2 : ?. Then, by the induction hypothesis, we

know that exists � 0
1 and �

0
2 such that � . t 01 7��!

⇤ � . � 0
1, � . t

0
2 7��!

⇤ � . � 0
2, µ;� ` �1 ⇡ �

0
1 : ? and

µ;� ` �2 ⇡ �
0
2 : ?. Now, we have to prove that µ;� ` h�1,�2i ⇡ �?⇥?h� 0

1,�
0
2i :: ? : ?. But the result

follows immediately by the rule (Rpt).

Case (Rsed1).

(Rsed1)
µ;� ` t1 ⇡ t

0
1 : ? µ;� ` t2 ⇡ t

0
2 : ?

µ;� ` {t1}t2 ⇡ �?!?�1(�?⇥?t 01 :: ? ⇥ ?) :: ? ! ? t 02 : ?
We have t = �?!?�1(�?⇥?t 01 :: ? ⇥ ?) :: ? ! ? t 02. Also, we know that {t1}t2 = {�}� , for some � and � .
Then, we know that µ;� ` � ⇡ t

0
2 : ? and µ;� ` � ⇡ t

0
1 : ?. Then, by the induction hypothesis, we

know that exists � 0
1 and �

0
2 and such that � . t 01 7��!

⇤ � .� 0
1, � . t

0
2 7��!

⇤ � .� 0
2, µ;� ` � ⇡ �

0
1 : ? and

µ;� ` � ⇡ �
0
2 : ?. By the rule (Rs), we know that � 0

1 = su�� . By the dynamic semantics of GSF� , we
know that

� . t 7��!⇤ � . �?!?�1(�?⇥?su�� :: ? ⇥ ?) :: ? ! ? � 0
2 7��!⇤

� . h� ? ! ?, ? ! ?i(�x : � .�� ?x :: ?) :: ? � 0
2 7��! � . �� ? (hE1,� E2iu :: ?) :: ? 7��! � . hE1,� E2iu :: ?

where � 0
2 = hE1, E2iu :: ?. Therefore, we have to prove that µ;� ` {�}� ⇡ hE1,� E2iu :: ? : ?. As we

know that µ;� ` � ⇡ �
0
2 : ? or what is the same µ;� ` � ⇡ hE1, E2iu :: ? : ?, by the Rule (Rsed2), the

result follows immediately.

Case (Rsed1).

(Rsed1)
µ;�; � ` �1 ⇡ �

0
1 : ? µ;�; � ` �2 ⇡ �

0
2 : ?

µ;�; � ` {�1}�2 ⇡ �?!?�1(�?⇥?� 0
2 :: ? ⇥ ?) :: ? ! ? � 0

1 : ?
We have t = �?!?�1(�?⇥?� 0

2 :: ? ⇥ ?) :: ? ! ? � 0
1. Also, we know that {�1}�2 = {�}� , for some � and

� . Then, we know that µ;� ` � ⇡ �
0
1 : ? and µ;� ` � ⇡ �

0
2 : ?. By the rule (Rs), we know that

�
0
2 = su�� . By the dynamic semantics of GSF� , we know that

� . t 7��!⇤ � . �?!?�1(�?⇥?su�� :: ? ⇥ ?) :: ? ! ? � 0
1 7��!⇤

� . h� ? ! ?, ? ! ?i(�x : � .�� ?x :: ?) :: ? � 0
1 7��! � . �� ? (hE1,� E2iu :: ?) :: ? 7��! � . hE1,� E2iu :: ?

where � 0
1 = hE1, E2iu :: ?. Therefore, we have to prove that µ;� ` {�}� ⇡ hE1,� E2iu :: ? : ?. As we

know that µ;� ` � ⇡ �
0
1 : ? or what is the same µ;� ` � ⇡ hE1, E2iu :: ? : ?, by the Rule (Rsed2), the

result follows immediately.

Case (Rsed1L).

(Rsed1L)
µ;�; � ` t1 ⇡ t

0
1 : ? µ;�; � ` t2 ⇡ t

0
2 : ?

µ;�; � ` {t1}t2 ⇡ let x = t
0
1 in let � = t

0
2 in (�?!?�1(�?⇥?� :: ? ⇥ ?) :: ? ! ?) x : ?

We have
t = let x = t

0
1 in let � = t

0
2 in (�?!?�1(�?⇥?� :: ? ⇥ ?) :: ? ! ?) x

Also, we know that {t1}t2 = {�}� , for some � and � . Then, we know that µ;� ` � ⇡ t
0
1 : ? and

µ;� ` � ⇡ t
0
2 : ?. Then, by the induction hypothesis, we know that exists � 0

1 and �
0
2 such that

� . t 01 7��!
⇤ � . � 0

1, � . t
0
2 7��!

⇤ � . � 0
2, µ;� ` � ⇡ �

0
2 : ? and µ;� ` � ⇡ �

0
1 : ?. By the rule (Rs), we

know that � 0
2 = su�� . By the dynamic semantics of GSF� , we know that

� . t 7��!⇤ � . �?�?(�?!?�1(�?⇥?su�� :: ? ⇥ ?) :: ? ! ? � 0
2) :: ? :: ? 7��!⇤

90 Elizabeth Labrada, Matías Toro, and Éric Tanter

� . �?(�?h� ? ! ?, ? ! ?i(�x : � .�� ?x :: ?) :: ? � 0
2) :: ? :: ? 7��!

� . �?�?(�� ? (hE1,� E2iu :: ?) :: ?) :: ? :: ? 7��! � . hE1,� E2iu :: ?
where � 0

1 = hE1, E2iu :: ?. Therefore, we have to prove that µ;� ` {�}� ⇡ hE1,� E2iu :: ? : ?. As we
know that µ;� ` � ⇡ �

0
1 : ? or what is the same µ;� ` � ⇡ hE1, E2iu :: ? : ?, by the Rule (Rsed2), the

result follows immediately.

Case (Rsed1R).

(Rsed1R)
µ;�; � ` �1 ⇡ �

0
1 : ? µ;�; � ` t2 ⇡ t

0
2 : ?

µ;�; � ` {�1}t2 ⇡ let � = t
0
2 in (�?!?�1(�?⇥?� :: ? ⇥ ?) :: ? ! ?) � 0

1 : ?

We have
t = let � = t

0
2 in (�?!?�1(�?⇥?� :: ? ⇥ ?) :: ? ! ?) � 0

1

Also, we know that {�1}t2 = {�}� , for some � and � . Then, we know that µ;� ` � ⇡ �
0
1 : ?

and µ;� ` � ⇡ t
0
2 : ?. Then, by the induction hypothesis, we know that exists � 0

2 such that
� . t 02 7��!

⇤ � . � 0
2 and µ;� ` � ⇡ �

0
2 : ?. By the rule (Rs), we know that � 0

2 = su�� . By the dynamic
semantics of GSF� , we know that

� . t 7��!⇤ � . �?(�?!?�1(�?⇥?su�� :: ? ⇥ ?) :: ? ! ? � 0
2) :: ? 7��!⇤

� . �?(h� ? ! ?, ? ! ?i(�x : � .�� ?x :: ?) :: ? � 0
2) :: ? 7��!

� . �?(�� ? (hE1,� E2iu :: ?) :: ?) :: ? 7��! � . hE1,� E2iu :: ?
where � 0

1 = hE1, E2iu :: ?. Therefore, we have to prove that µ;� ` {�}� ⇡ hE1,� E2iu :: ? : ?. As we
know that µ;� ` � ⇡ �

0
1 : ? or what is the same µ;� ` � ⇡ hE1, E2iu :: ? : ?, by the Rule (Rsed2), the

result follows immediately.

Case (Rsed2). Trivial case because both terms in the relation are values.

(Rsed2)
µ;� ` � ⇡ hE1, E2iu :: ? : ? � := ? 2 �

µ;� ` {�}� ⇡ hE1,� E2iu :: ? : ?

Case (R?).

(R?)
µ;�; � ` � ⇡ t

0 : ?
µ;�; � ` � ⇡ �?t

0 :: ? : ?
We have t = �?t

0 :: ?, where µ;�; � ` � ⇡ t
0 : ?. Then, by the induction hypothesis, we have that

� . t 0 7��!⇤
�
00 and µ;�; � ` � ⇡ �

00 : ?. By the dynamic semantics of GSF� , we know that

� . �?t
0 :: ? 7��!⇤ � . �?�

00 :: ? 7��! � . � 00

Therefore, the result follows immediately.

⇤

L���� 11.3. If µ;� ` � ⇡ t� : ? , then there exists �� s.t. � . t� 7��!⇤ � . �� , and µ;� ` � ⇡ �� : ?.

P����. Direct by Lemma 9.4. ⇤

L���� 9.5. If µ;� ` t ⇡ t⇤ : ? and t k µ ��! t
0 k µ 0, then � .t⇤ 7��!⇤ � 0.t 0⇤ and µ 0;� 0 ` t 0 ⇡ t

0
⇤ : ?,

for some t 0⇤.

P����. The proof is a straightforward induction on µ;� ` t ⇡ t⇤ : ? and case analysis on
t k µ ��! t

0 k µ 0. The following rules are the only ones that can be applied in this case.

Gradual System F: Auxiliary Definitions and Proofs 91

Case (RsG).

(RsG)
µ;�;x : ? ` t1 ⇡ t

0
1 : ?

µ;� ` �x .t1 ⇡ let x = su� in t
0
1 : ?

Since t k µ ��! t
0 k µ 0, we know that t = �x .t1. By the reduction rules of �seal, we know that

t k µ ��! t1[�/x] k µ,� . By Lemma 9.15, we know that � . su� 7��!⇤ �,� := ? . su�� . By Rule (Rs),
we know that µ,� ;�,� := ? ` � ⇡ su�� : ?. By the reduction rules of GSF� , we know that

� . let x = su� in t
0
1 7��!⇤ �,� := ? . let x = su�� in t

0
1 7��! �,� := ? . �?(t 01[su�� /x]) :: ?

Then, we are required to show that µ,� ;�,� := ? ` t1[�/x] ⇡ �?(t 01[su�� /x]) :: ? : ?. We know by
the premise that µ;�;x : ? ` t1 ⇡ t

0
1 : ?, or what is the same µ,� ;�,� := ?;x : ? ` t1 ⇡ t

0
1 : ?. Since

µ,� ;�,� := ?;x : ? ` t1 ⇡ t
0
1 : ? and µ,� ;�,� := ? ` � ⇡ su�� : ?, by the Lemma 9.16 and Rule (R?)

the result follows immediately.

Case (Runs).

(Runs)
µ;� ` �1 ⇡ �

0
1 : ? µ;� ` �2 ⇡ �

0
2 : ? µ;�; z : ? ` t3 ⇡ t

0
3 : ?

µ;� ` let {z}�1 = �2 in t3 ⇡ let z = �?!?�2(�?⇥?� 0
1 :: ? ⇥ ?) :: ? ! ? � 0

2 in t
0
3 : ?

Since t k µ ��! t
0 k µ 0, we know that t = let {z}� = {�}� in t3. By the reduction rules of �seal,

we know that t k µ ��! t3[�/z] k µ. We know by the premises that µ;� ` � ⇡ �
0
1 : ? and µ;� `

{�}� ⇡ �
0
2 : ?. Therefore, by Rules (Rs) and (Rsed2), we know that �1 = su�� and �2 = hE1,� E2iu :: ?,

for some u, E1 and E2. By the reduction rules of GSF� , we know that

� . let z = �?!?�2(�?⇥?su�� :: ? ⇥ ?) :: ? ! ? (hE1,� E2iu :: ?) in t
0
3 7��!⇤

� . let z = (h? ! �
?, ? ! ?i(�x : ?.�� ?x :: �) :: ?) (hE1,� E2iu :: ?) in t

0
3 7��!⇤

� . let z = (hE1, E2iu :: ?) in t
0
3 7��!⇤ � . t 03[hE1, E2iu :: ?/x]

We are required to show that µ;� ` t3[�/z] ⇡ t
0
3[hE1, E2iu :: ?/z] : ?, but we know that µ;� `

{�}� ⇡ hE1,� E2iu :: ? : ?, therefore we know by the rule (Rsed2) that µ;� ` � ⇡ hE1, E2iu :: ? : ?.
Finally, by the Lemma 9.16, the result follows immediately.

Case (Rop).

(Rop)
µ;�; � ` t1 ⇡ t2 : B ty(op) = B ! B

0

µ;�; � ` op(t1) ⇡ op(�Bt2 :: B) :: ? : B0

Applying the induction hypothesis, reduction rules of �seal and GSF� , and Rule (R�).

Case (RunsL).

(RunsL)
µ;� ` t1 ⇡ t

0
1 : ? µ;� ` t2 ⇡ t

0
2 : ? µ;�; z : ? ` t3 ⇡ t

0
3 : ?

µ;� ` let {z}t1 = t2 in t3 ⇡ let x = t
0
1 in let � = t

0
2 in let z = �?!?�2(�?⇥?x :: ? ⇥ ?) :: ? ! ? � in t

0
3 : ?

Since t k µ ��! t
0 k µ 0, we know that t = let {z}� = {�}� in t3. By the reduction rules of �seal,

we know that t k µ ��! t3[�/z] k µ. We know by the premises that µ;� ` � ⇡ t
0
1 : ? and µ;� `

{�}� ⇡ t
0
2 : ?. Therefore, by Lemma 9.4, we know that � . t 01 7��!⇤ �1 . �1, � . t 02 7��!⇤ � . �2,

µ;� ` � ⇡ �1 : ? and µ;� ` {�}� ⇡ �2 : ?, for some �1 and �2. By Rules (Rs) and (Rsed2), we know
that �1 = su�� and �2 = hE1,� E2iu :: ?, for some u, E1 and E2. By the reduction rules of GSF� , we
know that

� . let x = t
0
1 in let � = t

0
2 in let z = �?!?�2(�?⇥?x :: ? ⇥ ?) :: ? ! ? � in t

0
3 7��!⇤

� . �?�?(let z = �?!?�2(�?⇥?su�� :: ? ⇥ ?) :: ? ! ? (hE1,� E2iu :: ?) in t
0
3) :: ? :: ? 7��!⇤

� . �?�?(let z = (h? ! �
?, ? ! ?i(�x : ?.�� ?x :: �) :: ?) (hE1,� E2iu :: ?) in t

0
3) :: ? :: ? 7��!⇤

92 Elizabeth Labrada, Matías Toro, and Éric Tanter

� . �?�?(let z = (hE1, E2iu :: ?) in t
0
3) :: ? :: ? 7��!⇤ � . �?�?�?(t 03[hE1, E2iu :: ?/x]) :: ? :: ? :: ?

We are required to show that µ;� ` t3[�/z] ⇡ �?�?�?(t 03[hE1, E2iu :: ?/z]) :: ? :: ? :: ? : ?, but
we know that µ;� ` {�}� ⇡ hE1,� E2iu :: ? : ?, therefore we know by the rule (Rsed2) that
µ;� ` � ⇡ hE1, E2iu :: ? : ?. Finally, by the Lemma 9.16 and the Rule (R?), the result follows
immediately.

Case (RunsR).

(RunsR)
µ;� ` �1 ⇡ �

0
1 : ? µ;� ` t2 ⇡ t

0
2 : ? µ;�; z : ? ` t3 ⇡ t

0
3 : ?

µ;� ` let {z}�1 = t2 in t3 ⇡ let � = t
0
2 in let z = �?!?�2(�?⇥?� 0

1 :: ? ⇥ ?) :: ? ! ? � in t
0
3 : ?

Since t k µ ��! t
0 k µ 0, we know that t = let {z}� = {�}� in t3. By the reduction rules of �seal,

we know that t k µ ��! t3[�/z] k µ. We know by the premises that µ;� ` � ⇡ �
0
1 : ? and µ;� `

{�}� ⇡ t
0
2 : ?. Therefore, by Lemma 9.4, we know that � . t 02 7��!

⇤ � . �2 and µ;� ` {�}� ⇡ �2 : ?,
for some �2. By Rules (Rs) and (Rsed2), we know that �1 = su�� and �2 = hE1,� E2iu :: ?, for some u,
E1 and E2. By the reduction rules of GSF� , we know that

� . let � = t
0
2 in let z = �?!?�2(�?⇥?� 0

1 :: ? ⇥ ?) :: ? ! ? � in t
0
3 7��!⇤

� . �?(let z = �?!?�2(�?⇥?su�� :: ? ⇥ ?) :: ? ! ? (hE1,� E2iu :: ?) in t
0
3) :: ? 7��!⇤

� . �?(let z = (h? ! �
?, ? ! ?i(�x : ?.�� ?x :: �) :: ?) (hE1,� E2iu :: ?) in t

0
3) :: ? 7��!⇤

� . �?(let z = (hE1, E2iu :: ?) in t
0
3) :: ? 7��! � . �?�?(t 03[hE1, E2iu :: ?/x]) :: ? :: ?

We are required to show that µ;� ` t3[�/z] ⇡ �?�?(t 03[hE1, E2iu :: ?/z]) :: ? :: ? : ?, but we know
that µ;� ` {�}� ⇡ hE1,� E2iu :: ? : ?, therefore we know by the rule (Rsed2) that µ;� ` � ⇡
hE1, E2iu :: ? : ?. Finally, by the Lemma 9.16 and the Rule (R?), the result follows immediately.

Case (Rapp).

(Rapp)
µ;� ` �1 ⇡ �

0
1 : ? µ;� ` �2 ⇡ �

0
2 : ?

µ;� ` �1 �2 ⇡ (�?!?�
0
1 :: ? ! ?) � 0

2 : ?
Since t k µ ��! t

0 k µ 0, we know that t = (�x .t 001) �2, where �1 = (�x .t 001). Therefore, we know that
µ;� ` (�x .t 001) ⇡ �

0
1 : ? and µ;� ` �2 ⇡ �

0
2 : ?. By the rule (R�), we know that � 0

1 = �?!?�x .t 0001 :: ?,
where �;x : ? ` t 001 ⇡ t

000
1 : ?.

By the dynamic semantics of �seal, we know that

(�x .t 001) �2 k µ ��! t
00
1 [�2/x] k µ

By the dynamic semantics of GSF� , we know that

� . (�?!?(�?!?�x .t
000
1 :: ?) :: ? ! ?) � 0

2 7��!⇤

� . (�?!?(�x .t 0001) :: ? ! ?) � 0
2 7��! � . �?(t 0001 [� 0

2/x]) :: ?
Since µ;�;x : ? ` t

00
1 ⇡ t

000
1 : ? and µ;� ` �2 ⇡ �

0
2 : ?, we know by Lemma 9.16 that µ;� `

t
00
1 [�2/x] ⇡ (t 0001 [� 0

2/x]) : ?. By the Rule (R?), we know that µ;� ` t 001 [�2/x] ⇡ �?(t 0001 [� 0
2/x]) :: ? : ?,

thus the result follows.

Case (RappL).

(RappL)
µ;� ` t1 ⇡ t

0
1 : ? µ;� ` t2 ⇡ t

0
2 : ?

µ;� ` t1 t2 ⇡ let x = t
0
1 in let � = t

0
2 in (�?!?x :: ? ! ?) � : ?

Since t k µ ��! t
0 k µ 0, we know that t = (�x .t 001) �2, where t1 = (�x .t 001) and t2 = �2. Therefore,

we know that µ;� ` (�x .t 001) ⇡ t
0
1 : ? and µ;� ` �2 ⇡ t

0
2 : ?. By Lemma 9.4, we know that

Gradual System F: Auxiliary Definitions and Proofs 93

� . t 01 7��!
⇤ � . � 0

1, � . t
0
2 7��!

⇤ � . � 0
2, µ;� ` (�x .t 001) ⇡ �

0
1 : ? and µ;� ` �2 ⇡ �

0
2 : ?, for some � 0

1 and
�
0
2. By the rule (R�), we know that � 0

1 = �?!?�x .t 0001 :: ?, where �;x : ? ` t 001 ⇡ t
000
1 : ?.

By the dynamic semantics of �seal, we know that

(�x .t 001) �2 k µ ��! t
00
1 [�2/x] k µ

By the dynamic semantics of GSF� , we know that

� . let x = t
0
1 in let � = t

0
2 in (�?!?x :: ? ! ?) � 7��!⇤ � . �?�?�?!?(�x .t 0001) :: ? ! ?) � 0

2) :: ? :: ?
� . �?�?(�?(t 0001 [� 0

2/x]) :: ?) :: ? :: ?
Since µ;�;x : ? ` t

00
1 ⇡ t

000
1 : ? and µ;� ` �2 ⇡ �

0
2 : ?, we know by Lemma 9.16 that µ;� `

t
00
1 [�2/x] ⇡ (t 0001 [� 0

2/x]) : ?. By the Rule (R?), we know that µ;� ` t 001 [�2/x] ⇡ �?(t 0001 [� 0
2/x]) :: ? : ?,

therefore we have µ;� ` t 001 [�2/x] ⇡ �?�?(�?(t 0001 [� 0
2/x]) :: ?) :: ? :: ? : ?, thus the result follows.

Case (RappR).

(RappR)
µ;� ` �1 ⇡ �

0
1 : ? µ;� ` t2 ⇡ t

0
2 : ?

µ;� ` �1 t2 ⇡ let � = t
0
2 in (�?!?�

0
1 :: ? ! ?) � : ?

Since t k µ ��! t
0 k µ 0, we know that t = (�x .t 001) �2, where�1 = (�x .t 001) and t2 = �2. Therefore, we

know that µ;� ` (�x .t 001) ⇡ �
0
1 : ? and µ;� ` �2 ⇡ t

0
2 : ?. By Lemma 9.4, we know that�.t 02 7��!

⇤ �.� 0
2

and µ;� ` �2 ⇡ �
0
2 : ?, for some � 0

2. By the rule (R�), we know that � 0
1 = �?!?�x .t 0001 :: ?, where

�;x : ? ` t 001 ⇡ t
000
1 : ?.

By the dynamic semantics of �seal, we know that

(�x .t 001) �2 k µ ��! t
00
1 [�2/x] k µ

By the dynamic semantics of GSF� , we know that

� . let � = t
0
2 in (�?!?�

0
1 :: ? ! ?) � 7��!⇤ � . �?�?!?(�x .t 0001) :: ? ! ?) � 0

2) :: ?
� . �?(�?(t 0001 [� 0

2/x]) :: ?) :: ?
Since µ;�;x : ? ` t

00
1 ⇡ t

000
1 : ? and µ;� ` �2 ⇡ �

0
2 : ?, we know by Lemma 9.16 that µ;� `

t
00
1 [�2/x] ⇡ (t 0001 [� 0

2/x]) : ?. By the Rule (R?), we know that µ;� ` t 001 [�2/x] ⇡ �?(t 0001 [� 0
2/x]) :: ? : ?,

therefore we have µ;� ` t 001 [�2/x] ⇡ �?(�?(t 0001 [� 0
2/x]) :: ?) :: ? : ?, thus the result follows.

Case (Rpi).

(Rpi)
µ;� ` t ⇡ t

0 : ?
µ;� ` �i (t) ⇡ �i (�?⇥?t 0 :: ? ⇥ ?) : ?

Applying the induction hypothesis, reduction rules of �seal and GSF� , and Rules (Rp) and (Rpt).

Case (R?). We have that

(R?)
µ;� ` t ⇡ t

00
⇤ : ?

µ;� ` t ⇡ �?t
00
⇤ :: ? : ?

We have t⇤ = �?t
00
⇤ :: ?, where µ;� ` t ⇡ t

00
⇤ : ?. Then, by the induction hypothesis, we have that

� . t 00⇤ 7��!⇤ � 0 . t 000⇤ and µ
0;� 0 ` t 0 ⇡ t

000
⇤ : ?. We are required to show that µ 0;� 0 ` t 0 ⇡ �?t

000
⇤ :: ? : ?.

But the result follows immediately by the Rule (R?).

⇤

L���� 9.6. Let µ;� ` �1 ⇡ �u :: ? : ?. Then, �1 = �x .t1 if and only if u = �x : ?.t2 and � = �?!?.

P����. The proof follow by the exploration of rules in µ;� ` �1 ⇡ �u :: ? : ? and the de�nition
of the evidence. ⇤

94 Elizabeth Labrada, Matías Toro, and Éric Tanter

C�������� 9.7. Let µ;� ` �1 ⇡ �u :: ? : ?. Then, �1 , �x .t1 then u , �x : ?.t2 and � , �G1!G2 .

P����. By Lemma 9.6. ⇤

L���� 9.8. If µ;� ` t ⇡ t⇤ : ? and t k µ ��! error, then � . t⇤ 7��!⇤ error.

P����. The proof is a straightforward induction on µ;� ` t ⇡ t⇤ : ?. The following rule is the
only one that can be applied in this case (t k µ ��! error).

Case (Rapp).

(Rapp)
µ;� ` �1 ⇡ �

0
1 : ? µ;� ` �2 ⇡ �

0
2 : ?

µ;� ` �1 �2 ⇡ (�?!?�
0
1 :: ? ! ?) � 0

2 : ?
Since t k µ ��! type_error, we know that �1 is not a function, and by Corollary 9.7 and µ;� `

�1 ⇡ �
0
1 : ?, we know that � 0

1 also can not be a function and its evidence, syntactically, can not be a
function. Let suppose that � 0

1 = �1u1 :: ?. Then, we know that �1 # �?!? fails, and the result holds.

� . (�?!?(�1u1 :: ?) :: ? ! ?) � 0
2 7��!⇤ error

Case (RappL).

(RappL)
µ;� ` t1 ⇡ t

0
1 : ? µ;� ` t2 ⇡ t

0
2 : ?

µ;� ` t1 t2 ⇡ let x = t
0
1 in let � = t

0
2 in (�?!?x :: ? ! ?) � : ?

By Lemma 9.4, µ;� ` t1 ⇡ t
0
1 : ? and µ;� ` t2 ⇡ t

0
2 : ?, we know that�.t 01 7��!

⇤ �.� 0
1,�.t

0
2 7��!

⇤ �.� 0
2,

µ;� ` �1 ⇡ �
0
1 : ? and µ;� ` �2 ⇡ �

0
2 : ?, for some � 0

1 and �
0
2. Since t k µ ��! type_error, we know

that �1 is not a function, and by Corollary 9.7 and µ;� ` �1 ⇡ �
0
1 : ?, we know that � 0

1 also can not
be a function and its evidence, syntactically, can not be a function. Let suppose that � 0

1 = �1u1 :: ?.
Then, we know that �1 # �?!? fails, and the result holds.

� . let x = t
0
1 in let � = t

0
2 in (�?!?x :: ? ! ?) � 7��!⇤

� . �?�?(�?!?(�1u1 :: ?) :: ? ! ?) � 0
2) :: ? :: ? 7��! error

Case (RappR).

(RappR)
µ;� ` �1 ⇡ �

0
1 : ? µ;� ` t2 ⇡ t

0
2 : ?

µ;� ` �1 t2 ⇡ let � = t
0
2 in (�?!?�

0
1 :: ? ! ?) � : ?

By Lemma 9.4 and µ;� ` t2 ⇡ t
0
2 : ?, we know that � . t 02 7��!⇤ � . � 0

2 and µ;� ` �2 ⇡ �
0
2 : ?, for

some � 0
2. Since t k µ ��! type_error, we know that �1 is not a function, and by Corollary 9.7 and

µ;� ` �1 ⇡ �
0
1 : ?, we know that � 0

1 also can not be a function and its evidence, syntactically, can
not be a function. Let suppose that � 0

1 = �1u1 :: ?. Then, we know that �1 # �?!? fails, and the result
holds.

� . let � = t
0
2 in (�?!?�

0
1 :: ? ! ?) � 7��!⇤

� . �?�?!?(�1u1 :: ?) :: ? ! ?) � 0
2) :: ? 7��! error

Case (TRpi). (TRpi)
µ;�; � ` t ⇡ t

0 : ?
µ;�; � ` �i (t) ⇡ �i (�?⇥?t 0 :: ? ⇥ ?) : ?

Similar to the function application case.

Case (Runs).

(Runs)
µ;� ` �1 ⇡ �

0
1 : ? µ;� ` �2 ⇡ �

0
2 : ? �; z : ? ` t3 ⇡ t

0
3 : ?

µ;� ` let {z}�1 = �2 in t3 ⇡ let z = �?!?�2(�?⇥?� 0
1 :: ? ⇥ ?) :: ? ! ? � 0

2 in t
0
3 : ?

Gradual System F: Auxiliary Definitions and Proofs 95

Since t k µ ��! unseal_error, we know that t = let {z}� = {�}� 0 in t3, where � , �
0. We know

by the premises that µ;� ` � ⇡ �
0
1 : ? and µ;� ` {�}� 0 ⇡ �

0
2 : ?.Therefore, by Rules (Rs) and (Rsed2),

we know that �1 = su�� and �2 = hE1,� 0E2iu :: ?, for some u, E1 and E2. By the reduction rules of
GSF� , we know that

� . let x = �?!?�2(�?⇥?su�� :: ? ⇥ ?) :: ? ! ? (hE1,� 0E2iu :: ?) in t
0
3 7��!⇤

� . let x = (h? ! �
?, ? ! ?i(�x : ?.�� ?x :: �) :: ?) (hE1,� 0E2iu :: ?) in t

0
3 7��!⇤

� . let x = (h� ?, ?i(�� ? (hE1,� 0E2iu :: ?) :: �) :: ?) in t
0
3 7��! error

Note that the transitivity between hE1,� 0E2i # �� ? fails because � 0 , � . Thus the results follows
immediately.

Case (RunsL).

(RunsL)
µ;� ` t1 ⇡ t

0
1 : ? µ;� ` t2 ⇡ t

0
2 : ? µ;�; z : ? ` t3 ⇡ t

0
3 : ?

µ;� ` let {z}t1 = t2 in t3 ⇡ let x = t
0
1 in let � = t

0
2 in let z = �?!?�2(�?⇥?x :: ? ⇥ ?) :: ? ! ? � in t

0
3 : ?

Since t k µ ��! unseal_error, we know that t = let {z}� = {�}� 0 in t3, where � , �
0. We know

by the premises that µ;� ` � ⇡ t
0
1 : ? and µ;� ` {�}� 0 ⇡ t

0
2 : ?. Therefore, by Lemma 9.4, we know

that � . t 01 7��!
⇤ �1 . �1, � . t 02 7��!

⇤ � . �2, µ;� ` � ⇡ �1 : ? and µ;� ` {�}� 0 ⇡ �2 : ?, for some �1
and �2. By Rules (Rs) and (Rsed2), we know that �1 = su�� and �2 = hE1,� 0E2iu :: ?, for some u, E1
and E2. By the reduction rules of GSF� , we know that

� . let x = t
0
1 in let � = t

0
2 in let z = �?!?�2(�?⇥?x :: ? ⇥ ?) :: ? ! ? � in t

0
3 7��!⇤

� . �?�?(let z = �?!?�2(�?⇥?su�� :: ? ⇥ ?) :: ? ! ? (hE1,� 0E2iu :: ?) in t
0
3) :: ? :: ? 7��!⇤

� . �?�?(let z = (h? ! �
?, ? ! ?i(�x : ?.�� ?x :: �) :: ?) (hE1,� 0E2iu :: ?) in t

0
3) :: ? :: ? 7��!⇤

� . �?�?(let x = (h� ?, ?i(�� ? (hE1,� 0E2iu :: ?) :: �) :: ?) in t
0
3) :: ? :: ? 7��! error

Note that the transitivity between hE1,� 0E2i # �� ? fails because � 0 , � . Thus the results follows
immediately.

Case (RunsR).

(RunsR)
µ;� ` �1 ⇡ �

0
1 : ? µ;� ` t2 ⇡ t

0
2 : ? µ;�; z : ? ` t3 ⇡ t

0
3 : ?

µ;� ` let {z}�1 = t2 in t3 ⇡ let � = t
0
2 in let z = �?!?�2(�?⇥?� 0

1 :: ? ⇥ ?) :: ? ! ? � in t
0
3 : ?

Since t k µ ��! unseal_error, we know that t = let {z}� = {�}� 0 in t3, where � , �
0. We know

by the premises that µ;� ` � ⇡ �
0
1 : ? and µ;� ` {�}� 0 ⇡ t

0
2 : ?. Therefore, by Lemma 9.4, we know

that � . t 02 7��!
⇤ � . �2 and µ;� ` {�}� 0 ⇡ �2 : ?, for some �2. By Rules (Rs) and (Rsed2), we know

that �1 = su�� and �2 = hE1,� 0E2iu :: ?, for some u, E1 and E2. By the reduction rules of GSF� , we
know that

� . let � = t
0
2 in let z = �?!?�2(�?⇥?� 0

1 :: ? ⇥ ?) :: ? ! ? � in t
0
3 7��!⇤

� . �?(let z = �?!?�2(�?⇥?su�� :: ? ⇥ ?) :: ? ! ? (hE1,� 0E2iu :: ?) in t
0
3) :: ? 7��!⇤

� . �?(let z = (h? ! �
?, ? ! ?i(�x : ?.�� ?x :: �) :: ?) (hE1,� 0E2iu :: ?) in t

0
3) :: ? 7��!⇤

� . �?(let x = (h� ?, ?i(�� ? (hE1,� 0E2iu :: ?) :: �) :: ?) in t
0
3) :: ? 7��! error

Note that the transitivity between hE1,� 0E2i # �� ? fails because � 0 , � . Thus the results follows
immediately.

96 Elizabeth Labrada, Matías Toro, and Éric Tanter

Case (R?).

(R?)
µ;� ` t ⇡ t1⇤ : ?

µ;� ` t ⇡ �?t1⇤ :: ? : ?
Since t k µ ��! error, we know by the induction hypothesis on µ;� ` t ⇡ t1⇤ : ? that � . t1⇤ 7��!

error. Thus the result follows immediately.

⇤

L���� 9.9. If µ;� ` t ⇡ t⇤ : ? and t k µ 7��! t
0 k µ 0, then � . t⇤ 7��!⇤ � 0 . t 0⇤ and µ 0;� 0 ` t 0 ⇡ t

0
⇤ : ?,

for some t 0⇤.

P����. The proof is a straightforward induction on µ;� ` t1 ⇡ t2 : ?. We only take into account
the rules that can be applied.

Case (Rpt).

(Rpt)
µ;� ` t1 ⇡ t1⇤ : ? µ;� ` t2 ⇡ t2⇤ : ?
µ;� ` ht1, t2i ⇡ �?⇥?ht1⇤, t2⇤ i :: ? : ?

If t k µ ��! t
0 k µ 0, then by Lemma 9.5, the result follows immediately. Else, if t k µ 7��! t

0 k µ 0,
we have the following two cases:

• t = ht1, t2i = f [t1] , where f = h[], t2i.
Therefore, we have that t1 k µ 7��! t

0
1 k µ 0.

By the induction hypothesis, we get that � . t1⇤ 7��!⇤ � 0 . t 01⇤ and µ
0;� 0 ` t 01 ⇡ t

0
1⇤ : ?. Thus,

we know that
� . �?⇥?ht1⇤, t2⇤ i :: ? 7��!⇤ � 0 . �?⇥?ht 01⇤, t2⇤ i :: ?

Therefore, the result follows immediately by Rule (Rpt).
• t = ht1, t2i = h�1, t2i = f [t2] , where f = h�1, []i. Therefore, we have that t2 k µ 7��! t

0
2 k µ 0.

By the induction hypothesis, we get that � . t2⇤ 7��!⇤ � 0 . t 02⇤ and µ
0;� 0 ` t 02 ⇡ t

0
2⇤ : ?. Since

µ;� ` �1 ⇡ t1⇤ : ?, by Lemma 9.4, we know that � . t1⇤ 7��!⇤ � . �1⇤ and µ;� ` �1 ⇡ �1⇤ : ?.
Thus, we know that

� . �?⇥?ht1⇤, t2⇤ i :: ? 7��!⇤ � . �?⇥?h� 0
1⇤, t2⇤ i :: ? 7��!

⇤ � 0 . �?⇥?h� 0
1⇤, t

0
2⇤ i :: ?

Therefore, the result follows immediately by Rule (Rpt).

Case (R?).

(R?)
µ;� ` t1 ⇡ t1⇤ : ?

µ;� ` t1 ⇡ �?t1⇤ :: ? : ?
If t k µ ��! t

0 k µ 0, then by Lemma 9.5, the result follows immediately. Else, if t k µ 7��! t
0 k µ 0,

we have that t1 k µ 7��! t
0
1 k µ 0.

By the induction hypothesis, we get that � . t1⇤ 7��!⇤ � 0 . t 01⇤ and µ
0;� 0 ` t 01 ⇡ t

0
1⇤ : ?. Thus, we

know that
� . �?t1⇤ :: ? 7��!⇤ � 0 . �?t

0
1⇤ :: ?

Therefore, the result follows immediately by Rule (R?).

Case (RappL).

(RappL)
µ;� ` t1 ⇡ t1⇤ : ? µ;� ` t2 ⇡ t2⇤ : ?

µ;� ` t1 t2 ⇡ let x = t1⇤ in let � = t2⇤ in (�?!?x :: ? ! ?) � : ?
If t k µ ��! t

0 k µ 0, then by Lemma 9.5, the result follows immediately. Else, if t k µ 7��! t
0 k µ 0,

we have the following two cases:

Gradual System F: Auxiliary Definitions and Proofs 97

• t = t1 t2 = f [t1] , where f = [] t2. Therefore, we have that t1 k µ 7��! t1 k µ 0.
By the induction hypothesis, we get that � . t1⇤ 7��!⇤ � 0 . t 01⇤ and µ

0;� 0 ` t 01 ⇡ t
0
1⇤ : ?. Thus,

we know that

� . let x = t1⇤ in let � = t2⇤ in (�?!?x :: ? ! ?) � 7��!⇤

� 0 . let x = t
0
1⇤ in let � = t2⇤ in (�?!?x :: ? ! ?) �

Therefore, the result follows immediately by Rule (RappL).
• t = t1 t2 = �1 t2 = f [t2] , where f = �1 []. Therefore, we have that t2 k µ 7��! t

0
2 k µ 0. By the

induction hypothesis, we get that � . t2⇤ 7��!⇤ � 0 . t 02⇤ and µ
0;� 0 ` t

0
2 ⇡ t

0
2⇤ : ?. Since µ;� `

�1 ⇡ t1⇤ : ?, by Lemma 9.4, we know that � . t1⇤ 7��!⇤ � . �1⇤ and µ;� ` �1 ⇡ �1⇤ : ?. Thus,
we know that

� . let x = t1⇤ in let � = t2⇤ in (�?!?x :: ? ! ?) � 7��!⇤

� . let x = �1⇤ in let � = t2⇤ in (�?!?x :: ? ! ?) � 7��!
� . �?(let � = t2⇤ in (�?!?�1⇤ :: ? ! ?) �) :: ? 7��!⇤

� 0 . �?(let � = t
0
2⇤ in (�?!?�1⇤ :: ? ! ?) �) :: ?

Therefore, the result follows immediately by Rules (RappR) and (R?).

Case (RappR).

(RappR)
µ;� ` �1 ⇡ �1⇤ : ? µ;� ` t2 ⇡ t2⇤ : ?

µ;� ` �1 t2 ⇡ let � = t2⇤ in (�?!?�1⇤ :: ? ! ?) � : ?

If t k µ ��! t
0 k µ 0, then by Lemma 9.5, the result follows immediately. Else, if t k µ 7��! t

0 k µ 0,
we know that t = �1 t2 = f [t2] , where f = �1 []. Therefore, we have that t2 k µ 7��! t

0
2 k µ 0. By the

induction hypothesis, we get that � . t2⇤ 7��!⇤ � 0 . t 02⇤ and µ
0;� 0 ` t 02 ⇡ t

0
2⇤ : ?. Thus, we know that

� . let � = t2⇤ in (�?!?�1⇤ :: ? ! ?) � 7��!⇤

� 0 . let � = t
0
2⇤ in (�?!?�1⇤ :: ? ! ?) �

Therefore, the result follows immediately by Rule (RappR).

Case (Rpi).

(Rpi)
µ;� ` t1 ⇡ t1⇤ : ?

µ;� ` �i (t1) ⇡ �i (�?⇥?t1⇤ :: ? ⇥ ?) : ?
If t k µ ��! t

0 k µ 0, then by Lemma 9.5, the result follows immediately. Else, if t k µ 7��! t
0 k µ 0,

we know that t = �i (t1) = f [t1], where �i ([]).
Therefore, we have that t1 k µ 7��! t

0
1 k µ 0.

By the induction hypothesis, we get that � . t1⇤ 7��!⇤ � 0 . t 01⇤ and µ
0;� 0 ` t 01 ⇡ t

0
1⇤ : ?. Thus, we

know that
� . �i (�?⇥?t1⇤ :: ? ⇥ ?) 7��!⇤ � 0 . �i (�?⇥?t 01⇤ :: ? ⇥ ?)

Therefore, the result follows immediately by Rule (Rpi).

Case (Rsed1L).

(Rsed1L)
µ;� ` t1 ⇡ t1⇤ : ? µ;� ` t2 ⇡ t2⇤ : ?

µ;� ` {t1}t2 ⇡ let x = t1⇤ in let � = t2⇤ in (�?!?�1(�?⇥?� :: ? ⇥ ?) :: ? ! ?) x : ?

If t k µ ��! t
0 k µ 0, then by Lemma 9.5, the result follows immediately. Else, if t k µ 7��! t

0 k µ 0,
we have the following two cases:

98 Elizabeth Labrada, Matías Toro, and Éric Tanter

• t = {t1}t2 = f [t1] , where f = {[]}t2 .
Therefore, we have that t1 k µ 7��! t

0
1 k µ 0.

By the induction hypothesis, we get that � . t1⇤ 7��!⇤ � 0 . t 01⇤ and µ
0;� 0 ` t 01 ⇡ t

0
1⇤ : ?. Thus,

we know that

� . let x = t1⇤ in let � = t2⇤ in (�?!?�1(�?⇥?� :: ? ⇥ ?) :: ? ! ?) x 7��!⇤

� 0 . let x = t
0
1⇤ in let � = t2⇤ in (�?!?�1(�?⇥?� :: ? ⇥ ?) :: ? ! ?) x

Therefore, the result follows immediately by Rule (Rsed1L).
• t = {t1}t2 = {�1}t2 = f [t2] , where f = {�1}[]. Therefore, we have that t2 k µ 7��! t

0
2 k µ 0. By

the induction hypothesis, we get that � . t2⇤ 7��!⇤ � 0 . t 02⇤ and µ
0;� 0 ` t

0
2 ⇡ t

0
2⇤ : ?. Since

µ;� ` �1 ⇡ t1⇤ : ?, by Lemma 9.4, we know that � . t1⇤ 7��!⇤ � . �1⇤ and µ;� ` �1 ⇡ �1⇤ : ?.
Thus, we know that

� . let x = t1⇤ in let � = t2⇤ in (�?!?�1(�?⇥?� :: ? ⇥ ?) :: ? ! ?) x 7��!⇤

� . let x = � 0
1⇤ in let � = t2⇤ in (�?!?�1(�?⇥?� :: ? ⇥ ?) :: ? ! ?) x 7��!

� . �?(let � = t2⇤ in (�?!?�1(�?⇥?� :: ? ⇥ ?) :: ? ! ?) � 0
1⇤) :: ? 7��!

⇤

� 0 . �?(let � = t
0
2⇤ in (�?!?�1(�?⇥?� :: ? ⇥ ?) :: ? ! ?) � 0

1⇤) :: ?
Therefore, the result follows immediately by Rules (Rsed1R) and (R?).

Case (Rsed1R).

(Rsed1R)
µ;� ` �1 ⇡ �1⇤ : ? µ;� ` t2 ⇡ t2⇤ : ?

µ;� ` {�1}t2 ⇡ let � = t2⇤ in (�?!?�1(�?⇥?� :: ? ⇥ ?) :: ? ! ?) �1⇤ : ?
If t k µ ��! t

0 k µ 0, then by Lemma 9.5, the result follows immediately. Else, if t k µ 7��! t
0 k µ 0, we

know that t = {t1}t2 = {�1}t2 = f [t2] , where f = {�1}[]. Therefore, we have that t2 k µ 7��! t
0
2 k µ 0.

By the induction hypothesis, we get that � . t2⇤ 7��!⇤ � 0 . t 02⇤ and µ
0;� 0 ` t

0
2 ⇡ t

0
2⇤ : ?. Thus, we

know that
� . let � = t2⇤ in (�?!?�1(�?⇥?� :: ? ⇥ ?) :: ? ! ?) � 0

1⇤ 7��!
⇤

� 0 . let � = t
0
2⇤ in (�?!?�1(�?⇥?� :: ? ⇥ ?) :: ? ! ?) � 0

1⇤

Therefore, the result follows immediately by Rule (Rsed1R).

Case (RunsL).

(RunsL)
µ;� ` t1 ⇡ t1⇤ : ? µ;� ` t2 ⇡ t2⇤ : ? µ;�; z : ? ` t3 ⇡ t3⇤ : ?

µ;� ` let {z}t1 = t2 in t3 ⇡ let x = t1⇤ in let � = t2⇤ in let z = �?!?�2(�?⇥?x :: ? ⇥ ?) :: ? ! ? � in t3⇤ : ?

If t k µ ��! t
0 k µ 0, then by Lemma 9.5, the result follows immediately. Else, if t k µ 7��! t

0 k µ 0,
we have the following two cases:

• t = let {z}t1 = t2 in t3 = f [t1] , where f = let {z}[] = t2 in t3.
Therefore, we have that t1 k µ 7��! t

0
1 k µ 0.

By the induction hypothesis, we get that � . t1⇤ 7��!⇤ � 0 . t 01⇤ and µ
0;� 0 ` t 01 ⇡ t

0
1⇤ : ?. Thus,

we know that

� . let x = t1⇤ in let � = t2⇤ in let z = �?!?�2(�?⇥?x :: ? ⇥ ?) :: ? ! ? � in t3⇤ 7��!⇤

� 0 . let x = t
0
1⇤ in let � = t2⇤ in let z = �?!?�2(�?⇥?x :: ? ⇥ ?) :: ? ! ? � in t3⇤

Therefore, the result follows immediately by Rule (RunsL).

Gradual System F: Auxiliary Definitions and Proofs 99

• t = let {z}t1 = t2 in t3 = let {z}�1 = t2 in t3 = f [t2] , where f = let {z}�1 = [] in t3. Therefore,
we have that t2 k µ 7��! t

0
2 k µ 0. By the induction hypothesis, we get that � . t2⇤ 7��!⇤ � 0 . t 02⇤

and µ 0;� 0 ` t 02 ⇡ t
0
2⇤ : ?. Since µ;� ` �1 ⇡ t1⇤ : ?, by Lemma 9.4, we know that� . t1⇤ 7��!⇤ � . �1⇤

and µ;� ` �1 ⇡ �1⇤ : ?. Thus, we know that
� . let x = t1⇤ in let � = t2⇤ in let z = �?!?�2(�?⇥?x :: ? ⇥ ?) :: ? ! ? � in t3⇤ 7��!⇤

� . let x = �1⇤ in let � = t2⇤ in let z = �?!?�2(�?⇥?x :: ? ⇥ ?) :: ? ! ? � in t3⇤ 7��!
� . �?(let � = t2⇤ in let z = �?!?�2(�?⇥?�1⇤ :: ? ⇥ ?) :: ? ! ? � in t3⇤) :: ? 7��!⇤

� 0 . �?(let � = t
0
2⇤ in let z = �?!?�2(�?⇥?�1⇤ :: ? ⇥ ?) :: ? ! ? � in t3⇤) :: ?

Therefore, the result follows immediately by Rules (RunsR) and (R?).

Case (RunsR).

(RunsR)
µ;� ` �1 ⇡ �1⇤ : ? µ;� ` t2 ⇡ t2⇤ : ? µ;�; z : ? ` t3 ⇡ t3⇤ : ?

µ;� ` let {z}�1 = t2 in t3 ⇡ let � = t2⇤ in let z = �?!?�2(�?⇥?�1⇤ :: ? ⇥ ?) :: ? ! ? � in t3⇤ : ?

If t k µ ��! t
0 k µ 0, then by Lemma 9.5, the result follows immediately. Else, if t k µ 7��! t

0 k µ 0,
thenwe know that t = let {z}t1 = t2 in t3 = let {z}�1 = t2 in t3 = f [t2] , where f = let {z}�1 = [] in t3.
Therefore, we have that t2 k µ 7��! t

0
2 k µ 0. By the induction hypothesis, we get that� . t2⇤ 7��!⇤ � 0 . t 02⇤

and µ
0;� 0 ` t 02 ⇡ t

0
2⇤ : ?. Thus, we know that
� . let � = t2⇤ in let z = �?!?�2(�?⇥?�1⇤ :: ? ⇥ ?) :: ? ! ? � in t3⇤ 7��!⇤

� 0 . let � = t
0
2⇤ in let z = �?!?�2(�?⇥?�1⇤ :: ? ⇥ ?) :: ? ! ? � in t3⇤

Therefore, the result follows immediately by Rule (RunsR).

Case (RsG).

(RsG)
�; �, x : ? ` t1 ⇡ t

0
1 : ?

µ;� ` �x .t1 ⇡ let x = su� in t
0
1 : ?

Since t = �x .t1, we know that t k µ ��! t
0 k µ 0. Therefore, by Lemma 9.5, the result follows imme-

diately.

Case (Runs).

(Runs)
µ;� ` �1 ⇡ �

0
1 : ? µ;� ` �2 ⇡ �

0
2 : ? µ;�; z : ? ` t3 ⇡ t

0
3 : ?

µ;� ` let {z}�1 = �2 in t3 ⇡ let z = �?!?�2(�?⇥?� 0
1 :: ? ⇥ ?) :: ? ! ? � 0

2 in t
0
3 : ?

Since t = let {z}�1 = �2 in t3, we know that t k µ ��! t
0 k µ 0. Therefore, by Lemma 9.5, the result

follows immediately.

Case (Rapp).

(Rapp)
µ;� ` �1 ⇡ �

0
1 : ? µ;� ` �2 ⇡ �

0
2 : ?

µ;� ` �1 �2 ⇡ (�?!?�
0
1 :: ? ! ?) � 0

2 : ?
Since t = �1 �2, we know that t k µ ��! t

0 k µ 0. Therefore, by Lemma 9.5, the result follows imme-
diately.

⇤

L���� 9.10. If µ;� ` t1 ⇡ t2 : ? , � ✓ � 0 and � ✓ �0, then � 0; �0 ` t1 ⇡ t2 : ? .

P����. The proof is a straightforward induction on µ;� ` t1 ⇡ t2 : ?. ⇤

L���� 9.11. If µ;� ` t ⇡ t⇤ : ? and t k µ 7��! error, then � . t 7��!⇤ error.

100 Elizabeth Labrada, Matías Toro, and Éric Tanter

P����. The proof is a straightforward induction on µ;� ` t1 ⇡ t2 : ?. We only take into account
the rules that can be applied (t k µ 7��! error).

Case (Rpt).

(Rpt)
µ;� ` t1 ⇡ t1⇤ : ? µ;� ` t2 ⇡ t2⇤ : ?
µ;� ` ht1, t2i ⇡ �?⇥?ht1⇤, t2⇤ i :: ? : ?

If t k µ ��! error, then by Lemma 9.8, the result follows immediately. Else, if

t k µ 7��! error

, we have the following two cases:
• t = ht1, t2i = f [t1] , where f = h[], t2i. Therefore, we have that t1 k µ 7��! error. By the in-
duction hypothesis, we get that � . t1⇤ 7��!⇤ error. Therefore, the result follows immediately.

• t = ht1, t2i = h�1, t2i = f [t2], where f = h�1, []i.
Therefore, we have that t2 k µ 7��! error. By the induction hypothesis, we get that� . t2⇤ 7��!⇤ error.
Since µ;� ` �1 ⇡ t1⇤ : ?, by Lemma 9.4, we know that � . t1⇤ 7��!⇤ � . �1⇤ and µ;� ` �1 ⇡
�1⇤ : ?. Thus, we know that

� . �?⇥?ht1⇤, t2⇤ i :: ? 7��!⇤ � . �?⇥?h� 0
1⇤, t2⇤ i :: ? 7��!

⇤ error

Therefore, the result follows immediately.

Case (R?).

(R?)
µ;� ` t1 ⇡ t1⇤ : ?

µ;� ` t1 ⇡ �?t1⇤ :: ? : ?
If t k µ ��! error, then by Lemma 9.8, the result follows immediately. Else, if

t k µ 7��! error

, we have that t1 k µ 7��! error. By the induction hypothesis, we get that � . t1⇤ 7��!⇤ error. Thus,
we know that

� . �?t1⇤ :: ? 7��!⇤ error
Therefore, the result follows immediately.

Case (RappL).

(RappL)
µ;� ` t1 ⇡ t1⇤ : ? µ;� ` t2 ⇡ t2⇤ : ?

µ;� ` t1 t2 ⇡ let x = t1⇤ in let � = t2⇤ in (�?!?x :: ? ! ?) � : ?
If t k µ ��! error, then by Lemma 9.8, the result follows immediately. Else, if

t k µ 7��! error

, we have the following two cases:
• t = t1 t2 = f [t1] , where f = [] t2. Therefore, we have that t1 k µ 7��! error. By the induction
hypothesis, we get that � . t1⇤ 7��!⇤ error. Thus, we know that

� . let x = t1⇤ in let � = t2⇤ in (�?!?x :: ? ! ?) � 7��!⇤ error

Therefore, the result follows immediately by Rule (RappL).
• t = t1 t2 = �1 t2 = f [t2] , where f = �1 [].
Therefore, we have that t2 k µ 7��! error. By the induction hypothesis, we get that� . t2⇤ 7��!⇤ error.
Since µ;� ` �1 ⇡ t1⇤ : ?, by Lemma 9.4, we know that � . t1⇤ 7��!⇤ � . �1⇤ and µ;� ` �1 ⇡
�1⇤ : ?. Thus, we know that

� . let x = t1⇤ in let � = t2⇤ in (�?!?x :: ? ! ?) � 7��!⇤

Gradual System F: Auxiliary Definitions and Proofs 101

� . let x = �1⇤ in let � = t2⇤ in (�?!?x :: ? ! ?) � 7��!
� . �?(let � = t2⇤ in (�?!?�1⇤ :: ? ! ?) �) :: ? 7��!⇤ error

Therefore, the result follows immediately.

Case (RappR).

(RappR)
µ;� ` �1 ⇡ �1⇤ : ? µ;� ` t2 ⇡ t2⇤ : ?

µ;� ` �1 t2 ⇡ let � = t2⇤ in (�?!?�1⇤ :: ? ! ?) � : ?
If t k µ ��! error, then by Lemma 9.8, the result follows immediately. Else, if

t k µ 7��! error

, we know that t = �1 t2 = f [t2] , where f = �1 [].
Therefore, we have that t2 k µ 7��! error. By the induction hypothesis, we get that� . t2⇤ 7��!⇤ error.

Thus, we know that

� . let � = t2⇤ in (�?!?�1⇤ :: ? ! ?) � 7��!⇤ error

Therefore, the result follows immediately.

Case (Rpi).

(Rpi)
µ;� ` t1 ⇡ t1⇤ : ?

µ;� ` �i (t1) ⇡ �i (�?⇥?t1⇤ :: ? ⇥ ?) : ?
If t k µ ��! t

0 k µ 0, then by Lemma 9.5, the result follows immediately. Else, if t k µ 7��! t
0 k µ 0,

we know that t = �i (t1) = f [t1], where �i ([]).
Therefore, we have that t1 k µ 7��! t

0
1 k µ 0.

By the induction hypothesis, we get that � . t1⇤ 7��!⇤ � 0 . t 01⇤ and µ
0;� 0 ` t 01 ⇡ t

0
1⇤ : ?. Thus, we

know that
� . �i (�?⇥?t1⇤ :: ? ⇥ ?) 7��!⇤ � 0 . �i (�?⇥?t 01⇤ :: ? ⇥ ?)

Therefore, the result follows immediately by Rule (Rpi).

Case (Rsed1L).

(Rsed1L)
µ;� ` t1 ⇡ t1⇤ : ? µ;� ` t2 ⇡ t2⇤ : ?

µ;� ` {t1}t2 ⇡ let x = t1⇤ in let � = t2⇤ in (�?!?�1(�?⇥?� :: ? ⇥ ?) :: ? ! ?) x : ?
If t k µ ��! error, then by Lemma 9.8, the result follows immediately. Else, if

t k µ 7��! error

, we have the following two cases:
• t = {t1}t2 = f [t1] , where f = {[]}t2 . Therefore, we have that t1 k µ 7��! error. By the induc-
tion hypothesis, we get that � . t1⇤ 7��!⇤ error. Thus, we know that

� . let x = t1⇤ in let � = t2⇤ in (�?!?�1(�?⇥?� :: ? ⇥ ?) :: ? ! ?) x 7��!⇤ error

Therefore, the result follows immediately.
• t = {t1}t2 = {�1}t2 = f [t2] , where f = {�1}[].
Therefore, we have that t2 k µ 7��! error. By the induction hypothesis, we get that� . t2⇤ 7��!⇤ error.
Since µ;� ` �1 ⇡ t1⇤ : ?, by Lemma 9.4, we know that � . t1⇤ 7��!⇤ � . �1⇤ and µ;� ` �1 ⇡
�1⇤ : ?. Thus, we know that

� . let x = t1⇤ in let � = t2⇤ in (�?!?�1(�?⇥?� :: ? ⇥ ?) :: ? ! ?) x 7��!⇤

� . let x = � 0
1⇤ in let � = t2⇤ in (�?!?�1(�?⇥?� :: ? ⇥ ?) :: ? ! ?) x 7��!

� . �?(let � = t2⇤ in (�?!?�1(�?⇥?� :: ? ⇥ ?) :: ? ! ?) � 0
1⇤) :: ? 7��!

⇤ error

102 Elizabeth Labrada, Matías Toro, and Éric Tanter

Therefore, the result follows immediately.

Case (Rsed1R).

(Rsed1R)
µ;� ` �1 ⇡ �1⇤ : ? µ;� ` t2 ⇡ t2⇤ : ?

µ;� ` {�1}t2 ⇡ let � = t2⇤ in (�?!?�1(�?⇥?� :: ? ⇥ ?) :: ? ! ?) �1⇤ : ?
If t k µ ��! error, then by Lemma 9.8, the result follows immediately. Else, if

t k µ 7��! error

, we know that t = {t1}t2 = {�1}t2 = f [t2] , where f = {�1}[]. Therefore, we have that
t2 k µ 7��! error

By the induction hypothesis, we get that � . t2⇤ 7��!⇤ error. Thus, we know that

� . let � = t2⇤ in (�?!?�1(�?⇥?� :: ? ⇥ ?) :: ? ! ?) � 0
1⇤ 7��!

⇤ error

Therefore, the result follows immediately.

Case (RunsL).

(RunsL)
µ;� ` t1 ⇡ t1⇤ : ? µ;� ` t2 ⇡ t2⇤ : ? µ;�; z : ? ` t3 ⇡ t3⇤ : ?

µ;� ` let {z}t1 = t2 in t3 ⇡ let x = t1⇤ in let � = t2⇤ in let z = �?!?�2(�?⇥?x :: ? ⇥ ?) :: ? ! ? � in t3⇤ : ?
If t k µ ��! error, then by Lemma 9.8, the result follows immediately. Else, if

t k µ 7��! error

, we have the following two cases:
• t = let {z}t1 = t2 in t3 = f [t1] , where f = let {z}[] = t2 in t3. Therefore, we have that

t1 k µ 7��! error
By the induction hypothesis, we get that � . t1⇤ 7��!⇤ error. Thus, we know that

� . let x = t1⇤ in let � = t2⇤ in let z = �?!?�2(�?⇥?x :: ? ⇥ ?) :: ? ! ? � in t3⇤ 7��!⇤ error

Therefore, the result follows immediately.
• t = let {z}t1 = t2 in t3 = let {z}�1 = t2 in t3 = f [t2] , where f = let {z}�1 = [] in t3. Therefore,
we have that

t2 k µ 7��! error
By the induction hypothesis, we get that � . t2⇤ 7��!⇤ error. Since µ;� ` �1 ⇡ t1⇤ : ?, by
Lemma 9.4, we know that � . t1⇤ 7��!⇤ � . �1⇤ and µ;� ` �1 ⇡ �1⇤ : ?. Thus, we know that

� . let x = t1⇤ in let � = t2⇤ in let z = �?!?�2(�?⇥?x :: ? ⇥ ?) :: ? ! ? � in t3⇤ 7��!⇤

� . let x = �1⇤ in let � = t2⇤ in let z = �?!?�2(�?⇥?x :: ? ⇥ ?) :: ? ! ? � in t3⇤ 7��!
� . �?(let � = t2⇤ in let z = �?!?�2(�?⇥?�1⇤ :: ? ⇥ ?) :: ? ! ? � in t3⇤) :: ? 7��!⇤ error

Therefore, the result follows immediately.

Case (RunsR).

(RunsR)
µ;� ` �1 ⇡ �1⇤ : ? µ;� ` t2 ⇡ t2⇤ : ? µ;�; z : ? ` t3 ⇡ t3⇤ : ?

µ;� ` let {z}�1 = t2 in t3 ⇡ let � = t2⇤ in let z = �?!?�2(�?⇥?�1⇤ :: ? ⇥ ?) :: ? ! ? � in t3⇤ : ?
If t k µ ��! error, then by Lemma 9.8, the result follows immediately. Else, if

t k µ 7��! error

, thenwe know that t = let {z}t1 = t2 in t3 = let {z}�1 = t2 in t3 = f [t2] , where f = let {z}�1 = [] in t3.
Therefore, we have that

t2 k µ 7��! error

Gradual System F: Auxiliary Definitions and Proofs 103

By the induction hypothesis, we get that � . t2⇤ 7��!⇤ error Thus, we know that
� . let � = t2⇤ in let z = �?!?�2(�?⇥?�1⇤ :: ? ⇥ ?) :: ? ! ? � in t3⇤ 7��!⇤ error

Therefore, the result follows immediately.

Case (Runs).

(Runs)
µ;� ` �1 ⇡ �

0
1 : ? µ;� ` �2 ⇡ �

0
2 : ? µ;�; z : ? ` t3 ⇡ t

0
3 : ?

µ;� ` let {z}�1 = �2 in t3 ⇡ let z = �?!?�2(�?⇥?� 0
1 :: ? ⇥ ?) :: ? ! ? � 0

2 in t
0
3 : ?

Since t = let {z}�1 = �2 in t3, we know that t k µ ��! error. Therefore, by Lemma 9.8, the result
follows immediately.

⇤

L���� 9.12. If � = hE, Ei, then � # � = � .

P����. Straightforward induction on the shape of the evidence � . ⇤

L���� 9.13. If �; � ` dte� : G then G = ?.

P����. Straightforward induction on the syntax of t . ⇤

L���� 11.2. If µ;�; � ` t ⇡ t� : ? then �; � ` t� : ?.

P����. Direct by Lemma 9.13. ⇤

L���� 9.14. If t is closed �seal term, then ·; ·; · ` dte� : ?.

P����. Straightforward induction on the syntax of t . ⇤

L���� 9.15. � . su� 7��!⇤ �,� := ? . su�� , where � := ? < �.

P����. Following the reduction rules of GSF. ⇤

L���� 9.16 (S����������� ���������). If µ;�; �, x : ? ` t ⇡ t
⇤ : ? and µ;�; � ` � ⇡ �

⇤ : ?, then
µ;�; � ` t[�/x] ⇡ t

⇤[�⇤/x] : ?.

P����. The proof is a straightforward induction on the derivation of µ;�; �, x : ? ` t ⇡ t
⇤ : ? .

Case (Rx).

(Rx)
x : ? 2 �, x : ?

µ;�; �, x : ? ` x ⇡ x : ?
We have that t = x and t

⇤ = x . By the de�nition of substitution, we have that x[�/x] = � and
x[�⇤/x] = �⇤. Therefore, we are required to prove that µ;�; � ` � ⇡ �

⇤ : ?, which follows by the
premise.
If we have

(Rx)
� : ? 2 �, x : ?

µ;�; �, x : ? ` � ⇡ � : ?
We have that t = � and t

⇤ = �. By the de�nition of substitution, we have that �[�/x] = � and
�[�⇤/x] = �. Therefore, we are required to prove that µ;�; � ` � ⇡ � : ?, which follows by the
premise µ;�; �, x : ? ` � ⇡ � : ? and Lemma 9.10.

104 Elizabeth Labrada, Matías Toro, and Éric Tanter

Case (Rb).

(Rb)
ty(b) = B

µ;�; �, x : ? ` b ⇡ �Bb :: ? : ?
We have that t = b and t⇤ = �Bb :: ?. By the de�nition of substitution, we have that b[�/x] = b and
�Bb :: ?[�⇤/x] = �Bb :: ?. Therefore, we are required to prove that µ;�; � ` b ⇡ �Bb :: ? : ?, which
follows by the premise µ;�; �, x : ? ` b ⇡ �Bb :: ? : ? and Lemma 9.10.

Case (Ru).

(Ru)
µ;�; �, x : ? ` �1 ⇡ �Du :: ? : ?

µ;�; �, x : ? ` �1 ⇡ �D (�Du :: D) :: ? : ?
We have that t = �1 and t

⇤ = �D (�Du :: D) :: ?. By the de�nition of substitution, we have that
(�D (�Du :: D) :: ?)[�⇤/x] = �D (�Du[�⇤/x] :: D) :: ?. Therefore, we are required to prove that µ;�; � `
�1[�/x] ⇡ �D (�Du[�⇤/x] :: D) :: ? : ?, or what is the same µ;�; � ` �1[�/x] ⇡ (�Du[�⇤/x] :: ?) : ?
which follows by the induction hypothesis on µ;�; �, x : ? ` �1 ⇡ �Du :: ? : ?.

Case (Rs).

(Rs)
� := ? 2 �

µ;�; �, x : ? ` � ⇡ su�� : ?
We have that t = � and t⇤ = su�� . By the de�nition of substitution, we have that � [�/x] = � and
su�� [�⇤/x] = su�� . Therefore, we are required to prove that µ;�; � ` � ⇡ su�� : ?, which follows by
the premise µ;�; �, x : ? ` � ⇡ su�� : ? and Lemma 9.10.

Case (Rp).

(Rp)
µ;�; �, x : ? ` �1 ⇡ �D1u1 :: ? : ? µ;�; �, x : ? ` �2 ⇡ �D2u2 :: ? : ?

µ;�; �, x : ? ` h�1,�2i ⇡ �D1⇥D2 hu1,u2i :: ? : ?
We have that t = h�1,�2i and t⇤ = �D1⇥D2 hu1,u2i :: ?. By the de�nition of substitution, we have that
h�1,�2i[�/x] = h�1[�/x],�2[�/x]i and (�D1⇥D2 hu1,u2i :: ?)[�⇤/x] = �D1⇥D2 hu1[�⇤/x],u2[�⇤/x]i :: ?.
Therefore, we are required to prove that µ;�; � ` h�1[�/x],�2[�/x]i ⇡ �D1⇥D2 hu1[�⇤/x],u2[�⇤/x]i :: ? :
?, or what is the same by Rule (Rp) that µ;�; � ` �1[�/x] ⇡ �D1u1[�⇤/x] :: ? : ? and µ;�; � `
�2[�/x] ⇡ �D2u2[�⇤/x] :: ? : ?. By the induction hypothesis on µ;�; �, x : ? ` �1 ⇡ �D1u1 :: ? : ? and
µ;�; �, x : ? ` �2 ⇡ �D2u2 :: ? : ? the result follows immediately.

Case (R�).

(R�)
�; �, x : ?,� : ? ` t1 ⇡ t2 : ?

µ;�; �, x : ? ` (��.t1) ⇡ �?!?(��.t2) :: ? : ?
We have that t = (��.t1) and t

⇤ = �?!?(��.t2) :: ?. By the de�nition of substitution, we have
that (��.t1)[�/x] = (��.t1[�/x]) and (�?!?(��.t2) :: ?)[�⇤/x] = �?!?(��.t2[�⇤/x]) :: ?. Therefore,
we are required to prove that µ;�; � ` (��.t1[�/x]) ⇡ �?!?(��.t2[�⇤/x]) :: ? : ?, or what is
the same µ;�; �,� : ? ` t1[�/x] ⇡ t2[�⇤/x] : ? which follows by the induction hypothesis on
µ;�; �, x : ?,� : ? ` t1 ⇡ t2 : ?.

Case (Rpt).

(Rpt)
µ;�; �, x : ? ` t1 ⇡ t

0
1 : ? µ;�; �, x : ? ` t2 ⇡ t

0
2 : ?

µ;�; �, x : ? ` ht1, t2i ⇡ �?⇥?ht 01, t 02i :: ? : ?
We have that t = ht1, t2i and t

⇤ = �?⇥?ht 01, t 02i :: ?. By the de�nition of substitution, we have
that ht1, t2i[�/x] = ht1[�/x], t2[�/x]i and (�?⇥?ht 01, t 02i :: ?)[�⇤/x] = (�?⇥?ht 01[�⇤/x], t 02[�⇤/x]i :: ?).
Therefore, we are required to prove that µ;�; � ` ht1[�/x], t2[�/x]i ⇡ (�?⇥?ht 01[�⇤/x], t 02[�⇤/x]i :: ?) :
?, or what is the same by Rule (Rpt) that µ;�; � ` t1[�/x] ⇡ t

0
1[�⇤/x] : ? and µ;�; � ` t2[�/x] ⇡

Gradual System F: Auxiliary Definitions and Proofs 105

t
0
2[�⇤/x] : ?. By the induction hypothesis on µ;�; �, x : ? ` t1 ⇡ t

0
1 : ? and µ;�; �, x : ? ` t2 ⇡ t

0
2 : ?

the result follows immediately.

Case (Rapp).

(Rapp)
µ;�; �, x : ? ` �1 ⇡ �

0
1 : ? µ;�; �, x : ? ` �2 ⇡ �

0
2 : ?

µ;�; �, x : ? ` �1 �2 ⇡ (�?!?�
0
1 :: ? ! ?) � 0

2 : ?
We have that t = �1 �2 and t⇤ = (�?!?�

0
1 :: ? ! ?) � 0

2. By the de�nition of substitution, we have that

(�1 �2)[�/x] = �1[�/x] �2[�/x]
and

((�?!?�
0
1 :: ? ! ?) � 0

2)[�⇤/x] = (�?!?�
0
1[�⇤/x] :: ? ! ?) � 0

2[�⇤/x]
Therefore, we are required to prove that

µ;�; � ` �1[�/x] �2[�/x] ⇡ (�?!?�
0
1[�⇤/x] :: ? ! ?) � 0

2[�⇤/x] : ?
, or what is the same by Rule (Rapp) that µ;�; � ` �1[�/x] ⇡ �

0
1[�⇤/x] : ? and µ;�; � ` �2[�/x] ⇡

�
0
2[�⇤/x] : ?. By the induction hypothesis on µ;�; �, x : ? ` �1 ⇡ �

0
1 : ? and µ;�; �, x : ? ` �2 ⇡ �

0
2 : ?

the result follows immediately.

Case (RappL).

(RappL)
µ;�; �, x : ? ` t1 ⇡ t

0
1 : ? µ;�; �, x : ? ` t2 ⇡ t

0
2 : ?

µ;�; �, x : ? ` t1 t2 ⇡ let z = t
0
1 in let � = t

0
2 in (�?!?z :: ? ! ?) � : ?

We have that t = t1 t2 and t
⇤ = let z = t

0
1 in let � = t

0
2 in (�?!?z :: ? ! ?) �. By the de�nition of

substitution, we have that
(t1 t2)[�/x] = t1[�/x] t2[�/x]

and
(let z = t

0
1 in let � = t

0
2 in (�?!?z :: ? ! ?) �)[�⇤/x] = let z = t

0
1[�⇤/x] in let � = t

0
2[�⇤/x] in (�?!?z :: ? ! ?) �

Therefore, we are required to prove that

µ;�; � ` t1[�/x] t2[�/x] ⇡ let z = t
0
1[�⇤/x] in let � = t

0
2[�⇤/x] in (�?!?z :: ? ! ?) � : ?

, or what is the same by Rule (RappL) that µ;�; � ` t1[�/x] ⇡ t
0
1[�⇤/x] : ? and µ;�; � ` t2[�/x] ⇡

t
0
2[�⇤/x] : ?. By the induction hypothesis on µ;�; �, x : ? ` t1 ⇡ t

0
1 : ? and µ;�; �, x : ? ` t2 ⇡ t

0
2 : ?

the result follows immediately.

Case (RappR).

(RappR)
µ;�; �, x : ? ` �1 ⇡ �

0
1 : ? µ;�; �, x : ? ` t2 ⇡ t

0
2 : ?

µ;�; �, x : ? ` �1 t2 ⇡ let � = t
0
2 in (�?!?�

0
1 :: ? ! ?) � : ?

We have that t = �1 t2 and t⇤ = let � = t
0
2 in (�?!?�

0
1 :: ? ! ?) �. By the de�nition of substitution,

we have that
(�1 t2)[�/x] = �1[�/x] t2[�/x]

and
(let � = t

0
2 in (�?!?�

0
1 :: ? ! ?) �)[�⇤/x] = let � = t

0
2[�⇤/x] in (�?!?�

0
1[�⇤/x] :: ? ! ?) �

Therefore, we are required to prove that

µ;�; � ` �1[�/x] t2[�/x] ⇡ let � = t
0
2[�⇤/x] in (�?!?�

0
1[�⇤/x] :: ? ! ?) � : ?

, or what is the same by Rule (RappR) that µ;�; � ` �1[�/x] ⇡ �
0
1[�⇤/x] : ? and µ;�; � ` t2[�/x] ⇡

t
0
2[�⇤/x] : ?. By the induction hypothesis on µ;�; �, x : ? ` �1 ⇡ �

0
1 : ? and µ;�; �, x : ? ` t2 ⇡ t

0
2 : ?

the result follows immediately.

106 Elizabeth Labrada, Matías Toro, and Éric Tanter

Case (R?).

(R?)
µ;�; �, x : ? ` t ⇡ t

0 : ?
µ;�; �, x : ? ` t ⇡ �?t

0 :: ? : ?
We have that t⇤ = �?t

0 :: ?. By the de�nition of substitution, we have that
(�?t 0 :: ?)[�⇤/x] = �?t

0[�⇤/x] :: ?
Therefore, we are required to prove that

µ;�; � ` t[�/x] ⇡ �?t
0[�⇤/x] :: ? : ?

, or what is the same by Rule (R?) that µ;�; � ` t[�/x] ⇡ t
0[�⇤/x] : ?. By the induction hypothesis

on µ;�; �, x : ? ` t ⇡ t
0 : ? the result follows immediately.

Case (Rpi).

(Rpi)
µ;�; �, x : ? ` t 00 ⇡ t

0 : ?
µ;�; �, x : ? ` �i (t 00) ⇡ �i (�?⇥?t 0 :: ? ⇥ ?) : ?

We have that t = �i (t 00) and t⇤ = �i (�?⇥?t 0 :: ? ⇥ ?). By the de�nition of substitution, we have that

�i (t 00)[�/x] = �i (t 00[�/x])
and

(�i (�?⇥?t 0 :: ? ⇥ ?))[�⇤/x] = �i (�?⇥?t 0[�⇤/x] :: ? ⇥ ?)
Therefore, we are required to prove that

µ;�; � ` �i (t 00[�/x]) ⇡ �i (�?⇥?t 0[�⇤/x] :: ? ⇥ ?) : ?
, or what is the same by Rule (Rpi) that µ;�; � ` t 00[�/x] ⇡ t

0[�⇤/x] : ?. By the induction hypothesis
on µ;�; �, x : ? ` t 00 ⇡ t

0 : ? the result follows immediately.

Case (RsG).

(RsG)
µ;�; �, x : ?, z : ? ` t 00 ⇡ t

0 : ?
µ;�; �, x : ? ` �z.t 00 ⇡ let z = su� in t

0 : ?
We have that t = �z.t 00 and t⇤ = let z = su� in t

0. By the de�nition of substitution, we have that

(�z.t 00)[�/x] = �z.t 00[�/x]
and

(let z = su� in t
0)[�⇤/x] = let z = su� in t

0[�⇤/x]
Therefore, we are required to prove that

µ;�; � ` �z.t 00[�/x] ⇡ let z = su� in t
0[�⇤/x] : ?

, or what is the same by Rule (RsG) that µ;�; �, z : ? ` t
00[�/x] ⇡ t

0[�⇤/x] : ?. By the induction
hypothesis on µ;�; �, x : ?, z : ? ` t 00 ⇡ t

0 : ? the result follows immediately.

Case (Rsed1).

(Rsed1)
µ;�; �, x : ? ` �1 ⇡ �

0
1 : ? µ;�; �, x : ? ` �2 ⇡ �

0
2 : ?

µ;�; �, x : ? ` {�1}�2 ⇡ �?!?�1(�?⇥?� 0
2 :: ? ⇥ ?) :: ? ! ? � 0

1 : ?
We have that t = {�1}�2 and t⇤ = �?!?�1(�?⇥?� 0

2 :: ? ⇥ ?) :: ? ! ? � 0
1. By the de�nition of substitution,

we have that
{�1}�2 [�/x] = {�1[�/x]}�2[�/x]

and
(�?!?�1(�?⇥?� 0

2 :: ? ⇥ ?) :: ? ! ? � 0
1)[�⇤/x] = �?!?�1(�?⇥?� 0

2[�⇤/x] :: ? ⇥ ?) :: ? ! ? � 0
1[�⇤/x]

Gradual System F: Auxiliary Definitions and Proofs 107

Therefore, we are required to prove that

µ;�; � ` {�1[�/x]}�2[�/x] ⇡ �?!?�1(�?⇥?� 0
2[�⇤/x] :: ? ⇥ ?) :: ? ! ? � 0

1[�⇤/x] : ?
, or what is the same by Rule (Rsed1) that µ;�; � ` �1[�/x] ⇡ �

0
1[�⇤/x] : ? and µ;�; � ` �2[�/x] ⇡

�
0
2[�⇤/x] : ?. By the induction hypothesis on µ;�; �, x : ? ` �1 ⇡ �

0
1 : ? and µ;�; �, x : ? ` �2 ⇡ �

0
2 : ?

the result follows immediately.

Case (Rsed1L).

(Rsed1L)
µ;�; �, x : ? ` t1 ⇡ t

0
1 : ? µ;�; �, x : ? ` t2 ⇡ t

0
2 : ?

µ;�; �, x : ? ` {t1}t2 ⇡ let z = t
0
1 in let � = t

0
2 in (�?!?�1(�?⇥?� :: ? ⇥ ?) :: ? ! ?) z : ?

We have that t = {t1}t2 and t⇤ = let z = t
0
1 in let � = t

0
2 in (�?!?�1(�?⇥?� :: ? ⇥ ?) :: ? ! ?) z. By the

de�nition of substitution, we have that

{t1}t2 [�/x] = {t1[�/x]}t2[�/x]
and

(let z = t
0
1 in let � = t

0
2 in (�?!?�1(�?⇥?� :: ? ⇥ ?) :: ? ! ?) z)[�⇤/x] =

let z = t
0
1[�⇤/x] in let � = t

0
2[�⇤/x] in (�?!?�1(�?⇥?� :: ? ⇥ ?) :: ? ! ?) z

Therefore, we are required to prove that

µ;�; � ` {t1[�/x]}t2[�/x] ⇡ let z = t
0
1[�⇤/x] in let � = t

0
2[�⇤/x] in (�?!?�1(�?⇥?� :: ? ⇥ ?) :: ? ! ?) z : ?

, or what is the same by Rule (Rsed1L) that µ;�; � ` t1[�/x] ⇡ t
0
1[�⇤/x] : ? and µ;�; � ` t2[�/x] ⇡

t
0
2[�⇤/x] : ?. By the induction hypothesis on µ;�; �, x : ? ` t1 ⇡ t

0
1 : ? and µ;�; �, x : ? ` t2 ⇡ t

0
2 : ?

the result follows immediately.

Case (Rsed1R).

(Rsed1R)
µ;�; �, x : ? ` �1 ⇡ �

0
1 : ? µ;�; �, x : ? ` t2 ⇡ t

0
2 : ?

µ;�; �, x : ? ` {�1}t2 ⇡ let � = t
0
2 in (�?!?�1(�?⇥?� :: ? ⇥ ?) :: ? ! ?) � 0

1 : ?
We have that t = {�1}t2 and t⇤ = let � = t

0
2 in (�?!?�1(�?⇥?� :: ? ⇥ ?) :: ? ! ?) � 0

1. By the de�nition
of substitution, we have that

{�1}t2 [�/x] = {�1[�/x]}t2[�/x]
and

(let � = t
0
2 in (�?!?�1(�?⇥?� :: ? ⇥ ?) :: ? ! ?) � 0

1)[�⇤/x] =
let � = t

0
2[�⇤/x] in (�?!?�1(�?⇥?� :: ? ⇥ ?) :: ? ! ?) � 0

1[�⇤/x]
Therefore, we are required to prove that

µ;�; � ` {�1[�/x]}t2[�/x] ⇡ let � = t
0
2[�⇤/x] in (�?!?�1(�?⇥?� :: ? ⇥ ?) :: ? ! ?) � 0

1[�⇤/x] : ?
, or what is the same by Rule (Rsed1R) that µ;�; � ` �1[�/x] ⇡ �

0
1[�⇤/x] : ? and µ;�; � ` t2[�/x] ⇡

t
0
2[�⇤/x] : ?. By the induction hypothesis on µ;�; �, x : ? ` �1 ⇡ �

0
1 : ? and µ;�; �, x : ? ` t2 ⇡ t

0
2 : ?

the result follows immediately.

Case (Rsed2).

(Rsed2)
µ;�; �, x : ? ` � 0 ⇡ hE1, E2iu :: ? : ? � := ? 2 �

µ;�; �, x : ? ` {� 0}� ⇡ hE1,� E2iu :: ? : ?
We have that t = {� 0}� and t⇤ = hE1,� E2iu :: ?. By the de�nition of substitution, we have that

{� 0}� [�/x] = {� 0[�/x]}�
and

(hE1,�E2 iu :: ?)[�⇤/x] = (hE1,�E2 iu[�⇤/x] :: ?)

108 Elizabeth Labrada, Matías Toro, and Éric Tanter

Therefore, we are required to prove that

µ;�; � ` {� 0[�/x]}� ⇡ (hE1,� E2iu[�⇤/x] :: ?) : ?

, or what is the same by Rule (Rsed2) that µ;�; � ` �
0[�/x] ⇡ hE1, E2iu[�⇤/x] :: ? : ?. By the

induction hypothesis on µ;�; �, x : ? ` � 0 ⇡ hE1, E2iu :: ? : ? the result follows immediately.

Case (Runs).

(Runs)
µ;�; �, x : ? ` �1 ⇡ �

0
1 : ? µ;�; �, x : ? ` �2 ⇡ �

0
2 : ? µ;�; �, x : ?, z : ? ` t3 ⇡ t

0
3 : ?

µ;�; �, x : ? ` let {z}�1 = �2 in t3 ⇡ let z = �?!?�2(�?⇥?� 0
1 :: ? ⇥ ?) :: ? ! ? � 0

2 in t
0
3 : ?

We have that t = let {z}�1 = �2 in t3 and t
⇤ = let z = �?!?�2(�?⇥?� 0

1 :: ? ⇥ ?) :: ? ! ? � 0
2 in t

0
3. By

the de�nition of substitution, we have that

(let {z}�1 = �2 in t3)[�/x] = let {z}�1[�/x] = �2[�/x] in t3[�/x]
and

(let z = �?!?�2(�?⇥?� 0
1 :: ? ⇥ ?) :: ? ! ? � 0

2 in t
0
3)[�⇤/x] =

let z = �?!?�2(�?⇥?� 0
1[�⇤/x] :: ? ⇥ ?) :: ? ! ? � 0

2[�⇤/x] in t
0
3[�⇤/x]

Therefore, we are required to prove that

µ;�; � ` let {z}�1[�/x] = �2[�/x] in t3[�/x] ⇡ let z = �?!?�2(�?⇥?� 0
1[�⇤/x] :: ? ⇥ ?) :: ? ! ? � 0

2[�⇤/x] in t
0
3[�⇤/x] : ?

Or what is the same by Rule (Runs) that µ;�; � ` �1[�/x] ⇡ �
0
1[�⇤/x] : ?, µ;�; � ` �2[�/x] ⇡

�
0
2[�⇤/x] : ? and µ;�; �, z : ? ` t3[�⇤/x] ⇡ t

0
3[�⇤/x] : ? . By the induction hypothesis on µ;�; �, x : ? `

�1 ⇡ �
0
1 : ?, µ;�; �, x : ? ` �2 ⇡ �

0
2 : ? and µ;�; �, x : ?, z : ? ` t3 ⇡ t

0
3 : ? the result follows

immediately.

Case (RunsL).

(RunsL)
µ;�; �, x : ? ` t1 ⇡ t

0
1 : ? µ;�; �, x : ? ` t2 ⇡ t

0
2 : ? µ;�; �, x : ?, z : ? ` t3 ⇡ t

0
3 : ?

µ;�; �, x : ? ` let {z}t1 = t2 in t3 ⇡ let w = t
0
1 in let � = t

0
2 in let z = �?!?�2(�?⇥?w :: ? ⇥ ?) :: ? ! ? � in t

0
3 : ?

We have that t = let {z}t1 = t2 in t3 and

t
⇤ = let w = t

0
1 in let � = t

0
2 in let z = �?!?�2(�?⇥?w :: ? ⇥ ?) :: ? ! ? � in t

0
3

By the de�nition of substitution, we have that

(let {z}t1 = t2 in t3)[�/x] = let {z}t1[�/x] = t2[�/x] in t3[�/x]
and

(let w = t
0
1 in let � = t

0
2 in let z = �?!?�2(�?⇥?w :: ? ⇥ ?) :: ? ! ? � in t

0
3)[�⇤/x] =

let w = t
0
1[�⇤/x] in let � = t

0
2[�⇤/x] in let z = �?!?�2(�?⇥?w :: ? ⇥ ?) :: ? ! ? � in t

0
3[�⇤/x]

Therefore, we are required to prove that

�; � ` let {z}t1[�/x] = t2[�/x] in t3[�/x] ⇡

let w = t
0
1[�⇤/x] in let � = t

0
2[�⇤/x] in let z = �?!?�2(�?⇥?w :: ? ⇥ ?) :: ? ! ? � in t

0
3[�⇤/x] : ?

Or what is the same by Rule (RunsL) that µ;�; � ` t1[�/x] ⇡ t
0
1[�⇤/x] : ?, µ;�; � ` t2[�/x] ⇡

t
0
2[�⇤/x] : ? and µ;�; �, z : ? ` t3[�⇤/x] ⇡ t

0
3[�⇤/x] : ? . By the induction hypothesis on µ;�; �, x : ? `

t1 ⇡ t
0
1 : ?, µ;�; �, x : ? ` t2 ⇡ t

0
2 : ? and µ;�; �, x : ?, z : ? ` t3 ⇡ t

0
3 : ? the result follows immediately.

Gradual System F: Auxiliary Definitions and Proofs 109

Case (RunsR).

(RunsR)
µ;�; �, x : ? ` �1 ⇡ �

0
1 : ? µ;�; �, x : ? ` t2 ⇡ t

0
2 : ? µ;�; �, x : ?, z : ? ` t3 ⇡ t

0
3 : ?

µ;�; �, x : ? ` let {z}�1 = t2 in t3 ⇡ let � = t
0
2 in let z = �?!?�2(�?⇥?� 0

1 :: ? ⇥ ?) :: ? ! ? � in t
0
3 : ?

We have that t = let {z}�1 = t2 in t3 and
t
⇤ = let � = t

0
2 in let z = �?!?�2(�?⇥?� 0

1 :: ? ⇥ ?) :: ? ! ? � in t
0
3

By the de�nition of substitution, we have that
(let {z}�1 = t2 in t3)[�/x] = let {z}�1[�/x] = t2[�/x] in t3[�/x]

and
(let � = t

0
2 in let z = �?!?�2(�?⇥?� 0

1 :: ? ⇥ ?) :: ? ! ? � in t
0
3)[�⇤/x] =

let � = t
0
2[�⇤/x] in let z = �?!?�2(�?⇥?� 0

1[�⇤/x] :: ? ⇥ ?) :: ? ! ? � in t
0
3[�⇤/x]

Therefore, we are required to prove that
�; � ` let {z}�1[�/x] = t2[�/x] in t3[�/x] ⇡

let � = t
0
2[�⇤/x] in let z = �?!?�2(�?⇥?� 0

1[�⇤/x] :: ? ⇥ ?) :: ? ! ? � in t
0
3[�⇤/x] : ?

Or what is the same by Rule (RunsR) that µ;�; � ` �1[�/x] ⇡ �
0
1[�⇤/x] : ?, µ;�; � ` t2[�/x] ⇡

t
0
2[�⇤/x] : ? and µ;�; �, z : ? ` t3[�⇤/x] ⇡ t

0
3[�⇤/x] : ? . By the induction hypothesis on µ;�; �, x : ? `

�1 ⇡ �
0
1 : ?, µ;�; �, x : ? ` t2 ⇡ t

0
2 : ? and µ;�; �, x : ?, z : ? ` t3 ⇡ t

0
3 : ? the result follows

immediately.

⇤

L���� 11.4. If µ;�; �, x : ? ` t ⇡ t� : ? and µ;�; � ` � ⇡ �� : ?, then µ;�; � ` t[�/x] ⇡ t� [��/x] : ?.
P����. Direct by Lemma 9.16. ⇤

The remaining theorems and lemmas are in the main text.

110 Elizabeth Labrada, Matías Toro, and Éric Tanter

10 GRADUAL EXISTENTIAL TYPES IN GSF
This session presents a motivational example for the extension of GSF with existential directly
instead of using the encoding of existential into universal types. Also, we show the translation
from GSF9 to GSF9� and the proof of the fundamental property for existential types.

10.1 Existential types: primitive or encoded?
The bene�t of a direct treatment of existential types can already be appreciated in the fully-static
setting, with the simple examples of packages s1 and s2 above. Suppose we want to show that s1
and s2 are contextually equivalent, i.e. indistinguishable by any context. To show this equivalence,
it is su�cient to show that the packages are logically related. The proof of this based on the direct
interpretation of the existential types is considerably easier and more intuitive than proving that
their encodings are related. To illustrate this point, we sketch these two proof techniques below in
System F.

Proof with primitive existentials. Two packages are logically related at an existential type,
if there exists a relation R between values of their representation types, such that their term
components respect the relation R. Here, for �1 and �2 to respect R means that the following three
conditions hold:

• The created semaphores with the operation bit are related. In this case, this imposes that
(true, 1) 2 R.

• If two semaphores are related, then changing their states with the operation �ip yields related
semaphores. Here, applying the �ip operation of each package s1 and s2 to the values true
and 1, respectively, yields false and 0. Therefore, (false, 0) 2 R. Applying the �ip operations
on these values yields again true and 1, which are related.

• If two semaphores are related, then the Bool value obtained by applying the operation read
must be the same. It is easy to see that this condition is also satis�ed.

Formally, two packages are logically related at an existential type in standard System F (follow-
ing [Ahmed 2006]):

V� J9X .T K = {(packhT1,�1i as 9X .�(T), packhT2,�2i as 9X .�(T)) 2 Atom=� [9X .T] |
9R 2 R��[T1,T2].(�1,�2) 2 V�[X 7!(R,T1,T2)]JT K}

By this de�nition, in order to prove that s1 is logically related to s2 at type Sem, it is required to
show that there exists a relation R between the types Bool and Int such that

(�1,�2) 2 V[X 7!(R,Bool,Int)]JX ⇥ (X ! X) ⇥ (X ! Bool)K

Taking R = {htrue, 1i, hfalse, 0i}, it is easy to check that the implementations of s1 and s2 preserve
this relation.
Proof with encoded existentials. Using the encoding of Sem in terms of universal types in order
to prove that s1 and s2 are logically related is considerably more complex. First, we have to transform
the packages s1 and s2 to type abstractions and prove that

((�Y .� f : Semclient . f [Bool] �1), (�Y .� f : Semclient . f [Int] �2)) 2 V� J8Y .Semclient ! Y K

where Semclient = 8X .X ⇥ (X ! X) ⇥ (X ! Bool) ! Y . The proof of the above leads us to show
that for any typeT 0

1 andT
0
2 , and any relation R

0 between these types, the following type applications
are related:

((�Y .� f : Semclient . f [Bool] �1) [T 0
1], (�Y .� f : Semclient . f [Int] �2) [T 0

2]) 2 T[Y 7!(R0,T 0
1 ,T

0
2)]JSemclient ! Y K

Gradual System F: Auxiliary Definitions and Proofs 111

Several steps further in the proof, we have to show that (f1 [Bool] �1, f2 [Int] �2) 2 T[Y 7!(R0,T 0
1 ,T

0
2)]JY K,

for any f1 and f2 such that
(f1, f2) 2 V[Y 7!(R0,T 0

1 ,T
0
2)]JSemclientK

Since f1 and f2 are related under a universal type, we can instantiate them at any types T1 and T2,
and any relation Q between these types, keeping the resulting terms related:

(f1 [T1], f2 [T2]) 2 T[Y 7!(R0,T 0
1 ,T

0
2),X 7!(Q ,T1,T2)]J(X ⇥ (X ! X) ⇥ (X ! Bool) ! Y)K

At this point, we can pick the same relation as above, R = {htrue, 1i, hfalse, 0i}, such that �1 and
�2 are related.

(�1,�2) 2 V[X 7!(R,Bool,Int)]JX ⇥ (X ! X) ⇥ (X ! Bool)K
Hence, we can instantiateT1 andT2 with the types Bool and Int, andQ with the relation R, obtaining
that

(f1 [Bool], f2 [Int]) 2 T[Y 7!(R0,T 0
1 ,T

0
2),X 7!(R,Bool,Int)]J(X ⇥ (X ! X) ⇥ (X ! Bool) ! Y)K

In a few more steps, we can instantiate the above with �1 and �2, since they are related, �nally
obtaining the desired result.

As we can see, as part of the second approach (using the encoding) is needed to prove the same
that is required by the �rst approach (directly on existential types) and more; being the second
extremely more complex. The equivalence example that we use to illustrate the previous is very
simple. But, for instance, Ahmed et al. [2009a] prove challenging cases of equivalences in the
presence of abstract data types and mutable references, where the use of the encoding would have
hindered the work.

10.2 Translation from GSF9 to GSF9
�

Figure 26 shows the translation from GSF9 to GSF9� .

· · ·

(Gpacku)
�; � ` � :: G[G 0/X] { �

0 : G[G 0/X] � ` G 0

�; � ` packhG 0,�i as 9X .G { packuhG 0,� 0i as 9X .G : 9X .G

(Gpack)
t , � �; � ` t { t

0 : G1 � = I(G1,G[G 0/X]) � ` G 0

�; � ` packhG 0, ti as 9X .G { packhG 0, �t :: G[G 0/X]i as 9X .G : 9X .G

(Gunpack)

�; � ` t1 { t
0
1 : G1 G1 _ 9X .G 0

1 � = I(G1, 9X .G 0
1)

�,X ; �, x : G 0
1 ` t2 { t

0
2 : G2 � ` G2

�; � ` unpackhX , xi = t1 in t2 { unpackhX , xi = �t
0
1 :: 9X .G 0

1 in t
0
2 : G2

Fig. 26. Translation from GSF9 to GSF9�

10.3 Properties of GSF9

P���������� 12.1 (GSF9: P��������, �����������). The inductive de�nition of type precision
given in Figure 17 is equivalent to De�nition 6.1.

P����. Direct by induction on the type structure of G1 and G2. Similar to Prop. 6.2. ⇤

P���������� 12.2 (GSF9: C����������, �����������). The inductive de�nition of type consistency
given in Figure 17 is equivalent to De�nition 6.5.

112 Elizabeth Labrada, Matías Toro, and Éric Tanter

P����. Similar to Prop. 6.6. ⇤

P���������� 12.3 (GSF9: S����� ���������� ��� ������ �����). Let t be a static term and G a
static type (G = T). We have `S t : T if and only if ` t : T .

P����. Smilar to Prop. 6.9. ⇤

P���������� 12.4 (GSF9: S����� ������� ���������). Let t and t 0 be closed GSF9 terms such
that t v t

0 and ` t : G. Then ` t 0 : G 0 and G v G
0.

P����. Similar to Prop. 6.10. ⇤

10.4 GSF9: Parametricity
T������ 10.1 (F���������� P�������). If �;�; � ` t : G then �;�; � ` t � t : G.

We follow by induction on the structure of t.

P����.

Case (packu). Then t = �(packuhG 0,�i as 9X .G 00) :: G, and therefore by the typing rules Epacku
and Easc we have that

(Epack & Easc)
�;�; � ` � : G 00[G 0/X] �;� ` G 0

� � �;� ` 9X .G 00 ⇠ G

�;�; � ` �(packuhG 0,�i as 9X .G 00) :: G : G

Then we have to prove that:

�;�; � ` �(packuhG 0,�i as 9X .G 00) :: G � �(packuhG 0,�i as 9X .G 00) :: G : G

By induction hypotheses we already know that �;�; � ` � � � : G 00[G 0/X]. But the result follows
directly by Prop 10.2 (Compatibility of packu).

Case (pack). Then t = packhG 0, t 0i as 9X .G 00, and therefore by the typing rules Epack we have
that

(Epack)
�;�; � ` t 0 : G 00[G 0/X] �;� ` G 0

�;�; � ` packhG 0, t 0i as 9X .G 00 : 9X .G 00

Then we have to prove that:

�;�; � ` packhG 0, t 0i as 9X .G 00 � packhG 0, t 0i as 9X .G 00 : 9X .G 00

By induction hypotheses we already know that �;�; � ` t 0 � t
0 : G 00[G 0/X]. But the result follows

directly by Prop 10.3 (Compatibility of pack).

Case (unpack). Then t = unpackhX , xi = t1 in t2, and therefore:

(Eunpack)
�;�; � ` t1 : 9X .G1 �;�,X ; �, x : G1 ` t2 : G2 �;� ` G2

�;�; � ` unpackhX , xi = t1 in t2 : G2

where G = G2. Then we have to prove that:

�;�; � ` unpackhX , xi = t1 in t2 � unpackhX , xi = t1 in t2 : G2

By induction hypotheses we already know that �;�; � ` t1 � t1 : 9X .G1 and �;�,X ; �, x : G1 `
t2 � t2 : G2. But the result follows directly by Prop 10.4 (Compatibility of unpack).

⇤

Gradual System F: Auxiliary Definitions and Proofs 113

De�nition 10.1 (Operators over evidence).
�
⇤
i (�) , hE⇤, E⇤i where E⇤= lift� (unlift(�i (�))) �

2
i (�) , hE⇤, E⇤i where E⇤=�i (�)

hE1, E2i [X] = hE1[X], E2[X]i hE1, E2i[E3, E4] = hE1[E3], E2[E4]i

hE1, E2i [E3, E4,X] = hE1[E3/X], E2[E4/X]i

P���������� 10.2 (C�������������E�����). If �;�; � ` �11 � �12 : G 00[G 0/X], �;� ` G 0 and
� � �;� ` 9X .G 00 ⇠ G, then

�;�; � ` �(packuhG 0,�11i as 9X .G 00) :: G � �(packuhG 0,�12i as 9X .G 00) :: G : G

P����. First, we are required to prove that

�;�; � ` �(packuhG 0,�1i i as 9X .G 00) :: G : G

But by unfolding the premises we know that �;�; � ` �1i : G 00[G 0/X], therefore:

(Epack & Easc)
�;�; � ` �1i : G 00[G 0/X] �;� ` G 0

� � �;� ` 9X .G 00 ⇠ G

�;�; � ` �(packhG 0,�1i i as 9X .G 00) :: G : G

Consider arbitraryW , �,� such thatW 2 SJ�K, (W , �) 2 DJ�K and (W ,�) 2 G�J�K. We are
required to show that

(W , �(�1(�(packuhG 0,�11i as 9X .G 00) :: G)), �(�2(�(packuhG 0,�12i as 9X .G 00) :: G))) 2 T�JGK
First we have to prove that:

W.�i ` �(�i (�(packuhG 0,�1i i as 9X .G 00) :: G)) : �(G)
As we know that �;�; � ` �(packuhG 0,�1i i as 9X .G 00) :: G : G , by Lemma 6.25 the result follows

immediately.
By de�nition of substitutions

�(�i (�(packuhG 0,�1i i as 9X .G 00) :: G)) = �
�
i (packuh�(G 0), �(�i (�1i))i as 9X .�(G 00)) :: �(G)

where ��i = �i (�) and ��i .n = k . Therefore we have to prove that

(W , ��1 (packuh�(G
0), �(�1(�11))i as 9X .�(G 00)) :: �(G), ��2 (packuh�(G

0), �(�2(�12))i as 9X .�(G 00)) :: �(G)) 2 T� JGK

Or what is the same

(W , ��1 (packuh�(G
0), �(�1(�11))i as 9X .�(G 00)) :: �(G), ��2 (packuh�(G

0), �(�2(�12))i as 9X .�(G 00)) :: �(G)) 2 V� JGK

The type G can be 9X .G 0
1, for some G 0

1, ? or a T���N���.
Let ui = packuh�(G 0),�1i i as 9X .�(G 00) and G⇤ = 9X .G 00, we have to prove that:

(W 0, ��1 u1 :: �(G), �
�
2 u2 :: �(G)) 2 V�JGK

(1) If G = 9X .G 0
1, by the de�nition of V�J9X .G 0

1K, we have to prove that 8W 00 ⌫ W ,� .9R 2
R��W 00.j [�(G 0), �(G 0)] such that 8� 0 � �; dom(�) ` 9X .G 0

1 ⇠ 9X .G 0
1 (�

0.n = l) it is true that

(W ⇤, (�1(�) # �1(� 0))[Ĝ 0, �̂]�11 :: �(G 0
1)[�/X], (�2(�) # �2(� 0))[Ĝ2, �̂]�12 :: �(G 0

1)[�/X])) 2 T�[X 7!�]JG 0
1K

whereW ⇤ =W 00 ⇥ (�, �(G 0), �(G 0),R).

114 Elizabeth Labrada, Matías Toro, and Éric Tanter

or what is the same, we have to prove that

(W ⇤, (�1(� # � 0))[Ĝ 0, �̂]�11 :: �(G 0
1)[�/X], (�2(� # � 0))[Ĝ2, �̂]�12 :: �(G 0

1)[�/X])) 2 T�[X 7!�]JG 0
1K

By Proposition 10.8 (decomposition of the evidence) we know that

�i (� # � 0)[Ĝ 0, �̂] = �
⇤
1 (�i (� # � 0))[Ĝ 0, �̂] # �i (� # � 0)[�̂, �̂]

Lets take R = V�JG 0K.
Note that
• W

⇤ =W 00 ⇥ (�, �(G 0), �(G 0),V�JG 0K) ⌫W
0

• E
0
i = liftW ⇤ .�i (�(G

0)),
• Ei⇤ = liftW ⇤ .�i (Gpi), Gpi = unlift(�1(�i (� # � 0))) v �(G 00),
• �

0 = �[X 7! �],
• �i

�1 = �
⇤
1 (�i (� # � 0))[Ĝ 0, �̂] = hEi⇤[E 0

i/X], Ei⇤[�Ei /X]i, such that �i�1 �W ⇤.�i ` �(G 00[G 0/X]) ⇠
�(G 00[�/X]), �E0

i = liftW ⇤ .�i (�), and E
0
i = liftW ⇤ .�i (�(G

0)), �i�1.n = k and
• (W 0,�11,�12) 2 V�JG 00[G 0/X]K, then (W ⇤,�11,�12) 2 V�JG 00[G 0/X]K.
By the Lemma §10.6 (compositionality) we know that

(W ⇤, �1(�1(� # � 0))[Ĝ 0, �̂]�11 :: � 0(G 00), �1(�2(� # � 0))[Ĝ 0, �̂]�12 :: � 0(G 00))) 2 T�0JG 00K
or what is the same

(W ⇤, � ⇤
1 (�1(� # � 0))[Ĝ 0, �̂]�11 :: �(G 00)[�/X], � ⇤

1 (�2(� # � 0))[Ĝ 0, �̂]�12 :: �(G 00)[�/X])) 2 T�[X 7!�]JG 00K
Then we know that

(#kW ⇤, � 01u
0
1 :: �(G 00)[�/X], � 02u 0

2 :: �(G 00)[�/X])) 2 V�[X 7!�]JG 00K
where �1i = �

0
1iui :: �(G 00[G 0/X]) and � 0i = �

0
1i # � ⇤

1 (�i (� # � 0))[Ĝ 0, �̂].
Note now that
• (#kW ⇤, � 01u

0
1 :: �(G 00)[�/X], � 02u 0

2 :: �(G 00)[�/X])) 2 V�[X 7!�]JG 00K,
• (� # � 0)[X] � �;�,X ` G 00 ⇠ G

0
1, (� # � 0)[X].n = l

• #kW ⇤ 2 SJ�K and (#kW ⇤, � 0) 2 DJ�,X K,
Then, by Lemma 10.5 (Ascription Lemma), we know that

(#k+lW ⇤, (� 01 # � 01((� # � 0)[X]))u 0
1 :: �

0(G 0
1), (� 02 # � 02((� # � 0)[X]))u 0

2 :: �
0(G 0

1)) 2 V�0JG 0
1K

or what is the same

(#k+lW ⇤, (� 01 # �1(� # � 0)[�̂, �̂])u 0
1 :: �(G 0

1)[�/X], (� 02 # �2(� # � 0)[�̂, �̂])u 0
2 :: �(G 0

1)[�/X])) 2 V�[X 7!�]JG 0
1K

The result follows immediately.

(W ⇤, (�1(� # � 0))[Ĝ 0, �̂]�11 :: �(G 0
1)[�/X], (�2(� # � 0))[Ĝ2, �̂]�12 :: �(G 0

1)[�/X])) 2 T�[X 7!�]JG 0
1K

(2) If G 2 T���N��� then � = hH3,�E4i. Notice that as �E4 cannot have free type variables
therefore H3 neither. Then � = �i (�). As � is sync, then let us callG 000 =W.�i (�). We have to
prove that:

(W , hH3,�
E4iu1 :: �, hH3,�

E4iu2 :: �) 2 V�J�K
which, by de�nition of V�J�K, is equivalent to prove that:

(#W , hH3, E4iu1 :: G 000, hE3, E4iu2 :: G 000) 2 V�JG 000K
Then we proceed by case analysis on � :

Gradual System F: Auxiliary Definitions and Proofs 115

• (Case � = hH3,� �E4 i). We know that hH3,� �E4 i ` �;� ` G
⇤ ⇠ � , then by Lemma 6.29,

hH3, �E4i ` �;� ` G⇤ ⇠ G
000. As �E4 v G

000, then G 000 can either be ? or � .
If G 000 = ?, then by de�nition ofV�J?K, we have to prove that the resulting values belong
to V�J�K. Also as hH3, �E4i ` �;� ` G

⇤ ⇠ ?, by Lemma 6.27, hH3, �E4i ` �;� ` G
⇤ ⇠ � ,

and then we proceed just like this case once again (this is process is �nite as there are no
circular references by construction and it ends up in something di�erent to a type name).
If G 000 = � we use an analogous argument as for G 00 = ?.

• (Case � = hH3,�H4i). We have to prove that

(#W , hH3,H4iu1 :: G 000, hH3,H4iu2 :: G 000) 2 V�JG 000K

By Lemma 6.29, hH3,H4i ` �;� ` G⇤ ⇠ G
00. Then if G 00 = ?, we proceed as the case G 0 = ?,

with the evidence � = hH3,H4i. IfG 00 2 H���T���, we proceed as the previous case where
G

0 = 8X .G, and the evidence � = hH3,H4i.
Also, we have to prove that (8� 0, � 0,G⇤

1 , such that � 0.n = k , � 0 = h�E⇤⇤
1 , E⇤⇤2 i (#W 2

SJ� 0K ^ �
0 ` � 0 ` � ⇠ G

⇤
1), we get that

(#1W , � 0(hH3,�
H4iu1 :: �) :: G⇤

1, �
0(hH4,�

E22iu2 :: �) :: G⇤
1) 2 T�JG⇤

1K)
or what is the same ((hH3,�H4i # � 0) fails the result follows immediately)

(#1+kW , (hH3,�
H4i # � 0)u1 :: G⇤

1, (hH2,�
H4i # � 0)u2 :: G⇤

1) 2 V�JG⇤
1K)

By de�nition of transitivity and Lemma 6.30, we know that

hH3,�
H4i # h�E⇤⇤

1 , E⇤⇤2 i = hH3,H4i # hE⇤⇤1 , E⇤⇤2 i
We know that hE⇤⇤1 , E⇤⇤2 i ` � 0 ` G 00 ⇠ G

⇤
1 . Since hE⇤⇤1 , E⇤⇤2 i ` � ` G 00 ⇠ G

⇤
1 , #1W 2 SJ� 0K,

(#1W , hH3,H4iu1 :: G 00, hH1,H4iu2 :: G 00) 2 V�JG 00K, by Lemma 6.17, we know that (since
(hH3,�H4i # � 0) does not fail then (hH3,H4i # hE⇤⇤1 , E⇤⇤2 i) also does not fail by the transitivity
rules)

(#1+kW , (hH3,H4i # hE⇤⇤1 , E⇤⇤2 i)u1 :: G⇤
1, (hH3,H4i # hE⇤⇤1 , E⇤⇤2 i)u2 :: G⇤

1) 2 V�JG⇤
1K)

The result follows immediately.
(3) If G = ? we have the following cases:

• (G = ?, � = hH3,H4i). By the de�nition of V�J?K in this case we have to prove that:

(W , �1(�)u1 :: �(G), �2(�)u2 :: �(G)) 2 V�Jconst(H4)K
but as const(H4) = 9X .?, we proceed just like the case where G = 9X .G 0

1, where G
0
1 = ?.

• (G = ?, � = hH3,�E4i). Notice that as �E4 cannot have free type variables therefore E3
neither. Then � = �i (�). By the de�nition of V�J?K we have to prove that

(W , hH3,�
E4iu1 :: �, hH3,�

E4iu2 :: �) 2 V�J�K

Note that by Lemma 6.27 we know that � ` �;� ` G⇤ ⇠ � . Then we proceed just like the
case G 2 T���N���.

⇤

P���������� 10.3 (C�������������E����). If �;�; � ` t1 � t2 : G 00[G 0/X], �;� ` G 0, then

�;�; � ` packhG 0, t1i as 9X .G 00 � packhG 0, t2i as 9X .G 00 : 9X .G 00

116 Elizabeth Labrada, Matías Toro, and Éric Tanter

P����. First, we are required to prove that

�;�; � ` packhG 0, ti i as 9X .G 00 : 9X .G 00

But by unfolding the premises we know that �;�; � ` ti : G 00[G 0/X], therefore:

(Epack & Easc)
�;�; � ` ti : G 00[G 0/X] �;� ` G 0

�;�; � ` packhG 0, ti i as 9X .G 00 : 9X .G 00

Consider arbitraryW , �,� such thatW 2 SJ�K, (W , �) 2 DJ�K and (W ,�) 2 G�J�K. We are
required to show that

(W , �(�1(packhG 0, t1i as 9X .G 00)), �(�2(packhG 0, t2i as 9X .G 00))) 2 T�J9X .G 00K
First we have to prove that:

W.�i ` �(�i ((packhG 0, ti i as 9X .G 00))) : �(9X .G 00)
As we know that �;�; � ` (packhG 0, ti i as 9X .G 00) : 9X .G 00, by Lemma 6.25 the result follows

immediately.
By de�nition of substitutions

�(�i ((packhG 0, ti i as 9X .G 00))) = (packh�(G 0), �(�i (ti))i as 9X .�(G 00))
Therefore we have to prove that

(W , (packh�(G 0), �(�1(t1))i as 9X .�(G 00)), (packh�(G 0), �(�2(t2))i as 9X .�(G 00))) 2 T�J9X .G 00K
Second, consider arbitrary i <W.j,�1. Either there exist �1 such that:

W.�1 . (packh�(G 0), �(�1(t1))i as 9X .�(G 00)) 7��!i �1 . �1

or

W.�1 . (packh�(G 0), �(�1(t1))i as 9X .�(G 00)) 7��!i error

Let us suppose thatW.�1.(packh�(G 0), �(�1(t1))i as 9X .�(G 00)) 7��!i �1.�1. Hence, by inspection
of the operational semantics, it follows that there exist i1  i , �11 and �11 such that:

W.�1 . (packh�(G 0), �(�1(t1))i as 9X .�(G 00)) 7��!i1 �11 . (packh�(G 0),�11i as 9X .�(G 00)) 7��!1

�11 . �
�
1 (packuh�(G

0),�11i as 9X .�(G 00)) :: 9X .�(G 00)
where � = h9X .G 00, 9X .G 00i and ��i = �i (�).
We instantiate the hypothesis �;�; � ` t1 � t2 : G 00[G 0/X] withW , � and � to obtain that:

(W , �(�1(t1)), �(�2(t2))) 2 T�JG 00[G 0/X]K
We instantiate T�JG 00[G 0/X]K with i1, �11 and �11 (note that i1  i < W.j), hence there exists

�12 andW1, such thatW1 ⌫ W ,W1 .j =W .j � i1,W.�2 . �(�2(t2)) 7��!⇤
W

0.�2 . �12,W 0.�1 = �11,
and (W1,�11,�12) 2 V�JG 00[G 0/X]K (Note that ifW.�1 . �(�1(t1)) 7��!i1 error the result follows
immediately). Let’ s takeW 0 =#1W1. Note that we get that (W 0,�11,�12) 2 V�JG 00[G 0/X]K.
Then we have to prove that

(W 0, ��1 (packuh�(G
0),�11i as 9X .�(G 00)) :: 9X .�(G 00),

�
�
2 (packuh�(G

0),�12i as 9X .�(G 00)) :: 9X .�(G 00)) 2 V� J9X .�(G 00)K

Gradual System F: Auxiliary Definitions and Proofs 117

Let ui = packuh�(G 0),�1i i as 9X .�(G 00) and 9X .G1 = 9X .G 00, we have to prove that:
(W 0, ��1 u1 :: 9X .�(G 00), ��2 u2 :: 9X .�(G 00)) 2 V�J9X .G 00K

(1) By the de�nition ofV�J9X .G 0
1K, we have to prove that8W 00 ⌫W

0,� .9R 2 R��W 00.j [�(G 0), �(G 0)]
such that 8� 0 � �; dom(�) ` 9X .G 0

1 ⇠ 9X .G 0
1 (�

0.n = l) it is true that

(W ⇤, (�1(�) # �1(� 0))[Ĝ 0, �̂]�11 :: �(G 0
1)[�/X], (�2(�) # �2(� 0))[Ĝ2, �̂]�12 :: �(G 0

1)[�/X])) 2 T�[X 7!�]JG 0
1K

whereW ⇤ =W 00 ⇥ (�, �(G 0), �(G 0),R).
or what is the same, we have to prove that

(W ⇤, (�1(� # � 0))[Ĝ 0, �̂]�11 :: �(G 0
1)[�/X], (�2(� # � 0))[Ĝ2, �̂]�12 :: �(G 0

1)[�/X])) 2 T�[X 7!�]JG 0
1K

By Proposition 10.8 (decomposition of the evidence) we know that

�i (� # � 0)[Ĝ 0, �̂] = �
⇤
1 (�i (� # � 0))[Ĝ 0, �̂] # �i (� # � 0)[�̂, �̂]

Lets take R = V�JG 0K.
Note that
• W

⇤ =W 00 ⇥ (�, �(G 0), �(G 0),V�JG 0K) ⌫W
0

• E
0
i = liftW ⇤ .�i (�(G

0)),
• Ei⇤ = liftW ⇤ .�i (Gpi), Gpi = unlift(�1(�i (� # � 0))) v �(G 00),
• �

0 = �[X 7! �],
• �i

�1 = �
⇤
1 (�i (� # � 0))[Ĝ 0, �̂] = hEi⇤[E 0

i/X], Ei⇤[�Ei /X]i, such that �i�1 �W ⇤.�i ` �(G 00[G 0/X]) ⇠
�(G 00[�/X]), �E0

i = liftW ⇤ .�i (�), and E
0
i = liftW ⇤ .�i (�(G

0)), �i�1.n = k and
• (W 0,�11,�12) 2 V�JG 00[G 0/X]K, then (W ⇤,�11,�12) 2 V�JG 00[G 0/X]K.
By the Lemma §10.6 (compositionality) we know that

(W ⇤, �1(�1(� # � 0))[Ĝ 0, �̂]�11 :: � 0(G 00), �1(�2(� # � 0))[Ĝ 0, �̂]�12 :: � 0(G 00))) 2 T�0JG 00K
or what is the same

(W ⇤, � ⇤
1 (�1(� # � 0))[Ĝ 0, �̂]�11 :: �(G 00)[�/X], � ⇤

1 (�2(� # � 0))[Ĝ 0, �̂]�12 :: �(G 00)[�/X])) 2 T�[X 7!�]JG 00K
Then we know that

(#kW ⇤, � 01u
0
1 :: �(G 00)[�/X], � 02u 0

2 :: �(G 00)[�/X])) 2 V�[X 7!�]JG 00K
where �1i = �

0
1iui :: �(G 00[G 0/X]) and � 0i = �

0
1i # � ⇤

1 (�i (� # � 0))[Ĝ 0, �̂].
Note now that
• (#kW ⇤, � 01u

0
1 :: �(G 00)[�/X], � 02u 0

2 :: �(G 00)[�/X])) 2 V�[X 7!�]JG 00K,
• (� # � 0)[X] � �;�,X ` G 00 ⇠ G

0
1, (� # � 0)[X].n = l

• #kW ⇤ 2 SJ�K and (#kW ⇤, � 0) 2 DJ�,X K,
Then, by Lemma 10.5 (Ascription Lemma), we know that

(#k+lW ⇤, (� 01 # � 01((� # � 0)[X]))u 0
1 :: �

0(G 0
1), (� 02 # � 02((� # � 0)[X]))u 0

2 :: �
0(G 0

1)) 2 V�0JG 0
1K

or what is the same
(#k+lW ⇤, (� 01 # �1(� # � 0)[�̂, �̂])u 0

1 :: �(G 0
1)[�/X], (� 02 # �2(� # � 0)[�̂, �̂])u 0

2 :: �(G 0
1)[�/X])) 2 V�[X 7!�]JG 0

1K
The result follows immediately.

(W ⇤, (�1(� # � 0))[Ĝ 0, �̂]�11 :: �(G 0
1)[�/X], (�2(� # � 0))[Ĝ2, �̂]�12 :: �(G 0

1)[�/X])) 2 T�[X 7!�]JG 0
1K
⇤

118 Elizabeth Labrada, Matías Toro, and Éric Tanter

P���������� 10.4 (C�������������E������). If �;�; � ` t1 � t2 : 9X .G1, �;�,X ; �, x : G1 `
t
0
1 � t

0
2 : G2 and �;� ` G2, then �;�; � ` unpackhX , xi = t1 in t 01 � unpackhX , xi = t2 in t 02 : G2.

P����. First, we are required to prove that

�;�; � ` unpackhX , xi = ti in t
0
i : G2

But by unfolding the premises we know that �;�; � ` ti : 9X .G1, �;�,X ; �, x : G1 ` t 0i : G2 and
�;� ` G2, therefore:

(Eunpack)
�;�; � ` ti : 9X .G1 �;�,X ; �, x : G1 ` t 0i : G2 �;� ` G2

�;�; � ` unpackhX , xi = ti in t
0
i : G2

Consider arbitraryW , �,� such thatW 2 SJ�K, (W , �) 2 DJ�K and (W ,�) 2 G�J�K. We are
required to show that

(W , �(�1(unpackhX , xi = t1 in t
0
1)), �(�2(unpackhX , xi = t2 in t

0
2))) 2 T�JG2K

First we have to prove that:

W.�i ` �(�i (unpackhX , xi = ti in t
0
i)) : �(G2)

As we know that �;�; � ` unpackhX , xi = ti in t
0
i : G2, by Lemma 6.25 the result follows

immediately.
By de�nition of substitutions

�(�i (unpackhX , xi = ti in t
0
i)) = unpackhX , xi = �(�i (ti)) in �(�i (t 0i))

Therefore we have to prove that

(W , unpackhX , xi = �(�1(t1)) in �(�1(t 01)), unpackhX , xi = �(�2(t2)) in �(�2(t 02))) 2 T�JG2K
Second, consider arbitrary i <W.j,�1. Either there exist �1 such that:

W.�1 . unpackhX , xi = �(�1(t1)) in �(�1(t 01)) 7��!
i �1 . �1

or

W.�1 . unpackhX , xi = �(�1(t1)) in �(�1(t 01)) 7��!
i �1 . error

Let us suppose thatW.�1 . unpackhX , xi = �(�1(t1)) in �(�1(t 01)) 7��!
i �1 . �1.

Hence, by inspection of the operational semantics, it follows that there exist i1  i , �11 and �11
such that:

W.�1 . �(�1(t1)) 7��!i1 �11 . �11

Instantiate the second conjunct of�;�; � ` t1 � t2 : 9X .G1 withW , �, and� . Note thatW 2 SJ�K,
(W , �) 2 DJ�K and (W ,�) 2 G�J�K. Then we have that (W , �(�1(t1)), �(�2(t2))) 2 T�J9X .G1K.
Instantiate this with i1, �11 and �11 . Note that i1 <W.j which follows from i1  i <W.j.
Hence,there existsW1 ⌫W and �12 such thatW.�2 . �(�2(t2)) 7��!⇤

W1.�2 . �12, (W1,�11,�12) 2
V�J9X .G1K andW1.j + i1 =W.j.
Hence, �1i = �

0
i (packuhG 0

i ,�
0
i i as 9X .G 00

i) :: 9X .�(G1), where � 01 = k .n and � 0
i = �piui :: Gpi .

From (W1,�11,�12) 2 V�J9X .G1K, it follows that there exists R 2 R��W1 .j [G
0
1,G

0
2] such that

8� 0 � �;� ` 9X .G1 ⇠ 9X .G1 (� 0.n = l) it is true that

(W 0
1 , (� 01 # �1(� 0))[Ĝ 0

1, �̂]� 0
1 :: �(G1)[�/X], (� 02 # �2(� 0))[Ĝ 0

2, �̂]� 0
2 :: �(G1)[�/X]) 2 T�[X 7!�]JG1K

Gradual System F: Auxiliary Definitions and Proofs 119

whereW 0
1 =W1 ⇥ (�,G 0

1,G
0
2,R). If we take � 0 = I� (9X .G1, 9X .G1), then

(� 0i # �i (� 0)) = �
0
i

Therefore we know that

(W 0
1 , �

0
1[Ĝ 0

1, �̂]� 0
1 :: �(G1)[�/X], � 02[Ĝ 0

2, �̂]� 0
2 :: �(G1)[�/X]) 2 T�[X 7!�]JG1K

IfW 0
1.�1 . �

0
1[Ĝ 0

1, �̂]� 0
1 :: �(G1)[�/X] 7��! error the result follows immediately. Otherwise, if

W
0
1.�1 . �

0
1[Ĝ 0

1, �̂]�
0
1 :: �(G1)[�/X] 7��!k+l

W
0
1.�1 . �p1

where �p1 = (�p1 # � 01[Ĝ 0
1, �̂]u1 :: �(G1)[�/X], then

W
0
1.�2 . �

0
2[Ĝ 0

2, �̂]�
0
2 :: �(G1)[�/X] 7��!⇤

W
0
1.�2 . �p2

where �p2 = (�p2 # � 02[Ĝ 0
2, �̂]u2 :: �(G1)[�/X] and (W 0

2 ,�p1,�p2) 2 V�[X 7!�]JG1K, whereW 0
2 =#k+l

W
0
1 andW 0

2 .j + k + l =W
0
1 .j.

Note that
W.�1 . unpackhX , xi = �(�1(t1)) in �(�1(t 01)) 7��!i1

W1.�1 . unpackhX , xi = �11 in �(�1(t 01)) 7��!k+l
W1.�1 . t2[�/X][�p1/x] 7��!i2 �1 . �1

where i = i1 + k + l + i2.
Instantiate the second conjunct of �;�,X ; �, x : G1 ` t

0
1 � t

0
2 : G2 with W

0
2 , �[X 7! �],

� [x 7! (�p1,�p2)]. Note thatW 0
2 2 SJ�K(W 0

2 ⌫ W), (W 0
2 , �[X 7! �]) 2 DJ�,X K and (W 0

2 ,� [x 7!
(�p1,�p2)]) 2 G�J�, x : G1K. Then we have that

(W 0
2 ,�1(�(t 01))[�̂/X][�p1/x],�2(�(t 02))[�̂/X][�p2/x]) 2 T�[X 7!�]JG2K

Instantiate this with i2 < W
0
2 .j =W.j � i1 � k � l(i2 = i � i1 � k � l, i < W.j), �1 and �1 . Hence,

there existsW2 ⌫W
0
2 and �2 such that

W
0.�2 . �2(�(t 02))[�̂/X][�p2/x] 7��!⇤

W2.�2 . �2,W2.�1 = �1,W2 .j + i2 =W 0
2 .j and

(W2,�1,�2) 2 V�[X 7!�]JG2K
We are required to show that there existsW2 ⌫W and �2, such that

W.�2 . unpackhX , xi = �(�2(t2)) in �(�2(t 02)) 7��!⇤
W2.�2 . �2

,W2 .j + i =W.j(W2 .j =W.j � i1 � k � l � i2, i = i1 + k + l + i2) and (W2,�1,�2) 2 V�JG2K, which
follows from (W2,�1,�2) 2 V�[X 7!�]JG2K and �;� ` G2. ⇤

P���������� 10.5 (A���������� P������� R��������). If (W ,�1,�2) 2 V�JGK, � � �;� `
G ⇠ G

0,W 2 SJ�K and (W , �) 2 DJ�K, then (W , �1(�)�1 :: �(G 0), �2(�)�2 :: �(G 0)) 2 T�JG 0K.
P����. We only prove the case for existential, the other cases are in 6.2.

Case (G = 9X .G 00
1 and G 0 = 9X .G 0

1). We know that
(W ,�1,�2) 2 V�J9X .G 00

1 K
Where �i = �i (packuhGi

⇤,� 0
i i as 9X .�(G 000

i)) :: 9X .�(G 00
1) and �i `W.�i ` 9X .�(G 000

i) ⇠ 9X .�(G 00
1).

Let’s suppose that �1(�).n = k and �1.n =m. We have to prove that
(W , �1(�)�1 :: 9X .�(G 0

1), �2(�)�2 :: 9X .�(G 0
1)) 2 T� J9X .G 0

1K
If (�1 # �1(�)) fails, then we apply Lemma 6.26 to show that (�2 # �2(�)) also fails, therefore the proof
holds immediately. In the other case, (�i # �i (�)) do not fail, then by the de�nition of T�J9X .G 0

1K,
we have to prove that:

120 Elizabeth Labrada, Matías Toro, and Éric Tanter

(#kW , (�1#�1(�))(packuhG1
⇤,� 0

1i as9X .�(G 000
1)) :: 9X .�(G 0

1), (�2#�2(�))(packuhG2
⇤,� 0

2i as9X .�(G 000
2)) :: 9X .�(G 0

1))
2 V� J9X .G 0

1K

or what is the same:
8W 00 ⌫#kW ,� .9R 2 R��W 00.j [G⇤

1,G
⇤
2].

(W 00.�1 ` G⇤
1 ^W

00.�2 ` G⇤
2 ^ 8�, � 0 � �; dom(�) ` 9X .G 0

1 ⇠ 9X .G 0
1,� 2 SJ�K, � 0.n = l .

(W 000, (�1 # �1(� # � 0))[Ĝ⇤
1, �̂]� 0

1 :: �(G 0
1)[�/X], (�2 # �2(� # � 0))[Ĝ⇤

2, �̂]� 0
2 :: �(G 0

1)[�/X]) 2 T�[X 7!�]JG 0
1K

whereW 000 = ((W 00) ⇥ (�,G⇤
1,G

⇤
2,R)).

Let’s suppose that � 0
i = �i

⇤
ui :: G 000

i [G⇤
i]. Therefore, we are required to prove that

((#k+l+mW 000)(�1⇤ # �1 # �1(� # � 0))[Ĝ⇤
1, �̂]u1 :: �(G

0
1)[�/X],

�2
⇤ # (�2 # �2(� # � 0))[Ĝ⇤

2, �̂]u2 :: �(G
0
1)[�/X]) 2 V�[X 7!�]JG 0

1K

Note that by Lemma 10.9 we get that

(�i # �i (� # � 0))[Ĝ⇤
i , �̂] = (�i # � 2

1 (�i (� # � 0)))[Ĝ⇤
i , �̂] # �i (� # � 0)[�̂, �̂] =

(�i # �i (� 2
1 (� # � 0)))[Ĝ⇤

i , �̂] # �i (� # � 0)[�̂, �̂]

By premise, we know that (W ,�1,�2) 2 V�J9X .G 00
1 K. Then, we instantiate this de�nition with

("k W
00) ⌫ W (W 00 ⌫ (#kW)) ("k W

00) ⌫ "k#kW) and � . Therefore, 9R 2 R��W 00.j [G⇤
1,G

⇤
2],

such that for all evidence �
00 � � 0; dom(�) ` 9X .G 00

1 ⇠ 9X .G 00
1 , in particular � 00 = �

2
1 (� # � 0)

(� 2
1 (� # � 0).n = k). Therefore, we know that (W 000 = (W 00 ⇥ (�,G⇤

1,G
⇤
2,R))):

(W 000, (�1 # �1(� 2
1 (� # � 0)))[Ĝ⇤

1, �̂]�
0
1 :: �(G 00

1)[�/X], (�2 # �2(� 2
1 (� # � 0))[Ĝ⇤

2, �̂]�
0
2 :: �(G 00

1)[�/X])
2 T�[X 7!�]JG 00

1 K
Then, we get that:

((#k+lW 000),� 000
1 ,�

000
2) 2 V�[X 7!�]JG 00

1 K
where � 000

i = �i
⇤ # (�i # �i (� 2

1 (� # � 0)))[Ĝ⇤
i , �̂]ui :: �(G 00

1)[�/X].
By induction hypothesis on ((#k+lW 000),� 000

1 ,�
000
2) 2 V�[X 7!�]JG 00

1 K, with (� # � 0)[X] � �;�,X `
G

00
1 ⇠ G

0
1 ((� # � 0)[X].n = m), (#k+lW 000) 2 SJ�K and ((#k+lW 000), � 0) 2 DJ�,X K , � 0 = �[X 7! �],

we get that:
((#k+lW 000), � 01((� # � 0)[X])� 000

1 :: �(G 0
1)[�/X], � 02((� # � 0)[X])� 000

2 :: �(G 0
1)[�/X]) 2 T�[X 7!�]JG 0

1K

or what is the same (note that � 0i ((� # � 0)[X]) = �i (� # � 0)[�̂, �̂]):

((#k+lW 000), �1(� # � 0)[�̂, �̂]� 000
1 :: �(G 0

1)[�/X], �2(� # � 0)[�̂, �̂]� 000
2 :: �(G 0

1)[�/X]) 2 T�[X 7!�]JG 0
1K

or what is the same:

((#k+l+mW 000),�⇤1,�⇤2) 2 V�[X 7!�]JG 0
1K

where �⇤
i = �i

⇤ # ((�i # �i (� 2
1 (� # � 0)))[Ĝ⇤

i , �̂] # �i (� # � 0)[�̂, �̂])ui :: �(G 0
1)[�/X].

By the reduction rule

W
000.�1 . (�1 # �1(� # � 0))[Ĝ⇤

1, �̂]� 0
1 :: �(G 0

1)[�/X] �!k+m+l
W

000.�1 . �
⇤
1

Therefore, the results follows immediately (((#k+l+mW 000),�⇤
1,�

⇤
2) 2 V�[X 7!�]JG 0

1K).

Gradual System F: Auxiliary Definitions and Proofs 121

⇤

P���������� 10.6 (C���������������E�). If
• W.�i (�) = �(G 0) andW.�(�) = V�JG 0K,
• E

0
i = liftW.�i

(�(G 0)),
• Ei = liftW.�i

(Gp) for some Gp v �(G),
• �

0 = �[X 7! �],
• �i = hEi [�E0

i /X], Ei [E 0
i/X]i, such that �i `W.�i ` �(G[�/X]) ⇠ �(G[G 0/X]), and

• �i
�1 = hEi [E 0

i/X], Ei [�E0
i /X]i, such that �i�1 `W.�i ` �(G[G 0/X]) ⇠ �(G[�/X]), then

(1)

(W , � 01u1 :: � 0(G), � 02u2 :: � 0(G)) 2 V�0JGK)
(W , �1(� 01u1 :: �(G)) :: �(G [G 0/X]), �2(� 02u2 :: �(G)) :: �(G [G 0/X])) 2 T� JG [G 0/X]K

(2)

(W , � 01u1 :: �(G [G 0/X]), � 02u2 :: �(G [G 0/X])) 2 V� JG [G 0/X]K)
(W , �1�1(� 01u1 :: �(G [G 0/X])) :: � 0(G), �2�1(� 02u2 :: �(G [G 0/X])) :: � 0(G)) 2 T�0JGK

P����. We only prove the case for existential, the other cases are in 6.2. We proceed by induction
on G. Let �i = �

0
iui :: �

0(G), � = dom(�). We prove (1) �rst. Let’s suppose that � 01.n = k , �1.n = l

and �1�1.n =m.

Case (9Y .G1). We know that

(W , � 01u1 :: � 0(G), � 02u2 :: � 0(G)) 2 V�0JGK
where ui = packuhG⇤

i ,�
0
i i as 9Y .G 00

i and G = 9Y .G1. Therefore, we have to prove that

(W , �1(� 01u1 :: �(G)) :: �(G [G 0/X]), �2(� 02u2 :: �(G)) :: �(G [G 0/X])) 2 V�JG [G 0/X]K
If � 0i # �i is not de�ned, the result follows immediately. If it is de�ned, we have to prove that:

((#lW), (� 01 # �1)u1 :: �(G [G 0/X], (� 02 # �2)u2 :: �(G [G 0/X])) 2 V�JG [G 0/X]K
or what is the same by the de�nition of V�JG [G 0/X]K, we have to prove that:

8W 00 ⌫ (#lW), � .9R 2 R��W 00.j [G⇤
1,G

⇤
2].

(W 00.�1 ` G⇤
1 ^W

00.�2 ` G⇤
2 ^ 8� 0 � �;� ` 9Y .G1[G 0/X] ⇠ 9Y .G1[G 0/X] ^ �

0.n = k 0

(W 000, (� 01 # �1 # �1(� 0))[Ĝ⇤
1, �̂]� 0

1 :: �(G1[G 0/X][�/Y]), (� 02 # �2 # �2(� 0))[Ĝ⇤
2, �̂]� 0

2 :: �(G1[G 0/X][�/Y]))
2 T�[Y 7!�]JG1[G 0/X]K

whereW 000 = ((W 00) ⇥ (�,G⇤
1,G

⇤
2,R)). Therefore, we are required to prove that

((#k+l+k 0W 000)(�1⇤ # (� 01 # �1 # �1(� 0))[Ĝ⇤
1, �̂])u

0
1 :: �(G1[G 0/X][�/Y]),

(�2⇤ # (� 02 # �2 # �2(� 0))[Ĝ⇤
2, �̂])u

0
2 :: �(G1[G 0/X][�/Y])) 2 T�[Y 7!�]JG1[G 0/X]K

where � 0
i = �i

⇤
u
0
i :: G

00
i [G⇤

i /Y].
Note that by Lemma 10.10 we know that �i = �i (�⇤⇤)[�, �(G 0),X] for some �

⇤⇤ � �;�,X `
9Y .G1 ⇠ 9Y .G1. Therefore, by Lemma 10.11 we get that for some �⇤ � �;�,X ` 9Y .G1 ⇠ 9Y .G1:

(� 0i # �i # �i (� 0))[Ĝ⇤
i , �̂] = (� 0i # �i (�⇤⇤)[�, �(G 0),X] # �i (� 0))[Ĝ⇤

i , �̂] =

(� 0i # �i (�⇤)[�,�,X])[Ĝ⇤
i , �̂] # (�⇤

2 (�i (�⇤))[�, �(G 0),Y] # �i (� 0))[�̂, �̂] =

122 Elizabeth Labrada, Matías Toro, and Éric Tanter

(� 0i # � 0i (�⇤))[Ĝ⇤
i , �̂] # (�⇤

2 (�i (�⇤))[�, �(G 0),Y] # �i (� 0))[�̂, �̂]

By premise, we know that (W , � 01u1 :: � 0(G), � 02u2 :: � 0(G)) 2 V�0J9Y .G1K. Then, we instantiate
this de�nition with ("l W 00) ⌫ W (W 00 ⌫ (#lW))" W

00 ⌫ ("l#lW)) and � . Therefore, 9R 2
R��W 00.j [G⇤

1,G
⇤
2], such that for all evidence �

00 � �;�,X ` 9X .G 0
1 ⇠ 9X .G 0

1, in particular, we
instantiate with �

00 = �
⇤[X] (� 00.n = l). Therefore, we know that (W 000 = ((W 00) ⇥ (�,G⇤

1,G
⇤
2,R))):

("l W 00, (� 01 # � 01(�⇤))[Ĝ⇤
1, �̂]� 0

1 :: �
0(G1)[�/Y], (� 02 # � 02(�⇤))[Ĝ⇤

2, �̂]� 0
2 :: �

0(G1)[�/Y] 2 T�0[Y 7!�]JG1K
Therefore, we know that

(#kW 000,� 00
1 ,�

00
2) 2 V�0[Y 7!�]JG1K

where � 00
i = �i

⇤ # (� 0i # � 0i (�⇤))[Ĝ⇤
i , �̂]u 0

i :: �
0(G1)[�/Y].

Note that, for some Gph v �[Y 7! �](G1), we get E⇤i = liftW 000.�i
(Gph) such that:

• unlift(�2(�[Y 7! �]i (�⇤))) = Gph v �[Y 7! �](G1) and E⇤i = liftW 000.�i
(Gph)

• �
⇤
2 (�i (�⇤))[�̂, �̂] = �

⇤
2 (�[Y 7! �]i (�⇤)) = hE⇤i , E⇤i i, by the de�nition of � ⇤

2 ()[.]
• �

⇤
2 (�i (�⇤))[�, �(G 0),X][�̂, �̂] = �

⇤
2 (�[Y 7! �]i (�⇤))[�, �(G 0),X]

• hE⇤i [�E0
i /X], E⇤i [E 0

i/X]i = hE⇤i , E⇤i i [�, �(G 0),X] = �
⇤
2 (�i (�⇤))[�, �(G 0),X][�̂, �̂]

Now, by the induction hypothesis we get:
• (#kW 000,� 00

1 ,�
00
2) 2 V�0[Y 7!�]JG1K

• W
000
i .� (�) = �[Y 7! �](G 0) andW.�(�) = V�[Y 7!�]JG 0K,

• E
0
i = liftW 000.�i

(�[Y 7! �](G 0)),
• E

⇤
i = liftW 000.�i

(Gph), Gph v �[Y 7! �](G1),
• �

00 = �[Y 7! �][X 7! �],
• �ih = hE⇤i [�E0

i /X], E⇤i [E 0
i/X]i = �

⇤
2 (�i (�⇤))[�, �(G 0),Y][�̂, �̂] (�ih .n = l), such that

�ih `W 000.�i ` �[Y 7! �](G1[�/X]) ⇠ �[Y 7! �](G1[G 0/X])

(#kW 000, �1h�
00
1 :: �[Y 7! �](G1[G 0/X]), �2h� 00

2 :: �[Y 7! �](G1[G 0/X])) 2 T�[Y 7!�]JG1[G/X]K
If the combination of evidence does not succeed, then the result follows immediately. Otherwise,
we get that

(#k+lW 000
W

000,� 000
1 ,�

000
2) 2 V�[Y 7!�]JG1[G/X]K

where � 000
i = (�i ⇤ # (� 0i # � 0i (�⇤))[Ĝ⇤

i , �̂] # �ih)u 0
i :: �[Y 7! �](G1[G 0/X])

By the ascription Lemma 10.5:
• (#k+lW 000,� 000

1 ,�
000
2) 2 V�[Y 7!�]JG1[G/X]K

• �
0[Y] � �;�,Y ` G1[G 0/X] ⇠ G1[G 0/X] (� 0[Y].n = k 0)

• #k+lW 000 2 SJ�K and (#k+lW 000, �[Y 7! �]) 2 DJ�,Y K
then we have:

(#k+lW 000, �1(� 0))[�̂, �̂]� 000
1 :: �[Y 7! �](G1[G 0/X]),

�2(� 0))[�̂, �̂]� 000
2 :: �[Y 7! �](G1[G 0/X])) 2 T�[Y 7!�]JG1[G/X]K

If the combination of evidence does not succeed, then the result follows immediately. Otherwise,
we get that

(#k+l+k 0W 000,� 0000
1 ,�

0000
2) 2 V�[Y 7!�]JG1[G/X]K

where � 0000
i = (�i ⇤ # (� 0i # � 0i (�⇤))[Ĝ⇤

i , �̂] # �ih # �i (� 0))[�̂, �̂])u 0
i :: �[Y 7! �](G1[G 0/X]) Note that

W
000.�1 . (� 01 # �1 # �1(� 0))[Ĝ⇤

1, �̂]� 0
1 :: �(G1[G 0/X][�/Y]) �!k+l+k 0

W
000.�1 . �

0000
1

Gradual System F: Auxiliary Definitions and Proofs 123

And, we have to prove

(W 000, (� 01 # �1 # �1(� 0))[Ĝ⇤
1, �̂]� 0

1 :: �(G1[G 0/X][�/Y]), (� 02 # �2 # �2(� 0))[Ĝ⇤
2, �̂]� 0

2 :: �(G1[G 0/X][�/Y]))
2 T�[Y 7!�]JG1[G 0/X]K

Therefore, the result follows immediately (((#k+l+k 0W 000),� 0000
1 ,�

0000
2) 2 V�[Y 7!�]JG1[G/X]K).

⇤

L���� 10.7. If � � �;� ` 9X .G1 ⇠ 9X .G2 then � [X] � �;�,X ` G1 ⇠ G2.

P����. Straightforward by induction on the evidences. ⇤

L���� 10.8.
�[E1, E2] = �

⇤
1 (�)[E1, E2] # �[E2, E2] = �

2
1 (�)[E1, E2] # �[E2, E2]

P����. Straightforward induction on the evidence structure. ⇤

L���� 10.9.
(� # � 0)[E1, E2] = (� # �⇤

1 (� 0))[E1, E2] # � 0[E2, E2] = (� # � 2
1 (� 0))[E1, E2] # � 0[E2, E2]

P����. Straightforward induction on the evidence structure. ⇤

L���� 10.10. If �i �W.�i ` �(G) ⇠ �(G),W 2 SJ�K and (W , �) 2 DJ�K, then 9� � �,� ` G ⇠
G such that �i = �i (�).

P����. Straightforward induction on the evidence structure. ⇤

L���� 10.11 (E������� �������������). If
� �1 � �;�,X ,Y ` G ⇠ G

� �2 � �;�,X ` G[G 0/Y] ⇠ G
00 and �;� ` G 0

� W 2 SJ�K, (W , �[X 7! �][Y 7! �]) 2 DJ�,X ,Y K,W.�i (�) = �(Gi) andW.�i (�) = �(G 0)
then 9� � �;�,X ,Y ` G ⇠ G

(�i (�1)[�,G 0,Y] # �i (�2))[Gi ,�,X] = (�i (�)[�, �,Y])[Gi ,�,X] # (� ⇤
2 (�i (�))[�,G,Y] # �i (�2))[�,�,X]

P����. We proceed by induction on G.

Case (G = B and G 00 = B). Then, we know that �i = hB,Bi. Therefore, if we choose � = hB,Bi the
results follows immediately.

Case (G = G
00
1 ! G

00
2 , and G

00 = G 0
1 ! G

0
2). We know that

� �1 � �;�,X ,Y ` G 00
1 ! G

00
2 ⇠ G

00
1 ! G

00
2 implies that

idom](�1) � �;�,X ,Y ` G 00
1 ⇠ G

00
1

� �2 � �;�,X ` (G 00
1 ! G

00
2)[G 0/Y] ⇠ G

0
1 ! G

0
2 implies that

idom](�2) � �;�,X ` G 00
1 [G 0/Y] ⇠ G

0
1

Therefore by the induction hypothesis, we know that 9� 0 � �;�,X ,Y ` G 00
1 ⇠ G

00
1 such that

(�i (idom](�1))[�,G 0,Y] # �i (idom](�2)))[Gi ,�,X] =
(�i (� 0)[�, �,Y])[Gi ,�,X] # (� ⇤

2 (�i (� 0))[�,G,Y] # �i (idom](�2)))[�,�,X]
Also we know that

124 Elizabeth Labrada, Matías Toro, and Éric Tanter

� �1 � �;�,X ,Y ` G 00
1 ! G

00
2 ⇠ G

00
1 ! G

00
2 implies that

icod](�1) � �;�,X ,Y ` G 00
2 ⇠ G

00
2

� �2 � �;�,X ` (G 00
1 ! G

00
2)[G 0/Y] ⇠ G

0
1 ! G

0
2 implies that

icod](�2) � �;�,X ` G 00
2 [G 0/Y] ⇠ G

0
2

Therefore by the induction hypothesis, we know that 9� 00 � �;�,X ,Y ` G 00
2 ⇠ G

00
2 such that

(�i (icod](�1))[�,G 0,Y] # �i (icod](�2)))[Gi ,�,X] =
(�i (� 00)[�, �,Y])[Gi ,�,X] # (� ⇤

2 (�i (� 00))[�,G,Y] # �i (icod](�2)))[�,�,X]
Therefore, it follows that 9� � �;�,X ,Y ` G 00

1 ! G
00
2 ⇠ G

00
1 ! G

00
2 , such that the result follows

immediately (� = h�1(� 0) ! �1(� 00), �2(� 0) ! �2(� 00)i). Note that
• idom](�) = �

0

• icod](�) = �
00

• idom]((�i (�1)[�,G 0,Y] # �i (�2))[Gi ,�,X]) =
(�i (idom](�1))[�,G 0,Y] # �i (idom](�2)))[Gi ,�,X] =
(�i (� 0)[�, �,Y])[Gi ,�,X] # (� ⇤

2 (�i (� 0))[�,G,Y] # �i (idom](�2)))[�,�,X] =
idom]((�i (�)[�, �,Y])[Gi ,�,X] # (� ⇤

2 (�i (�))[�,G,Y] # �i (�2))[�,�,X])
• icod]((�i (�1)[�,G 0,Y] # �i (�2))[Gi ,�,X]) =
(icod](�i (icod](�1))[�,G 0,Y] # �i (icod](�2)))[Gi ,�,X] =
(�i (� 00)[�, �,Y])[Gi ,�,X] # (� ⇤

2 (�i (� 00))[�,G,Y] # �i (icod](�2)))[�,�,X] =
icod]((�i (�)[�, �,Y])[Gi ,�,X] # (� ⇤

2 (�i (�))[�,G,Y] # �i (�2))[�,�,X])
Note that two evidences are equals if and only if their idom] and icod] equals too.

Case (G = 8X .G 00
1 and G 00 = 8X .G 0

1). Similar to function case.

Case (G = G1 ⇥G2). Similar to function case.

Case (G = �). This means that evidences do not have type variables, therefore, type substitutions
are not applied. For this reason, the result follows immediately.

Case (G = �). This means that evidences do not have type variables, therefore, type substitutions
are not applied. For this reason, the result follows immediately.

Case (G = �). This means that evidences do not have type variables, therefore, type substitutions
are not applied. For this reason, the result follows immediately.

Case (G = X). Then, we know that �1 = hX ,X i and �2 = hX ,X i. Therefore, with � = hX ,X i the
result follows immediately.

Case (G = Y). Then, we know that �1 = hY ,Y i. Since, �2 � �;�,X ` G
0 ⇠ G

00 and �;� ` G
0

(without X), we know that

�i (�2)[Gi ,�,X] = �i (�2)[�,�,X] = �i (�2)
Therefore, 9� = hY ,Y i, such that the result follows immediately.

Case (G = Z). Then, we know that �1 = hZ ,Z i and �2 = hZ ,Z i. Therefore, with � = hZ ,Z i the
result follows immediately.

Case (G = ?). We follow by case in the evidences.
• �1 = h?, ?i, then 9� = �2 such that the results follows immediately (by Lemma 10.8).

Gradual System F: Auxiliary Definitions and Proofs 125

G 6 G Strict type precision

G1 6 G2
9X .G1 6 9X .G2

� ` �1 . s : G 6 �2 . s : G Strict term precision (for conciseness, s ranges over both t and u)

(6packu�)
G
0
1 6 G

0
2 � ` �1 . �1 : G1[G 0

1/X] 6 �2 . �2 : G2[G 0
2/X] 9X .G1 v 9X .G2

� ` �1 . packuhG 0
1,�1i as 9X .G1 : 9X .G1 6 �2 . packuhG 0

2,�2i as 9X .G2 : 9X .G2

(6pack�)
G
0
1 6 G

0
2 � ` �1 . t1 : G1[G 0

1/X] 6 �2 . t2 : G2[G 0
2/X] 9X .G1 6 9X .G2

� ` �1 . packhG 0
1, t1i as 9X .G1 : 9X .G1 6 �2 . packhG 0

2, t2i as 9X .G2 : 9X .G2

(6unpack�)
� ` �1 . t1 : 9X .G1 6 �2 . t2 : 9X .G2 �, x : G1 v G2 ` �1 . t

0
1 : G

0
1 6 �2 . t

0
2 : G

0
2

� ` �1 . unpackhX , xi = t1 in t
0
1 : G

0
1 6 �2 . unpackhX , xi = t2 in t

0
2 : G

0
2

G _ G Type matching
? _ 9X .?

� ` � : G 6� � : G Strict value precision

(6packu)
G
0
1 6 G

0
2 � ` �1 : G 00

1 6� �2 : G 00
2 9X .G1 v 9X .G2 G

00
1 uG1[G 0

1/X] 6 G 00
2 uG2[G 0

2/X]
� ` packhG 0

1,�1i as 9X .G1 : 9X .G1 6� packhG 0
2,�2i as 9X .G2 : 9X .G2

� ` t : G 6 t : G Strict term precision

(6pack)
G
0
1 6 G

0
2 � ` t1 : G 00

1 6 t2 : G 00
2 9X .G1 6 9X .G2 G

00
1 uG1[G 0

1/X] 6 G 00
2 uG2[G 0

2/X]
� ` packhG 0

1, t1i as 9X .G1 : 9X .G1 6 packhG 0
2, t2i as 9X .G2 : 9X .G2

(6unpack)
� ` t1 : G1 6 t2 : G2 �, x : schm]

e (G1) v schm]
e (G2) ` t 01 : G 0

1 6 t
0
2 : G

0
2

� ` unpackhX , xi = t1 in t
0
1 : G

0
1 6 unpackhX , xi = t2 in t

0
2 : G

0
2

Fig. 27. GSF9� and GSF9: Strict term precision

• �2 = h?, ?i, then 9� = �1 such that the results follows immediately (by Lemma 10.8).
• The other evidence cases are covered in other cases of the proof.

⇤

P���������� 12.5. If �;�; � ` t1 ⇡ t2 : G, then �;�; � ` t1 ⇡ctx
t2 : G.

P����. Similar to Th. 6.32. ⇤

10.5 A Weak Dynamic Gradual Guarantee for GSF9

P���������� 10.12. If � ` t
⇤
1 : G⇤

1 6 t
⇤
2 : G⇤

2 , � ⌘ �1 v �2, �; �i ` t
⇤
i { t

⇤⇤
i : G⇤

i , then
� ` .t⇤⇤1 : G⇤

1 6 �2 . t
⇤⇤
2 : G⇤

2 .

P����. We follow by induction on � ` t⇤1 : G⇤
1 6 t

⇤
2 : G⇤

2 . We avoid the notation � ` t⇤1 : G⇤
1 6

t
⇤
2 : G⇤

2 , and use t⇤1 6 t
⇤
2 instead, for simplicity, when the typing environments are not relevant. We

use metavariable � or u in GSF to range over constants, functions and type abstractions. We only
proof here the cases related to existential types. Other cases where proved in Section 5.

126 Elizabeth Labrada, Matías Toro, and Éric Tanter

Case (6v).

(6v)
� ` u1 : G⇤

1 6� u2 : G⇤
2 G

⇤
1 6 G

⇤
2

� ` u1 : G⇤
1 6 u2 : G

⇤
2

(Gu)
�; �1 ` u1 { u

0
1 : G

⇤
1 �G⇤

1
= I(G⇤

1,G
⇤
1)

�; �1 ` u1 { �G⇤
1
u
0
1 :: G

⇤
1 : G

⇤
1

(Gu)
�; �2 ` u2 { u

0
2 : G

⇤
2 �G⇤

2
= I(G⇤

2,G
⇤
2)

�; �2 ` u2 { �G⇤
2
u
0
2 :: G

⇤
2 : G

⇤
2

We have to prove that � ` �G⇤
1
u
0
1 :: G⇤

1 6 �G⇤
2
u
0
2 :: G⇤

2 : G⇤
1 6 G

⇤
2 . By the rule (6asc�), we are

required to prove that �G⇤
1
6 �G⇤

2
, � ` u

0
1 6 u

0
2 : G⇤

1 6 G
⇤
2 and G

⇤
1 v G

⇤
2 . Since G

⇤
1 6 G

⇤
2 and

Proposition 10.22, we know that �G⇤
1
6 �G⇤

2
. Also, by Proposition 10.23 and G⇤

1 6 G
⇤
2 , we now that

G
⇤
1 v G

⇤
2 . Therefore, we only have required to prove that � ` u

0
1 6 u

0
2 : G⇤

1 6 G
⇤
2 . We follow

by case analysis on � ` u1 : G⇤
1 6� u2 : G⇤

2 . We only take into account the package, where
ui = packuhG 0

i ,�i i as 9X .G 00
i and G⇤

i = 9X .G 00
i , where 9X .G 00

1 6 9X .G 00
2 . We know that

(6pack)
G

0
1 6 G

0
2 � ` .�1 : G1 6 �2 . �2 : G2 9X .G 00

1 v 9X .G 00
2 G1 uG

00
1 [G 0

1/X] 6 G2 uG
00
2 [G 0

2/X]
� ` .packhG 0

1,�1i as 9X .G 00
1 : 9X .G 00

1 6 �2 . packhG 0
2,�2i as 9X .G 00

2 : 9X .G 00
2

(Gpack)
�; �1 ` �1 :: G 00

1 [G 0
1/X] { �

00
1 : G 00

1 [G 0
1/X]

�; �1 ` packhG 0
1,�1i as 9X .G 00

1 { packuhG 0
1,�

00
1 i as 9X .G 00

1 : 9X .G 00
1

(Gpack)
�; �2 ` �2 :: G 00

2 [G 0
2/X] { �

00
2 : G 00

2 [G 0
2/X]

�; �2 ` packhG 0
2,�2i as 9X .G 00

2 { packuhG 0
2,�

00
2 i as 9X .G 00

2 : 9X .G 00
2

We have to prove that � ` .packuhG 0
1,�

00
1 i as 9X .G 00

1 : 9X .G 00
1 6 �2 . packuhG 0

2,�
00
2 i as 9X .G 00

2 :
9X .G 00

2 , or what is the same by the rule (6packu�), we have to prove that G 0
1 6 G

0
2, � ` .� 00

1 :
G

00
1 [G 0

1/X] 6 �2 .�
00
2 : G 00

2 [G 0
2/X] and 9X .G 00

1 v 9X .G 00
2 . By premise,G 0

1 6 G
0
2 and 9X .G 00

1 v 9X .G 00
2

(Proposition 10.16) follows immediately. Therefore, we only have required to prove that � ` .� 00
1 :

G
00
1 [G 0

1/X] 6 �2 . �
00
2 : G 00

2 [G 0
2/X], which follows by the induction hypothesis. We know that

�
00
1 = �1�

0
1 :: G

00
1 [G 0

1/X] where �1 = I(G1,G
00
1 [G 0

1/X])
�
00
2 = �2�

0
2 :: G

00
2 [G 0

2/X] where �2 = I(G2,G
00
2 [G 0

2/X])
where �; �i ` �i {� �

0
i : Gi , and therefore � ` � 0

1 6 �
0
2 : G1 6 G2.

By rule (6asc�), we are required to prove that �1 6 �2, � ` � 0
1 6 �

0
2 : G1 6 G2 and G 00

1 [G 0
1/X] v

G
00
2 [G 0

2/X]. By induction hypothesis on � ` �1 .�1 : G1 6 �2 .�2 : G2, we know that � ` � 0
1 6 �

0
2 :

G1 6 G2. By Proposition 10.26, G 00
1 6 G

00
2 and G 0

1 6 G
0
2, we know that G 00

1 [G 0
1/X] 6 G 00

2 [G 0
2/X], and

thereforeG 00
1 [G 0

1/X] v G
00
2 [G 0

2/X]. By Proposition 10.14 andG1 uG
00
1 [G 0

1/X] 6 G2 uG
00
2 [G 0

2/X], we
know that

�1 = I(G1,G
00
1 [G 0

1/X]) = I(G1 uG
00
1 [G 0

1/X],G1 uG
00
1 [G 0

1/X]) 6
I(G2 uG

00
2 [G 0

2/X],G2 uG
00
2 [G 0

2/X]) = I(G2,G
00
2 [G 0

2/X]) = �2

Therefore, the results holds.

Case (6ascv). We know that

(6ascv)
� ` u1 : G⇤⇤

1 6� u2 : G⇤⇤
2 G

⇤⇤
1 uG

⇤
1 6 G

⇤⇤
2 uG

⇤
2 G

⇤
1 v G

⇤
2

� ` u1 :: G⇤
1 : G

⇤
1 6 u2 :: G

⇤
2 : G

⇤
2

(Gascu)
�; �1 ` u1 { u

0
1 : G

⇤⇤
1 �1 = I(G⇤⇤

1 ,G
⇤
1)

�; �1 ` u1 :: G⇤
1 { �1u

0
1 :: G

⇤
1 : G

⇤
1

Gradual System F: Auxiliary Definitions and Proofs 127

(Gascu)
�; �2 ` u2 { u

0
2 : G

⇤⇤
2 �2 = I(G⇤⇤

2 ,G
⇤
2)

�; �2 ` u2 :: G⇤
2 { �2u

0
2 :: G

⇤
2 : G

⇤
2

We have to prove that � ` �1u
0
1 :: G

⇤
1 6 �2u

0
2 :: G

⇤
2 : G⇤

1 6 G
⇤
2 , or what is the same by the rule

(6asc�), we have to prove that �1 6 �2, � ` u 0
1 6 u

0
2 : G

⇤⇤
1 6 G

⇤⇤
2 and G⇤

1 v G
⇤
2 . By Proposition 10.13,

we know that �1 = I(G⇤⇤
1 ,G

⇤
1) = I(G⇤⇤

1 uG
⇤
1,G

⇤⇤
1 uG

⇤
1) and �2 = I(G⇤⇤

2 ,G
⇤
2) = I(G⇤⇤

2 uG
⇤
2,G

⇤⇤
2 uG

⇤
2).

SinceG⇤⇤
1 uG

⇤
1 6 G

⇤⇤
2 uG

⇤
2 , then �1 = I(G⇤⇤

1 ,G
⇤
1) = I(G⇤⇤

1 uG
⇤
1,G

⇤⇤
1 uG

⇤
1) 6 I(G⇤⇤

2 uG
⇤
2,G

⇤⇤
2 uG

⇤
2) =

I(G⇤⇤
2 ,G

⇤
2) = �2, by Proposition 10.14. Thus, we only have to prove that � ` u 0

1 6 u
0
2 : G

⇤⇤
1 6 G

⇤⇤
2 ,

and we know that � ` u 0
1 : G

⇤⇤
1 6� u

0
2 : G

⇤⇤
2 . We follow by case analysis on � ` u1 : G⇤⇤

1 6� u2 : G⇤⇤
2 .

We only take into account the package, where ui = packhG 0
i ,�i i as 9X .G 00

i andG⇤
i = 9X .G 00

i , where
9X .G 00

1 6 9X .G 00
2 . We know that

(6pack)
G

0
1 6 G

0
2 � ` .�1 : G1 6 �2 . �2 : G2 9X .G 00

1 v 9X .G 00
2 G1 uG

00
1 [G 0

1/X] 6 G2 uG
00
2 [G 0

2/X]
� ` .packhG 0

1,�1i as 9X .G 00
1 : 9X .G 00

1 6 �2 . packhG 0
2,�2i as 9X .G 00

2 : 9X .G 00
2

(Gpack)
�; �1 ` �1 :: G 00

1 [G 0
1/X] { �

00
1 : G 00

1 [G 0
1/X]

�; �1 ` packhG 0
1,�1i as 9X .G 00

1 { packuhG 0
1,�

00
1 i as 9X .G 00

1 : 9X .G 00
1

(Gpack)
�; �2 ` �2 :: G 00

2 [G 0
2/X] { �

00
2 : G 00

2 [G 0
2/X]

�; �2 ` packhG 0
2,�2i as 9X .G 00

2 { packuhG 0
2,�

00
2 i as 9X .G 00

2 : 9X .G 00
2

We have to prove that � ` .packuhG 0
1,�

00
1 i as 9X .G 00

1 : 9X .G 00
1 6 �2 . packuhG 0

2,�
00
2 i as 9X .G 00

2 :
9X .G 00

2 , or what is the same by the rule (6packu�), we have to prove that G 0
1 6 G

0
2, � ` .� 00

1 :
G

00
1 [G 0

1/X] 6 �2 .�
00
2 : G 00

2 [G 0
2/X] and 9X .G 00

1 v 9X .G 00
2 . By premise,G 0

1 6 G
0
2 and 9X .G 00

1 v 9X .G 00
2

(Proposition 10.16) follows immediately. Therefore, we only have required to prove that � ` .� 00
1 :

G
00
1 [G 0

1/X] 6 �2 . �
00
2 : G 00

2 [G 0
2/X], which follows by the induction hypothesis.

We know that
�
00
1 = �1�

0
1 :: G

00
1 [G 0

1/X] where �1 = I(G1,G
00
1 [G 0

1/X])
�
00
2 = �2�

0
2 :: G

00
2 [G 0

2/X] where �2 = I(G2,G
00
2 [G 0

2/X])
where �; �i ` �i {� �

0
i : Gi , and therefore � ` � 0

1 6 �
0
2 : G1 6 G2.

By rule (6asc�), we are required to prove that �1 6 �2, � ` � 0
1 6 �

0
2 : G1 6 G2 and G 00

1 [G 0
1/X] v

G
00
2 [G 0

2/X]. By induction hypothesis on � ` �1 .�1 : G1 6 �2 .�2 : G2, we know that � ` � 0
1 6 �

0
2 :

G1 6 G2. By Proposition 10.26, G 00
1 6 G

00
2 and G 0

1 6 G
0
2, we know that G 00

1 [G 0
1/X] 6 G 00

2 [G 0
2/X], and

thereforeG 00
1 [G 0

1/X] v G
00
2 [G 0

2/X]. By Proposition 10.14 andG1 uG
00
1 [G 0

1/X] 6 G2 uG
00
2 [G 0

2/X], we
know that

�1 = I(G1,G
00
1 [G 0

1/X]) = I(G1 uG
00
1 [G 0

1/X],G1 uG
00
1 [G 0

1/X]) 6
I(G2 uG

00
2 [G 0

2/X],G2 uG
00
2 [G 0

2/X]) = I(G2,G
00
2 [G 0

2/X]) = �2

Therefore, the results holds.

Case (6pack). We know that

(6pack)
G

0
1 6 G

0
2 � ` .t1 : G1 6 �2 . t2 : G2 9X .G 00

1 6 9X .G 00
2 G1 uG

00
1 [G 0

1/X] 6 G2 uG
00
2 [G 0

2/X]
� ` .packhG 0

1, t1i as 9X .G 00
1 : 9X .G 00

1 6 �2 . packhG 0
2, t2i as 9X .G 00

2 : 9X .G 00
2

(Gpack)
�; �1 ` t1 { t

0
1 : G1 t

00
1 = norm(t 01,G1,G 00

1 [G 0
1/X])

�; �1 ` packhG 0
1, t1i as 9X .G 00

1 { packhG 0
1, t

00
1 i as 9X .G 00

1 : 9X .G 00
1

128 Elizabeth Labrada, Matías Toro, and Éric Tanter

(Gpack)
�; �2 ` t2 { t

0
2 : G2 t

00
2 = norm(t 02,G2,G 00

2 [G 0
2/X])

�; �2 ` packhG 0
2, t2i as 9X .G 00

2 { packhG 0
2, t

00
2 i as 9X .G 00

2 : 9X .G 00
2

We have to prove that � ` .packhG 0
1, t

00
1 i as 9X .G 00

1 : 9X .G 00
1 6 �2 . packhG 0

2, t
00
2 i as 9X .G 00

2 :
9X .G 00

2 , or what is the same by the rule (6pack�), we have to prove that G 0
1 6 G

0
2, � ` .t 001 :

G
00
1 [G 0

1/X] 6 �2 . t
00
2 : G 00

2 [G 0
2/X] and 9X .G 00

1 6 9X .G 00
2 . By premise,G 0

1 6 G
0
2 and 9X .G 00

1 6 9X .G 00
2

(Proposition 10.16) follows immediately. Therefore, we only have required to prove that � ` .t 001 :
G

00
1 [G 0

1/X] 6 �2 . t
00
2 : G 00

2 [G 0
2/X]. We know that

t
00
1 = norm(t 01,G1,G

00
1 [G 0

1/X]) = �1t
0
1 :: G

00
1 [G 0

1/X] where �1 = I(G1,G
00
1 [G 0

1/X])
t
00
2 = norm(t 02,G2,G

00
2 [G 0

2/X]) = �2t
0
2 :: G

00
2 [G 0

2/X] where �2 = I(G2,G
00
2 [G 0

2/X])
By rule (6asc�), we are required to prove that �1 6 �2, � ` t 01 6 t

0
2 : G1 6 G2 and G 00

1 [G 0
1/X] v

G
00
2 [G 0

2/X]. By induction hypothesis on � ` .t1 : G1 6 �2 . t2 : G2, we know that � ` t
0
1 6 t

0
2 :

G1 6 G2. By Proposition 10.26, G 00
1 6 G

00
2 and G 0

1 6 G
0
2, we know that G 00

1 [G 0
1/X] 6 G 00

2 [G 0
2/X], and

thereforeG 00
1 [G 0

1/X] v G
00
2 [G 0

2/X]. By Proposition 10.14 and G1 uG
00
1 [G 0

1/X] 6 G2 uG
00
2 [G 0

2/X], we
know that

�1 = I(G1,G
00
1 [G 0

1/X]) = I(G1 uG
00
1 [G 0

1/X],G1 uG
00
1 [G 0

1/X]) 6
I(G2 uG

00
2 [G 0

2/X],G2 uG
00
2 [G 0

2/X]) = I(G2,G
00
2 [G 0

2/X]) = �2

Therefore, the results holds.

Case (unpack). We know that

(6unpack)
� ` .t11 : G1 6 �2 . t21 : G2 �, x : schm]

e (G1) v schm]
e (G2) ` .t12 : G 0

1 6 �2 . t22 : G 0
2

� ` .unpackhX , xi = t11 in t12 : G 0
1 6 �2 . unpackhX , xi = t21 in t22 : G 0

2

(Gunpack)

�; �1 ` t11 { t
0
11 : G1 t

00
11 = norm(t 011,G1, 9var](G1).schm]

e (G1))
�; �1, x : schm]

e (G1) ` t12 { t
0
12 : G

0
1

�; �1 ` unpackhX , xi = t11 in t12 { unpackhX , xi = t
00
11 in t

0
12 : G

0
1

(Gunpack)

�; �2 ` t21 { t
0
21 : G2 t

00
21 = norm(t 021,G2, 9var](G2).schm]

e (G2))
�; �2, x : schm]

e (G2) ` t22 { t
0
22 : G

0
2

�; �2 ` unpackhX , xi = t21 in t22 { unpackhX , xi = t
00
21 in t

0
22 : G

0
2

We have to prove that � ` unpackhX , xi = t
00
11 in t

0
12 6 unpackhX , xi = t

00
21 in t

0
22 : G

0
1 6 G

0
2, or

what is the same by the rule (6unpack�), we have to prove that� ` t 0011 6 t
00
21 : 9var](G1).schm]

e (G1) 6
9var](G2).schm]

e (G2) and �, x : schm]
e (G1) v schm]

e (G2) ` t
0
12 6 t

0
22 : G 0

1 6 G
0
2. By the induc-

tion hypothesis on �, x : schm]
e (G1) v schm]

e (G2) ` .t12 : G 0
1 6 �2 . t22 : G 0

2, we know that
�, x : schm]

e (G1) v schm]
e (G2) ` t 012 6 t

0
22 : G

0
1 6 G

0
2. Therefore, we only are required to prove that

� ` t 0011 6 t
00
21 : 9var](G1).schm]

e (G1) 6 9var](G2).schm]
e (G2). We know that

t
00
11 = norm(t 011,G1, 9var](G1).schm]

e (G1)) = �1t
0
11 :: 9var](G1).schm]

e (G1)
where �1 = I(G1, 9var](G1).schm]

e (G1)) = I(9var](G1).schm]
e (G1), 9var](G1).schm]

e (G1)) =
�9var] (G1).schm]

e (G1)

t
00
21 = norm(t 021,G2, 9var](G2).schm]

e (G2)) = �2t
0
21 :: 9var](G2).schm]

e (G2)
where �2 = I(G2, 9var](G2).schm]

e (G2)) = I(9var](G2).schm]
e (G2), 9var](G2).schm]

e (G2)) =
�9var] (G2).schm]

e (G2)

Gradual System F: Auxiliary Definitions and Proofs 129

By induction hypothesis on � ` t11 : G1 6 t21 : G2, we know that � ` .t 011 : G1 6 �2 .t
0
21 : G2, and

by Proposition 10.16, we know that G1 v G2, thus 9var](G1).schm]
e (G1) v 9var](G2).schm]

e (G2).
Therefore, we only have to prove by rule (6Masc�) that �1 v �2. But, by Proposition 10.15 and
9var](G1).schm]

e (G1) v 9var](G2).schm]
e (G2) the results holds.

⇤

P���������� 10.13. I� (G1 uG2,G1 uG2) = I� (G1,G2)
P����. By the de�nition of u and I� (G1,G2). ⇤

P���������� 10.14. If G1 uG2 6 G 0
1 uG

0
2, then

I� (G1,G2) = I� (G1 uG2,G1 uG2) 6 I� (G 0
1 uG

0
2,G

0
1 uG

0
2) = I� (G 0

1,G
0
2)

P����. By Proposition 10.13 and the de�nition of 6 in evidence. ⇤

P���������� 10.15. If G1 6 G2, then

I� (G1,G1) v I� (G2,G2)
P����. By the de�nition of I� and the v in evidence. ⇤

P���������� 10.16. � ` �1 . s1 : G1 6 �2 . s2 : G2 then G1 v G2.

P����. By the de�nition of u and I� (G1,G2). ⇤

P���������� 10.17. If �1 ` t⇤1 6 �2 ` t⇤2 and �1 . t
⇤
1 ��! � 0

1 . t
⇤⇤
1 , then �2 . t

⇤
2 ��! � 0

2 . t
⇤⇤
2 and

� 0
1 ` t⇤⇤1 6 � 0

2 ` t⇤⇤2 .

P����. If �1 ` t
⇤
1 6 �2 ` t

⇤
2 , we know that ` t

⇤
1 6 t

⇤
2 : G⇤

1 6 G
⇤
2 , �1 6 �2, �1 ` t

⇤
1 : G⇤

1
and �2 ` t

⇤
2 : G⇤

2 . We follow by induction on ` t
⇤
1 6 t

⇤
2 : G⇤

1 6 G
⇤
2 . We avoid the notation

` t1 6 t2 : G1 6 G2, and use t1 6 t2 instead, for simplicity, when the typing environments are not
relevant. We only take into account the existential unpack case.

Case (pack). We know that

(6pack)
G

00
1 6 G

00
2 ` �1 . t11 : G11[G 00

1 /X] 6 �2 . t22 : G22[G 00
2 /X] 9X .G11 6 9X .G22

` �1 . packhG 00
1 , t11i as 9X .G11 : 9X .G11 6 �2 . packhG 00

2 , t22i as 9X .G22 : 9X .G22

Also, since �1 . t
⇤
1 ��! � 0

1 . t
⇤
1 , we know that t11 = �11. By Proposition 10.27 and ` �1 . t11 :

G11[G 00
1 /X] 6 �2 . t22 : G22[G 00

2 /X], we know that t22 = �22.
By the reduction rules, we know that

�1 . packhG 00
1 ,�11i as 9X .G11 ��! �1 . �9X .G11packuhG 00

1 ,�11i as 9X .G11 :: 9X .G11

�2 . packhG 00
2 ,�22i as 9X .G22 ��! �2 . �9X .G22packuhG 00

2 ,�22i as 9X .G22 :: 9X .G22

We are required to prove that

` �9X .G11packuhG 00
1 ,�11i as 9X .G11 :: 9X .G11 6:6

�9X .G22packuhG 00
2 ,�22i as 9X .G22 :: 9X .G22 : 9X .G11 6 9X .G22

This follows immediately by rules (6packu�) and (6asc�). Note that �9X .G11 6 �9X .G22 , by Lemma 10.15.

130 Elizabeth Labrada, Matías Toro, and Éric Tanter

Case (unpack). We know that

(6unpack)
` �1 . t11 : 9X .G1 6 �2 . t21 : 9X .G2 x : G1 v G2 ` �1 . t12 : G 0

1 6 �2 . t22 : G 0
2

` �1 . unpackhX , xi = t11 in t12 : G 0
1 6 �2 . unpackhX , xi = t21 in t22 : G 0

2

Also, since �1 . t
⇤
1 ��! � 0

1 . t
⇤
1 , we know that t11 = �11packuhG 00

1 , �1u1 :: G11[G 00
1 /X]i as 9X .G11 ::

9X .G1. By Proposition 10.27 and ` �1 . t11 : 9X .G1 6 �2 . t21 : 9X .G2, we know that t21 =
�22packuhG 00

2 , �2u2 :: G22[G 00
2 /X]i as 9X .G22 :: 9X .G2. By the reduction rules, we know that

�1 . unpackhX , xi = t11 in t12 ��! � 0
1 . t12[�̂/X][((�1 # �11[Ĝ 00

1 , �̂])u1 :: G1[�/X])/x]
where � 0

1 = �1,� := G 00
1 and �̂1 = lift�0

1
(�).

We know that �11 6 �22, � 0
1 6 � 0

2 and G
00
1 6 G

00
2 , therefore by Proposition 10.19, we know

that �11[Ĝ 00
1 , �̂] 6 �22[Ĝ 00

2 , �̂]. Therefore, we know that (�1 # �11[Ĝ 00
1 , �̂]) 6 (�2 # �22[Ĝ 00

2 , �̂]), by
Proposition 10.20 and �1 6 �2.
Therefore, we know that

�2 . unpackhX , xi = t21 in t22 ��! � 0
2 . t22[�̂/X][((�2 # �22[Ĝ 00

2 , �̂])u2 :: G2[�/X])/x]

where � 0
2 = �2,� := G 00

2 and �̂2 = lift�0
2
(�).

Since �1 6 �2 andG 00
1 6 G

00
2 , we know that � 0

1 6 � 0
2. Therefore, we only are required to prove

that
t12[�̂/X][((�1 # �11[Ĝ 00

1 , �̂])u1 :: G1[�/X])/x] : G 0
1 6 t22[�̂/X][((�2 # �22[Ĝ 00

2 , �̂])u2 :: G2[�/X])/x] : G 0
2

By Proposition 10.21 we know that t12[�̂1/X] 6 t22[�̂2/X].
We know that ((�1 # �11[Ĝ 00

1 , �̂])u1 :: G1[�/X]) 6 ((�2 # �22[Ĝ 00
2 , �̂])u2 :: G2[�/X]), by the Rule

(6asc�) and since u1 6 u2, (�1 # �11[Ĝ 00
1 , �̂]) 6 (�2 # �22[Ĝ 00

2 , �̂]) and G1[�/X] v G2[�/X] (by Proposi-
tion 10.24 and Proposition 10.25). Finally, by Proposition 10.18 the result holds.

⇤

P���������� 10.18 (S����������� P�������� P��������). If �0, x : G1 v G2 ` s1 6 s2 : G 0
1 6 G

0
2

and �0 ` �1 6 �2 : G1 6 G2, then �0 ` s1[�1/x] 6 s2[�2/x] : G 0
1 6 G

0
2.

P����. We follow by induction on �0, x : G1 v G2 ` t1 6 t2 : G 0
1 6 G

0
2. We avoid the notation

�0, x : G1 v G2 ` t1 6 t2 : G 0
1 6 G

0
2, and use t1 6 t2 instead, for simplicity, when the typing

environments are not relevant. Let suppose that � = �0, x : G1 v G2.

Case (packu). We know that

(6packu�)
G
⇤⇤
1 6 G

⇤⇤
2 � ` �1 . �

0
1 : G

⇤
1[G⇤⇤

1 /X] 6 �2 . �
0
2 : G

⇤
2[G⇤⇤

2 /X] 9X .G⇤
1 v 9X .G⇤

2

� ` �1 . packuhG⇤⇤
1 ,�

0
1i as 9X .G⇤

1 : 9X .G⇤
1 6 �2 . packuhG⇤⇤

2 ,�
0
2i as 9X .G⇤

2 : 9X .G⇤
2

Note that we are required to prove that

� ` �1 . packuhG⇤⇤
1 ,�

0
1[�1/x]i as 9X .G⇤

1 : 9X .G⇤
1 6 �2 . packuhG⇤⇤

2 ,�
0
2[�2/x]i as 9X .G⇤

2 : 9X .G⇤
2

or what is the same � ` �1 . �
00
1 [�1/x] : G⇤

1[G⇤⇤
1 /X] 6 �2 . �

00
2 [�2/x] : G⇤

2[G⇤⇤
2 /X]. But the result

follows immediately by the induction hypothesis on � ` �1 .�
0
1 : G

⇤
1[G⇤⇤

1 /X] 6 �2 .�
0
2 : G

⇤
2[G⇤⇤

2 /X].

Case (pack). We know that

(6pack�)
G
⇤⇤
1 6 G

⇤⇤
2 � ` �1 . t1 : G⇤

1[G⇤⇤
1 /X] 6 �2 . t2 : G⇤

2[G⇤⇤
2 /X] 9X .G⇤

1 6 9X .G⇤
2

� ` �1 . packhG⇤⇤
1 , t1i as 9X .G⇤

1 : 9X .G⇤
1 6 �2 . packhG⇤⇤

2 , t2i as 9X .G⇤
2 : 9X .G⇤

2

Gradual System F: Auxiliary Definitions and Proofs 131

Note that we are required to prove that

� ` �1 . packhG⇤⇤
1 , t1[�1/x]i as 9X .G⇤

1 : 9X .G⇤
1 6 �2 . packhG⇤⇤

2 , t2[�2/x]i as 9X .G⇤
2 : 9X .G⇤

2

or what is the same � ` �1 . t1[�1/x] : G⇤
1[G⇤⇤

1 /X] 6 �2 . t2[�2/x] : G⇤
2[G⇤⇤

2 /X]. But the result
follows immediately by the induction hypothesis on � ` �1 . t1 : G⇤

1[G⇤⇤
1 /X] 6 �2 . t2 : G⇤

2[G⇤⇤
2 /X].

Case (unpack). We know that

(6unpack�)
� ` �1 . t1 : 9X .G⇤

1 6 �2 . t2 : 9X .G⇤
2 �, x : G⇤

1 v G
⇤
2 ` �1 . t

0
1 : G

⇤⇤
1 6 �2 . t

0
2 : G

⇤⇤
2

� ` �1 . unpackhX , xi = t1 in t
0
1 : G

⇤⇤
1 6 �2 . unpackhX , xi = t2 in t

0
2 : G

⇤⇤
2

Note that we are required to prove that �0 ` �1 . unpackhX , xi = t1[�1/x] in t
0
1[�1/x] : G⇤⇤

1 6
�2 . unpackhX , xi = t2[�2/x] in t

0
2[�2/x] : G⇤⇤

2 . Or what is the same �0 ` �1 . t1[�1/x] : 9X .G⇤
1 6

�2 . t2[�2/x] : 9X .G⇤
1 and �0, x : G⇤

1 v G
⇤
2 ` �1 . t

0
1[�1/x] : G⇤⇤

1 6 �2 . t
0
2[�2/x] : G⇤⇤

2 . But the result
follows immediately by the induction hypothesis on � ` �1 . t1 : 9X .G⇤

1 6 �2 . t2 : 9X .G⇤
2 and

�, x : G⇤
1 v G

⇤
2 ` �1 . t

0
1 : G

⇤⇤
1 6 �2 . t

0
2 : G

⇤⇤
2 .

⇤

P���������� 10.19. If �1 6 �2, G1 6 G2, �1 6 �2, � := G1 2 �1, � := G2 2 �2 and �1[Ĝ1, �̂1]
is de�ned, then �1[Ĝ1, �̂1] 6 �2[Ĝ2, �̂2], where �̂1 = lift�1

(�), �̂2 = lift�2
(�), Ĝ1 = lift�1

(G1) and
Ĝ2 = lift�2

(G2).

P����. Note that �̂1 6 �̂2 and Ĝ1 6 Ĝ2 by Proposition 10.22. Suppose that �1 = h9X .E, 9X .E 0i
and �2 = h9X .E 00, 9X .E 000i (since �1[Ĝ1, �̂] is de�ned). We are required to prove that

�1[Ĝ1, �̂1] = hE[Ĝ1/X], E 0[�̂1/X]i 6 hE 00[Ĝ2/X], E 000[�̂2/X]i = �2[Ĝ2, �̂2]
Thus, we are required to prove that E[Ĝ1/X] 6 E

00[Ĝ2/X] and E
0[�̂1/X] 6 E

000[�̂2/X]. Since
�1 6 �2, we know that h9X .E, 9X .E 0i 6 h9X .E 00, 9X .E 000i, and therefore E 6 E

00 and E 0 6 E
000. By

Proposition 10.26 and �̂1 6 �̂2 and Ĝ1 6 Ĝ2, we know that E[Ĝ1/X] 6 E
00[Ĝ2/X] and E

0[�̂1/X] 6
E
000[�̂2/X]. Therefore the result holds. ⇤

P���������� 10.20 (M����������� �� E������� T�����������). If �1 6 �2, �3 6 �4, and �1 # �3
is de�ned, then �1 # �3 6 �2 # �4.

P����. By de�nition of consistent transitivity for = and the de�nition of precision. We only take
into account the existential type case.

Case ([9]- �i = h9X .Ei , 9X .E 0
i i). By the de�nition of 6, we know that hE1, E 0

1i 6 hE2, E 0
2i and

hE3, E 0
3i 6 hE4, E 0

4i. By the de�nition of transitivity we know that h9X .E1, 9X .E 0
1i#h9X .E3, 9X .E 0

3i =
h9X .E5, 9X .E 0

5i and h9X .E2, 9X .E 0
2i # h9X .E4, 9X .E 0

4i = h9X .E6, 9X .E 0
6i, where hE5, E 0

5i = hE1, E 0
1i #

hE3, E 0
3i and hE6, E 0

6i = hE2, E 0
2i # hE4, E 0

4i. Therefore, we are required to prove that hE5, E 0
5i 6

hE6, E 0
6i. But the result follows immediately by the induction hypothesis on hE1, E 0

1i 6 hE2, E 0
2i and

hE3, E 0
3i 6 hE4, E 0

4i.

⇤

P���������� 10.21 (M����������� �� E������� S�����������). If � ` s
⇤
1 6 s

⇤
2 : G⇤

1 6 G
⇤
2

and �1 6 �2, then �[�/X] ` s
⇤
1[�̂1/X] 6 s

⇤
2[�̂2/X] : G⇤

1[�/X] 6 G
⇤
2[�/X], where � := G

⇤⇤
1 2 �1,

� := G⇤⇤
2 2 �2, �̂1 = lift�1

(�) and �̂2 = lift�2
(�).

132 Elizabeth Labrada, Matías Toro, and Éric Tanter

P����. We follow by induction on � ` s⇤1 6 s
⇤
2 : G

⇤
1 6 G

⇤
2 . We avoid the notation � ` s⇤1 6 s

⇤
2 :

G
⇤
1[�/X] 6 G⇤

2[�/X], and use s⇤1 6 s
⇤
2 instead, for simplicity, when the typing environments are not

relevant. We only take into account the cases related to existential types.

Case (packu). We know that

(6packu�)
G

0
1 6 G

0
2 � ` �1 . �1 : G1[G 0

1/Y] 6 �2 . �2 : G2[G 0
2/Y] 9Y .G1 v 9Y .G2

� ` �1 . packuhG 0
1,�1i as 9Y .G1 : 9Y .G1 6 �2 . packuhG 0

2,�2i as 9Y .G2 : 9Y .G2

We are required to show

�[�/X] ` �1 . packuhG 0
1[�/X],�1[�̂1/X]i as 9Y .G1[�/X] :6 �2. :

packuhG 0
2,�2[�̂1/X]i as 9Y .G2 : 9Y .G1[�/X] 6 9Y .G2[�/X]

Note that G 0
1[�/X] 6 G

0
2[�/X] by Proposition 10.26 and 9Y .G1[�/X] v 9Y .G2[�/X] by Propo-

sition 10.25. Therefore, we are required to prove �[�/X] ` �1 . (�1[�̂1/X]) : G1[G 0
1/Y][�/X] 6

�2 . (�2[�̂2/X]) : G2[G 0
2/Y][�/X]. But the results follows immediately by the induction hypothesis

on � ` �1 . �1 : G1[G 0
1/Y] 6 �2 . �2 : G2[G 0

2/Y].

Case (pack). We know that

(6pack�)
G

0
1 6 G

0
2 � ` �1 . t1 : G1[G 0

1/Y] 6 �2 . t2 : G2[G 0
2/Y] 9Y .G1 6 9Y .G2

� ` �1 . packhG 0
1, t1i as 9Y .G1 : 9Y .G1 6 �2 . packhG 0

2, t2i as 9Y .G2 : 9Y .G2

We are required to show

�[�/X] ` �1 . packhG 0
1[�/X], t1[�̂1/X]i as 9Y .G1[�/X] :6 �2. :

packhG 0
2, t2[�̂1/X]i as 9Y .G2 : 9Y .G1[�/X] 6 9Y .G2[�/X]

Note that G 0
1[�/X] 6 G

0
2[�/X] by Proposition 10.26 and 9Y .G1[�/X] 6 9Y .G2[�/X] by Propo-

sition 10.26. Therefore, we are required to prove �[�/X] ` �1 . (t1[�̂1/X]) : G1[G 0
1/Y][�/X] 6

�2 . (t2[�̂2/X]) : G2[G 0
2/Y][�/X]. But the results follows immediately by the induction hypothesis

on � ` �1 . t1 : G1[G 0
1/Y] 6 �2 . t2 : G2[G 0

2/Y].

Case (unpack). We know that

(6unpack�)
� ` �1 . t1 : 9Y .G1 6 �2 . t2 : 9Y .G2 �, x : G1 v G2 ` �1 . t

0
1 : G

0
1 6 �2 . t

0
2 : G

0
2

� ` �1 . unpackhY , xi = t1 in t
0
1 : G

0
1 6 �2 . unpackhY , xi = t2 in t

0
2 : G

0
2

We are required to show

�[�/X] ` �1.unpackhY , xi = t1[�̂1/X] in t 01[�̂1/X] : G 0
1[�/X] 6 �2.unpackhY , xi = t2[�̂2/X] in t 02[�̂2/X] : G 0

2[�/X]

Therefore, we are required to prove �[�/X] ` �1 . (t1[�̂1/X]) : 9Y .G1[�/X] 6 �2 . (t2[�̂2/X]) :
9Y .G2[�/X] and �[�/X], x : G1[�/X] v G2[�/X] ` �1 . (t 01[�̂1/X]) : G 0

1[�/X] 6 �2 . (t 02[�̂2/X]) :
G

0
2[�/X]. But the results follows immediately by the induction hypothesis on � ` �1 . t1 : 9Y .G1 6

�2 . t2 : 9Y .G2 and �, x : G1 v G2 ` �1 . t
0
1 : G

0
1 6 �2 . t

0
2 : G

0
2.

⇤

P���������� 10.22 (L��� E���������� P��������). If G1 6 G2 and �1 6 �2, then Ĝ1 6 Ĝ2,
where Ĝ1 = lift�1

(G1) and Ĝ2 = lift�2
(G2).

Gradual System F: Auxiliary Definitions and Proofs 133

P����. Remember that

lift� (G) =

8>>>>>>>>>><
>>>>>>>>>>:

lift� (G1) ! lift� (G2) G = G1 ! G2

8X .lift� (G1) G = 8X .G1

9X .lift� (G1) G = 9X .G1

lift� (G1) ⇥ lift� (G2) G = G1 ⇥G2

�
lift� (�(�)) G = �

G otherwise

The prove follows by the de�nition of Ĝ1 = lift�1
(G1) and induction on the structure of the type.

Case (Gi = 9X .G 0
i). We know that G 0

1 6 G
0
2. We are required to prove that 9X .lift�1

(G 0
1) 6

9X .lift�2
(G 0

2), or what is the same lift�1
(G 0

1) 6 lift�2
(G 0

2). By the induction hypothesis on G 0
1 6 G

0
2

and �1 6 �2 the result follows immediately.

⇤

P���������� 10.23. If G⇤
1 6 G

⇤
2 then G

⇤
1 v G

⇤
2 .

P����. Examining 6 rules.

Case (9X .G1 6 9X .G2). We know that
G1 6 G2

9X .G1 6 9X .G2

By the induction hypothesis on G1 6 G2, we know that G1 v G2. We are required to prove that
9X .G1 v 9X .G2, which follows immediately by the rule

G1 v G2

9X .G1 v 9X .G2

⇤

P���������� 10.24. If G⇤
1 v G

⇤
2 and G

0
1 v G

0
2 then G

⇤
1[G 0

1/X] v G
⇤
2[G 0

2/X].
P����. Follow by induction on G⇤

1 v G
⇤
2 . We only take into account the existential type case.

Case (9X .G1 v 9X .G2). We know that
G1 v G2

9X .G1 v 9X .G2

By the de�nition of v, we know that G1 v G2. We are required to prove that

(9X .G1)[G 0
1/X] = (9X .G1[G 0

1/X]) v (9X .G2[G 0
2/X]) = (9X .G2)[G 0

2/X]
Or what is the same that (G1[G 0

1/X]) v (G2[G 0
2/X]). But the result follows immediately by the

induction hypothesis on G1 v G2.

⇤

P���������� 10.25. If G1 v G2 and G 0
1 6 G

0
2 then G1[G 0

1/X] v G2[G 0
2/X].

P����. By Proposition 10.23 and Proposition 10.24 the results follows immediately. ⇤

P���������� 10.26. If G1 6 G2 and G 0
1 6 G

0
2 then G1[G 0

1/X] 6 G2[G 0
2/X].

134 Elizabeth Labrada, Matías Toro, and Éric Tanter

P����. Straightforward induction on G1 6 G2. Very similar to Proposition 10.24. ⇤

P���������� 10.27. If �1 6 t2 then t2 = �2.

P����. Exploring 6 rules. ⇤

P���������� 10.28. If �1 ` t1 6 �2 ` t2 and �1 . t1 7��! � 0
1 . t

0
1, then �2 . t2 7��! � 0

2 . t
0
2 and

� 0
1 ` t 01 6 � 0

2 ` t 02.
P����. If �1 ` t1 6 �2 ` t2, we know that ` t1 6 t2 : G1 6 G2, �1 6 �2, �1 ` t1 : G1 and

�2 ` t2 : G2. We avoid the notation ` t1 6 t2 : G1 6 G2, and use t1 6 t2 instead, for simplicity, when
the typing environments are not relevant.

By induction on reduction �1 . t1 7��! � 0
1 . t

0
1. We only take into account the existential unpack

case.

Case (�1 . unpackhX , xi = t11 in t12 7��! � 0
1 . unpackhX , xi = t

0
11 in t12). By inspection of 6, t2 =

unpackhX , xi = t21 in t22, where t11 6 t21 and t12 6 t22. By induction hypothesis on�1 . t11 7��! � 0
1 . t

0
11,

we know that �2 . t21 7��! � 0
2 . t

0
21, where � 0

1 ` t
0
11 6 � 0

2 ` t
0
21. Then, by 6, we know that

� 0
1 ` unpackhX , xi = t

0
11 in t12 6 � 0

2 ` unpackhX , xi = t
0
21 in t22 and the result holds.

⇤

