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Gradual System F: Auxiliary Definitions and Proofs

1 SF: WELL-FORMEDNESS
In this section we present auxiliary definitions for well-formedness of type name stores, and

well-formedness of types.

Definition 1.1 (Well-formedness of the type name store).
a¢g Z-+T FX

F- FX,a: T

Definition 1.2 (Well-formedness of types).

> ;AT AT, SAX T ;AT AT,
>;A+B SiART o> T, ;A RVX.T S;AFTy X Ty
FX XeA FYX a:TeX

AR X Ak«
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2 GSF: STATICS

In this section we present auxiliary definitions and proofs of the statics semantics of GSF not
presented in the paper.

2.1 Syntax and Syntactic Meaning of Gradual Types
PROPOSITION 6.2 (PRECISION, INDUCTIVELY). The inductive definition of type precision given in
Figure 3 is equivalent to Definition 6.1.

Proor. Direct by induction on the type structure of G; and G,. We only present representative
cases to illustrate the reasoning used in the proof. We prove first that C(G;) € C(G;) = G; C Gg,
where G; C G, stands for the inductive definition given in Figure 3.

Case (G; = B,G, = B). Then { B} C { B}, but we already know that B C B and the result holds.
Case (G; = G,G, = ?). Then C(G) C C(?) = Typg, but G C ? is an axiom and the result holds.

Case (G, = VX.G], G, = VX.G;). Then we know that {VX.T | T € C(G])} C{VX.T | T € C(Gy) },
then it must be the case that C(G;) € C(G;). Then by induction hypothesis G; T G, then by
inductive definition of precision for type abstractions, VX.G; E VX.G; and the result holds.

Then we prove the other direction, i.e. G; E G, = C(G;) € C(Gy).
Case (G = B, G, = B). Then B C B, but we already know that { B} C { B} and the result holds.
Case (G; = G,G, = 7). Then G C ?, but C(G) € C(?) = TypE and the result holds.

Case (G, = VX.G|,G; = VX.G;). Then we know that VX.G; C VX.G,, then by looking at the
premise of the corresponding definition, G| E G;. Then by induction hypothesis C(G;) € C(G;). But
we have to prove that {VX.T | T € C(G)) } € {VX.T | T € C(G)) }, which is direct from C(G]) <
C(G)).

PROPOSITION 6.3 (GALOIS CONNECTION). (C, A) is a Galois connection, i.e.:
a) (Soundness) for any non-empty set of static types S = { T }, we have S C C(A(S))
b) (Optimality) for any gradual type G, we have A(C(G)) E G.

Proor. We first proceed to prove a) by induction on the structure of the non-empty set S.
Case ({ B}). Then A({ B}) = B. But C(B) = { B} and the result holds.
Case ({Tin = Tiz}). Then A({Tiy —» Tiz}) = A{Tn ) - A({T; }). But by definition of C,
CA{T ) — AUTR}) = {Ti > T, | Ti € CA{TA LT € C(A({Ty })). By induc-
tion hypotheses, {_Til} C C(i%{ Ti1})) and {T;»} € C(A({ Tizﬁ), therefore {T,-l_—> Tin} C
{(h->L|The{lTu},Te{Tiz}} S {Th > T | 1 € CLA{Ta }),T. € C(A({Ti2}))} and
the result holds.

Case ({ Tj1 X Tj2 }). We proceed analogous to case { T;; — Tz }-
Case ({ X }, { @ }). We proceed analogous to case { B }.

Case ({VX.T; }). Then A{VX.T;}) = VX.A({T;}). But by definition of C, C(VX.A({T;})) =
{(VX.T | T € C(A({T; }))}. By induction hypothesis, { T; } € C(A({T; })), therefore { VX.T; } =
{VX.T|Te{T;}} C{VX.T|T € CA{T;}))} and the result holds.

Case ({ T; } heterogeneous). Then A({T; }) = ? and therefore C(A({ T; })) = TypE, but { T; } C TypPE
and the result holds.
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Now let us proceed to prove b) by induction on gradual type G.
Case (B). Trivial because C(B) = {B}, and A({B}) = B.

Case (G; — G,). We have to prove that A(C(G; — G3)) T G; — Gz, which is equivalent to prove
that C(A(f)) C T, where T = C(Gy = Gy)={T; > T, | Ty € C(Gy), T» € C(Gz) }. Then T has the
form {T;; — T;; }, such that Vi, T;; € C(G;) and Tj; € C(G,). Also note that { Tj; } = C(G;) and
{Tiz} = C(G,). But by definition of A, A({T;; — Tjz}) = A({T;1}) — A({T;z}) and therefore
CA{TnY) = AqTR 1) = (T > T, | Ty € CAA({( T ), T> € C(A({ Ty }))}. But by induction
hypotheses C(A({ Ti1 })) € C(G;) and C(A({ T;2 })) € C(G) and the result holds.

Case (G1 X Gy). We proceed analogous to case G; — Ga.
Case (X, ). We proceed analogous to case B.

Case (VX.G). We have to prove that A(C(VX.G)) C VX.G, which is equivalent to prove that
C(A(T)) € T, where T = C(VX.G) = {¥X.T | T € C(G) }. Then T has the form { VX.T; }, such that
Vi, T; € C(G). Also note that { T; } = C(G). But by definition of A, A({ VX.T; }) = VX.A({T; }) and
therefore C(VX.A({T; })) = {VX.T | T € C(A({T; }))}. But by induction hypothesis C(A({T; })) €
C(G) and the result holds.

Case (?). Then we have to prove that C(A(?)) € C(?) = TYPE, but this is always true and the result
holds immediately.

2.2 Lifting the Static Semantics

Definition 2.1 (Store precision). =1 E =, ifand only if dom(Z;) = dom(Z;) and Ve € dom(E1), Z1(a) E
Ez(a').

LEMMA 2.2. IfEl C =y ¢k Ei, G1 C Gy, and =5 ARGy, then =2 A F G
Proor. Straightforward induction on relation G; £ G,. We only present interesting cases.

Case (G; = VX.G[,G; = VX.G;). By definition of precision G| C Gj. By definition of well-
formedness of types, Z;; X + G| and then by induction hypothesis Z3; A, X + G;. Then by definition
of well-formedness of types Z,; A + VX.G; and the result holds.

Case (G, = ?). This is trivial because as + =5, then Z5; A + 2.

Case (Gy = @, G, = a). Trivial by definition of 5 C =, € dom(E,), therefore « : G, € E3 and
then Z5; A + a.

LEMMA 2.3. LetZ; C B, thent+ E; =F Z,.
Proor. By induction on relation E; C Ej.
Case (- C -). Trivial asF -.

Case (B}, : G{ E EJ, a : G). By definition of store precision we know that =] C E/ and that

G E G,. By definition of well-formedness, - =7, a : G; =+ E1, therefore by induction hypothesis
F E7. We only have left to prove is that ZJ; - + G,, which follows directly from Lemma 2.2.



6 Elizabeth Labrada, Matias Toro, and Eric Tanter

LEmMA 2.4. IfY € C(E) andt X, thent E
Proor. Corollary of Lemma 2.3 as X C E. ]
LEMMA 2.5. If ;A + Ty =Ty, thenZ; A+ Ty and ;A + T.

Proor. By induction on relation 2; A + T; = T;. Most cases are straightforward, so we present
only the interesting cases.

Case (Ty = VX.T/,T, = VX.T;). As Z;A + VX.T/ = VX.T,, by inspection of the derivation rule,
%;A, X v T = T,. By induction hypotheses we know that £;A, X + T/, and that ;A X + T,.
Therefore by well-formedness of types we know that 3; A + VX.T] and that ;A + VX.T, and the
result holds.

Case (Ty = X, T, = X). As X;A + X = X, then we know by inspection of the derivation rule that
t > and that X € A. Then as + X and that X € A, ;A + X and the result holds.

O

PROPOSITION 6.6 (CONSISTENCY, INDUCTIVELY). The inductive definition of type consistency given
in Figure 3 is equivalent to Definition 6.5.

Proor. First we prove that ;A + T; = T, for some X € C(E), T; € C(G;) implies that Z; A +
G1 ~ G,, where E; A + G; ~ G; stands for the inductive definition of consistency. We proceed by
straightforward induction on G; such that the predicate holds (we only show interesting cases). By
Lemma 2.4 we know that if + ¥ then + =, which will be assumed to be true whenever is needed.

Case (G = B,Gy = B). Then X; A + B = B, but we already know that = + B ~ B and the result
holds.

Case (G; = G,G; = ?). We know that ;A + T; = T, for some T} € C(G) and T, € C(?). Then
by Lemma 2.5, ¥;A + T, and as ¥ C =Z and T; E G, by Lemma 2.2, Z; A + G. Then as Z;A + G,
G ~ ? = TypE and the result holds.

Case (G; = VX.G|,G, = VX.G)). Then we know that 3;A + VX.T; = VX.T, where VX.T; €
C(VX.G),VX.T, € C(VX.Gy). Notice that Ty € C(G}), T> € C(G,), and that %; A, X + Ty = T,. Then
by induction hypotheses, Z + G| ~ G;[A, X], and therefore Z; A + VX.G] ~ VX.G; and the result
holds.

Then we prove the other direction, i.e. G; & G, = C(G;) ~ C(Gy).

Case (G1 = B,G; = B). Then B C B, but we already know that B € C(B) and ;A + B = B, and the
result holds immediately.

Case(G; = G,G, =7?). ThenGC 2. LetT; € C(G)and X € C(Z) such that X; A + T;. As C(?) = TyYPE,
we can choose T; € TYPE, so 2; A + T; = Tj, and the result holds.

Case (G, = VX.G],G; = VX.G;). Then we know that Z; A + VX.G| ~ VX.G;, then by looking at
the premise of the corresponding definition, Z; A, X + G| ~ GJ. Then by induction hypotheses
aTy € C(G)),T; € C(G)),= € C(E), such that X;A, X + Ty = T,. By definition of consistency
VX.T; € C(G;). Then by definition of equality, 3; A + VX.T; = VX.T; and the result holds.

O

Definition 6.7 (Consistent lifting of functions). Let F,, be a function of type TyPE” — TYPE. Its
consistent lifting Fﬁ, of type GTYPE" — GTYPE, is defined as: F,E (G) = A({F.(T) | T € C(G) })
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LEMMA 2.6. G = A(C(G))

Proor. Then we have to prove that G = A(C(G)). By optimality (Prop 6.3.b), we know that
A(C(G)) € G, and by soundness (Prop 6.3.a), C(G) € C(A(C(G))), i.e. G E A(C(G)). Therefore
G C A(C(G)) and A(C(G)) C G, thus G = A(C(G)) and the result holds. O

LEmMA 2.7. G[G'/X]=A({T[T'/X]| T € C(G), T" € C(G") }).
Proor. We proceed by induction on G. We only present interesting cases.
Case (G = X). Then G[G’/X] = G’, and C(G) = {X}. Then we have to prove that G’ =

A{T"| T’ € C(G’) }). But notice that A{T’ | T’ € C(G’)}) = A(C(G’)) and by Lemma 2.6 the
result holds immediately.

Case (G = ?). Then G[G’/X] = ?, and C(G) = TyPE. Then we have to prove that
2= A{T[T’/X] | T € TyeE, T’ € C(G’) }). But notice that A({ T[T’/X] | T € Typr, T’ € C(G')}) =
A(C(TyprE)) and by Lemma 2.6 the result holds immediately.

Case (G = VY.G”). Then G[G'/X] = VY.G”[G’/X], and C(G) = VY.C(G"'). Then we have to prove

that VY.G”[G'/X] = A{VYY.T”[T’/X] | T” € C(G"”), T’ € C(G’) }). But notice that by definition of
abstraction A({VY.T"[T’/X] | T € C(G”), T € C(G") }) = VY.A{T”[T’/X] | T” € C(G"), T' € C(G') }).
Then by induction hypothesis on G”, G”[G’/X] = A{ T"[T'/X] | T” € C(G"”), T’ € C(G’) }), there-

fore VY.G”[G’/X] = VY. A{ T”[T'/X] | T” € C(G”),T’ € C(G’) }) and the result holds.

O

PROPOSITION 6.8 (CONSISTENT TYPE FUNCTIONS). The definitions ofdomﬁ, codﬁ, inst?, and proji,i
given in Fig. 3 are consistent liftings, as per Def. 6.7, of the corresponding functions from Fig. 1.

Proor. We present the proof for inst* and dom* (the other proofs are analogous).
First we prove that insth(G, G’) = A(frEt(CZ(G, G"))), where inst#(G, G") correspond to the algo-
rithmic definitions presented in Fig. 3. Notice that
A(inst(C*(G, G")))
= AGinst({(T.T') | T € C(G).T" € C(G") })
= A{T[T’/X] | VX.T € C(G), T’ € C(G") })
But then the result follows immediately from Lemma 2.7.

Then we prove that dom* (G) = A(;l;n(C(G))), where dom* (G) correspond to the algorithmic
definitions presented in Fig. 3. We proceed by induction on G.

Case (G = G; — G3). Notice that
A(dom(C(G)))
= A(dom(C(Gy — Gy)))

= A(dom({T; > T, | Ty € C(Gy), T, € C(Gy) }))
=A{T1 | Ty € C(G1)})
= A(C(Gy))

But dom? (G1 = G3) = Gy. Then we have to prove that G; = A(C(G;)) which holds immediately by
Lemma 2.6.
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Case (G = 7). Notice that
A(dom(C(G))
= A(dom(C(?))
= A(dom(TypE))

= A(TypE)
=7

and the result holds immediately as dom® ™=

Case (G # ? # G; — Gy). If G has not the form G; — G,, or is not ?, then domﬂ(G) is undefined.
Then as A, T € C(G) such that T = T} — T the result holds immediately as dom(T) is undefined
VT € C(G).

2.3 Well-formedness

In this section we present auxiliary definitions of the statics semantics of GSF.

Definition 2.8 (Well-formedness of type name store ).

ag=Z ZoFG O FE
F FE,a:G
Definition 2.9 (Well-formedness of types).

FE EAFG,  E;AFGy EAXFG E:AFG,  E; ARGy
=Z;A+B A G > Gy Z;AFVX.G ZA G XGy
FE XeA FE a:Ge&E FE
EiAFX EiAra N

2.4 Static Properties

In this section we present two static properties of GSF and the proof: the static equivalence for
static terms and the static gradual guarantee.

2.4.1 Static Equivalence for Static Terms.

PROPOSITION 6.9 (STATIC EQUIVALENCE FOR STATIC TERMS). Let t be a static term and G a static
type (G=T). We havetrg t : T ifand only if+ ¢t : T

Proor. We prove this proposition for open terms instead. The proof is direct thanks to the equiv-
alence between the typing rules and the equivalence between type equality and type consistency
rules for static types. We only present one case to illustrate the reasoning.

First we prove Z;A Fs t : T = X;A + t : T by induction on judgment ;A +s ¢ : T.

Case (Z;A ks t'[T"] : inst(VX. T, T”")). Then 2;A +s t' : VX.T’, and by induction hypothesis

>;Art :VX.T'. Then instﬁ(\v’X.T, T")=T[T"/X] = inst(VX.T’,T”), and as %; A + T”, therefore
;A rt'[T”] : T[T” /X] and the result holds.
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Then we prove Z; A+t : T = X;A kg t : T by induction on judgment X; A +g ¢t : T.

Case(S;A + '[T”] : inst!(VX.T’,T”)). ThenZ;A F ¢’ : VX.T’, and by induction hypothesis X; A ¢
' : ¥VX.T'. Then inst(VX.T,T”) = T[T”/X] = inst*(¥X.T’,T”), and as Z;A + T”, therefore
;A kg t'[T”]: T[T"/X] and the result holds.

O

2.4.2  Static Gradual Guarantee. In this section we present the proof of the static gradual guarantee
property. In the Definition 2.10 and Definition 2.11 we present term precision and type environment
precision.

Definition 2.10 (Term precision).

tct! GCG tct’
(Px) ———— (Pb) (PA) (PA)
xLCx bCb (Ax:G.t) E (Ax: G'.t') (AX.t) C (AX.t))
ncy L tCt GCG tct
(Ppair) — (Pasc) S n (Pop) —————
(t1,12) C(t],t3) (tz:G)E{ =G op(F) € op(t’)
net Lt tct’ GCG tct
(Papp) Y, (PappG)—— T (Ppairi) ————
t1ta Tyt t[G]lCt' [G'] 7i(t) C mi(t")

Definition 2.11 (Type environment precision).
rcr’ GedG’
-E. ILx:GET",x:G’
LEMMA 2.12. IfE;A;T+t:GandT E TV, thenZ; A; T + t : G for some G E G,

Proor. Simple induction on type derivation Z; A;T + ¢ : G (we only present interesting cases).

Case (t = x). we know that 3; A;T + x : G and T'(x) = G. By definition of T C I, I'(x) C I'(x),
therefore 2; A;T + x : G, where G C G’ and the result holds.

Case(t = (Ax : G1.t’')). weknow that X; A;T + (Ax : G1.t’) : G; — Gy, where X;A; T, x : G+t : Gs.
AsT CI” and G; C Gy, then by definition of precision for type environments, I', x : G; C I, x : Gy.
Therefore by induction hypothesis on %;A;T,x : Gy + t' : Gy, %A1, x : Gy + ' : G}, where
G; € G;,. Finally, by (GA), Z; A;T' + (Ax : Gy.t") : Gy — Gy, and as G; — G, E G; — G, the result
holds.

LEMMA 2.13. IfE;A + Gy ~ G; and G; E G| and G, C G), then ;A + G ~ GJ.

ProoOF. By definition of Z; A + - ~ -, there exists (Ty, T») € C?(G1,Gz) such that Ty = T,. G; & G
and G; C G} mean that C(G;) C C(G}) and C(G;) C C(G}), therefore (T, T;) € C*(G},G}), and
the resul follows. |

LEmmA 2.14. If Gy C G and G, C G, then G1[G,/X] C G{[G;/X].
Proor. By induction on the relation of G; C G]. We only present interesting cases.

Case (X E X). Then we have to prove that X[G,/X] E X[G,/X], which is equivalent to G, E G;,
but that is part of the premise and the result holds immediately.

Case (G; C ?). Then we have to prove that G;[G,/X] E ? which is always true.
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Case (VY.G3 C VY.G;). Then we have to prove that VY.G3[G,/X] C VY.G;[G;/X], which is
equivalent to prove that G3[G,/X] C G;[G,/X], which holds by induction hypothesis on G3 E Gj.

|
LemmA 2.15. If Gy C G] and G, C G}, then instﬁ(Gl, Gy) C instﬁ(G’, G,).
Proor. By induction on relation G; C Gj.
Case (? C ?). The result is trivial as inst?(?, G))=7?and?LC 2
Case (VX.G; E ?,VX.G; E VX.G;). The result follows directly from Lemma 2.14.
|
LEMMA 2.16. IfG; C G, then proj?(Gl) c proj?(Gg).
Proor. The proof is direct, analogous to Lemma 2.15, by induction on relation G; E G,. O

PROPOSITION 2.17 (STATIC GRADUAL GUARANTEE FOR OPEN TERMS). IfE; AT+t : Gy andt; C 1y,
then 2; AT + tz : Gy, for some G, such that Gy E G,.

Proor. We prove the property on opens terms instead of closed terms: If 2; A; T + #; : G; and
1 Ctythen Z;A;T F 1y : Gy and G; C Ga.

The proof proceed by induction on the typing derivation.
Case (Gx, Gb). Trivial by definition of term precision (E) using (Px), (Pb) respectively.
Case (GA). Then t; = (Ax : G|.t) and G; = G| = Gj,. By (GA) we know that:

AT, x:G +t: Gy
(GA)— 5 p p (1)
EATHAx: Gt : G — G,

Consider #; such that ¢; C #;. By definition of term precision ¢, must have the form t, = (Ax : G{".t")
and therefore

tCt’ G CGY
(PA) ’ 124 ’ (2)
(Ax : G1.t) E (Ax : G{'.t")
Using induction hypotheses on the premises of (1) and (2), Z; A;T,x : G| + t' : G} with G, E G’
By Lemma 2.12, E;A;T, x : G’ + t' : G} where G’ E G;”. Then we can use rule (GA) to derive:
AT, x: G vt : G’
EAMTFAx: Gl G = Gy’
Where G, C G;'. Using the premise of (2) and the definition of type precision we can infer that

(G

—_

G, S G,EG S G
and the result holds.
Case (GA). Then t; = (AX.t) and G; = VX.G;. By (GA) we know that:
EAXTRE:GY
(GA— - 3)
E;AT FAXE:VX.G)

Consider t, such that t; C t,. By definition of term precision ¢, must have the form t, = (AX.t")
and therefore

tCt’
P AX D © Ax.r) )
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Using induction hypotheses on the premises of (3) and (4), Z;A, X;T' + ¢ : G’ with G| C G{'. Then
we can use rule (GA) to derive:

EAXTHE G
;AT F(AXt) : VX.GY

(GA)

Using the definition of type precision we can infer that
VX.G; CVX.GY
and the result holds.
Case (Gpair). Then t; = (t],t;) and G; = G| X G;. By (Gpair) we know that:
AT G EANTRL:G)

(Gpair) — (5)
;AT HE £ : G X Gy

Consider t, such that ¢; £ #,. By definition of term precision, t, must have the form (t/’, ;") and
therefore
ey pety
(Ppalr) ’ ’ 7 " (6)
(t,ty) T(tst))
Using induction hypotheses on the premises of (5) and (6), Z; A;T + ¢ : G and ;AT + £ : G,
where G| C G|’ and G; C G;'. Then we can use rule (Gpair) to derive:
ATt G E;ATHE :GY
E AT F (L], 1)) : G} X Gy

(Gpair)

Finally, using the definition of type precision we can infer that
G x G, C Gy xGy
and the result holds.

Case (Gasc). Then t; = t :: G;. By (Gasc) we know that:

=ANTHE:G E ARG~ Gy
(Gasc) — (7)
AT RE GGy

Consider ¢, such that #; C t,. By definition of term precision ¢, must have the form t, = t’ :: G, and
therefore

(Paso) tCt’ GICEG, ®
t:2G Ct =G,
Using induction hypotheses on the premises of (7) and (8), Z; A;T + ' : G’ where G E G’. We can
use rule (Gasc) and Lemma 2.13 to derive:
EANTHY G E;ARG ~Gy
AT RE Gy Gy

(Gasc)

Where G; C G, and the result holds.
Case (Cop). Then t; = op(t) and G; = G*. By (Gop) we know that:

E;ATHE:G  ty(op) = Gy — G
E;A+G~ G,
T

©)

(Gop)
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Consider t; such that t; C t,. By definition of term precision t, must have the form t, = op(t’) and
therefore
tct
(Pop) ——————— (10)

op(t) £ op(t’)
Using induction hypotheses on the premises of (9) and (10), Z; A;T + ¢’ : G/, where G C G’. Using
the Lemma 2.13 we know that =; A - G’ ~ G,. Therefore we can use rule (Gop) to derive:

E;ATHE G ty(op) = G, — G
EAFG ~G;

;AT Fop(t)) : G*

(Gop)

and the result holds.

Case (Gapp). Then t; = t{ t; and G; = codﬂ(G{). By (Gapp) we know that:
EATrE G EAMTHE G
Z;A + dom*(G)) ~ G,
(Gapp) — (11)
E;AT k8] 8] : cod*(GY)
Consider t; such that t; £ t,. By definition of term precision t, must have the form t, = t;" t," and
therefore

et et
(Papp) — ; tlg = t{,z 7 & (12)
Using induction hypotheses on the premises of (11) and (12), Z; A;T + £ : G and ;AT + 85 : G,
where G| C G}’ and G, C G;'. By definition type precision and the definition of dom®, domﬁ(G{) C
domﬂ(G{’) and, therefore by Lemma 2.13, Z; A + domﬂ(G{’) ~ Gy/. Also, by the previous argument
codﬂ(G{) c codﬂ(G{’). Then we can use rule (Gapp) to derive:
EANTHY G EATHLE :GY

E; A+ dom*(G}') ~ GY

(Gapp)
E; AT+t 1) : cod*(G)')

and the result holds.
Case (GappG). Then t; = t [G]. By (GappG) we know that:
EATHE:G] E;ARG

(GappG) (13)
;AT k¢ [G] : inst* (G, G)

where G; = insth (G7, G). Consider t; such that ¢; T t,. By definition of term precision t, must have
the form t, = t’ [G’] and therefore
tCt GC G
(PappG) — (14)
t[G]Ct' [G]
Using induction hypotheses on the premises of (13) and (14), Z; A;T + t" : G, where G| E G;. We
can use rule (GappG) and Lemma 2.2 to derive:

AT G =AFG

(Gasc)
AT+t [G] : inst* (G, G)

Finally, by the Lemma 2.15 we know that inst*(G/, G) C inst* (G, G’) and the result holds.
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Case (Gpairi). Then t; = m;(t) and G; = proj?(G). By (Gpair) we know that:
=NTrE:G
(Gpairi) (15)
S AT F mi(t) : projt(G)
Consider t; such that #; C t,. By definition of term precision, t, must have the form ;(t") and
therefore

tct
(Ppairi) (D) C m(t) (16)
Using induction hypotheses on the premises of (15) and (16), Z; A;T + ¢’ : G’ where G C G’. Then
we can use rule (Gpairi) to derive:
EANTREY G

AT - m(t) : profi(GY)

(Gpairi)

Finally, by the Lemma 2.16 we can infer that proj?(G) c proj’ii (G’) and the result holds.
|

PROPOSITION 6.10 (STATIC GRADUAL GUARANTEE). Let ¢ andt’ be closed GSF terms such thatt C t’
and+t:G. Then+t' : G’ andGC G’.

Proor. Direct corollary of Prop. 2.17. O
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3 GSF: DYNAMICS

In this section, we expose auxiliary definitions of the dynamic semantics of GSF. First, we present
type precision, interior and consistent transitivity definitions for evidence types. Then we show
some important definitions, used in the dynamic semantics of GSFe. Finally, we present the transla-
tion semantics from GSF to GSFe.

3.1 Evidence Type Precision

Figure 20 presents the definition of the evidence type precision.

Type precision

El CE] ECE) Ei C Ep
BCB XcCX Ei —»E; C E| — E VX.E; C VX.E,
ElgEi EzEEé Ei1 C E;
E{ XEy EE{XE; afr C of2 EC?
Fig. 20. Evidence Type Precision
3.2 Initial Evidence
In Figure 21 we present the interior function, used to compute the initial evidence.
‘ 7 : ETypE X ETYPE — EVIDENCE ‘
E € BAsSeTyYPE U TYPEVAR U {?} I(E1, Ez) = (E{, E3) I(E1, Ez) = (E, E})
I(E.E) = 1(?,E) = I(E,?) = (E,E) I(aP1, Ey) = (a1, E}) I(Er, aF2) = (E], aP2)
I(E11 — E12,? — ?) =(E[, E}) I(? = ?,E11 — Er2) = (E[, E})
I(E11 — E12,?) = (E], E}) I(?, E11 — Ena) = (E{, E})
I(VX.E,VX.?) = (E|, E}) I(VX.2,VX.E) = (E|, E})
I(VX.E,?) = (E}, E}) I(,VX.E) = (E|, E})
.Z(Ell XElz,?X?) = (E XE;Z, XE'2> I(?X?,En XElz) = <E XE;Z, XE’2>
I(E]] X E12, ?) = <E X EiZ’ X E’2> I(?,En X Elz) = <E X EiZ’ X E'2>
I(Ez1, En) = (Egy, E{y) (B2, Ez2) = (B, Egy)
I(E11 — En, Ez1 — Ea2) = (E{; — E5. B3 — Ejp)
I(E11, E21) = (E{(, E3)  I(E12, Ez2) = (Ef,, Ejy) I(E1, E2) = (E{, E3)
I(E]] X E12, E2q XEzz) = (E XE;Z, 21 XE/2> I(VX.El,VX.Ez) = <VX.E’,VX.E£>

Fig. 21. GSF: Computing Initial Evidence
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3.3 Consistent Transitivity

In Figure 22, we present the definition of consistent transitivity for evidence types.

(base) (typeVar)
(B,B) 3(B,B) = (B,B) (X, X) 54X, X) = (X, X)
(idL) (idR)
(E1,E2) §(2,?) = (E1,E2) (%.?) §(E1,Ez) = (E1, E2)
(E1, E2) § (E3, Eq) = (E, E) (E1, E2) § (E3, Eq) = (E, E3)
(sealL) - (sealR) .
(E1,Ez) § (Es, af4) = (E}, af2) (a1, E5) § (E3, E4) = (aF1, E})

(E1,E2) § (E3, Eq) = (E[, E})
(E1,af?) 5 (a¥, Ey) = (E{. E})

(unsl)

(E41,E31) § (E21, E11) = (E3,E1)  (E12,E22) § (E32, Eq2) = (E2,Eq)

(func)
(E11 = E12,E21 — Ea2) § (E31 — E32,E41 — Eg2) = (E1 — E3,E3 — Ey)

(E1, E2) § (E3, E4) = (E[, E})

bst
oS E1 VX Fy) § (VX s VX Eg) = (VX.E[,VX.E})

(E11,E21) § (E31, Eq1) = (E1,E3)  (E12,E22) § (E32, Eq2) = (E2, Eq)

(pair
(E11 X E12, E21 X Ez2) § (E31 X E32, Eq1 X Eq2) = (E1 X Ep, E3 X Eg)

Fig. 22. GSF: Consistent Transitivity

3.4 GSFe: Dynamic Semantics

In this section, we show the function definitions used in the dynamic semantics of GSFe, specifically
in the type application rule (RappG).

Definition 3.1.
cour = (EJat], E.[E']) where E, = liftz (unlifi(ry(¢))), & = liftz (), E’ = liftz(G)
Definition 3.2. (Ey, Ey) [Es] = (E{[Es], E2[Es])

Definition 3.3.

b s=b
Ax : Gyla/X].t[aF/X] s=Ax:Gy.t
AY .t[af /X] s=AY.t
(Sl[aE/X],Sz[aE/XD s = (s1,52)
x s=x

1YY= L XU X1 = Gla/X] s = et = G
op(t[af /X]) s = op(t)
tla®/X] tola” /X] s=ttp
mi(t[a” /X]) s = mi(1)
tla®/X] [Gla/X]] s =1[G]
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Definition 3.4.

lift=(G1) — lift=(Gy) G =G, — G,

VX lift-(Gy) G =VX.G;
lift=(G) = | lifi=(G1) x liftz(G2) G = G1 X G

a'f=E @) G=a

G otherwise

Definition 3.5.

B E=B

unlift(E;) — unlif(E;) E =E; — E,

VX.unlift(E;) E =VX.E;
unlif(E) = { unlif(E;) X unlif{E;) E =E; XE,

a E=ab

X E=X

? E=7

3.5 Translation from GSF to GSF¢

In this section we present the translation from GSF to GSFe (Figure 23), which inserts ascriptions
to ensure that top-level constructors match in every elimination form. We use the following
normalization metafunction:

norm(t, G, G2) = ¢t :: G, where ¢ = I=(Gy, Gy)
I=(Gy, Gy) = 1(liftz(Gy), lift=(Gz))

LEMMA 7.1 (TRANSLATION PRESERVES TYPING). Lett be a GSF term. If A;T v+t : G then A;T + t ~»
te :Gand A;T + ¢, : G.

Proor. The proof follows by induction on the typing derivation of A;T ¢ : G. ]
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ATro~y, u:G ‘Value translation

ty(by=B A+T ATrovr~>u:Gr ATrouy~ uy:Go
(Gb) (Gpairu)
A;rl—b’\?v b:B A;rl—(vl,’()z) ~0 (ul,u2>:G1XG2
AT, x:Grt~ 1t : G AX;Trt~t':G AT
(GA) (GA)
ATHFAx:Gt) ~y Ax:Gt'):G— G AT F(AX.1) ~ (AX.H) 1 VX.G
A;T Ft~> t:G|Term translation
ATrv~y, u:G e =1(G,G) ATrto~, u:G e =1(G G)
(Gu) (Gascu)
ATrv~eunG:G ATro G ~eunG : G
: t#v ANTrt~>t:G  e=1GG
(G XiGEL ArT (Gasct) (G, G")
ATFx~x:G ATrt =G ~ et/ =G G

(tt#v1Viz#v) ATkt~ :Gr ATkt~ 1 : G
AT+ <t1,t2> ~ (t{,té) :G1 X Gy

(Gpairt)

ATrt~1:G) tylop) =Gy — G t”7 = norm(t’, Gy, Ga)

(Gop) — —
AT Fop(t) ~ op(t”’) : G
AT rtp~t]:Gy t] = norm(t],Gy, domﬂ(Gl) — codﬂ(Gl))
AT+t~ t): Gy ty! = norm(t,, Go, domu(Gl))
(Gapp)

ATt~ ) codﬂ(Gz)

ATrt~>t:G ArG t"” = norm(t’, G,Vvarﬁ(G).schmﬁ(G))
AT +t[G']~ t” [G'] : insth(G, G)

(GappQ)

ATrt~t:G  t"” =norm(t,G, proj?(G) Xprojg(G))
(Gpairi)

AT Foi(t) ~ mi(t”) :proj?(G)

vart : GTypE — GTyPE schmﬁ : GTypE — GTYPE

varf (VX.G) = X schm (VX.G) = G
varf(?) = X fresh schmﬁ(?) =7
vark(G) undefined o/w schmg (G) undefined o/w

norm(t, G1, G2) = ¢t : Gy, where ¢ = 1(G1, G2)

Fig. 23. GSF to GSFe translation.
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4 GSF: PROPERTIES

In this section we present some properties of GSF. Section 4.1, presents Type Safety and its proof.
Section 4.2, shows the property and proof about static terms do not fail.

4.1 Type Safety

In this section we present the proof of type safety for GSFe.

We define what it means for a store to be well typed with respect to a term. Informally, all free
locations of a term and of the contents of the store must be defined in the domain of that store.
Also, the store must preserve types between intrinsic locations and underlying values.

LEMMA 4.1 (CANONICAL FORMS). Consider a value Z;-;- + v : G. Thenv = ¢u = G, with Z; -+ u :
G’ and ¢ v E + G’ ~ G. Furthermore:

(1) IfG = B, thenv = ¢gb :: B, withZ;+;- + b : Bandeg + E + B ~ B.

(2)IfG = G — Gy, thenv = e¢(Ax : Gi.t) = Gy = Gy, withE;x : Gy v t : G, and
eFEF G — G, ~ G — G,.

(3) If G = VX.Gyq, thenv = e(AX.t) = VX.Gy, withZ;A, X; -+t : G and e - E + VX.G] ~ VX.Gy.

(4 If G = Gy X Gy, then v = euy,up) = Gy X Gy, with 255+ F uy = G, E;+5- + up : G and
e E RG] XG) ~ Gy XG,.

I

Proor. By direct inspection of the formation rules of evidence augmented terms. ]

LEMMA 4.2 (SUBSTITUTION). IfE;A;T,x: Gy +1:G,andE; -+ v : Gy, thenZ; AT + t[v/x] : G.

Proor. By induction on the derivation of Z; A;T,x : G + ¢t : G. m]

LEMMA 4.3. Ife F E5A,X F Gy ~ Gy, E;- + G, a ¢ dom(E), and E = lift_(G’), then g[(xEl/X] I
=,a:=G5AFGla/X] ~ Gla/X].

Proor. By induction on the judgment ¢ I Z; A, X + G; ~ G; and the definition of evidences. O

LEMMA 4.4 (TYPE SUBSTITUTION). IfE;A,X;T'+t:G,E;- + G, a ¢ dom(E), and E = lifi-(G’),
thenZ, a := G'; AT + t[af /X] : Gla/X].

Proor. By induction on the derivation of Z; A, X;T + t : G and Lemma 4.3. O

LEMMA 4.5. Ife; F E5A + G) ~ Gy, and ey - 250 + Gy ~ Gy, then ey X &3 F E;A F G X Gy ~
Gy X Gy.

Proor. By definition of the judgment ¢ F Z;A, X + G} X G, ~ G; X G; and the definition of
evidences. |

LEMMA 4.6. Ife - E;A+F G’ ~ G thenpi(e) F E;A + proj?(G’) ~ proj?(G).

PROOF. By definition of judgment ¢ I+ Z;A, X + proj?(G’) ~ proj?(G) and the definition of

evidences. |

PROPOSITION 4.7 (—> 1S WELL DEFINED). IfE;-;- + t : G, then either
eEvt — E'vt/,ECE andZ’;;-+t': G;or
e = >t —> error
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Proor. By induction on the structure of a derivation of Z >t — r, considering the last rule
used in the derivation.

Case (Rapp). Then t = (e;(Ax : G11.t1) :: G; = G3) (2u = Gp). Then

Z;5x:GpFt G

Bk (Ax 1 Gii.t1) : G — Gz EV;"'“’/%
&1 FE;-FGpp —» G ~Gr — Gy 52"'35"'GZ~G1
(Easc) (Easc)
Bk (e1(Ax 1 Gi1t1) 2 G1 — G2) : G Bk (unGr): Gy

(Eapp) =
;0 F (e1(Ax : G11.11) = G) (e2u :: Gp) : Go

If ¢ = (& § dom(e;)) is not defined, then Z >t — error, and then the result hold immediately.
Suppose that consistent transitivity does hold, then

E» (e1(Ax : G11.t1) : G1 = G2) (e2u 2 G1) —> E» cod(eq)(t1[e'u 2 G11)/x]) = Ga

As &5 + G, ~ Gy and by inversion lemma dom(e;) + G; ~ Gyy, then ¢’ + G ~ Gy;. Therefore
;- F 'u i Gpp : Gy, and by Lemma 4.2, Z; -5 - F t[(¢'u :: Gpp)/x] : Gya.
Let us call t” = t[(¢'u :: G11)/x]. Then

Bk t[e'u s Grp)/x]: Gy cod(ey) F E;- F Gy ~ Gy

(Easc) — ;
(SRR COd(El)(tl[f u Gu)/x]) i Gz : Gz

and the result holds.
Case (RappG). Then t = (¢eAX.t; :: VX.Gyx) [G’]. Consider Gy = schmﬁ(G), then

=X Gy ek Z;X;-F Gy ~VX.Gy
ik (eAX.t; = VX .Gy) : VX .Gy =2k G
ik (eAX .t = VX .Gy) [G'] : Gx[G'/X]

(Easc)
(EappG)

Then
E > (eAX.ty : G) [G'] — E'vel/ < e u[af X] = Gala/X]) = G[G/X]

where 2’ 2 5, a0 := G’, a ¢ dom(E), and E’ £ lift-(G’), and

e21e" = (lifiz(Gola® /X, liftz (Gx[G' [X1)). Notice that (lift (Gxla/X]). liftz (GG /X)) =

I(Gy[ae/X], G<[G’/X]), and by definition of the special substitution, liftz (G, )[aF /X] € liftz(Gx[ar/X])
(because liftz(a) = o', and the substitution on evidences just extend unknowns with ). Therefore

el/% T I(Gyla/X].Gx[G'/X]). and e[, ¥ E:-+ Gyla/X] ~ Gx[G'/X]. Also by Lemma 4.3

ela® ] ;- + Gila/X] ~ Ge[a/X], and by Lemma 4.4, Z; ;- F t;[a® /X] : Gi[a/X].
Then,as 2 C &/,

g+ nlaf /X]: Gila/X]
e[aE T E; k Gila/X] ~ Gx[a/X]

(Easc) —_ ’ ’ E//(XE/ —
-k (e[af 1t[af /X] = Gela/X]) : Gela/X] G FZ;- F Gela/X] ~ Gx[G'/X]
(Easc) -
S5k el (ela [l X = Gela/X]) = GoIG[X] : GH[G/X]

and the result holds.
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Case (Rasc). Then t = &(eyu :: G2) :: G. Then

(Easc) bt u:Gy  akZ-rFGy ~G
(Easc) -k auGe Gy

g FZE;-FGy~G

ik e(eaunGy)G:G

If (¢5 § £1) is not defined, then Z >t — error, and then the result hold immediately. Suppose
that consistent transitivity does hold, then

Eve(euGy) G — Ev(e5e)u=G
where (&, 5 61) F Z;- + G, ~ G. Then
Eiscbu:Gy  (e286)FE;-+Gy ~G
ik (e28e)u=G:G

(Easc)

and the result follows.

Case (Rop). Then t = op(eu :: B’). Then

[

sk u:G e-ZE;-FGy ~ B
(Easc) “ “

AT reu=B : B ty(op) =B’ — B
(Eop)

5k op(m) :B
Let us assume that ty(op) : B’ — B.

Zvop(eu : B') — Evep S(op,u) = B
Butaseg + E;- + B ~ B, then

=+ 8(opu):B e+ E;-FB~B
(Easc) -
= -+Feg d(op,u) =B: B

and the result follows.
Case (Rpair). Then t = (¢juy :: Gy, £2uz = G2). Then

kU :Gi

Bk G
ek E;- -Gy ~ Gy

ek E;-+ Gy~ Gy
(Easc) p (Easc) —
. ;- Fau 2 Gp ik equp = Gy
(Epair) —
Z;- F {e1ug = Gy, e2u2 = Ga) : G1 X Gy
Then
2> (equg

G1, &2up i Gz) — = (61 X 62)(u1,u2) 2 G1 X Gy

By Lemma 4.5, &1 X &3 IF ;- + G] X G ~ G1 X G,. Then

E;~;-|—u1:Gi E;-;~I—uz:G£
(Epair) — / r _ , ,
E; - F{ug,u2) 1 G] X G e1X ek E;- kG X G) ~ G1 X Gy
(Easc)
;- k(61 X e2){u, u2) :: G1 X G2 : G1 X G2

and the result holds.

Case (Rproji). Then t = m;(e{uy, uz) = G). Then
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DR N TH G;
Bk (ur,u2) : Gy X G erE;-+GlxXGy~G
(Easc)
e{uy,up) = G

(Epairi)

=5k mi(eug, ug) = G) projl#(G)
Then
Eemi(e{ur, ug) = G) — Evpi(e)u; = proj?(G)

By Lemma 4.6, p;(¢) - Z;- F proj?(G{ x Gy) ~ proj?(G). Then

m

sorui Gl opie) Bk proj?(Gi X Gy) ~ proj?(G)
(Easc)

e b pi(e)ug proj?(G) :proj?(G)
and the result holds.

PROPOSITION 4.8 (— Is WELL DEFINED). If=; ;- + ¢ : G, then either

e Evtr— B>t/ ECE andZ’;-; -+t : G;or
e = >t +— error

Proor. By induction on the structure of t.

o If t has some of this form: e(e1u :: Gy) = Gy, op(eu :: G), (Ax : Gi1.t) : G1 = Gz) (g2u = Gy),
(e1uy = Gy, 2up = Ga), mi(e(uy, up) : Gy X Gy) or (eAX.t :: VX.G) [G’], then by well-definedness
of — (Prop4.7),Ert — E’'vt'andZE CE'and E’;:;- + ' : Gor E»t —> error, .
If=st — E'»t/,E CE and E';+;- + t’ : G, then by the rule R— the result holds.

If =»t — error, then by the rule Rerr E » t — error and the result holds immediately.

o If t = f[t1], we know that =; ;- + f[#;] : Gand E; ;- + t; : G, where f : G’ — G. Then, by
the induction hypothesis Z»t; + E'>t/,E C E’and E’; ;- + ] : Gor E» t; — E> error.
IfZ vt — E’>t], by the Rf rule the result holds.

If > t; — E’» error, by the Rferr rule the result holds. .

PROPOSITION 4.9 (—> IS WELL DEFINED). If E;-- + t : G, t ~» t,, then t, is a value v; or
Evt, > B>t ECE andZ’;:;- Ft, : G;orE» t, — error.

Proor. By induction on the structure of ¢, using Lemma 4.8 and Canonical Forms (Lemma 4.1). O

Now we can establish type safety of GSF: programs of GSF do not get stuck, though they may
terminate with cast errors. Also the store of a program is well typed.

PROPOSITION 8.4 (TYPE SAFETY). IfF t : G then eithert | Z=>v withE»>v : G, t || error, ort .

Proor. Direct by 4.9. ]
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4.2 Static Terms Do Not Fail
LEMMA 8.2. (Properties of consistent transitivity).
(a) Associativity. (e1 § €2) § €3 = €1 § (€2 § €3), or both are undefined.
(b) Optimality. If ¢ = ¢ ¢ &, is defined, then m1(¢) C m1(e1) and my(e) E ma(ey).
(c) Monotonicity. Ife; E ¢,” and e; C €’ and €1 § €, is defined, thene; § &2 T e1” § &5,

ProoF. A direct result of the application of the AGT framework. |

LEMMA 4.10. Ife; and e, two static evidences, such thate; F E;A + Ty ~ Ty and ey F Z5A - T ~ T,
then 1 § &2 = (p1(e1), p2(£2))-

Proor. Straightforward induction on types Ty, T, Ts (E; A + T; ~ T; coincides with Z;A + T, =
T5), and optimality of evidences (Lemma 8.2), because the resulting evidence cannot gain precision
as each component of the evidences are static (note that precision - E - between static types coincide
with equality of static types E;A + - =-). ]

LEMMA 4.11. Let Ty and T, two static types, and = a static store, such that Z; A + Ty ~ T,. Then
I(Th, Tz) = I(liftz(Th), liftz(T2)) = (lifiz(Th), liftz(T2)).

Proor. Straightforward induction on types Tj, Tz, and noticing that we cannot gain precision
from the types. ]

PROPOSITION 4.12 (STATIC TERMS PROGRESS AND PRESERVATION). Let t be a static term, E a static
store (2 = X), and G a static type (G = T). If 2;+;- + t : T, then either X >t +— X’ > t’ and
Y-kt T, for some X’ andt’ static; ort is a value v.

Proor. By induction on the structure of a derivation of X; ;- +¢: T.
Note that Z;A + T; ~ T, coincides with =; A + Ty = T,, so we use the latter notation throughout
the proof.

Case (t = eu = G). The result is trivial as ¢ is a value.

Case (t = (e1(Ax : Ty1.t1) = Ty > Tp) (sou = Tq)). Then

Ziax:Tii Fty T

ik (Ax:Tinth) : T — Tiz Eis "”:/Tz/
kAT > Tio=T1 > T» 52"'2;A"T2=Tl
(Easc) (Easc)
ok (ei(Ax T t) o Ty > To): Ty » T ok (eunTh):Th

(Eapp) p=
ik (e1(Ax :Ti1ty) =Ty > To) (eou = Ty) : Ty

By Lemma 4.10, ¢’ = (¢, § dom(¢y)) is defined and by Lemma 4.11, the new evidence is also static.
Then
Zo(e1(Ax : Ti.ty) = T) (equ = Ty) — Ev cod(ey)(t1[e'u = T11)/x]) = To

And the result holds immediately by the Lemma 4.2 and the typing rule (Easc).

Case (t = (eAX.t; : VX.Ty) [T’]). Then

2 X;-rt: Ty el ;A [= 5 X T VX . Ty
ik (eAX .t VX Ty): T
Bk (eAX ity = VX Ty) [T'] : T[T /X]

(Easc)

@
-
N

(EappT)
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= (lifts (To)[F /X], lift-(T[T’/X])). Then, E C and E’ is extended with a type name
that maps to a static type. Finally, the result holds immediately by the Lemma 4.4 and Lemma 4.3,
and the typing rule (Easc).

Case (t = E > ¢1(eou

(eAX .ty = VX.Ty) [T'] — E'» 5;?0} (ele™ (e /X] = Tela/X]) = T[T /X]
where 2 2 5,0 :=T',a ¢ dom(E), and E’ = lift-(T’), and
E//aE'
fvx.1e =

2 T5) :: T). Then

2 buc T, kX AT, =T
(Easc) u 2 u 2

EicbkeunzTy: T

WX Ar T, =T
(Easc)

ik e(equnTy)aT:T
By Lemma 4.10, ¢; § & is defined and by Lemma 4.11, the new evidence is also static. Then

Eve(eaunT) T — Ev(ese)u
and the result holds by the typing rule (Easc)

Case (t = op(eu :: B’)). Then

Hichu:Ty ew2;Ar Ty, =B
(Easc) —_— — =7
EsATreu B B ty(op) = B’ = B
(Easc)
-+ op(eu:B'): B

Let us assume that ty(op) : B” — B. Then

= > op(eu :: B') — Ev>ep S(op,u) :: B
And the result holds by the typing rule (Easc)
Case (t = {e1uy = Ty, €2uz = T)). Then

i kup Tl’ ;e Fup TZ’
g kAT =Ty é‘zll-ZAl-T,:Tg
(Easc) — (Easc)
2B Ejug T1 2k Eup i Tz
(Epair)
=ik (£1u1 b Tl,Ezug i Tg) : T] X Tg
Then

B (eruy = Ty, eoup = To) — Ze (69 X e2){up, up) = Ty X T
and the result holds by the Lemma 4.5

Case (t = mi(e(uy, uz) :: T)). Then

(R

uj : Ti,
Bk (ugug) s T) X T, RS ART)XT) =T
E
(Easc) e{ug,ug) = T
(Epair)
B b mileus, ug) = T) - profi(T)
Then
Evmi(eur,ug) = T) — E v pi(e)u; = proj?(T)

And the result holds by Lemma 4.6

Case (t = t; t;). Then by induction hypothesis = » t;

= > t], and t] is static, and so t] t;



24 Elizabeth Labrada, Matias Toro, and Eric Tanter

Case (t = v t). Then by induction hypothesis Z > t, — Z > t,, and ¢, is static, and so v ;.
Case (t = t1[T], t = {t1,t2), t = op(t1), t = m;(t;)). Similar inductive reasoning to application cases.
O
PROPOSITION 8.5 (STATIC TERMS DO NOT FAIL). Lett be a static term. If+ t : T then —(t || error).

Proor. Direct by Lemma 4.12. ]
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5 GSF AND THE DYNAMIC GRADUAL GUARANTEE

In this section, we prove the weaker variant of the DGG in GSFe and then in GSF. We also present
auxiliary definitions and Propositions.

5.1 Evidence Type Precision
This section show the definition of evidence type precision.

Ei—E<?—>7?

B<B X<X a<a B<? E, > E; £? ?7<7?
E, <E;s E;<E4 E, <E E, <E, E, <E; E;<E4
Ei > E;<E;—E, VX.E; < VX.Ep afr < of (E1, E2) < (E3, Eq)

5.2 Monotonicity of Evidence Transitivity and Instantiation

This section presents the proofs of the monotonicity of evidence transitivity and instantiation
proposition.

PROPOSITION 9.3 (<-MONOTONICITY OF CONSISTENT TRANSITIVITY). If &1 < &, &3 < &4, and
1§ €3 is defined, then €1 § €3 < €3 § €4.

Proor. By definition of consistent transitivity for = and the definition of precision.

Case (¢; = (B, B)). The results follows immediately, due

(B,B) = ({B,B) § (B, B)) < ((B,B) § (B,B) = (B, B))
Case ([X]- €¢; = (X, X)). The results follows immediately, due

(X, X) = (X, X) 5 (X, X)) < ((X, X) § (X, X) = (X, X))

Case ([a1]- &1 = (aEl,E{) e = (a2 EL) e = (Es, E3) , £4 = (E4, E})). By the definition of <, we
know that (Eq, E]) < (E, E}) and (Es, E}) < (Ey, E}). By the definition of transitivity we know that
(@™, E})$(Es, E5) = (™, Ef) and (@™, E})$(Eq, E}) = (a", E¢), where (Es, E}) = (Ey, E)5(E3, E})
and (Es, E|) = (E,, E}) § (Ea4, E}). Therefore, we are required to prove that (a%3, Ef) < (a¢, E}), or
what is the same (Es, E5) < (Es, E¢). But the result follows immediately by the induction hypothesis
on (Ey, E]) < (Ey, E) and (E3, Ej) < (E4, E}).

Case ([az]- €1 = (Ev, aF1), ey = (Ep, a®2) 65 = (aE3,E§) €4 = (af,Ei)). By the definition of <, we
know that (Eq, E]) < (E,, E;) and (Es, E;) < (E4, E}). By the definition of transitivity we know that
<E1’ aE{>;<aE3’ E/> = <E59 E;) and <E23 aE;> 3 <aE49 E!;) = <E6’ Eé)! where <E59 E;> = <E17 E{) ; <E3> Eg)
and (Eg, E¢) = (E,, E;) § (E4, E;). Therefore, we are required to prove that (Es, E{) < (Eg, E¢). But
the result follows immediately by the induction hypothesis on (E;, E]) < (E, E;) and (E3, E5) <
(E4, Ep).

Case ([a3]- €1 = (E1, E]), &2 = (Es, E}), 3 = (Es, aEé) , €4 = (Eq4, aEfl)). By the definition of <, we
know that (Eq, E]) < (E,, E;) and (Es, E;) < (E4, E}). By the definition of transitivity we know that
(Ev, E)§(Es, ) = (Es, a’s) and (Ex, E) 5 (Ea, a*t) = (Ee, a"), where (Es, Ef) = (Ey, E{)$(Es, E5)
and (Eg, E¢) = (Ey, E;) § (Eq4, E}). Therefore, we are required to prove that (Es, abs) < (Eq, %), or
what is the same (Es, E5) < (Es, E¢). But the result follows immediately by the induction hypothesis
on (Ey, E]) < (Ep, E) and (E3, Ej) < (E4, E}).



26 Elizabeth Labrada, Matias Toro, and Eric Tanter

Case ([V]- &; = (VX.E;,VX.E])). By the definition of <, we know that (E;, E]) < (Ej,E;) and
(Es, E;) < (E4, E;). By the definition of transitivity we know that (VX.E;, VX .E{)§(VX.E3, VX .E]) =
(VX.Es5, VX E.) and (VX .Ep, VX .E;) § (VX .Ey, VX .E;) = (VX .E¢, VX .E[), where (Es, E{) = (E1, E{)§
(Es,E}) and (Ee, E;) = (E2,E;) § (Es, E};). Therefore, we are required to prove that (Es, Ef) <
(Es, Eg). But the result follows immediately by the induction hypothesis on (Ej, E7) < (Es, E;) and
(Es, E5) < (E4, Ej).

Case ([—]- &i = (E1;i — Eyi, Ej; — EJ;)). By the definition of <, we know that (Eyq, Ej;) <
(E12, E1y), (E13, E15) < (Eua, E1y), (E21, Ep) < (Ezo, Ej,) and (Egs, E5,) < (Eay, Ej,). By the defini-
tion of transitivity we know that (Ey; — Ej1, Ej, — Ej,)§(E13 — Ej3, E; — Ej.) = (E1s — Eps, E{. — EJ.)
and (Eip — Eo, B, — E5,)$(E1q — E4, E, — E,) = (E16¢ — Ea6, E{g — Ej), where (Efs, Eis) =
(E{5 E13) § (E{y, En1)s (Eos,Eje) = (E21,Ej)) § (Eos, Ejy), (Eve, Ef) = (Ejp,Ea1) § (Ef,, Eq2) and
(E26, E5g) = (Eaz, Ej,) § (Eas, E3,)-

Therefore, we are required to prove that

(E1s — Eps, E15 — Ejs) < (E16 — Ea6, Ejg — Eg)

or what is the same

(Efs, E13) § (E1y, E11) = (Efs, E1s) < (Elg, Ex6) = (Eqys Ea1) § (Elz. Er2)
and

(Ea1, E5;) § (Ea3, Eg3) = (Eas, Ejs) < (Ez6, Egg) = (Ea2, Egy) § (E24, Egy)
But the result follows immediately by the induction hypothesis on(E;y, E{;) < (Eiz,Ej,) and
(E13, E{3) < (Ews, Ey), (E21, E3;) < (Ez2, Ej,) and (Ezs, Efg) < (Eag, Efy).

Case ([X]- ¢; = (Ey; X Ey;, E{; X E3;)). Similar to Case [—].

Case ([?1]- &1 = (2, ?)). Since ¢ < ¢, we know that ¢, = (?, ?). Therefore, by the transitivity rules,
we know that ¢; § €3 = &3 and ¢, § &4 = &. Thus, we are required to prove that €3 < ¢4, but the result
follows immediately by premise.

Case ([?2]- €2 = (2,?)). The proof follows from some of the previous cases.

e3 = (2,?)). The results follows immediately, since it was discussed in Case [?3].

&4 = (2, ?)). The results follows immediately, since & §e3 < (2,?) §(?,?) = (7, ?).

(e; = (B, B)). The results follows immediately, since (B, B) § (B, B) < (?,?) § (B, B).

(e; = (X, X)). This case is not possible, since (X, X) £ (?,?).

Case [ar1] (e1 = (Ey, aB1) e, = (2,7, 65 = (aE3,E§) LE4 = (af, E})). This case is not possible,
since (aE‘,E{) < (2,7,

Case [ar] (1 = (E1, aB1) ey = (2,2), 63 = (aB3, ELY &4 = (af, E})). This case is not possible,
since (Eq, aP1) & (2,7).

Case [a3] (61 = (E1, E}),e0 = (2,?), 63 = (E3, afs) e, = (E4, aF4)). This case was discussed
in Case [a3] above.

o (¢1 = (VX.E{, VX .E)). This case is not possible, since (VX .E;, VX.E]) £ (?,7).

o (¢; = (Ey; — Ey, E}; — E;;)). We have to prove that

(E11 = Ea1,Ef; = Ej) § (E13 = Eg3,E{5 — Ej3) < (2,?) § (E14 — Epq, Efy — Epy)

[
(e1 = (2,?)). The results follows immediately, since it was discussed in Case [?1].
(
(

or what is the same
(Ev1 = Ez1, Efy = Ej) §(Eis — Ep3,E{3 = Efg) < (2 = 2,2 = ?) §(E1s — Eou, E{y — Ejy)

But, this case was discussed in Case [—] above.
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o (¢; = (E1; X By, E}; X E3;)). We have to prove that
(Ev1 X Eu, Efy X Egp) § (E1s X Eg3, E{3 X Ej3) < (2,?) § (Eva X Eaa, Eqy X Epy)
or what is the same:
(E11 X Ea1, E1y X E3) § (E13 X Eg3, B3 X Egs) < (2 X 2,2 X ?) §(E1a X Eos, E{4 X Epy)
This case was discussed in Case [X].

Case ([?3]- €3 = (?,?)). Since €3 < &4, we know that &4 = (?, ?). Therefore, by the transitivity rules,
we know that 1 § 3 = &1 and &, § &4 = &,. Thus, we are required to prove that ¢; < ¢;, but the result
follows immediately by premise.

Case ([?4]- €4 = (2,?)). The proof follows from some of the previous cases.
o (¢1 = (2,?)). The results follows immediately, since it was discussed in Case [?4].
o (e = (2,7)). The results follows immediately, since ¢; § &5 < (2,?) $(2,?) = (2, ?).
o (¢35 = (2,7)). The results follows immediately, since it was discussed in Case [?5].
e (¢; = (B, B)). The results follows immediately, since (B, B) § (B, B) < (B, B) §(?,7?).
(e; = (X, X)). This case is not possible, since (X, X) £ (?,?).
Case [a1] (1 = (P, E}), e = (aP2, Ej),e3 = (E3,Ej), &4 = (2,7)). This case was discussed
in Case [a;] above.
Case [az] (e1 = (Eq, aEi) , & = (Es, aEé) ,E63 = (aE3,E§) , €4 = (2,?)). This case is not possible,
since (Es, af3) & (2,7?).
Case [a3] (e1 = (E1,E}), &2 = (B3, E) , &5 = (Es, a), ¢4 = (2,7)). This case is not possible,
since (Es, af3) & (2,7?).
o (¢1 = (VX.E;,VX.E)). This case is not possible, since (VX.E;, VX.E]) £ (2,7).
o (¢; = (E1; — Ey;, E{; — E;;)). We have to prove that

(Ei1 = Ep1, Efy = Ejy) § (E1s — Eps, E{3 — Ej3) < (Eyy — Eps, E7y — E5u) 5(2,?)

or what is the same
(Ev1 = Ep1, Efy = Ej) §(E1s — Ep3, El3 = Ejg) < (Ewy — Ep, Ejy 5 E3)) (2 = 2,25 2)

But, this case was discussed in Case [—] above.
o (¢; = (E1; X Ey;, Ef; X E3;)). We have to prove that

(E11 X Eg1, E1y X E3;) § (E13 X Eg3, E{3 X Eg3) < (E1s X Epa, E{y X Ej4) 5 (2,7)
or what is the same:
(E11 X Ea1, E1y X E3) § (E13 X Eg3, B3 X Egs) < (E1a X Eq, E1y X Epy § (2 X 2,7 X ?)
This case was discussed in Case [X].
]

Definition 5.1 (Store Precision). 21 < By &= E; = 2},a := G, 23 = E), & := G2, G; < Gy and

—r = - _ = _
2] S Ey0orsg =xsy =

Definition 5.2 (Typing Environment Precision). I} C I, &= It = I],x : G, I, = I, x : Gy,
G <GyandICIj,orl} =15 =

PROPOSITION 5.3 (LIFT ENVIRONMENT PRECISION). IfGy < Gy and E; < E,, then Gi1 < Gy, where
Gl = llftEl(Gl) and Gz = lifth(GZ)'
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Proor. Remember that

llﬂ'E(Gl) e llftE(Gz) G=G; - Gy

VXllftE(Gl) G= VXGl
lift=(G) = | lific(Gy) X liftz(G2) G = G1 X G;

aliﬂa(E(a)) G=a

G otherwise

The prove follows by the definition of G; = liftz (G1) and induction on the structure of the type.

Case (G; = B). The result follows immediately due to B = B < B = B.

Case (G; = X). The result follows immediately due to X = X < X = X.

Case (G; = a). We are required to prove that o= E1@) iz, (Eo@) o what is the same
liftz (E1(@)) < lifiz, (Ez(a)). Note that Ei(a) < Ez(a) due to E; < Ej. The result follows immedi-
ately by the induction hypothesis on Z;(a) < Ez(a) and E; < E,.

Case (G; = VX.Gj). We know that G| < Gj. We are required to prove that VX.liftz (G]) <
VX.liftz (Gj), or what is the same liftz (G]) < liftz,(G3). By the induction hypothesis on G| < G;
and E; < E, the result follows immediately.

Case (G; = G; — G}"). We know that G| < G; and G;’ < G;. We are required to prove that
liftz (G}) — liftz (GY) < lifiz,(G}) — lifiz,(G}), or what is the same liftz (G]) < liftz (Gj) and
liftz (G{') < liftz,(GY'). By the induction hypothesis on G| < G; and G{’ < Gy with E; < E, the
result follows immediately.

Case (G; = G; X G/’). This case is similar to the function case above.
Case (G = ?). Then G, = ?. The result follows immediately due to ?=7<7=2

Case (G, = 7). Note that Gz = ? = 2. Therefore, we are required to prove that Gl <.

Case (G; = B). The result follows immediately, B = B < 2.
Case (G; = X). This case is not possible due to X & ?.
Case (G = ). This case is not possible due to & « ?.

Case (G; = VX.G]). This case is not possible due to VX.G] £ ?.

Case (G = G| — Gj). We are required to prove that lift; (G}) — lifiz,(G}) < ?, or what is
the same lifiz (G}) — liftz,(G;) < ? — ?, which follows similar to the function case above.
Case (G1 = G| X Gj). We are required to prove that liftz (G]) X lifiz,(G;) < ?, or what is the
same liftz (G]) X liftEZ(Gé) < ? % ?, which follows similar to the pair case above.

ProrosITION 5.4 (UNLIFT EVIDENCE TYPES PRESERVES PRECISION). IfE; < E, then unlift(E;) <

unlift(Ez).
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Proor. Remember that

B E=B

unlift(E;) — unlif(E;) E =E; — E,

VX.unlift(E;) E =VX.E;
unlif(E) = { unlifE,) X unlif{E;) E =E; XE,

a E=af

X E=X

? E=7

The prove follows by the definition of unlift(E;) and induction on the structure of the type.
Case (G; = B). The result follows immediately due to unlif(B) = B < B = unlift(B).
Case (G; = X). The result follows immediately due to unlift(X) = X < X = unlift(X).
Case (G; = aFt). The result follows immediately due to unlifi(a®) = a < a = unlift(a®).

Case (E; = VX.E;). We know that E{ < E;. We are required to prove that VX.unlif((E]) <
VX.unlif(E;), or what is the same unlifi(E]) < unlifi(E;). By the induction hypothesis on E] < E;
the result follows immediately.

Case (E; = E; — E;’). We know that E] < E;, and E’ < E;’. We are required to prove that
unlif(E]) — unlifi(E{’) < unlif E;) — unlif(E}’), or what is the same unlifi(E]) < unlif(E}) and
unlif{Ey") < unlif{E,’). By the induction hypothesis on E; < E; and E}" < E;/ the result follows
immediately.

Case (E; = E] x E[’). This case is similar to the function case above.
Case (E; = ?). Then E, = ?. The result follows immediately due to unlift(?) = ? < ? = unlifi(?).

Case (E; = ?). Note that unlif(E;) = unlift((?) = ?. Therefore, we are required to prove that
unlift(E{) < 2.
o Case (E; = B). The result follows immediately, unlifi(B) = B < ?.

Case (E; = X). This case is not possible due to X « ?.
Case (E; = @). This case is not possible due to @ &£ ?.
Case (E; = VX.E]). This case is not possible due to VX.E] £ ?.
Case (E; = E] — E;). We are required to prove that unlift(E{) — unlift(E}) < ?, or what is
the same unlifi E]) — unlift(E;) < ? — ?, which follows similar to the function case above.
Case (E; = E; X E;). We are required to prove that unlifE]) x unlift(E;) < ?, or what is the
same unlift(E]) x unlif(E;) < ? x ?, which follows similar to the pair case above.

[1]

PROPOSITION 5.5. If &) < €3, G; € G2, By < By, := Gy €
defined, then

o ai[di/X] < efdr/X]. A

o (Et[ai/X], EJ[G1/X]) < (Ejld2/X], E5[G2/X]).
where E{ = liftz (unlifi(my(e1))), E5 = liftz, (unlifi(ma(e2))), di = liftz (a1), dz = lifiz,(a2), Gy =
liftz (G1) and G, = lift (G).

L =Gy € By and e1[d1/X] is
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Proor. Note that ¢; < d, and G; < G, by Proposition 5.3. Suppose that &, = (E,E’) and
& = (E”,E""). We are required to prove that

erld1 /X1 = (Eld,/X], E'[d1/X]) < (E”[d2/X],E"[d2/X]) = e5]d2/X]
e1" = (Ej[d1/X], Ej[G1/X]) < (Ejldz/X], E5[Go/X]) = &)

We follow by case analysis on the evidence type, the definition of consistent transitivity for =
and the definition of precision.

Case (¢; = (B, B)). The results follows immediately because ¢;[d1/X] = e[d2/X] = &1" = &* =
(B, B).

Case (¢; = (X, X)). We are required to prove that ¢,[d;/X] = (d1, d1) < {da, &) = &3[d2/X], which
follows immediately due to ¢; < ds. Also, we are required to prove that &;* = (d1, G1) < (d2, G2) =
&", which follows immediately due to ¢; < d; and G; < G,.

Case (¢; = (Y,Y)). The results follows immediately because ¢[d;/X] = e[d2/X] = & = & =
(Y,Y).

Case (¢; = (B, E)). The results follows immediately because ¢;[d;/X] = (5, E]) < (B*2, E}) =
e[ dp/X] by premise (note that X can not be free in (B, E})). Also, we are required to prove that
£1" < &%, but the result follows immediately by Preposition 5.4 and Proposition 5.3.

Case (¢; = (E;, f%)). Similar to the previous case.

Case(e; = (VY.E;, VY.E})). By the definition of <, we know that (E1, E]) < (E3, E;). We are required
to prove that

e1ld1/X] = (VY .Eq[d1/X],VY.E{[d1/X]) < (VY.Ep[dy/X],VY.Ej[d2/X]) = e2[dn/X]
or what is the same
(E1, E7) [d1/X] = (Eald1/X], Ef[d1/X]) < (Ezld2/X], Ej[da/X]) = (Ez, E3) [d2/X]
By the induction hypothesis on (E;, E{) < (E, E;) the result follows immediately.
Also we are required to prove
er" = (Ejld1/X), E{[G1/X]) < (Ejldz/X], E3[Go/X]) = &
Note that E} = liftz (unlif(VY.E{)) = VY. liftz (unlif(E7)) = VY.E], and E; = liftz (unlif(¥Y.E})) =
VY.liftz (unlif(E})) = VY.E;,. Therefore, we are required to prove
(B}l /X, B3y [G1/XT) < (Egyldia /X1, Esy[Go/X])
By the induction hypothesis on (E;, E]) < (E, E;) the result follows immediately.
Case (¢; = (Ey; — E2;, E{; — EJ;)). By the definition of <, we know that (Eyy, E],) < (Ei2, E},)
and (Ez1, E;;) < (Ez, E;,). We are required to prove that
ei[d/X] = (Enld1/X] — E[di/X], Efy[d1/X] — Ef[a/X]) <
(Eraldz/X] — Eailda/X], Efplda/X] — Egy[dz/X]) = e2]da/X]
or what is the same
(Enilar /X1, Efy[d1/X]) < (Eraldz/X], Efpld2/X])
and
(E1zld1/X], Efpldi /X]) < (Earlda/X], Ejylda/X])

By the induction hypothesis on (Ey1, E{;) < (Eiz, Ef,) and (Ey1, E;;) < (Ej3, E;,) the result follows
immediately.
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Also we are required to prove
e = (Ej[d1/X), E{[G1/X]) < (Ejld/X, E3[Go/X]) = &

Note that Ef = liftz (unlif{E}, — E{,)) = liftz (unlif(E}})) — liftz (unlif(E},)) = E}; —
E}, and Ej = liftz (unlif{E}, — Ej,)) = liftz (unlifE,)) — liftz (unlifEj,)) = E; — Ej,.
Therefore, we are required to prove

(Eqildn /X1 EL[G1/XT) < (Bl /X1, E5y [Go/XT)

and

(Epylin /XL By G /X1) < (Egplda/ X1, EgplCa/XD)
By the induction hypothesis on (Eqy, E{;) < (E12, E{,) and (Ez1, EJ,) < (E2, E},) the result follows
immediately.

Case (¢; = (Ey; X Ey;, E]; X E;;)). Similar to the function case.

Case (¢1 = (?,7)). Note that if ; = (?,?) then ¢, = (?,?). Therefore, the result follows immediately
because ¢;[d1] = &[d2] = 1 = &* = (?,?). This case is trivial,

Case (e, = (2,7)). Note that &[dy] = &* = (2,?). Therefore, we are required to prove that

aldi] € (?,?)and ;" < (2,?).

Case (¢; = (B, B)). The result follows immediately, ¢ [d;/X] = ¢, = (B, B) < (2,?).

Case (¢1 = (X, X)). This case is not possible due to (X, X) £ (?,?).

Case (¢, = (a®1, E)). This case is not possible due to (o', E]) & (2,?).

Case (¢; = (Eq, af1)). This case is not possible due to (E, afty £ (2,?).

Case (&1 = (VY.Ey, VY.E])). This case is not possible due to (VY.E;, VY.E]) £ (2,?).

Case (&1 = (E11 — Epg, Ej; — EJ,)). We are required to prove that ¢;[d;] < (?,?) and £, <

(?,?), or what is the same ¢[d;] < (? = 2,? > ?) and ¢/* < (? — ?2,? — ?), which follows

similar to the function case above.

e Case (e; = (E1; X Eqp, E{; X E{,)). We are required to prove that e;[d;] < (?,?) and ;" < (2,7),
or what is the same &[d;] < (? X ?2,?X?) and & < (? X ?,? X ?), which follows similar to
the pair case above.

O

PROPOSITION 5.6. Ife; E €2,G; < G2, E; < By, 0 := Gy € Eq, a := Gy € B, and [ /X] is
defined, then ¢1[d:/X] T e[d2/X], where d = lifiz (a) and d; = lift ().

Proor. Similar to Proposition 5.5. ]

PROPOSITION 5.7 (MONOTONICITY OF EVIDENCE INSTANTIATION). Ife; < €2, G; < G, B < By,
a =Gy € Ej,a:= Gy € Ey and &[dy] is defined, then
[ ] 021 < 0?2.
o gfd] < edy].
® Slout S E2out-
where & = liftz (a) and d; = liftz ().
Proor. This result ¢; < ¢, follows immediately by the Proposition 5.3.
Remember that

fout £ (E[aPLEJE')  where E. = lifiz (unlifi(my(¢))). o = liftz (@), E' = liftz(G')
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Note that &[] only succeed if ¢; = (VX.E,VX.E’). Since ¢; < ¢; and ¢; = (VX.E,VX.E’), then
& = (VX.E”,VX.E""). Let suppose that ¢] = (E,E’) and ¢; = (E”, E’”’). Then we are required to
prove that

eila1] = 5{[0?1/X] = (E[d,/X], E,[O?I/XD < <E”[0?2/X]7EW[0?2/X]> = Eé[dz/x] = [ dy]
e1out = (E;ld1 /X1, E{[G1/X]) < (E3ldz/X], E3[G2/X]) = es0u

where Ef = liftz (unlifE')), E; = liftz (unlif(E"")), Gy = liftz (G1) and G, = lift (Gy).
By the Proposition 5.5 the result follows immediately. ]

ProrosiTioN 5.8. IfG] E G, and G| C G, then G{[G{/X] C G;[G,/X].

Proor. Follow by induction on G} C Gj.
Case (B C B). The results follows immediately due to B[G{/X] = B E B = B[G,/X].

Case (Y C Y). If Y = X, the results follows immediately due to X[G;/X] = G| C G, = X[G,/X]
and G| E G, by premise. If Y # X, the results, also, follows immediately due to Y[G]/X] =Y C
Y = Y[G,/X].

Case (& C a). The results follows immediately due to a[G;/X] = @ C a = a[G;/X].
Case (G £ ?). The results follows immediately due to G[G]/X] E ? = ?[G,/X].
Case (VX.G; C VX.G;3). We know that
G1 EG;
VX.G; EVX.G,
By the definition of C, we know that G; C G,. We are required to prove that

(VX.G))[G}/X] = (VX.Gi[G} /X]) E (YX.G,[Gy/X]) = (VX.G)[Gy/X]

Or what is the same that (G1[G]/X]) C (G.[G,/X]). But the result follows immediately by the
induction hypothesis on G; E G.

Case (G; — G, C G3 — G,). We know that
GiC Gy GyLCGy
G1 i Gz C G3 i G4
By the definition of C, we know that G; C Gs and G, C G4. We are required to prove that
(G1 = Gy)[G]/X] = (G1[G{/X] = Go[G{/X]) C (G3[G3/X] — Ga[G5/X]) = (G3 — G4)[G3/X]

Or what is the same that G;[G]/X] E Gs[G,/X] and G,[G]/X] C G4[G;/X]. But the result follows
immediately by the induction hypothesis on G; C G; and G, € G;.

Case (G; X G5 C G3 X G4). We know that
GIC Gy GyCGy
G1 X Gy E G3 X Gy
By the definition of C, we know that G; E Gs and G, E G4. We are required to prove that
(G1 X G)[G1/X] = (G1[G{/X] X G4[G]/X]) E (G3[G3/X] X G4[G;/X]) = (G5 X G4)[G/X]

Or what is the same that G;[G]/X] E Gs;[G;/X] and G;[G/X] C G4[G;,/X]. But the result follows
immediately by the induction hypothesis on G; E G; and Gz E Ga.
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PROPOSITION 5.9. IfGi C G, and G| < G, then G[G{/X] C G,[G,/X].

Proor. By Proposition 5.14 and Proposition 5.8 the results follows immediately. O

ProposITION 5.10. IfGy < G, and G| < G then G[G]/X] < G2[G;/X].

Proor. Straightforward induction on G; < G,. Very similar to Proposition 5.8. O

PROPOSITION 5.11. IfG; — G, then Gi[a/X] — Gz[a/X].
Proor. By induction on the definition of G; — G,. |

5.3 Weak Dynamic Gradual Guarantee for GSF

In this section, we present the proof of the weak dynamic gradual guarantee for GSFe previously
presented and the auxiliary Propositions an Definitions.

PROPOSITION 5.12 (MONOTONICITY OF EVIDENCE SUBSTITUTION). IfQ + s < s; : G
and 21 < Ey, then Qa/X] + si[d1/X] < s;[d2/X] : Gila/X] < Gj[a/X], where a := G[*
a:=Gy €Ey d = liftal(a) and dy = liftgz(a).

[\

<G
€=

1>

Proor. We follow by induction on Q + s7 < s} : G| < G;. We avoid the notation Q + s} <s; :
Gila/X] < Gj[a/X], and use s} < s; instead, for simplicity, when the typing environments are not
relevant.

Case (b < b). The results follows immediately due to b[¢;/X]| = b < b = b[d,/X].
Case (x < x). The results follows immediately due to x[d;/X] = x < x = x[d>/X].

Case (Ax : G1.t;1) < (Ax : Ga.t2)). We know that
Q"El>t1:Gi SEZPtziGé

(/b( : Gl.tl) < (/b( : Gz.tg)

G C G

We are required to show
(Ax : G.ty)[d1/X] = (Ax : Gila/X].t1[d1/X]) < (Ax : Go[ar/X].t2[d2/X]) = (Ax : Ga.12)[d2/X]

Note that G;[a/X] E G,[a/X], by Proposition 5.9.
Therefore, we are required to prove

Q,x : Gia/X] E Gola/X] + Eq > (t1[d1/X]) : Gila/X] < By > (2 d2/X]) : Gila/X]
But the results follows immediately by the induction hypothesis on
Qx:GCEGFE >t :G <Eyrty: Gy
Case (AY .t;) < (AY.13)). We know that

31
(AY.ty)

)
(AY .tp)

N | N

We are required to show
(AY.t)[ar/X] = (AY.t1[d1 /X]) < (AY .12 @2 /X]) = (AY .1)[ 2 /X]

) <
Therefore, we are required to prove (t;[d;/X]) < (t2[d2/X]). But the results follows immediately
by the induction hypothesis on t; < t;.
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Case (t1 t; < t; t;). We know that

t1<t{ t2<t2’

bty <tt]
We are required to show
(t1 t2)[d1/X] = t1ld1/X] t2 1 /X]) < (t][d2/X] tyl2/X]) = (2] tp)ld2/X]
Therefore, we are required to prove t;[d;/X] < t{[d2/X] and t;[d; /X] < t;[cl2/X]. But the results
follows immediately by the induction hypothesis on #; < t] and t, < ;.
Case (t; [G1] < t3 [G2]). We know that
h<t, Gi<G
t [Gi] < 12 [G2]

We are required to show
(t1 [GiDld1/X] = (t1la1/X] [Giler/X]]) < (2[d2/X] [Gala/X]]) = (t2 [G2Dld2/X]
Note that G;[a/X] < Gz[a/X] by Proposition 5.10 and G; < Ga.
Therefore, we are required to prove (#;[d1/X]) < (2[df2/X]). But the results follows immediately
by the induction hypothesis on t; < t,.
Case (£151 = Gy < €385 :: Ga).
S2 Gl C Gz
£28p it Gz

£ < & $1

<
£181 = G] <

We are required to show

(e151 = G)ld1/X] = (er[dr /X]s1[d1/X] = Gila/X]) < (ealdz/X]s2[d2/X] : Gola/X]) = (e252 == G2)[d2/X]
Note that by Proposition 5.5 and ¢; < &2, we know that ¢[d;/X] < &[d,/X]. Also, by Proposi-
tion 5.9 and G; C G,, we know that G,[a/X] C G,[a/X].
Therefore, we are required to prove (s;[d1/X]) < (s2[¢2/X]). But the results follows immediately
by the induction hypothesis on s; < s3.
Case (e, 1] :: Gy < €g,t, 2 Ga).

QrE;pt] G <Eprt;:G, G EG G -G Gy—Gy

QrEireg(t] G : Gy S Eypeg,ty :Gy: Gy

We are required to show
(e, 1] = Gld1/X] = (eg, [d1/X]t{[d1/X] = Gila/X]) <

(g, [da/Xty[d2/X] = Gola/X]) = (eG,ty = G2)ld2/X]
Note that since G; E G; and Proposition 5.24, we know that ¢, C ¢g,. Note that by Proposition 5.6
and ¢g, C ¢g,, we know that e, [d1/X] T ¢g,[d2/X]. Also, by Proposition 5.9 and G; £ G,, we
know that Gi[a/X] C G,[a/X]. By Proposition 5.11, we know that G{[a/X] — G;[a/X] and
G)la/X] — Gyla/X]. Therefore, we are required to prove (t[d1/X]) < (t2[d2/X]). But the results
follows immediately by the induction hypothesis on #; < t,.

PROPOSITION 5.13 (SUBSTITUTION PRESERVES PRECISION). IfQ',x:Gi E Gy + 51 < 53: G < G
and Q'+ v; < vy : Gy < Gy, then Q' + s1[v1/x] < s3[va/x] : G] < G,
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Proor. We follow by induction on Q’,x : G; E Gy + t; < t : G| < G;. We avoid the notation
Q,x : G CE G+t <ty:G] <Gy, andusety < tp instead, for simplicity, when the typing
environments are not relevant. Let suppose that Q = Q’, x : G; C Ga.

Case (b < b). The result follows immediately.

Case (x < x). We know that
x:GlgGgeQ
QFrE;px:G; < E30x: G

(<xe)

The result follows immediately due to Q + ;> v : G; < E5»> v, : Gz and

ti[v1/x] = x[v1/x] = v1 < v2 = x[v2/x] = ta[v2/x]
Case (Ay : G{'.t]) < (Ay : G} .t;)). We know that

Qy:G/CG)rE ot : G <Eyot]:G) GI/CTGY
QFE»(ly: G t]): G = G <Zyv(Ay:Gy.t)): Gy — Gy’
Note that we are required to prove that Q + Z;» (Ay : G{'.t]) : G’ = G” < Ey» (Ay : G).t)) :
Gy — G}
Ay : G t)lor/x] = Ay : GY.t][o1/x]) < Ay = G loa/x]) = Ay : G t))[w2/x]

or what is the same Q,y : G’ C G/ + Ey » t/[v1/x] : G < Ep» t)[va/x] : G}’. But the result
follows immediately by the induction hypothesis on Q,y : G’ E G}/ + B » t] G”' < EBprty: Gy

Case (AX.t]) < (AX.t;)). We know that
QrE >t G <Eprty:GY
QFE, > (AX.t]) : VX.G) < 55 (AX 1)) : VX.GY
Note that we are required to prove that Q + 2 » (AX.1]) : VX.G; < Ey > (AX.1,) : VX.G].
(AXA)[on x] = (AXH][oy /x]) < (AX.4J[a/x]) = (AX )[vs/x]

or what is the same Q + Z; > t/[v; /x] Gy < Ey» ty[vp/x] : G . But the result follows immediately
by the induction hypothesis on Q + Z; > t] : G’ < Ep» £, : G}

Case (t] t, < t;" t;'). We know that
QrE»t]:G) > G/ <Ey»t}:G) =Gy  QrE»t] G <Eywt) G}
QI—._1>t t//_G/H _,2>tt 'GN/

Note that we are required to prove that Q + Z; v t] /" : G < Epvty 1) : G’

(t] t)[o1/x] = t{[or/x] t]'[v1/x] < tyloz/x] ) [v2/x] = (] ;)" )[v2/x]
or what is the same Q + E; » t][v1/x] : G — G{” < Ey» tj[va/x] : G — G} and Q +
B> t'[v1/x] : G < Eyv ty/[va/x] : G But the result follows immediately by the induction
hypothesison Q + E; > 1] : G = G < Eyrt;: Gy — G and QrE; vt : G < By t) : G
Case (t] [G]'] < t; [G]']).

QFE, 0t/ :VX.G <E,»t] :VX.G) G/ <Gy
QrE; >t [G]]:G)[G]/X] < Ey» 1y [G)]: GGy /X]

Note that we are required to prove that Q - 2 » t] [G]'] : G{"[G{ /X] < By » t; [G)] : GJ'[G; [ X].

(t; [GY Dlvi/x] = (t{[v1/x] [G]']) < (t3[v2/x] [G)]) = (t; [Gy Dlv2/x]
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or what is the same Q + E; » t{[v1/x] : G{"[G]/X] < By » ty[vz/x] : G'[G]/X]. But the result
follows immediately by the induction hypothesis on Q + E;>¢] : G{’[G{'/X] < Ey»t; : G)'[G) [/ X].

Case (e1s] = G’ < 18] == GY).
1244 — " 7 "
&1 < & QrE;»s:G” <Eypsy: G G/ C G,

’” " ., "
QrEipes] G G <Eppeas; Gy : Gy

Note that we are required to prove that Q + 21 > e15] = G : G < Egp e38) = G : Gy
(5151 G”)[Ul/x] = (5131 [v1/x] = G”) < (gzsé[vz/x] GH) = (5232 G'/)[Uz/x]

or what is the same Q + Z;>s{[v;/x] : G{” < Ey»sy[va/x] : G But the result follows immediately
by the induction hypothesis onQrErs G <Eypsy G

Case (sg = Gy < gty i G;). We know that
e, ke, QrEget]:G"<Eyrt;:GY G/ CG, G —G]

G — G,
1 2

’ ’ = /e -G
QI—H1>£G/ GGy S Epregty Gy G

2

Note that we are required to prove that

(e t{ = G)[vr/x] = (5(1"t1[v1/x] Gy) <

(ecytylvz/x] = Gy) = (ecyty == Gy)lvz/x]
or what is the same Q + Z;»t/[v;/x] : GI” < B> ty[vy/x] : G;”. But the result follows immediately
by the induction hypothesis on Q + E; > 1] : G < Ey» t; : G,

ProposITION 5.14. IfG] < G then G} E G,
Proor. Examining < rules.
Case (B < B). The results follows immediately by the rule G E G.
Case (X < X). The results follows immediately by the rule G E G.

Case (a < a). The results follows immediately by the rule G E G.

Case (G; — Gy < ?). The results follows immediately by the rule G C 2.
Case (G X G, < ?). The results follows immediately by the rule G C 2.

(
(
(
Case (B < ?). The results follows immediately by the rule G C 2.
(
(
Case (? < ?). The results follows immediately by the rule G C ?.
(

Case (VX.G; < YX.G;). We know that
G <Gy
VX.G; < VX.G,

By the induction hypothesis on G; < G, we know that G; C G,. We are required to prove that
VX.G; E VX.G,, which follows immediately by the rule

G C G,
VX.G; E VX.G,

VA AN
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Case (G; — Gy < G3 — G4). We know that

G <Gy Gy <Gy

G = G2 <G3 > Gy
By the induction hypothesis on G; < Gs and G, < G4, we know that G; C Gs and Gz E G4. We are
required to prove that G; — G, E G3 — Gy, which follows immediately by the rule

GiCEGs G, CGy
G = G, EGs = Gy
Case (G1 X G < G3 X G4). We know that
G <Gy Gy <Gy
G1 X Gy £G3XGy
By the induction hypothesis on G; < G; and G, < G4, we know that G; C G3 and G; T G4. We are
required to prove that G; X G, £ G3 X Gy, which follows immediately by the rule
GICGs Gy,CGy
G1 X Gy E Gy X Gy

O

PROPOSITION 5.15. Ifvy < t; then ty = vs.
Proor. Exploring < rules. |
PROPOSITION 5.16. If¢; < & then

e dom(er) < dom(ez)

e cod(e1) < cod(er)

e pi(e1) < pi(ez)

o schmy (1) < schmy(¢;)
Proor. By inspecting the evidence shape and the definition of ¢; < ¢;. ]
PrROPOSITION 5.17. Ife F E;A + G” ~ G' and G’ — G, then e § e = ¢.
Proor. By Lemma 6.30 and definition of G’ — G and ¢ § ¢ = ¢. O

PROPOSITION 5.18. IfE; + t; S By F ty andE >ty —> E[»t], thenEy>t; — E)» t) and
Bl <Ejrt

Proor. If 2, + t; < E, + 1y, we know that + #; b : Gt £ Gy, By € By, By F 1t Gy
and Z, + t; : G;. We follow by induction on + #; ty : G; < Gy. We avoid the notation
Ft1 <t : Gy < Gy, and use t; < t; instead, for simplicity, when the typing environments are not
relevant.

<
<

Case (b < b). This case does not applies because b is not a term ¢, therefore it can not reduce.
Case (x < x). This case does not applies because x is not a term ¢, therefore it can not reduce.

Case ((Ax : G;.t]) < (Ax : G}.t;)). This case does not applies because Ax : Gj.t; is not a term t,
therefore it can not reduce.

Case (AX.t]) < (AX.t;)). This case does not applies because AX.t] is not a term ¢, therefore it can
not reduce.



38 Elizabeth Labrada, Matias Toro, and Eric Tanter

Case (t], t}, < t5; t5,). We know that

* * * *
tll < t21 t12 < t22

% g% kg%
1ty Sy by
Also, since E1»t; — E[»t], weknow that 1], = e11Ax : Gj.t11 = Gz = Gy and £}, = vip = e2u12
Giz2. By Proposition 5.15, we know that t;, = e21Ax : G;.ta1 2 Gz — Gyy and ), = v = 53y @ Gaa.

By the reduction rules, we know that

By v (e11Ax : Gy .11 Giz = Gi1) (e12u12 : Gi2) — Eq > cod(er)(t11[((e12 § dom(err))uny = GY)/x]) = Gy

By Proposition 5.16, we know that dom(e1;) < dom(ez;) and cod(e11) < cod(ez1). Therefore, by
Proposition ?? and €1, < €2, we know that (¢12 § dom(e11)) < (e22 § dom(ezr)).
Therefore, we know that

By (e21Ax : Gy 121 1 Gog — Ga1) (e22u22 : G22) —> Eg > cod(ez1)(t21[((e22 § dom(ea1))uzy == G3)/x]) == Ga
Thus, by the < rules, u;; < uz; and G} E Gj;, we know that
((e12 § dom(ern))urr = GY) < ((e22 § dom(ezn))uz == Gy)
By Proposition 5.13, we know that
(tul((e12 § dom(err))unn = GY)/x]) < (taa[((e22 § dom(ear)uar = Gy)/x])

Finally, since cod(¢11) < cod(ez;) and Gy E Gg; and the < rules the result holds.

Ey F cod(e11)(t11[((e12 § dom(er1))uny == GY)/x]) = Gi1 < Eg + cod(ea1)(ta1[((e22 § dom(ez1))uzy = G3)/x]) = Gay

Case (t7 [G]] < t; [G;]). We know that
tr<t; Gj<G,
7 [G]1 < ;5 [G}]

Also, since 1 > t; —> E]» t], we know that t; = £;;AX.t;; :: VX.Gy1. By Proposition 5.15, we
know that t; = e3 AX.t2; 2 VX.Gy. By the reduction rules, we know that

Eq > (e11AX 11 2 VX.G1)[G]] — Ef > errowleni[di]tin[di/X] = Guila/X]) = GG /X]

where ] = 21,0 := G} and d; = liftall(a).
By Proposition 5.7, we know that €110, < €220u: and e11[d1] < 22[d2].
Therefore, we know that

Ey b (022X 1 :: ¥X.G22)[Gy] — Ej v eazour(eazldaltaz[da/X] 1 Gazla/X]) = Ga2[G5/X]

where 2} = Z;,a := G; and d, = liftE/Z(a).

By Proposition 5.12 we know that t11[d; /X] < ty2[d2/X]. By Proposition 5.8 and Proposition 5.9,
we know that Gy1[a/X] < Gypla/X] and G11[G]/X] < G2[G;/X], respectively.

Finally, by the < rules the result holds.

21> erouler[di]tld1/X] = Gila/X]) = G1[G]/X] < Ef > e220ur(e2a[daltaald2 /X] = Gazlar/X]) = Ga2[Gy /X]
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Case (e151 : G| < &5 2 G;). We know that

£ < & $1 < 82 G*EG;

€181 = G} < &8 G,
Also, since Ey » t; —> E] »t], we know that s; = (e1;uy; : G11). By Proposition 5.15, we know

that s, = (e2u3 :: Gy). By the reduction rules, we know that

Eyeer(eniunn = Gur) = G — Eq» (a1 §en)unr = Gy

By the < rules, we know that ¢1; < ¢, and ¢; < &. Therefore, by Proposition ??, we know that

(e11 5 €1) < (€225 €2).
Therefore, we know that

By e ep(eanugs i Gaz) 2 Gy —> Eg > (22 § e2)upz = Gy

Thus, by the < rules, u;; < uz and G} E G;, the result holds.

By k (e11 §e)urr = GY < By k(6228 e2)uzg = G
Case (EGI*(EHMI = Gy) =Gl < £G; (e22uy = Gy) :: G;). We know that
Qruy <up:G"<Gy G CG, G—G GY—G;
QF e (enunr = GYY) = Gf < e (euzz = G3) = Gy : G < G

Also, since 2, > t; — E/ > t/, we know that t; = eg-(e11u11 :: G7) = GI. By Proposition 5.15,
1 17 h ; 1 1- By rrop
we know that s, = £G; (£22u22 = G;¥) :: G;. By the reduction rules, we know that

fe k% * _ Y
=1 EGI*(Ellull I GI ) Gl — Eq» (11 3€Gr)u11 I GI

We know by the definition of = + SG;=(€11M11 = GY) = G < SG;(é‘zzuzz 2Gy) =Gy Gl <G
that 21 + (e11u11 = G}7) : GI" and B F (e2up2 = G¥) : G;7, and therefore, ey; + 2y F G™ ~ GJ*
and & Ik 2y F G ~ GJF. By the < rules, we know that ¢;; < &, and ¢ E €G3 Therefore by
Lemma 5.17 and G}* — G1 and G;* — Gj, we know that (e1; § e6:) = 1 and (€92 % EGZ) = &99.

Therefore, we know that

o> €G£(€2zu22 o G;*) i G; — Eo» (6‘22 H SG;)uzz o G;
Then, by the < rules, u1; < u; and G| C G, the result holds.
By k(115 e)urn = Gy < Bg k(622 5 €2)ugz : G

O

—/

PROPOSITION 5.19. IfEy + t; S By F ty and Ey vty +—> E] v t], then By > 1ty +— E,

—_ ’ =/ ’
ElFt <Ejrt,

> t, and

Proor. If 21 F t; < Ey F th, we know that+ t; < £, : Gy < Gy, E1 € E9, 21 F 11 : Gy and
=, F ty : G2. We avoid the notation + #; < f; : G; < Gy, and use t; < t; instead, for simplicity, when
the typing environments are not relevant.

By induction on reduction Z; » t; > E] » t].

Case(E,>t; — E]»t]). By Proposition 5.18, we know that Z,>t, — Ej»t), B F 1] < E) F L
and the result holds immediately.
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Case (Z1 » e11t11 = Gip +— E] > eqqt{; = Gy1). By inspection of <, t, = €22t22 :: Gao, where e11 < €
or 11 C &y, t11 < tyo and G11 Gzz By induction hypothesis on Z; >ty +— E] > 8]}, then
Eyb ity — Ej > t,, where 27 ], < EJ + t,. Then, by <, we know that 2] F 11}, :: Gy1 < Ej +
9oy, 1 Gog and the result holds.

Case (E1 > t11 tiz — E| » tl'1 t12). By inspection of <, t; = ty1 ty2, where tn t21 and ty» < 2. By
mductlon hypothesis on Z; >ty — E] » 1], we know that 2, » ty; — 2} > t7,, where Z] F t]; <
E7 + t,,. Then, by <, we know that Z I— t{; tiz < Ej + t, tyy and the result holds.

Case (Z1 » v11 iz — E] > v11 t],). By inspection of < and Proposition 5.15, ty = vy tzz, Where
v11 < U1 and ty; < ty. By induction hypothesis on =, > ¢, — = 12, then Bybty — Byt
where E] + t/, < B} + t;,. Then, by <, we know that 2] + vy; tlz E7 F Uy 1, and the result

holds.

Case (Z1 > t11 [G11] — E] > t], [Gu1]). By inspection of <, t; = tz; [Gaz], where #1; < tzz and
G < G22 By 1nduct10n hypothe51s on E; >t :; > t1,, we know that Z; » tyy > E) > t7,,
where 2 + t/, < Ej + t;,. Then, by <, we know that 2] + t{, [Gi1] < E} + t;, [Go2] and the result
holds.
ProrosiTION 9.4 (SMALL -sTEP DGGS FOR GSFe). Suppose 21> t; < Ey > by,
a. IfE >t +— B> t], thenEy >ty —> E) > t7, and we have Z] > t] < E) > 1.
b. Iftl =1, then tz = Vq.

Proor. Direct by Lemma 5.19 and 5.15. O

PROPOSITION 5.20. Let supposeZ1 F t; < Ejp F .
*

[I]
[1]

T

B>t " B v oy implies By >ty —" B >0y,
t; diverges implies t, diverges.

Eyvty " E) v vy impliesE >t —" B[ >0 and B F v1 < E) F vg, or 2y > 1) —> error.
t, diverges implies t; diverges, or 2, > t; —" error.

’ ’
1|-01< o F V2.

Proor. The proof is by case analysis on the reduction of t; or t,.

e Suppose that ;> #; —" E/ > 0. Then Zy0 1ty —" Elv 0, B F v1 < 22 F vy b
1 1 2 2 1 2

Proposition 5.19 and Proposition 5.15.

e Suppose that t; diverges. Then t, diverges by Proposition 5.19.

e Suppose that Z, > t, —" E/ > v,. Then, the only possibilities given the two previous results
are E;0 1 —" B/ v and E] F v; < E) F vy, 0r E; > 1 " error, and the result holds.

e Suppose that t, diverges. Then, the only possibilities given the two previous results are t;
diverges, or Z; > t4 —" error, and the result holds.

]
THEOREM 9.5 (DGGS) Suppose t <t +Ft:Gy, and + ty : Ga.
a Ifty J vy, thent, | vaand -+ 21> 01 : Gy < Ey» vy : Gy, for some E; < E,.
Ift; | thent, ).
b. If t, | vy, thent; | vy and -+ E1>v; : Gy < Ey > v : Gy, for some Z < E,, orty || error.
Ifty I, thent; ) ort; || error.
Proor. Direct by Lemma 5.26 and 5.20. ]

LEMMA 9.6. Let+t: G, GC G, andt’ =t :: G’ :: G, then



Gradual System F: Auxiliary Definitions and Proofs 41

et <= t'|v
e { || error < t’ || error

Proor. Direct consequence of the weak dynamic gradual guarantee (Theorem 9.5). ]

LEMMA 9.8. Let+ t; : Gy and v ty : Gy such thatv t; t; : G, t; t; | v, and let G; C Gy,
G, C G;, and G C G’, such that v (t; :: G}) (tp :: G}) : G/, then (t; = G]) (t2 == G,) | v” such that
FE1>0:G<Ey» v : G, for some Eq, Ea.

Proor. From + (t; :: GY) (t; :: Gy) : G, we know that + G; ~ G| and + G, ~ G;, where + t; : G;
ad+ ty : Go. As G C G, and G; C Gj, then G; M G; E G; NG| and G, M G, E G, N Gj. Notice
that if t; £, || v, then (¢; : Gy) (t2 = G2) || v (trivial ascriptions). Therefore, by (<ascv) or (<asct),
F(t Gy (2 :: G) : T < (t1 :: G)) (t2 = G) = G, then the result holds by DGGS (Th.9.5). O

LEMMA 9.7. Lett+ t : G such thatt || v, and let GCT G’, thent :: G’ | v’ such thatr E> v : G <
Evev’: G, for some E.

Direct by Th.9.5. Similar to Lemma 9.8.

LEMMA 9.9. Let+ t : Gy such thatt+ t [Gy] : G, t [G2] | v, and let G, E G|, G, < G, and GE G,
such that v (t :: G7) [Gy] : G', then (t : G]) [G;] | v such that+ Z1»v: G < Ey» v’ : G, for some

=1, Ea.
Proor. Direct by Th.9.5. Similar to Lemma 9.8. O

PROPOSITION 9.10. Supposet; andt, GSF terms such that- + t1 : G1 < t; : Gz, and their elaborations
Sl S P :Grand -+ ty ~ Le, : Gy. Then - Foe> i : Gy < c > L, : Gy.

Proor. Direct by Prop. 5.26. O

5.4 Syntactic Strict Precision for GSF

Now, we present the proof of the weak dynamic gradual guarantee for GSF previously presented
and the auxiliary Propositions an Definitions.

ProrosiTIiON 5.21. [E (Gl Il Gz, G] I Gz) = IE (Gl, Gz)
Proor. By the definition of M and 7z (Gy, G). O

PROPOSITION 5.22. Q + 51 < 53 : G; < Gy then G; C Go,.

Proor. By the definition of M and 7=z (Gy, Gs). O
PRrOPOSITION 5.23. If G, M Gy < G] MG, then
IE(G1, Gz) = IE(Gl Il Gg, G] Il Gz) < IE(GI l Gé, Gi l Gé) = IE(G;, Gé)
Proor. By Proposition 5.21 and the definition of < in evidence. O
ProposITION 5.24. If Gy < Gy, then
IE(GI, Gl) c IE(GZ, G»)

Proor. By the definition of 7z and the C in evidence. O

Definition 5.25. Q=N EL = (Q=Q,x:G LG, =I|,x: G, L =I,,x : G2, GL E G,
and Q' =T/CL)V(Q=T1 =L =").
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PROPOSITION 5.26. IfQ +E > 1] : G < Eppt;: Gy, Q=1 C 0, 5y K Eyand E AT - £~
£ Gl thenQr B v ] : G} < Ep» 157 : G,

Proor. We follow by induction on Q + ZE; > t] : G] < E;» t; : G;. We avoid the notation
Qr E»t] : G < Eppt) : Gy, and use t] < t; instead, for simplicity, when the typing environments
are not relevant. We use metavariable v or u in GSF to range over constants, functions and type
abstractions.

Remember that
norm(t, G, G2) = ¢t :: G, where ¢ = I=(Gy, Gy)

By Proposition 5.21 we know that
1z(G1, Gy) = I=(G1 M Gy, Gy N Gy) = I(lift5(Gy), liftz(G2))

Case (Q F Ey>u;y : Gf < By uy : G;). We know that

Qru;:G) G up: Gy, G <G
QrEiru: G
EI;A;I‘l F U~ u; Gi" EGI ZIE(G*,GT)

(V) = "
<Ezrup: G

(Gu) — ’ * *
Z250T Fup~ eGruy = Gi : G]

sALFuy~uy Gy e = 12(G;, Gy)

[1]

(Gu) 5
2o AT F up ~ egzué =Gy G

We have to prove that Q EG;u{ = Gy < sG;ué : G; : G} < Gj. By the rule (<asc,), we are
required to prove that egr < €63, Qru <uy: G <G, and G] C Gj. Since G < G, E; < &,
and Proposition 5.3, we know that G < €G- Also, by Proposition 5.14 and G| < G; we now that
G| C G;. Therefore, we only have required to prove that Q + u; < u;, : G] < Gj. We follow by case
analysis on Q + u; : G < up : Gj.

e Case (Q+ b: B <, b: B). We know that

ty(b) = B
(<b)
Qrb:B<, b:B
ty(b) =B
(Gb)

Es0NTirb~Db:B
We have to prove that Q + b < b : B < B. Then, by (< b,) rule, we know that Q - b < b : B <
B and the result holds.
e Case (QF (Ax : G1.1y) : G1 = G3 < (Ax : G1.1p) : G] — G). We know that

Qx:GICGFE»:G<Ey»1:G;, G LG

<A
=5 F(Ax:Gi.t) : Gy > Gy < (Ax : Gl.tp) : G| — G}
EpATL,x: Gkt~ 1 Gy
GCH— -
BT (Ax : Grty) ~ (Ax: Gl_tl) : G — Gy
EuAN,x:GiFt~ 1) G,
2,8, 12, 2
G ! 2" 2

BTk (Ax: Glty) ~ (Ax : Gl.ty) : G — Gy
Therefore, we are required to prove that Q + (Ax : G1.t]) < (Ax : G{.t;) : G; = G2 < G| —
Gj, or what is the same by the (<A,) that Q,x : G; C G| + t] < t; : G, < Gj, but the result
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follows immediately by the induction hypothesison Q, x : Gy E G| + E1»t; : Gy < Eprty : Gy,
with the translations ] and t;(Q,x : G; C G| =I1,x : Gy C I, x : G).
e Case (QF (AX.11) : VX.G; < (AX 1) : VX.G,). We know that

Ql—El>t12G1<E2>t21G2

<A
<N QF (AX.1) : VX.G; < (AX. 1) : VX.G,
EpAXTirt~ 81 Gy
(GA)— ;
EATF(AX ) ~ (AXLE) : VX.Gy
EZ;A,X;FZ F iy ~> té : Gy
(GA)

OPRVAY PR S (AX.tz) ~> (AXtZ’) :VX.Gy
Therefore, we are required to prove that Q + (AX.t]) < (AX.t)) : VX.Gy < VX.G,, or what is
the same by the rule (<A,) that Q + ] <t} : G; < G, but the result follows immediately by
the induction hypothesis on Q + 2 » t; : Gy < E; > t3 : Gy, with the translations ¢/ and #;.
Case(Q F E;1>x: G} < Ey»x: G;). We know that

x:G/CEG;€Q

(<x)
QrE;»x:G] <E;px:Gj
.X'IG;< Erl
(Gx)— "
EsATIFx~ x: G
XZG;< el;
(Gx)

EpAhkx~ x: G
We have to prove that Q + x < x : G < G;. Then, by the rule (<x;), we know that Q  x < x :
G; < G; and the result holds.

Case ((<ascv)). We know that

Qru :Gl" <G up: Gy GPNG<GyNG, GEG;
QrZiru; =Gl : G <Eyru =G : G
EpAMTy by~ oup G g = 12(G],GY)
EAT Fug 2 GY ~ qquf =Gy G

Z;A;rz F Uy ~> ué : G;* &y = IE(G;*,G;)

(<ascv)

(Gascu)

[1]

(Gascu)

By ATy kug Gy~ euy Gy i G

We have to prove that Q + gu; :: G] < &uy : G, : G < Gj, or what is the same by the rule
(<asc,), we have to prove thate; < &, Q + u; < uy : GI* < G;"and G| E G;. By Proposition 5.21, we
know that &; = I=(G]*, G}) = I=(G;" MG}, Gy* MG;) and ¢; = I=(G}7, G;) = I=(G,* NG, G, NG;).
Since G;* MG < G;*NG;, then ¢ = I=(Gy*, G;) = Iz(G;"NGy, G*NGY) < 1I=(G;'NG;, G;*NG;) =
I=(G}", G;) = &, by Proposition 5.23. Thus, we only have to prove that Q + u] < u; : G* < G}¥,
and we know that Q + u] : GI* <, uy : G;*. We follow by case analysis on Q + u; : Gi* <, uy : G;".

e Case (Q+ b: B <, b: B). We know that

ty(b) = B
(<b)
Qrb:B<, b:B
ty(b) = B
(Gb)

EsNTirb~b:B
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We have to prove that Q + b < b : B < B. Then, by (< b,) rule, we know that Q - b < b: B <
B and the result holds.
e Case (QF (Ax : G1.t1) : Gy = G2 < (Ax : G.t2) : G; — G}). We know that

Q,x:GlEG{I—EIDHZGgSEthz:Gé G]EG{

<A
(=) QF(AX:Gl.tl):Gl—>62<-U (AXGitg)Gi—)Gé
EpATL,x: Gkt~ 1 Gy
(GAH— p;
EpMTF (A Grty) ~ (Ax 2 Gi.t]) : Gy — G
EuA,x:Griy~ 1,1 G
(GA)

Ep ATk (Ax : Gluty) ~ (Ax : GJ.t5) : G — G,
Therefore, we are required to prove that Q + (Ax : G1.t]) < (Ax : G{.t;) : Gy = G2 < G} —
G, or what is the same by the (<A,) that Q,x : G; C G| + t] < t; : G2 < G, but the result
follows immediately by the induction hypothesison Q, x : Gy E G| + E1>t; : Gy < Eppty : Gy,
with the translations ] and t;(Q,x : G C G| =I1,x : Gy C I, x : G).

e Case (QF (AX.11) : VX.G; < (AX.1) : YX.Gy). We know that

Ql—El>t1 IGl <52>t21G2
OF (AX.1;) : VX.G1 < (AX.1p) : VX.G,

(<A)

EpAXTirt~ 8] 1 Gy
E0T R (AX ) ~ (AXLE) : VX.Gy

(GA)

EpxAXiL ikt~ t) Gy
Eu AT F (AX 1) ~ (AX 1)) : VX.G,

Therefore, we are required to prove that Q + (AX.t]) < (AX.t)) : VX.G; < VX.G,, or what is
the same by the rule (<A,) that Q + ] <t} : G; < G, but the result follows immediately by
the induction hypothesis on Q + Z; » t; : G; < Ey > ty : Gy, with the translations ] and t,.

GA)

Case(QFE;pt G :G] < Eprty 2 G;:G;y).
QFEl>t12G1<Ez>t22G2 (}1|_|GT<G2|_|(;*2< GIEG;
QrE;pt; =G :G) <Eyr 1 :G;: G,

(<asct)

El;A;Fl + tl ~> t{ : Gl £ = IE(GI,GT)
Ep0NT R G’f ~ 51t{ I G;‘ . G;‘

(Gasct)

[1]

ALt~ ty: Gy & =12(G,, Gy)
EpATykty Gy~ ety Gy i G

(Gasct)

We have to prove that Q + &t :: G} < et :: G, : G] < G, or what is the same by the rule
(<asc,), we have to prove that ¢; < &, Q + t] < t; : G; < Gz and G| E G;. By Proposition 5.21,
we know that ¢; = 7z(Gy, G)) = 7=(G1 N G}, G1 N G)) and ¢, = I=(Gy, G;) = Iz(G2 M G, G, M G;).
Since Gy M G; < G, M Gj, then &1 = Iz(Gy,G)) = I=(G1 NG}, G N GY) £ I=(G, N G;, G, M G)) =
I=z(G;, G;) = &, by Proposition 5.23. Thus, we only have to prove that Q + t] < t; : G; < Gy, and
we know that Q + t{ : G; <, t, : Gy, then by the induction hypothesis the result holds.
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Case (Q By vty t] : cod(Gy) < Bg >ty t] : cod*(Gy)).
Q|—51>t11G1<Ez>tzle QFE]Pt{IGigEZDtélGé
G, N dom*(Gy) < G} 1 dom*(G,)

(<app)
QFE sty t]: cod!(Gy) < Eyvty t] : cod?(Gy)

Ep0NT R~ Gy tl,l = norm(tn,Gl, domﬂ(Gl) e COdﬁ(Gl))

BN Rt~ b Gy t1, = norm(t, G, dom*(Gy))
(Gapp) .
E ATk byt~ 8] 1], : cod®(Gy)
Eu NIkt~ b Gy t2,1 = norm(tgl,Gg, domﬁ(Gg) b COdﬁ(Gz))
B AT k)~ by 1 Gy ty, = norm(ty, G, dom*(G,))
(Gapp)

Egs ATy bty ] ~> 1), ], : cod*(Gy)
We have to prove that Q + t], [, < t;, t;,: codﬁ(Gl) < cod* (Gy), or what is the same by the
rule (<app,), we have to prove that Q + ¢, < tj, : dom”(Gl) — codﬂ(Gl) < domﬂ(Gz) — codn(Gz)
and Q F t{, < 5, : domﬁ(Gl) < domﬁ(Gg). We know that

t!, = norm(ty1, G, dom*(G1) — cod®(Gy)) = e11t11 == dom¥(G1) — cod*(Gy)
where ¢11 = Iz, (G, domﬁ(Gl) — codﬂ(Gl)) = Igl(domﬁ(Gl) — codﬁ(Gl), domﬁ(Gl) - codﬂ(Gl)) =

gdomﬁ(Gl)—wodﬁ (Gy)

tél = norm(t21, Ga, domﬁ(Gg) — codﬂ(Gg)) = &1ty = domﬂ(Gz) — COdﬁ(Gz)
where &1 = Iz, (Ga, dom*(Gz) — cod*(Gy)) = Iz, (dom*(Gz) — cod*(Gy), dom*(Gz) — cod*(Gy)) =
gdomn((}z)ﬂcodﬁ((}g)
By induction hypothesison Q + = >t : G < Ey > 12 : Gy, we know that Q + #1; < t31 : G; < G,
and by Proposition 5.22, we know that G; £ G, thus domﬁ(Gl) — codﬁ(Gl) C domﬁ(Gg) —
cod" (Gy). Therefore, we only have to prove by rule (<Masc,) that £1; T ¢,;. But, by Proposition 5.24

and domﬁ(Gl) — codﬁ(Gl) c domﬂ(Gg) — codﬁ(Gz) the results holds.
Also, we know that

t1, = norm(tiz, Gy, domﬂ(Gl)) = ¢eiotyp domﬁ(Gl) where ¢, = Iz, (G, domﬂ(Gl))

ty, = norm(tay, Gy, domﬁ(Gz)) = eyotgy i domﬁ(Gz) where ¢, = Iz, (G, domﬂ(Gg))
By induction hypothesis on Q + Z; > t] : G| < By » t; : G;, we know that Q + t5 <t : G}
G;. and and by Proposition 5.22, we know that domﬁ(Gl) c domﬁ(Gg). By Proposition 5.23 and

Gy m domﬂ(Gl) <Gym domu(Gz), we know that

<

12 = Iz, (G], domt(G1)) = Iz, (G dom®(Gy), G n dom?(Gy)) <
Tz,(Gy 1 dom*(Gy), G 1 dom* (Gy)) = Iz, (G}, dom® (Gy)) = 22
Therefore, the results holds.
Case (Q + By >ty [G]] : insth(G1, G]) < By » 1y [G}] : inst?(G,, GY)).

QI—El>t11G1<EZ>t22G2 G;SGE

(<appG)
Q+E;> 1 [G]: insth(G1,G)) < By vty [G)] : inst?(Ga, G))
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EsATikti~> ]Gt = norm(t{,Gl,\v’varﬁ(Gl).schmﬁ(Gl))

(GappG) - ’ " ’ N ’
EuMTFty [Gr] ~ ] [GY] s inst*(Gy, GY)

ExALrty~>t:G  t) = norm(tz’,Gz,Vvarﬁ(Gz).schmﬂ(Gg))
Ep ATk ty [G)] ~ 1 [GY] : inst!(G,, GY)

We have to prove that Q + /" [G]] < t;’ [G}] : G] < G;, or what is the same by the rule (<appG;),
we have to prove that t;” < t; and G| < G;. G| < G;, follows by premise. We know that

(GappG)

t;" = norm(t;, Gl,‘v’varﬁ(Gl).schmﬁ(Gl)) = ety =« Vvarﬁ(Gl)‘schmﬁ(Gl)
where ¢1 = Iz, (G, Vvarﬁ(Gl).schmﬁ(Gl)) = IEI(Vvarﬁ(Gl).schmﬁ(Gl), Vvarﬁ(Gl).schmﬁ(Gl)) =
ngarn(Gl).schmﬁ(Gl)
ty’ = norm(t,, Ga, Yvart (Gg).schmg(Gz)) = ety Vvarﬁ(Gz).schmﬁ(Gz)
where & = Iz, (Ga, Vvarﬁ(Gg).schmﬁ(Gz)) = IEZ(Vvaru(Gz).schmﬁ(Gz), Vvarﬁ(Gz).schmﬁ(Gz)) =
E\/varﬁ(Gz).schmg(Gz)

By induction hypothesison Q + Zy>t; : Gy < Eypty : Gy, weknow that Q + ] < 5 : G; < G, and
by Proposition 5.22, we know that G; T G,, thus Vvar® (Gl).schmﬁ(Gl) C Vvarf (Gz).schmg(Gz).
Therefore, we only have to prove by rule (<Masc,) that & E ¢,. But, by Proposition 5.24 and
Vvart (Gl).schmﬁ (Gy) C Vvart (Gz).schmﬁ(Gg) the results holds.
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6 GSF: PARAMETRICITY

In this section we present the logical relation for parametricity of GSF, the proof of the fundamental
property, and the soundness of the logical relation wrt contextual approximation.

6.1 Auxiliary Definitions

In this section we show function definitions used in the logical relation of GSF (Figure 12).
Definition 6.1. ev(eu :: G) = ¢
Definition 6.2.

?—>? E= El — Ez

VX.? E=VX.E;
const(E) = 1?x? E=E; XE,

a E=aof
X E=X
? E=7

6.2 Fundamental Property
THEOREM 10.1 (FUNDAMENTAL PROPERTY). If Z;A;T Ft: G thenZ; AT HE <t :G.
Proor. By induction on the type derivation of ¢.
Case (Easc). Then t = ¢s :: G, and therefore:
ZATrEs: G eFE;AFG ~G

(Easc)
ENTE es2G : G

We follow by induction on the structure of s.
e If s = b then:
ty(b)=B E;A+T
Z;NM;THb:B
Then we have to prove that Z; A;T' + ¢b :: G < ¢b :: G : G, but the result follows directly by
Prop 6.3 (Compatibility of Constant).
e If s = Ax : G1.t’ then:

(Eb)

ZAT,x:Girt Gy

(EA)
AT HAX :Git' : Gp — Go

Then we have to prove that:
EiMTRe(Ax:Grt)) 2 G < e(Ax: G1.t') =G : G

By induction hypotheses we already know that Z; A;T,x : G; + t/ < t’ : G,. But the result
follows directly by Prop 6.4 (Compatibility of term abstraction).
o If s = AX.t’ then:
EAX;THEY :GY E;ART

(EA)
;0T FAX L VX.G*

Then we have to prove that:

0T Fe(AX ) G < e(AX.t)=G: G
By induction hypotheses we already know that Z; A, X;T + t’ < t’ : G*. But the result
follows directly by Prop 10.2 (Compatibility of type abstraction).
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o If s = (uj, uy) then:
20T Fup: Gy Z;0T Fup : Gy
=0T - <u1,u2> :G1 X Gy

(Epair)

Then we have to prove that:
;0T Feug,ug) =G =L e{u,up) :G: G

We know by premise that Z; A;T + 7my(e)u; = Gy : Gy and E; A, T F mp(e)uy = Gy : Gz. Then
by induction hypotheses we already know that: Z; A;T F 71(e)ug :: Gy < mi(e)ug :: Gy : Gy
and Z;A;T + ma(e)uy == Gy < my(e)ug =+ Gy : Go. But the result follows directly by Prop 6.5
(Compatibility of pairs).

o If s = t/, and therefore:

&

ATrHE : G erZ;AFG ~G
ENTret' =G:G

By induction hypotheses we already know that =; A;T + ¢’ < t’ : G’, then the result follows

directly by Prop 6.8 (Compatibility of ascriptions).

(Easc)

Case (Epair). Then t = (ty, t;), and therefore:
ZANTHE G EMTHE:Go
=0T+ <t1,t2> :G1 X Gy

(Epair)

where G = G; X G, Then we have to prove that:
E; ATk (t1,t2) < (t1,12) : G1 X Gy

By induction hypotheses we already know that: Z;A;T -t < t; : Giand E;A,T F 8, < 1 : Ga.
But the result follows directly by Prop 6.6 (Compatibility of pairs).

Case (Ex). Then ¢ = x, and therefore:

Then we have to prove that Z;A;T + x < x : G. But the result follows directly by Prop 6.7
(Compatibility of variables).

Case (Eop). Then t = op(t’), and therefore:
EATHY (G ty(op):5—>G
AT+ op(t’): G

(Eop)

Then we have to prove that: Z;A;T F op(t’) < op(t’) : G. By the induction hypothesis we obtain that:
E;A;TH ¢ <t/ :G. Then the result follows directly by Prop 6.9 (Compatibility of app operator).
Case (Eapp). Then t = t; t,, and therefore:
Z;MT F iy : Gip — Grg 20T iy Gra
20T Hitg ty: Gro

(Eapp)
where G = Gj,. Then we have to prove that:
Z;N;T Rty <ty ty: G

By the induction hypothesis we obtain that: Z;A;T+#; <t;: Gy — Gi2 and Z;A;TF £ < £ : Gyy.
Then the result follows directly by Prop 6.10 (Compatibility of term application).
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Case (EappG). Then t = t’ [G;], and therefore:
=0T HE :VX.Gy Z;AF Gy
E ATt [Go] : G1[G2/X]
where G = G1[G,/X]. Then we have to prove that:
E;AT Rt [Ge] <t/ [Go] : Gi[G2/X]

(EappG)

By induction hypotheses we know that:
AT HY <t :VX.Gy
Then the result follows directly by Prop 10.3 (Compatibility of type application).

Case (Epairl). Then t = m;(t’), and therefore:

AT HEY :Gr XGy

AT Fm): Gy
where G = G;. Then we have to prove that: Z;A;T + 71(¢') < m1(t') : G1. By the induction hypothesis
we obtain that: Z;A;T + ¢/ < ¢’ : G; XGz . Then the result follows directly by Prop 6.11 (Compatibility
of access to the first component of the pair).

Case (Epair2). Then t = m,(t’), and therefore:

AT HEY 1 Gp X Gy

E;NTFmt): Gy
where G = G,. Then we have to prove that: Z;A;T + 72(t’) < m2(t’) : Go. By the induction hypothesis
we obtain that: Z;A;T + ¢/ <t/ : G1 XGz . Then the result follows directly by Prop 6.12 (Compatibility
of access to the second component of the pair).

O

In order to prove parametricity, we add an index to the evidence and we are more detailed in
the reduction rules. A brief explanation is given below. The index of an evidence is an integer
greater than cero. To know the index of an evidence ¢, we use the following operator ¢.n = k, which
specifies that the index of the evidence ¢ is the integer k > 0. The reduction rules always took a
step. Here we redefine them and they can take one or more steps. This will depend on whether or
not a transitivity of evidence is applied. If it does, the rule will take as many steps as the evidence
index on the right. Below we define the steps in the rules

Z>t —> Z >t orerror ‘Notion of reduction

(Rasc) = exleru = G1) = Gy _k> {e:r:(fil e liffﬁrzl;)ri Zelf;ned
(Rop) Seop(eu:G) —> Eeepdopd) =B where B2 cod(ty(op))
ot E > cod(e1)(t](e2 § dom(er))u :: G11)/x]) == G2
(Rapp) E > (¢1(Ax : G11.t) : G1 — G2) (e2u = G1) —— if dom(e1) = k
error if not defined
(Rpair) 2> (e1ug = Gy, e2up = Go) LN 2> (e1 X e2){u1, uz) :: G1 X G
(Rproji) Zomie(u,ug) = Gy xGy)  —> B > pi(e)u; = Gi
(RappG) E> (eAX.t 2 VX.G) [G'] L o= cout(ela@]t[a/X] = Gla/X]) = G[G'/X]

A

where 2’ £ Z, a := G’ for some a ¢ dom(Z)
and a = liftz/(a)
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PROPOSITION 6.3 (COMPATIBILITY-EB). Ifb € B,e + Z;A+ B~ G and Z; A + T then:
ZANTreb::G=Leb:G:G
PROOF. As b is constant then it does not have free variables or type variables, then b = p(y;()).
Then we have to prove that for all W € S[=] it is true that:
(W, p1(e)b == p(G), p2(e)b :: p(G) € T,[G]

As pi(e)b :: G are values, then we have to prove that:

(W, p1(e)b :: p(G), p2(e)b :: p(G)) € V,[G]

(1) G = B, we know that (B,B) = ¢ + Z;A + B ~ B, then p;(¢) = ¢ and the result follows
immediately by the definition of V, [B].

(2) If G € TypENAME then ¢ = (Hj, a*). Notice that as a* cannot have free type variables
therefore H; neither. Then ¢ = p;(¢). As « is sync, then let us call G’ = W.E (). We have to
prove that:

(W, (Hs, a®) b at, (H3, aF*) b a) € V, ]
which, by definition of V,[«], is equivalent to prove that:
(IW,(Hs,E4) b :: G”,(E3,E4) b :: G”') € V,[G”']

Then we proceed by case analysis on &:

e (Case ¢ = <H3,0{'BE4>). We know that (Hs, aﬂE4) + Z;A F B ~ a, then by Lemma 6.29,
(Hg,ﬁE“) FE;A+FB~G". As ,BE‘* C G”, then G” can either be ? or f.
If G = ?, then by definition of V,[?], we have to prove that the resulting values belong
to V,[B]. Also as (Hs, B%) + E;A + B ~ ?, by Lemma 6.27, (Hs, %) + E;A + B ~ B,
and then we proceed just like this case once again (this is process is finite as there are no
circular references by construction and it ends up in something different to a type name).
If G”” =  we use an analogous argument as for G”’ = ?.

e (Case ¢ = (Hj, a™)). We have to prove that

(lW, <H3,H4> b GU, <H3, H4> b G”) € (Vp [[GN]]

By Lemma 6.29, (Hs, Hy) F Z;A + B ~ G”. Then if G = ?, we proceed as the case G = ?,
with the evidence ¢ = (H;, Hy). If G’ € HEADTYPE, we proceed as the previous case where
G = B, and the evidence ¢ = (Hs, Hy).

Also, we have to prove that (VE’,¢’,Gj, such that ¢'.n = k, ¢’ = (aET*,E;*) (w e
S[E'] A e FE' Fa ~ G)), we get that

(LW, &' ((Hs, @™ yuy = @) = Gy, &' ((Ha, )y == @) =2 G}) € T,[GY])

or what is the same (((Hs, ) § ¢’) fails the result follows immediately)

(LiskW, ((Hs, ™) 3 )y = Gy, ((Ha, o™y 3 € )up == GY) € V,[GE])
By definition of transitivity and Lemma 6.30, we know that
(Ha, a™) s ("', E5") = (Hs, Hy) § (E;", E5")

We know that (E3*, ES") + &/ + G” ~ G!. Since (E*, E*) F E + G” ~ G, |1W € S['],
(11W, (Hs, Hy)uy = G”, (Hy, Hy)up :: G”') € V,[G”], by Lemma 6.17, we know that (since
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((Hs, a™) 5 ¢") does not fail then ((Hs, Hy) (E7*,E;")) also does not fail by the transitivity
rules)
(L1+&W, ((Hs, Hy) 3 (EY", Ey"))us = Gy, ((Hs, Hy) § CE{" Ey")ug = GY) € V,[G])

The result follows immediately.
(3) If G = ? we have the following cases:
¢ (G =?,¢ = (Hs, Hy)). By the definition of V,[?] in this case we have to prove that:

(W, p1(e)b == const(Hy), p2(e)b :: const(Hy)) € V), [const(Hy)]
but as const(Hy) = B (note that H; = B then since Hy € HEADTYPE has to be B). The the
result follows immediately since is part of the premise.
e (G = ?,¢ = (H3,a®)). Notice that as a® cannot have free type variables therefore E;
neither. Then ¢ = p;(¢). By the definition of V,[?] we have to prove that
(W, <H3, (XE4> u = a, <H3, Ct’E4> Uy 0{) € (Vp [[aﬂ
Note that by Lemma 6.27 we know that ¢ + =; A + B ~ a. Then we proceed just like the
case G € TYPENAME.
O

PROPOSITION 6.4 (COMPATIBILITY-EA). If E;A;T,x : Gi bt <t : G, e FE;AF Gy > G ~ G
then:
EATHFe(Ax:G1t) G =2 e(Ax:G1.t') =G : G
Proor. First, we are required to show that Z;A;T F ¢(Ax : G1.t) = G : Gand E; A;T F e(Ax :
Gi.t') :: G : G, which follow from ¢ + Z;A + G; —» Gy ~Gand Z;A;T + Ax : Gy.t : G; — Gy and
;AT F Ax 0 Gi.t’ : Gy — Gy respectively, which follow (respectively) from E;A;T,x : Gy F t: G,
and Z;A;T, x : Gy + t’ : Gy, which follow from Z;A;T,x : G+t <t/ : Go.
Consider arbitrary W, p,y such that W € S[Z], (W, p) € D[A] and (W,y) € G,[I']. We are
required to show that:
(W, p(y1(e(Ax : Gy.t) = G)), p(y2(e(Ax : Gy.t) 2 G))) € T,[G]
Consider arbitrary i, vy and = such that i < W.j and:
W.E; b p(y1(e(Ax : Gi.t) = G)) — B » vy
Since p(y1(e(Ax : Gy.t) = G)) = & (Ax : p(G1).p(y1(1))) == p(G) and &} (Ax : p(Gy).p(ya(t"))) == p(G)
is already a value, where eip = pi(¢e), we have i = 0 and v; = Ef(}[x : p(Gy).p(y1(t))) = p(G) and
=, = W.E;. Since fg(/lx : p(G1).p(y2(t"))) = p(G) is already a value, we are required to show that
AW’ suchthat Wj+i=WjW > W, W.E, =5, W.E, = E, and:
(W', 7 (Ax : p(G1).p(y1(1))) = p(G), &) (Ax = p(G).p(y2(t"))) = p(G)) € V,[G]
Let W = W, then we have to show that:

(W, e/ (Ax : p(G1).p(1 (1)) = p(G), ] (Ax = p(G1)-p(y2(t))) = p(G)) € V,,[G]

Let’s suppose that gf.n =k.
First we have to prove that:

WE; AT ke (Ax : p(G).p(yi(1))) = p(G) : p(G)
As we know that Z; A;T + ¢(Ax : Gy.t) =: G : G, by Lemma 6.25 the result follows immediately. The
case W.E,; AT + gf(lx : p(G1).p(y2(t"))) == p(G) : p(G) is similar.
The type G can be G| — G, for some G; and Gj, or ? or a TYPENAME.
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(1) G = G| — G;, we are required to show that YW",v] = eju] =: p(G]), v; = eju; == p(GY), such
that W” > W and (JW”,v],v;) € V,[G;], it is true that:
(W, el (x 2 p(G1)p( (1)) = p(G} — G}) v}y &L Ohx : p(G).p(ya(t)) 2 p(G — G}) v} € T, [G4]
If (e] 5 dom(gf ) fails, then by Lemma 6.26 (e} § dom(e2 )) and the result follows immediately.
Else, if (¢] § dom(sf )) follows, where dom(sf ).n = k, we know that

W' =2 > Ef(/lx : p(G1).p(y1(1))) = p(G; — G3) vy —kt

W Zy > cod(e N p(n()I(e] 5 dom(el yuj = p(G)/x]) = p(GY) v —K'
E1 v cod(e] Yo = p(Gy) — k
B> 0]
Thus, we have to prove that there exists W*, such that:
W By > e (Ax : p(G1).p(ya(t")) :: p(G] = Gy) vy —" By > v,
and (W*,v},0;) € V,[G)], W*j+1+2k+k* =W" j, W"E, =E; and W"E, = E,.
Note that dom(sf) FW”E; F p(G]) ~ p(Gy). By the Lemma 6.17 ( with the type G; and the
evidences dom(ef) FW"E; + p(G]) ~ p(Gy)) it is true that:
(LW, dom(e} Yo = Gy, dom(e) Yoy = G1) € T, [G1]
Since (¢ dom(ef )) does not fail, it is true that:

((Les1 W), (e] § dom(e? )y == Gu, (¢} § dom(el )uj == Gr) € V,[Gi]

We instantiate the hypothesis Z; A;T + ¢t < ¢/ : Gy, with (Jx+1 W), p and y[x : p(G1) —
(v),v;')], where v}’ = (] § dom(gf)))ulf i p(Gy). Note that S[Z] > (lx11 W) = W by the
deﬁnition of S[Z], (Lxk+1W"’), p) € D[A] by the definition of D[A] and (({x+1W"'), y[x

(0], v, 2 D € Gl x : p(Gy)], which follow from: ((Lk+1 W”).y) € Gp[I] and ((Lx+1
W), v, vy) € V,[G;] which follows from above. Then, we have that:

((LeetW”), p(ra(O)[0/x]. p(r2(E )]0y [x]) € T3 [Go]

If the following term reduces to error, then the result follows immediately.

W".E1» p(y1(1))[vy /x]

’17

If the above is not true, then the following terms reduce to values (v;r) and IW"” = ({x1W"’)
such that (W', vir,v5r) € V,[Go] and W”'.j + k* = (lk+1 W”').j, or what is the same
W”j+k*+k+1=(W"),j.

W”E e p(n ()] [x] —F WE s oy

W".Ez > pya(t)vy [x] —" W Bz vyp

We instantiate the induction hypothesis in the previous result (W’”, vy, va¢)) with the type
G, and the evidence cod(ef ) - W'E; + G ~ Gj, then we obtain that:

(W, cod(e} Yoif == p(GY), cod(ey Yoy = p(G))) € Tp[[G]
Therefore, we get (¢ W', v},v;) € V,[G;]. Taking W* = ([x W), the result follows
immediately. Note that W' .j+k+k*+1 = W"_j and therefore (| ;W'”).j+1+2k+k* = W" j.
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For the other cases of G, let’s considerer that u; = Ax : p(Gy).p(y1(1)), u2 = Ax : p(p(Gy).p(y2(t))
and G* = G; — Gy, we have to prove that:

(W, pi(e)us == p(G), p2(e)uz == p(G)) € V,[G]
(2) If G € TypENAME then ¢ = (Hs, a*). Notice that as a® cannot have free type variables
therefore H; neither. Then ¢ = p;(¢). As « is sync, then let us call G = W.E (). We have to
prove that:

(W7 <H37 aE4> u a, <H3’ aE4> uz = a) € (Vp [[aﬂ
which, by definition of V,[«], is equivalent to prove that:
(lW, <H3, E4> Uup = GI,, <E3, E4> Uy G”) € (Vp [[GH]]

Then we proceed by case analysis on ¢:

e (Case ¢ = (Hs, a?™)). We know that (Hs,a?™*) + Z;A + G* ~ a, then by Lemma 6.29,
(H3,ﬁE4> FE;AFGY~G”. As ﬂE“ C G”, then G” can either be ? or f.
If G” = ?, then by definition of V,[?], we have to prove that the resulting values belong
to V,[B]. Also as (Hs, BB*) F 2;A + G* ~ 2, by Lemma 6.27, (Hs, &) + ;A + G* ~ B,
and then we proceed just like this case once again (this is process is finite as there are no
circular references by construction and it ends up in something different to a type name).

If G"” = B we use an analogous argument as for G = ?.
e (Case ¢ = (Hs, af*)). We have to prove that

(W, (Hs, Hy) uy :: G”, (Hs, Hy) uy :: G”') € V,[G”]

By Lemma 6.29, (Hs, Hy) F E; A + G* ~ G”. Then if G” = ?, we proceed as the case G = ?,
with the evidence ¢ = (H;, Hy). If G’ € HEADTYPE, we proceed as the previous case where
G = G| — G}, and the evidence ¢ = (H3, Hy).

Also, we have to prove that (VE’,¢’, G}, such that ¢'.n = k, ¢’ = (aET*,E;*) (w e
S[E'] A€ FEFa ~ G)), we get that

(LW, &' ((Hs, @™ yuy = @) = Gy, &' ((Ha, 2 )y == @) == G}) € T,[GY])

or what is the same (((Hs, ) 3 ¢’) fails the result follows immediately)

(LiskW, ((Ha, ™) 5 € = G, ((Ha, @) § )uz 2 GY) € V,[Gi])
By definition of transitivity and Lemma 6.30, we know that
(Hs, a™) 3 (@', E}") = (Hs, Ha) § (E", E;")

We know that (E;*,E;*) + £’ + G” ~ G;. Since (E;*, E;*) r 2+ G” ~ G}, 1W € S[E'],
(I1W, (Hs, Hy)uy :: G, (Hy, Hy)up :: G”') € V,[G”], by Lemma 6.17, we know that (since
((Hs, a™*) 5 ¢") does not fail then ((Hs, Hy) § (E**, E;")) also does not fail by the transitivity
rules)

(L1+xW, ((Hs, Hy) § (Ey", E5"))uy == Gy, ((Hs, Hy) § (E{", E5"))ug == GY) € V,[G1])

The result follows immediately.
(3) If G = ? we have the following cases:
e (G =7?,¢ = (Hs, Hy)). By the definition of ‘V,[?] in this case we have to prove that:

(W, p1(e)uy == p(G), pa(€)uz :: p(G)) € V,[const(Hy)]
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but as const(Hy) = ? — ?, we proceed just like this case where G = G| — G, where G| =?
and G = ?.

e (G = ?,¢ = (Hs,a®)). Notice that as a® cannot have free type variables therefore E;
neither. Then ¢ = p;(¢). By the definition of V,[?] we have to prove that

(W7 <H3» aE4> Ut a, <H3a aE4> Up = a) € (Vp [[aﬂ

Note that by Lemma 6.27 we know that ¢  Z; A + G* ~ a. Then we proceed just like the
case G € TYPENAME.
O

LEMMA 10.2 (COoMPATIBILITY-EA). IfE;A X Ft <t :G, e FE;AFVX.G~G andZ;A+ T
then Z; A;T + e(AX.t1) = G < e(AX .tp) = G' : G'.
Proor. First, we are required to prove that =; A;T + ¢(AX.t;) :: G’ : G’, but by unfolding the
premises we know that Z; A, X  ¢; : G, therefore:
2AX;TRE:G E;ART
20T FHAX t; e VX.G

Then we can conclude that:
2T FAX 1 € VX.G EFZARVYX.G~G
E;NTFe(AX ty) =G G

Consider arbitrary W, p, y such that W € S[E], (W, p) € D[A] and (W,y) € G,[I']. We are
required to show that:

W, p(n(e(AX.1a) = G)), p(ya(e(AX 12) : G))) € T, [C']
First we have to prove that:
W.E; + p(yi(e(AX.t;) = G")) : p(G')

As we know that E; A; T + e(AX.t;) : G’ : G, by Lemma 6.25 the result follows immediately.
By definition of substitutions p(y;(¢(AX.t;) = G')) = sf(AX.p(yi(ti)))) i p(G”), where Ef = p;(e),
therefore we have to prove that:

(W, el (AXp(n (1)) = p(G'), &) (AX.p(y2(t2)))) = p(G)) € T,[G']
We already know that both terms are values and therefore we only have to prove that:

(W, el (AXp(n (1)) = p(G'), €] (AX.p(y2(12)))) = p(G”)) € V,[G']

Let’s suppose that ef.n =k
The type G’ canbe VX.G, for some G{, ? or a TYPENAME. Let u; = AX.p(y1(t1)), uz = AX.p(y2(t2))
and G* = VX.G, we have to prove that:

(W, p1(e)uy == p(G), pa(e)uy == p(G)) € V,[G']
(1) If G = VX.Gy, then consider W’ > W, and Gy, G, R and a, such that W'.E; + G;, and
Re RELW/_j[Gl, Gg].
W .E; > el (AX.plyi(t:))) = ¥X.p(GY) [Gi] —
qEi . . ’ ’
W' Ea =Gy el o (1 oyt [X] 5 p(Gla/XD = p(GIGH/X]
where El’ = llﬂ’(W’E,)(Gl)
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Note thate + Z; A + VX.G ~ VX.G], then ¢ = (VX.E;, VX.E,), for some Ey, E;, K and L. By the
Lemma 6.24 we know that gf FWE; A FVX.p(G) ~ VX.p(G)), then gf = (VX.E;1;,YX.Ejp),
where VX.Eil = Pz(El) and EiZ = pl(Eg)

Then we have to prove that:

W, (e [a" Dp(ra(t))a™ /X] = p(GDIa/X],

(e [a® Dp(ya(t))[a® /X] = p(GDIe/X]) € Tpixal [G1]

where W =|(W’ ® (a, G, G, R)).
Note that

W B e (e [eP Dpn (1) = p(G)Iar/X] —F

Ere(ef [[“E]ﬂ)vlf —

Let p” = p[X +— «a]. We instantiate the premise =; A;T + t; <t : G with W”, p” and y, such
that W € S[E] , as a € dom(W'.x[a > R]) then (W”, p’) € D[A, X]. Also note that as X
is fresh, then V(v],v;) € cod(y), such that Z; A;T' + v} : G*, X ¢ FV(G"), then it is easy to
see that (W",y) € G[xa][I]. Then we know that:

W, p'(r1(t), p'(r2(t2))) € T [G]
But note that:
p'(yi(t:) = pla/X1(yi(t:)) = plyi(t:)[a” /X]
Then we have that:
W, p(y1(t)[a™ /X1, pya(t2))[@" [X]) € Tpia/x)[Gl
If the following term reduces to error, then the result follows immediately.
W”E > p(yi(t)[@™ /X]
If the above is not true, then the following terms reduce to values (v;r = &;ru;r = p'(G)) and
AW = W” such that (W', vr, v5r) € Vyjamx][G] and W j + k* = W” .
W"Ei» plyi(t)a® X] —" W.Ei > vy

We instantiate the Lemma 6.17 with the type G| and the evidence (Ey, E2) + Z;A, X + G ~ G
(remember that ¢ = (VX.E;, VX.E,)). Note that gf [a] = p[X — alwr.z,(E1, E2)), p[X
al(G)) = p(G)la/X], W € S[E] and (W, p[X — a]) € D[A, X]. Then we obtain that:

W, (&} [a" Do = p(GDla/X], (€] [aP])vap = p(G)Ia/X]) € Ty [G]]

and

(l«kw,’/v vik’ ‘U;) € % [[G”]

where ([W'").j+k+k* = W" jand v} = (g7 3 (ef [[aEl]]))uif i p(G))[e/X], and the result
follows immediately.



56 Elizabeth Labrada, Matias Toro, and Eric Tanter

(2) If G’ € TYPENAME then ¢ = (Hs, ). Notice that as a® cannot have free type variables
therefore Hs; neither. Then ¢ = p;(¢). As « is sync, then let us call G = W.E;(a). We have to
prove that:

(W, (Hs, ¥y uy = a, (Hs, @) up ) € YV, ]
which, by definition of V,[«], is equivalent to prove that:
(W, (Hs, Eq) uy :: G, (E3, Eq) uz :: G”') € V,[G”]

Then we proceed by case analysis on &:

e (Case ¢ = (Hs, aﬁE4)). We know that (Hs, aﬁE4) F Z;A F G* ~ a, then by Lemma 6.29,
(Hs, BE) + 2; A + G* ~ G”. As BF+ C G”, then G” can either be ? or .
If G” = ?, then by definition of V,[?], we have to prove that the resulting values belong
to V,[B]. Also as (Hs, f¥) + ;A + G* ~ ?, by Lemma 6.27, (Hs, f5) + Z;A + G* ~ B,
and then we proceed just like this case once again (this is process is finite as there are no
circular references by construction and it ends up in something different to a type name).

If G”” =  we use an analogous argument as for G”’ = ?.
e (Case ¢ = (Hs, a'™)). We have to prove that

(LW, (Hs, Hyy uy : G”, (Hs, Hy) u = G”) € V,[G”]

By Lemma 6.29, (H3, Hy) + Z; A + G* ~ G”. Then if G = ?, we proceed as the case G’ = ?,
with the evidence ¢ = (Hj, Hy). If G’ € HEADTYPE, we proceed as the previous case where
G’ = VX.G, and the evidence ¢ = (Hs, Hy).

Also, we have to prove that (VE’,¢’,G], such that ¢’.n = k, ¢’ = (aE;*,E;*) (w e
S[E']Ae" FE"F a ~ G;}), we get that

(LW, &' ((Hs, @™ yuy == @) = Gy, &' ((Ha, ")z == @) == G}) € T,[G])

or what is the same (((Hs, ) § ¢”) fails the result follows immediately)

(LiekW, ((Hs, &™) 5 € )uy =2 Gy, (o, @) 5 'y 12 GY) € V,[GY])
By definition of transitivity and Lemma 6.30, we know that
<H3a aH4> ; <aEr*,E;*> = <H3’ H4> ; <E;*’ E;*>

We know that (E}*, E;*) F E’ + G” ~ G}. Since (E]*,E;*) v E + G” ~ G}, 1W € S[E'],
(LW, (Hs, Hy)uy :: G”, (Hy, Hy)uy :: G”') € V,[G”]], by Lemma 6.17, we know that (since
((Hs, a'™) 5 ¢") does not fail then ((Hs, H,) § (E**, E3*)) also does not fail by the transitivity
rules)

(ll+kW» (<H3’H4> g <E1{*? E;*>)U1 o GTa (<H3»H4> ?) <EI¥’ E;\k>)u2 ° Gik) € (Vp [[GT]])

The result follows immediately.
(3) If G’ = ? we have the following cases:
e (G’ =?,¢ = (Hs, Hy)). By the definition of V,[?] in this case we have to prove that:

(W, pi(e)uy == p(G), pa()uy == p(G)) € V,[const(Hy)]
but as const(Hs) = VX.?, we proceed just like the case where G’ = VX.G{, where G| = 7.
e (G' = ?,¢ = (Hs,a"*)). Notice that as a®* cannot have free type variables therefore E;
neither. Then ¢ = p;(¢). By the definition of V,[?] we have to prove that

(W, (Hs, ¥y uy = a, (Hs, a5 up :: @) € V,[a]
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Note that by Lemma 6.27 we know that ¢ + Z;A + G* ~ a. Then we proceed just like the
case G’ € TYPENAME.

O

PROPOSITION 6.5 (COMPATIBILITY-EPAIRU). If 5; AT + mi(e)uy = Gy < m(e)uy = Gy : Gy,
B AT Fmo(e)uy i Gy 2 mo(e)uy 2 Gy 2 Go, and e - ;A + Gy X Gy ~ G then:

AT Fe(u,ug) 0 G L e{up,uy) =G:G
Proor. Straightforward as the definition of related pairs depends on a weaker property of the

premise: Z; AT + my(e)uy = Gy = m(e)u] = Gy = Gy and E; 0T + mo(e)uy, = Go < mye)uy = Gy
G. O

PROPOSITION 6.6 (COMPATIBILITY-EPAIR). IfE; ATty < t] : Gy and E5 AT + ity <t 2 Gy,
then =; A;T F (ty, 1) < (t],t5) : G1 X Gy.

Proor. We proceed by induction on subterms t;, analogous to the function application case, but
using Prop 6.5 instead. ]

PROPOSITION 6.7 (COMPATIBILITY-EX). Ifx:GeT and E;A+ T thenE;AT Fx <x:G.

Proor. First, we are required to show Z; A;T + x : G, which is immediate. Consider arbitrary
W, p,y such that W € S[E], (W, p) € D[A] and (W, y) € G, [I']. We are required to show that:

(W, p(y1(x)), p(y2(x))) € 7,[G]

Consider arbitrary i, v; and Z; such that i < W.j and W.E; » p(y1(x)) —' Z; » v;. Since
p(y1(x))) = y1(x) and y;(x) is already a value, we have i = 0 and y;(x) = v;. We are required to
show that exists Z,, v, such that W.Z, > y»(x) —* E, » v; which is immediate (since p(yz(x)) =
y2(x) is a value and 2, = W.E,). Also, we are required to show that AW’, such that W'j + i =
WjiAW = WAWE; =B AW.E; = B3 AW, y1(x), y2(x)) € V,[G]. Let W = W, then
(W, y1(x), y2(x)) € V,[G] because of the definition of (W,y) € G, [I']. ]

ProOPOSITION 6.8 (COMPATIBILITY-EASC). IfZ;A;T Ht <t : Gande - E;A + G ~ G’ then
AT ret; oG <ety =G : G
Proor. First we are required to prove that Z;A;T F ¢t; = G : G',but by E;AT F 1y <t : G we
already know that Z; A;T + t; : G, therefore:
ZATHE:G  erE;AFG~G
2 AT reti oG G

(Easc)

Consider arbitrary W, p,y such that W € S[Z], (W, p) € D[A] and (W,y) € G,[I']. We are

required to show that:
(W, p(yi(ets = G)), p(ya(etz = G))) € T,[G']
Let’s suppose that ef.n = k. By definition of substitutions p(y;(¢t; :: G")) = p(e)p(yi(t:)) = p(G’),
therefore we have to prove that:
(W, p(e)p(y1(t1)) == p(G"), p(e)p(ya(t2)) : p(G”)) € T, [G]
First we have to prove that:
WE; + p(e)p(yi(ti)) = p(G”) : G’

As we know that E; A;T + ¢t; :: G’ : G’, by Lemma 6.25 the result follows immediately.
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Second, consider arbitrary i < W.j, Z;. Either there exist v; such that:

W.E; » p(e)p(y1(t1)) = p(G') —' B by
or )
W.E; » p(e)p(y1(t1)) = p(G') —' error

Let us suppose that W.Z; » p(y;(t1)) :: p(G’) —' > v;. Hence, by inspection of the operational
semantics, it follows that there exist i; + 1 < i, Z1; and v such that:

W.E; » p(e)p(y1(t1) = p(G') ™ By » ple)ors = p(G7) —F Ep1 o0y

We instantiate the hypothesis Z; A;T' - t; < t, : G with W, p and y to obtain that:
(W, p(y1(t1)), p(y2(t2))) € T,[G]

We instantiate 7,[G] with iy, £1; and vy; (note that iy < i < W.j), hence there exists vy, and
Wi, such that Wy > W, Wi.j + iy = W.j, WE, » p(y2(t2)) —" WL.E, > v1y, WLE; = B4y, vi2 and
(Wl, V11, ’012) € (Vp[[G]]

Since we have that (Wy, v11, v12) € V,[G], then it is true that (Wi, p(¢)vyy = G/, p(e)vyz = G') €
7,[G’] by the Lemma 6.17.

By the inspection of the operational semantics:

W.E, > p(e)p(y1(t1)) = p(G”) —ITWLE, > p(e)vyy = p(G') —k Ei >0
We instantiate (W;, p(¢)vy; = G/, p(e)vrz :: G') € T,[G’] with k, v, and E;. Therefore there must
exist v, and W’ such that W’ > W; (note that W/ > W), W'.j+i; +k=W'j+i=W.j.
Wi.Eg > p(e)urz i p(G') k=" Eg > 02
and (W', vy, v;) € V,[G’] then the result follows. O

PROPOSITION 6.9 (ComPATIBILITY-EOP). IfE;A;T + 1 <t/ : G and ty(op) = G — G then
Z;A;T F op(t) < op(t’) : G.

Proor. Similar to the term application. ]

PROPOSITION 6.10 ( COMPATIBILITY-EAPP). If=; AT Ht <t] : Gy — Gz and ;AT F 15 <
ty: Giy then E; AT 1y ty <t t) 2 Gya.
Proor. First, we are required to show that:
Z;MTFig b : Gy

which follows directly from (Eapp) as Z; A; T + t; : G, and Z;A;T F £, : Gy. Also, we are required
to prove that:
20T F t{ té : Gy
which follows analogously.
Second, consider arbitrary W, p,y such that W € S[E], (W, p) € D[A] and (W,y) € G,[I']. We
are required to show that:

(W, p(y1(t1 t2)), p(y2(t] t3)) € Tp[Grz]

Consider arbitrary i, v; and =; such that i < Wj and:

W.E1 > p(y1(t1 ) —' By 001 VW.E; » p(y1(ty £2)) —' error
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Hence, by inspection of the operational semantics, it follows that there exist i; < i, =;; and vy,
such that:

W.E; » p(y1(t) —" Eq1» 11 VW.E; » p(y1(t)) —™ error

IfW.E » p(y1(t;)) —" error then W.E, » p(y2(t])) —™ error and the result holds immediately.
Let us assume that the reduction does not fail. We instantiate the hypothesis Z; A;T' + t; < ¢/ :
Gi1 — G2 with W, p and y we obtain that:

(W, p(y1(t0))), p(y2(t7))) € Tp[G11 — G1z2]

We instantiate this with i, 21; and v1; (note that iy < i < W.j), hence there exists v{, and W;, such
that Wy > W, Wy.j+i; = W.j, or what is the same Wi.j+i; = W.j, W.E;» p(y2(t])) —* Wi.E 07,
M.El = Ell and (Wh’Ull,v{l) € (VpIIGll — Glgﬂ.

Note that:

W.E» p(y1(t t2)) —" Eqp > on1(p(y1(t2))) —' " Erp vy
or

W.E; > p(y1(ts t2)) —™ Eqq » v11(p(y1(t2))) —' ™" error

Hence, by inspection of the operational semantics, it follows that there exist i, < i — ij, 9, and
V99 such that:

Eq1 v p(r1(t2)) —" Egp v 22 V Eqy » plyi(tz)) — ™ error

We instantiate the hypothesis Z; A;T + t; < t; : Gy; with (W), p and y, then we obtain that:
(W1, p(y1(22)), p(y2(t3))) € Tp[Gu1]

If 21, > p(y1(t;)) —™ error then we instantiate with 25, and E; > p(y2(#;)) —* error and the
result holds immediately. Let us assume that the reduction does not fail. We instantiate this with
iy (note that iy < i — iy < W;.j = W.j — iy), E,p and vz, hence there exists v, and W, such that
Wo.Z1 = Eg9, Wo = W, or what is the same, W, > Wi, Wy.j = Wy.j — iy (Wa.j + ip + i = W.j) and

Wi.Ep > p(ya(ty)) —™ WaEy > vy,

and (W, va,, v5,) € V,[Gi1].
Note that:

i—ii—ip o
21>

i =

S22 > 011 V22 —

i1 =

W.E > p(y1(ts t2)) —" Zq1 > v11 (p(y1(t2))) —

Since (Wi, v11,v7,) € V,[G11 — Gi2], we instantiate this with W;, p(Gy; — Gz), v22 and vy,
(note that (‘/Vg, V22, Uéz) S (Vp [[Gll]]a (l1W2, V22, Uéz) (S (Vp [[Gll]] and W, > Wl) Then (Wz, V11 U292, U{l ”Uéz) S
75[G2].

Since (W, v11 032, ], v5,) € 7,[G.], we instantiate this with i — i; — i (note that i — iy — i <
Wy.j=W.j—iy —ipsince i < W.j), v; and E;.

If Wo.E, > v11 vpp —' 7172 error then Wo.E, » v], v}, —* error and the result holds. Let us
assume that the reduction does not fail. Hence there exists v, and W’, such that W’ > W, (note
that W > W), W'.j=Wa.j—(i—iy—ip) = W.j—i, Wa.By» v}, 03, —" W.E,» vy, W.E; = &,
and (W', vy, v3) € V,[Gi2], then the proof is complete. O

LEMMA 10.3 (COMPATIBILITY-EAPPG). IfE;A;T iy <t : VX.G and E; A + G, then
=0T H[G'] £ 6[G'] : GIG'/X].



60 Elizabeth Labrada, Matias Toro, and Eric Tanter

Proor. First we are required to prove that Z; A;T + £;[G’] : G[G'/X],butby Z;A;T -t < 1, :
VX.G we already know that Z;A;T  ¢; : VX.G, therefore:

[1]

ATHE:VX.G EARG
= AT+ 45[G'] : GIG/X]

(EappG)

Consider arbitrary W, p, y such that W € S[Z], (W, p) € D[A] and (W,y) € G,[I']. We are
required to show that:
(W, p(11(t[G']), ply2(t2[G']))) € T,[GIG' /X]]
But by definition of substitutions p(y;(t;[G’])) = p(yi(t:))[p(G’)], therefore we have to prove that:

W, p(r1(t))[p(G)], p(y2(t2))[p(G))]) € T, [GIG'/X]]

First we have to prove that:

WE; + p(yi(ti)[p(G)] : p(G)[p(G')/X]
As we know that Z; A;T + 1;[G’] : G[G"/X], by Lemma 6.25 the result follows immediately. Second,
consider arbitrary i < W.j and E,. Either there exist v; such that W.E, > p(y1(t)[p(G)] —' E1r vy
or W.E; » p(y1(t1))[p(G’)] —' E; > error. First, let us suppose that:
W.Ey > p(n(t)[p(G)] " Ey > vy

Hence, by inspection of the operational semantics, it follows that there exist i; < i, and v1; such
that

W.E; > p(y(t)[p(G)] =" Eqy > vn[p(G)]
We instantiate the premise =; A;T F t; < t; : VX.G with W, p and y to obtain that:
(W, p(y1(t1)), p(ya(t2))) € 7,[VX.G]
We instantiate 7, [VX.G] with i;, Z4; and vy; (note that i; < i < W.j), hence there exists v, and
Wi, such that Wy > W, Wy.j = W.j — iy, W.E, » p(y2(t2)) " Wi.E, b v1p, Wi.BEy = By, v12 and:
(W1, 011, v12) € V,[VX.G]
Then by inspection of the operational semantics:
E; o p(yi(t:)[p(G)] — " WAE; » vy [p(G)]
Wi = p(G) ei(eft] = p(G)a/X]) = p(G)]p(G')/X]
for some ¢y, &, €], €5, t; and a ¢ dom(W,.E;). Let us call t;” = (¢&/t] :: p(G)[a/X]). We instantiate
V,[VX.G] with a, t!’, p(G"), R = V,[G], 1, €, and W;.

Then (W, t,t}') € Ty x>a)[G], where W] = (JW1) ® (a, p(G"), p(G'), V,[G']).
We instantiate 7,(x,q][G] with iz, E;, v], such that

WLE; > (e]t] = p(G)[ar/X]) —" E > 0]
Note that iy < W/.j = W.j —i; — 1, since i < W_j. Therefore there must exist v}, and W’ such that
W’ > W/ (note that W/ > W), W’.j+ iy +1+iy = W.j—1,
Wi.Ey > (e5ty = p(G)a/X]) —" W.Ey > (505 = p(G)a/X]) — W'.Ey» v,
W'.E; = E; and (W', v],v;) € Vyixa][G]-
Notice that ¢; reduce to a type abstraction of the form vy; = (VX .E;1, VX .Ej2) AX.t]" = VX.p(G).
Let us call ] = ¢/"u;” :: p(G)[a/X]), as ma(e]"”) = my(e)”), then G, = unlifi(mz(e]”’)), then E; =
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lifth.s,-(cp)’ and E; = liftMEi(p(G’)), and ¢ = (Ei[aE;'/X],Ei[E;/X]). Then as (W', v;,v;) €
Vpx-a][G] by Lemma 6.15,
LW, (] s e = p(G)[p(G')/X], (&7 § e2)uy” =2 p(G)[p(G")/X]) € V,[GIG/X]]
where ¢.n = k. Let us call v; = (&]"" s e;)u;” == p(G)[p(G’)/X]. Where the lemma holds by
instantiating 7,[G[G’/X]] with E4, vy, i = k and therefore W'.2; » ¢10] == p(G)[p(G")/X] —F
W’.Z;»v;. Then there must exists some v such that W'.Z2, > £,0; 2 p(G)[p(G")/X] +— W' B, vy,
and the result follows.
]

ProposITION 6.11 (COMPATIBILITY-EPAIRY). IfE;AT + t; < £, + Gy X Gy then E; AT
m(t) = m(t) : Gy

Proor. Similar to the function application case, using the definition of related pairs instead. O

PROPOSITION 6.12 (COMPATIBILITY-EPAIR2). If ;AT + 1y < £ : Gy X Gy then ;AT +
ma(t) = my(ts) = Ga.

Proor. Similar to the function application case, using the definition of related pairs instead. O

LEMMA 6.13. LetE; = liftEi(Gp)for some Gy, C G, (Ej1, Eiz) W E; + Gy ~ G, and E1 = Eg, then
(E11,E12) § (E1, E1) & (E31, Ez) § (E2, E2).

PRrOOF. Note that by definition E; = E,. Also, Vaf € FTN(E;),E = liftEi(Ei(a)). Then we prove
the = direction (the other is analogous), by induction on the structure of the evidences (E;;, E;3).
We skip cases where E; = ? or E;; = ?, as the result is trivial (combination never fails).

Case ((E11, E1p) = (E11,a"2)). Then (Ez1, Ezp) = (Ez1,af2) , and E; = (a%i, ai), where E] =
liﬁ‘Ei(Ei(a)), and therefore E], C E;. And then by Lemma 6.30, the result holds immediately as
both combinations are defined.

Case ((E11, E12) = (E11, B)). Then (Ez1, Ea2) = (E12, B), and (E;, E;) = (B, B), and the result trivially
holds.

Case ((E11, E12) = (aEil, E12)). The result holds by de inspection of consistent transitivity rule
(sealR) and induction on evidence (Ej,, E;5).

Case ((En1, E12) = (E1n1 = Enz, E121 = Eiz2)). Then (Eqy, Erz) = (E1i1 — Eniz, Era1 — Epaz), and
(Ei,E;) = (E;; — E[,,E], — E},). As consistent transitivity is a symmetric relation, then the
result holds by induction hypothesis on combinations of evidence (E;1;; — Ei12) § (E};, E};) and
(Eiz1 = Eiza) §(El,, El,).

For the other cases we proceed analogous to the function case. ]
PROPOSITION 6.14. If (W, v1,v;) € V,[G] and W’ = W then (W, vy, v;) € V,[G].

PROPOSITION 6.15 (COMPOSITIONALITY). If
o W.E;(a) = p(G’) and W.k(a) = V,[G'],
* E; = lifty =, (p(G")),
e E; = lifty, 5,(Gp) for some Gy, C p(G),
o p'=plX—al
o ¢ = (Ei[aFi /X, Ei[E[/X]), such that &; + W.E; + p(Gla/X]) ~ p(G[G’/X]), and
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o &1 = (E;[E}/X], Ei[a®i /X1, such that &' v W.E; + p(G[G’/X]) ~ p(G[a/X]), then
(1)
(W, ejur = p'(G), equz = p'(G)) € Vy [G] =
(W, e1(efur = p(G)) = p(G [G'[X]), e2(e3uz == p(G)) == p(G [G'/X]) € T,[G [G'/X]]
()
(W, ejur = p(G [G'/X]), equz == p(G [G'/X])) € Vo [G [G'/X]] =
(W. &1 (efur = p(G [G'/X])) 1 p'(G). &2 (ejuz = p(G [G'/X])) = p'(G)) € T, [G]

ProOF. We proceed by induction on G. Let suppose that ¢,.n = k, ¢;'.n = l and ¢].n = m. Let
v; = elu; = p’(G). We prove (1) first.
Case (Type Variable X: G = X). Let v; = (H;;, a"?)u; :: . Then we know that
(W, (Hy3, aE12>u1 La, <H21,05E22>u2 na) € (Vp[Xl—mt] [[X]]
which is equivalent to
(W, (Hiy, a™)uy = a, (Hap, o™ Yup = @) € Vixisa[@]
As WE () = p(G’) and W.x(ar) = V,[G’], we know that:
(LW, (Hyy, Exz)us 2 p(G'), (Ha, Ezz)ug = p(G')) € V,[G']
Then ¢; - W.E; - a ~ p(G’), and ¢; has to have the form ¢; = (aE;,Elf). As E} = lifty, = (p(G"))

(initial evidence for a), then E;; C E}, and therefore by Lemma 6.30: (H;1, afizys(aFi, E}) = (H;1, Eiz),
and then we have to prove that

(LW, (Hi1, Erz)uy = p(G'), (Hat, Exz)uy = p(G')) € V,[G']
which follow by Lemma 6.14 and the fact that k > 0.
Case (Type Variable Y: G = Y). Let v; = (H;y, f£?)u; :: B, where p’(Y) = B. Then we know that
(W, (Hiy, B Yuy =2 B, (Hat, B)us = f) € Vyxoa [Y]
which is equivalent to
(W, (Hyr, B52)uy =2 B, (Har, B5)us = B) € Viixsa [Bl

Then ¢; + W.E; + B ~ 8, and &; has to have the form ¢; = (B, p5), and p¥ = lift,, = (B). By
Lemma 6.13, we assume that both combinations of evidence are defined (otherwise the result holds
immediately). Therefore, by Lemma 6.30, we know that

(Hir, pEy 5 (5, BEiy = (Hiy, BE2)
Then we have to prove that
(LW, (Hiy, B52)uy = B, (Hor, f5)uy = B) € V8]
which follows Lemma 6.14.

Case (Unknown Type: G = ?). Let v; = (H;1, Eiz)u; =: ?. Then by definition of V,[?], let G =
const(E;2) (where G # ?). Then we know

(W, (Hi1, Exo)uy = G”, (Ho1, Exp)up :: G”') € V, [G”]
We are required to prove that:
(W, 51(<H11,E12>u1 e 7) b ?, 82(<H21,E22>UZ o ?) b 7) € 7;,[[ﬂ]
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If e; = (2,?), then, (H;1, Eiz) § (?,?) = (Hj1, Ei2), by Lemma 6.30, the result holds immediately.
If ; # (?,?). Then we proceed similar to the other cases where G # ?. Note that we know that

(W, (Hi1, Evo)uy = G”, (Ha1, Egg)ug 2 G”) € V,[G”']
where G” # ? and we are required to prove that
(W, e1((H11, Exz)uy = G”') 2 G, e5((Ha1, Egz)ug : G')) € V, [G”']
Case (Function Type: G = G; — G;). We know that
(W, v1,02) € Vy[G1 — G
Then we have to prove that
(LW, (e] s e1)(Ax = G1.t) = p(G1[G'/X]) — p(Ga[G'/X]),
(e) 3 £2)(Ax : Gy.tz) = p(G1[G'/X]) — p(G2lG'/X])) € V,[GilG'/X] — Ga[G'/X]]

YW’ = (W) Vor, vy.(L1W', v1, v7) € V,[G1[G'/X]] = (W', v] vi, vy vy) € T,[Go[G'/X]]

Suppose that v} = ¢

Let us call v’ = (¢] § &;)(Ax : Gl.t;) : p'(G1) — p’(Gy). By unfolding, we have to prove that

’”
i

u; :: p(G1[G’/X]), by inspection of the reduction rules, we know that

Wl

[1]

i»of vf " WE» (cod(e]) § cod(e)ti[(e] 5 (dom(er)s dom(e]))uf == G))/x] = p(Ga[G' /X))
This is equivalent by Lemma 6.18,
W'.E;»o] vf =" W.E;»(cod(e]) § cod(en)til((e]§ dom(e;))sdom(e])u; = G))/x] = p(G2[G'/X]))

i

(1]

Therefore, we know that

W=, s v m+k+1

W'y > (cod(e]) 5 cod(e)t[(e]’ 5 (dom(er) § dom(e))uf =2 G))/x] 2 p(Gal G /X)) =
E1 > (cod(e]) 5 cod(e1)ory = p(GelG /X)) ="
Ei> o)
where vir = e17uyr 2 p'(Gy) and v} = €15 § (cod(e]) § cod(er))usy =2 p(Go[G'/X]).
Notice that dom(e;) v W.E; + p(G1[G’/X]) ~ p(Gi[a/X]), by Lemma 6.13, we assume that both

combinations of evidence are defined (otherwise the result holds immediately) , then let us assume
that (¢]"§ dom(e;)) is defined. We can use induction hypothesis on v;, with evidences dom(e;). Then

i

we know that (| +1W’, (¢ § dom(er))u; == p'(Gy), (¢ § dom(ez))uy = p'(Gy)) € Vi [G1]. Let us call

1 2

v = (& s dom(e;))u; :: p'(Gy).

"=
Now we instantiate

(W,v1,v2) € Vy [[Gl - Gzﬂ
with | W’ and v]"" and
(LeeaW', (e1 § dom(en))uy = p'(Gr), (&5 § dom(ez))uy = p'(Gr)) € Vi [Gi]

to obtain that either both executions reduce to an error (then the result holds immediately), or
IW” =[x W’ such that W”.j+2m + 1+ k* + k = W'.jand (W",v"f1,0'r;) € Vy [Go]

W' .E;»v; v "W .E; > cod(e))t[((e]" 3 dom(e;)) s dom(el))u) = GI)/x] = p'(G2))
— WE; >0y

Suppose that v}i = gjj.l.uf,- i p'(Gy).
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Also, we know that

- +1
W .E; b v v ™

W'.E, > cod(e))ty[(¢] 5 (dom(er) § dom(e))u = GI)/x] 12 p'(Gy) —*
gy > cod(e))vif = p'(Gy) "
Er> z}'1f
Then we use induction hypothesis once again using evidences cod(¢;) over v’;¢ (noticing that by
Lemma 6.13, the combination of evidence either both fail or both are defined), to obtain that,

(LW, (ef1  cod(e]) § cod(er))ugr == p(G2[G'/X]),
(er2 5 cod(ey) § cod(e2))urz = p(GolG'/X])) € V,[Go[G'/X]]
and the result holds. Note that ([W").j+1+2m+ 2k +k* =W’ j
Case (Universal Type: VY.G;). We know that
(W,v1,03) € Vy [VY.Gq]
Then we have to prove that
(LW, (e] 3 e1)(AY .t1) = VY. p(G1[G'/X]),
(€5 5 e2)(AY 1) = YY.p(G1[G"/X])) € V, [VY.G1[G'/X]]
Let e/ = (VY.E;;,VY.Ejp) and ¢; = (VY.E},VY.E},) = (VY.EI’.’[aE;' /X],VY.E/[E}/X]), where

E; = VY.E/. Let us call v/’ = (¢] § &;)(AY.t;) =: VY.pl(GI[G’/X]). By unfolding, we have to prove
that

YW’ = (LkW).Vt] 1), G}, Gy, B el ) ¥R € ReLy j[G1, Gy ].
(W'.B1 F G| AW By F GhA
W21 >0/ [G]] — W'.Eq, =G> et = p(G1IG'/X][G; /YA
W'y 0 [Gy] — W'.By, f:= Gy» &)1y = p(G1)[G'/X][G2/Y]) =
Wt t)) € Ty ) [G1IG /X]]
where E} = lifty,, - (G]) and W* =|(W’' & (B, G|, G}, R)
By inspection of the reduction rules we know that

1" = (EalB% /Y], Enal 51 /Y1) 5 (B [ /X085 /Y1, EVIEL /XI5 [YI&[BE /Y1 = p(Gi[G'/X1IB/Y])

Note that ((Eq1 [5 /Y], Eio[ 85 /Y1) § (E} [t /X 1[5 /Y], EY [E /X[ /Y])).n = m + k. There-

fore, we know that
W E >t —k

Er > (EalB5 /Y], Bl 5 /Y1) 5 (B} [«® /X% /Y1, E[E]/X1[B5 /Y]))
Omt 5 p(GI[GIX1[B/Y]) =" 2y > 0]
By the reduction rule of the type application we know that:
W' B v vi[G]] — W'.E;, B = G} » (EI[E1 /Y] EJ[E] /Y )t] = p(Gi[G'/X][G]/Y])

where t] = ((Ex[BE )Y, B B5 /Y[ BE /Y] 2 p(G1[G’/X][B/Y])). Now we instantiate
(W, vy,v2) € Vy[VY.G{]

with W’, G|, G, R, t], t,, , and evidences (Eil[ﬂE:/Y], E;3[E;/Y]), to obtain that
(W11, 13) € Tpiviop1 [G1]
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then either both executions reduce to an error (then the result holds immediately), or AW"" >
W*, vf;, such that (W, vr1, v2) € Vv p)[G1] and

W*E; > (Eal " /Y], El 5 /YDEIB% /Y] == p"(GalB/ Y1)
= W E; > ((Ea[B5 /Y], Bl B /Y D)o = p'(Gi[B/Y]))

WS > vy

W*Ey > ((En[ 5 /Y] Enl B5 /Y IBE /Y] = p/(GiIB/Y]))
=5 WE o (BB /Y] ElBP /Y ) 0m = p'(Gi[B/Y]))
—"W"E > vp
Suppose that vg; = (e, § <Ei1[ﬂE?/Y],Eiz[ﬁEr/YD)ufi i p'(Gi[B/Y]). As Evz BE1 /Y] = Ena BE2 /Y],

then unlift( Ey5[ 1 /Y1) = unlift(E[ % /Y]). Then we use induction hypothesis using p’[Y + f],
evidences (E;'[E; /Y], E/'[E;/Y]), where E]'[E} /Y] = liﬁ‘W,,_Ei(unlift(Eiz[ﬁE?/Y])) as E; = VY.E7,
Lliftyyn = (Gi[B/ Y1), liftyyn = (GilB/Y])) = (E{'[E; /Y], E[E; /Y])
also we know that:
(E}'[E; /Y1la"t/X), E}'[E; /YIE;/X]) = (E{'[«"t /X1[E; /Y], E}'[E{/X][E} /Y1)

Note that p(G1[#/Y]) = p[Y +— S](G1). Then we know that
LW (g1 5 CEnalB5 /Y], Eval B3 /Y1) § CEY [t /X1IE] /Y ), Ef[ES /XLES /Y D)ugy 5 pLY = BIGHIG! /X)),

((ef2 5 (E21[B%2 /Y1, Enal B2 /Y1) § (EY [ /X[E3 /Y], By [E3 /X1 [E5 /Y ])ugz = plY = BY(G1[G'/X]))

€ Voiym g1 [G1[G'/X]]
then by inspection of the reduction rules:

W*.Ei > tl{,

"W E; > (B[54 /Y] Enal B5 /Y1) 5 (E] [t /X1IBE: /Y1, EJLE] /X% /Y1) omi = p/(G1[B/YT))
WS> (ep; 3 (EnlBE /Y] Enl B /Y1) 5 (E] [ /XE; /Y1, EY[EL/XIIE; /Y )ug; = plY = BUGHG'/X])
and by Lemma 6.18, we know that those two values belong to the interpretation of Vv, 51 [G1[G’/X]],
and the result holds. Note that | ;W' .k + m + k* = W*.

Case (Pair Type: G; X Gz). Analogous to the function case.
Case (Base Type: B). Trivial.
Then we prove as (2):

Case (Type Variable X: G = X). Let v; = (H;1, Ei2)u; = X[G'/X] = (Hj1, Eiz)u; :: G'. Then we
know that
(W, (Hy1, Evo)uy = G', (Hay, Exg)up = G') € V,[G']

and ;! = (E/, a®i). Then we have to prove that

(LW, ((Hiy, Exz) § (B}, a0))uy == @, ((Hay, Ezz) § (Ej, aB2))up == @) € Voixal @]

By Lemma 6.13, we assume that both combinations of evidence are defined (otherwise the result
holds immediately). Then by definition of transitivity and Lemma 6.30, we know that ((H;1, E;2) §
(E], o)) = (Hjy, o). Then we have to prove that
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(ilws <Hll’ aE12>u1 La, <H217 aEH)uZ o C() € (Vp[Xb—)a’] [[aﬂ
but as « is sync, then that is equivalent to
(1aW, (Hi1, Erz)uy = G, (Hay, Ex2)up == G') € V,[G']

which follows by the premise and Lemma 6.14.
Also, we have to prove that (VE’, ¢/, G* such that (|;-;W € S[E'] A&’ F E' + a ~ G*), we get
that

(LW, e’ ((Hiq, aE”)ul sa) G e'((Hy, aEzz>u2 ta):GY) e 7;,[[G*ﬂ)
or what is the same (((H;;, af?) 5 ¢’) fails the result follows immediately)
i1 W, ((Hyp, o™2) 3 )y 2 G, ((Hap, a™2) § €' )ug = G*) € V,[G])
where ¢’ = (aET, E;) and ¢’.n = k’. By definition of transitivity and Lemma 6.30, we know that
(Hir, a2y (a®1, E3) = (Hy, Eiz) § (E}, E3)

We know that (E},E;) v E" v G’ ~ G*. Since (E[,E;) + E + G’ ~ G*, [;.,4 W € S[E'],
(Li-a W, (Hy1, Exg)uy 2 G',(Hay, Exz)up = G') € V,[G’], by Lemma 6.17, we know that (since
((Hy1, aP2) ¢ ¢") does not fail then ((Hyy, E12) ¢ (E?, E3)) also does not fail by the transitivity rules)

(Li—1-W, ((Hit, Evz) § (B Ep)us =2 GY, ((Haw Enz) § (B Ex)uz 2 G7) € V,[GT])
The result follows immediately.
Case (Type Variable Y: G = Y). Let v; = (H;1, f52)u; = p(Y[G'/X]) = (H;1, BF)u; == B (where
p(Y) = ). Then we know that
(W, (Hi1, B )uy == B, (Hat, B )uz = B) € V, [B]

We know that &~ + W.E;  f ~ B, therefore &;~' has to have the form ¢,71 = (8%, pFi) =
I(lifty =, (), lifty, = (B))- As ¢;"' is the initial evidence for f, then E;; C E/, and therefore by
definition of the transitivity and Lemma 6.30:

(Hin, 52 5 (B3, p¥1) = (Hir, B72)
Then we have to prove that:
(LW, iy B52) 3 (BF BE )y =2 B, (v B2 5 (B3, B52))uz =2 ) € Vpixtsa [B
or what is the same
(LW, (Hip, B5%)uy == B, (Hor, f)uz = ) € V, [B]

which follows by the premise and Lemma 6.14.

Case (Unknown Type: G = ?). Let v; = (H;1,Eiz)u; == 2. Then by definition of V,[?], let
G” = const(E;;) (where G” # ?). Then we know

(W, (Hi1, Evo)uy = G”, (Ha1, Egg)ug : G”) € V,[G”']

If ;71 = (2,?), then, (Hy1, Eiz) § (2, ?) = (Hj1, Ei3), by Lemma 6.30, the result holds immediately.
If &,7! # (2, 7). Then we proceed similar to the other cases where G # ?. Note that we know that

(W, <H11, E12>u1 i GH, <H21, Ezz)ltz i G”) € (Vp [[G”ﬂ
where G” # ? and we are required to prove that

(W, 81(<H11,E12>u1 b G”) o GN, 82(<H21,E22>u2 o GN)) € (Vp[[GN]]
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Case (Function Type: G = G; — Gy). Let v; = ¢/(Ax : Gi.t;) :: p(G[G'/X]) We know that
(W,v1,v2) € V,[G1[G'/X] = G,[G'/X]]
Then we have to prove that
(LW, (e] se17H)(Ax : Gy.t1) = p/(G1) = p'(Ga),
(e) 5627 )(Ax : Guty) = p'(G1) = p'(G2)) € Vi [G1 — G2]
Let us call v = (¢ 5 ¢, ")(Ax : G}.t;) = p'(G1) = p’(G;). By unfolding, we have to prove that
YW’ = (LiW).Vor, vy.(LiW', v1,v;) € Vy [Gi] = (W, 0] v],v) v3) € Ty [G2]

{'uj =2 p’(G1), by inspection of the reduction rules, we know that

W .E;»0) v —" W.E; > (cod(e]) § cod(e; ))ti[(e] 5 (dom(e; ™) s dom(e))u) == G})/x] = p'(Gy))

i

Suppose that v} = ¢

This is equivalent by Lemma 6.18,

W' Eie 0 o] o' Wy (cod(el) s cod(er NeL((e]' 3 dom(er™))3 dom(e))u] = Gl)/x] = p'(Ga))

Also, we know that

W’.El > U{l ’U{ |_)I+m+1
W' Ey > (cod(e]) § cod(ey " Nti[((e) § dom(e; 1)) 3 dom(e]))u) == G})/x] == p'(G2)) K
2, > (cod(e]) 5 cod(e; " )oys = p'(Gp)) —'
El B> 'UT
where vir = e17uyr = p(Go[G'/X]) and vf = (e § cod(e]) 5 cod(ey")uyy == p'(Go).
Notice that dom(e;™!) + W.B; + p(Gi[a/X]) ~ p(G1[G’/X]), and as dom(e;™?) is constructed

using the interior (and thus 7,(¢]") C 71(dom(e; ")), then by definition of evidence (¢/§ dom(e; "))

is always defined. We can use induction hypothesis on v/, with evidences dom(e; ).
Then we know that
(LW’ (¢]" s dom(er ))u] = p(Gi[G'[X]), (&5 5 dom(ez™))uy = p(Gi[G/X])) € V,[Gi[G'/X]]
Let us call v/ = (¢/’ ¢ dom(e;~"))u} == p(G1[G"/X]).
Now we instantiate
(W, v1,02) € V,[G1[G'/X] — G,[G'/X]]
with (};W’) and v;”, to obtain that either both executions reduce to an error (then the result holds
immediately), or AW" > (|;W’) such that (W"”,v’f1,0"r;) € V,[Go[G'/X]], W j+2m + k* = (|,
WHjW”j+1+1+2m+ k" =W’j)and
W B> v; 0 —W'.E; > cod(e)ti[((e) 5 dom(e; 1)) § dom(e))ul = G))/x] = p(Go[G'/X]))
— W E; >0y
Therefore, we know that

_ +1
W .E; b v v ™

Wy > cod(e))ta[((e] 5 dom(ey™)) 5 dom(e])up = G7)/x] = p(GolG'/X]))
=1 > cod(€f)ops  p(GAIG! /X)) "
W"E >0 py
Suppose that v'¢; = e}iufi i p(Gy[G'/X]) and 5}21 = 71 § cod(e]). Then we use induction
hypothesis once again using evidences cod(e; ') and (W”, 0’1, v'f3) € V,[G2[G’/X]], (noticing
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that the combination of evidence does not fail as the evidence is obtained via the interior function
i.e. the less precise evidence possible), to obtain that,

(LW, (ef1 3 cod(e]) 3 cod(er™ug1 == p'(Ga), (er2 § cod(ey) § cod(ez™))ups = p'(G2)) € Vi [Ge]

Note that ([;W”").j + 1 + 2] + 2m + k* = W’.j, and the result holds.
The remaining cases are similar.

LEMMA 10.4 (COMPOSITIONALITY). If

e WE;(a) = p(G") and W.k(a) = V,[G'],

* E; = lifty =,(p(G)),

e E; = lifty, z,(Gp) for some Gy, C p(G),

° p'=p[X > al

o & = (Ei[aFi /X, Ei[E;/X]), such that e; + W.E; + p(Gla/X]) ~ p(G[G’/X]), and

e &' = (E,[E}/X], Ei[a®i /X]), such that &= + W.E; + p(G[G'/X]) ~ p(Gla/X]), then
(1) (W, v1,v2) € Vy[G] = (W, e101 == p(G [G'/X]), e202 = p(G [G'/X])) € T,[G [G'/X]]
(2) (W,v1,02) € V,[G[G'/X]] = (W, &1 01 = p/(G), &2 vy 2 p(G)) € Ty [G]

Proor. Direct by Prop. 10.4. ]
Definition 6.16. p + 1 = & if unlift(my(e1)) = unlift(mz(e,))

PROPOSITION 6.17. If
- (W,v1,v) € V,[G]
- e+FEAFG~G
- W e S[E] and (W, p) € D[A]
— VYa € dom(E).sync(a, W)
then:
(W, p1(e)vy 2 p(G'), pa(e)vs = p(G')) € 7;[[G']]
where sync(a, W) &= WE (a) = WE,(a) A Wk(a) = [ Vo[W.E(a)]lw,;-
Proor. We proceed by induction on G and W.j. We know that u; € G; for some G;, notice that
G; € HEADTYPEUTYPEVAR. In every case we apply Lemma 6.26 to show that (& 3Ef ) = (& 355 ),

so in all cases we assume that the transitivity does not fail (otherwise the proof holds immediately).
Let us call ef = p1(¢) and 85 = pz(¢). Let’s suppose that ef.n =kande .n=1

Case (Base type: G = Band G’ = B). We know that v; has the form (B, B) u :: B, and we know
that (W, (B,B) u :: B,(B,B)u :: B) € V,[B]. Also as ¢ - Z;A v B ~ B, then ¢ = (B, B), then as
pi(B) = B, ¢; § pi(¢) = ¢, and we have to prove that ([ W, (B,B)u :: B,(B,B)u :: B) € V,[B],
which follows immediately because the premise and Lemma 6.14.
Case (Function type: G = G’ — G}, and G’ = G| — G; ). We know that:

(W, V1, 2)2) S (Vp IIG{, — Gé’ﬂ

Where v; = ¢;(Ax : Gy;.t;) = p(G — Gy) and ¢; + WE; + G; ~ p(G — G)).
We have to prove that:

(w, ffvl = p(G] = Gy), 5502 = p(G] = Gy)) € T,[G] — Gj]
Or what is the same:

(LW, (e1 5 €7)(Ax : Gri.ty) = p(G] = Gy), (e2 5 €5 )(Ax : Gra.tz) = p(G — GY)) € To[G] — G
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First we suppose that (¢; § slp) does not fail and (¢; § slp)n = k + I, then we have to prove that:
YW’ = W.Vol, 05.(LiW’, v, v3) € V,[G] =
(W, [(e1 3 €7 )(Ax = Gi1.t1) = p(G] = G vy, [(e2 3 €] YAx : Grz.ta) = p(Gy — Gyl) v3) € T,[G)]
where v] = ¢/u; :: p(G;). Note that by the reduction rule of application terms, we obtain that:
W.E;» ((e; 3/ )Ax : Guity) = p(G] — Gp) (elu] = p(G}) —*
W'.E; > cod(e; § £ )([(e] § dom(e; § €0 )uf = Gui)/x]t:) = p(Gy)

We know by the Proposition 6.20 that dom(e; § ef) = dom(ef) ¢ dom(¢;) . Then by the Proposi-
tion 6.18 we know that:

e} 5 (dom(e; § 7)) = €] 5 (dom(el) § dom(e;)) = (¢] 5 dom(el)) § dom(e;)
Also, by the Proposition 6.21 it is follows that: cod(¢; § Eip) = cod(&;) § cod(sf).
Then the following result is true:
W'.E; > cod(e; 5 e )([(e] 5 domle; 5 e )l == Gri)/x]t;) = p(Gy) =
W'.E; > cod((ei) § cod(el ))([((¢] 5 dom(el)) § dom(ei))u] = G1i)/x]ti) = p(Gy)

So, we know that:
WEy > ((e15 ¢ )(Ax : Giah) = p(GY = Gy) (euf = p(GY) —"F
WSy > cod(er § £0)([(e] § dom(ey § e )uf = Gur)/x]t1) = p(G)) =
W.E1 > cod((e1) § cod(el)([((e] § dom(el)) § dom(er))uy == Gi1)/x]t) == p(Gy) —*
E1 > (cod(er) § cod(e))o] = p(Gf) —'*F
E1»(e] § (cod(er) 3 COd(Ef)))ulf = p(Gy)
where v} = £'uir =2 p(G)) and vyp = (&7 § (cod(ey) § cod(gf)))ulf : p(Gy).

We instantiate the induction hypothesis in (|1 W’,v{,v;) € V,[G}] with the type G;" and the
evidences dom(e) + E;A + G ~ G, where dom(e).n = [. We obtain that:

W, dom(ff)vi = Gy, dom(gg)vé = GY') € T,[G]

In particular we focus on a pair of values such that (¢; 5 dom(s{’ )) does not fail (otherwise the result
follows immediately). Then it is true that:

(LW’ (¢] 5 dom(e! g == Gy, (e} § dom(e) )uj = GY') € V,[Gy']

By the definition of V,[G]" — G,'] we know that:
YW = W0y, vy (LiW”, 0] v)) € Vo [GY] = (W, 01 0], vz v))) € T,[Gy]

We instantiate v!" = (¢! 5 dom(sf))u; : p(Gy) and W” =|;W’. Then we obtain that:

(LW, ((e1(Ax : Gu.ty) = p(GY — GY)) (] 5 dom(e]))u; = p(GY)),
(e2(Ax : Gra.ty) = p(GY — G3)) (e 5 dom(e]))uj = p(GY))) € T,[G;']
Then by Lemma 6.18, as (] § dom(sf)) § dom(ey) = ¢/ 3 (dom(ff)) s dom(e)), then if(dom(slp)) S
dom(¢y)) is not defined and (dom(g§ )) § dom(e,)) is defined, we get a contradiction as both must

behave uniformly as the terms belong to 7,[G;’]. Then if both combination of evidence fail, then
the result follows immediately. Let us suppose that the combination does not fail, then
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W’.E;» (6i(Ax : Guj.ty) = p(G] — G)) (€] 3 dom(f{)))uf = p(Gy)) —*
W'.E; > cod(ei)([((¢] § dom(e?)) § dom(e;))uf = Gri)/x]t:) = p(GY)

So, we know that:
W'E1 > ((e1(Ax : Gi1.11) = p(Gy” — G3)) (e ¢ dom(gf))u; = p(GY) k1
W'y > cod(er)([(e] § dom(el) § dom(e))uy = Gan)/x]tr) = p(G) —K
21 > cod(e1)v] = p(Gy) —k
Sy > (] 5 cod(en)usy = p(GY)
where v’} = (e]" § cod(e1))uyf = p(G)).
Thus, we know that AW’ >|; W’ such that (W'”,2'},0";) € V,[G)], W"E; = E; and
W”.j+1+2k+k* =(;W’).j, or what is the same W’”.j + 1 + 2k + k* + 1 = W’.j. Then, we know

that
W'.E; > cod(e;)([((] 5 dom(f{))) s dom(e;))uj = G13)/x]ti) = p(Gy) —* W' E;» o]
We instantiate the induction hypothesis in the previous result (W', v'],v";) € V,[G;/]) with
the type G; and the evidence cod(¢) F ;A + G} ~ G;, where cod(ef ).n = I, then we obtain that:

(W, cod(el )0’} = p(G}), cod(e) 0" = p(Gy)) € T,[Gy]

Then v’} has to have the form: v] = (¢/§ cod(e;))uir = p(Gy) form some ¢/’,u;¢. Then as
(e 5 cod(er))s cod(ef) = ¢/"3(cod(e1)3 cod(ef)), then (cod(¢1)3 cod(gf)) must behave uniformly (either
the two of them fail, or the two of them does not fail). Thus, we get that (|;W"”, vif, vor) €V, [[G;]]
where v;r = (] § (cod(e;) § cod(eip)))uif = p(Gy) and W j + 1+ 2k + 2] + k = W’.j. Therefore, the
result immediately.

Case (Universal Type: G = VX.G}' and G’ = VX.G]). We know that:
(W,v1,v2) € Vp [[VX.G{'
Where v; = £;(AX.t;) : VX.p(G{') and ¢; - WE; + G; ~ VX.p(G)).
We have to prove that:
(W, el'vy = VX.p(G)), e) vz : YX.p(Gy)) € T, [VX.GY]

As (&3 ef ) does not fail, then by the definition of 7,,[VX.G]] we have to prove that:
(LW, (e1 8 ) )AX 1) = VX.p(GY), (2 3 €5 NAX t2) =: VX.p(G))) € V, [VX.G]
or what is the same:
YW” > (lkW).Vt{, t2’, GT, G;, «, €11, €21.YR € RELWNJ [GT, G;]
(W1 - GE AW".Eg F GiA
W”E > ((e1 3 e )ur = VX.G)[G]] — W".Eq, & = Gl » eqit] = GJ[GL/X]A
W"Eye ((e2§ &5 Juz = VX.G)IG)] — W".Ey, a := G} » eait) = G
(Wm, t{’ té) € 7;)[X|—>a] [[Gﬂ]
where W =|(W"” & (a, G}, G,, R)). Note that by the reduction rule of type application, we obtain
that:

W”.E; > ((ei 5 e )AX 1 = VX.p(G))) [GF] —

W"E;a:=G}» 65;?.0;?(;;)((8" 38{])[a5i]ti[aEi/X] = p(G)la/X]) = p(G)IG} /X]
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where E; = lift(W,, = )(G*f). The resulting evidences ¢; § ef have the form: (VX.E;;, VX.E;»), then:

el o (er s el Tl [X] 5 p(G]a/X) 5 p(G)IC /X] =

eE T (Enla®t/X), Exola® XDt /X] p(GDla/X])

fyx. P(G))

Then we have to prove that:
W, (Enala™ /X1, Evzla®™ /XD ta[a® /X] = p(G)l@/X]), ((Ezrla™ /X, Exala™ [XD)tzla" /X] = p(Gp)la/X])
€ Tpixral [G1]

Also by the Proposition 6.22 we know that:
(e 3 e))aP] = (eila®™ ) § (7 [«"1])

Note that:
(ei 3 )] = (Ennla® /X, Eiala™ /X1) = (eile™]) § (e [2"7])

Then we have to prove that:
W (erla™ ] 5 ] [P Dl /X] = Gila/X ), (2l @] 5 ef [@™ Dial@®™ /X] = p(G)la/X])
€ %[X»—)a] HGE]]

We know that

"= 110 1 ’ k*
W By (er[a™] 5 e [ Dty = Gila/X]) 7=
B> (erla® 5 el [a® Dorg = Gila/X]) "
B> 0]
Note that by the reduction rule of type application, we obtain that:
W”.E;» (6iAX.1; = YX.p(GY)) [G]] —

"= x  Ei/ali i i .. 4 . NG
Wi e =G e eyl o el Jila® /X] = G/ X)) = p(G])IGT/X]

Note that the evidence ¢; has the form: (VX.E[], VX .E[}), then:
el o eilaP e X) 5 p(G]a/X]) 5 p(G]IG;/X] =

P (B X Bl XD tla® X] = p(GY)a/X])

fux. (C"

As we know that (W,v1,v2) € V,[VX.G{'], then we can instantiate with YW > W, G}, G}, R,
E Ey/at2
e1afr ]t [aF1/X] = p(G)e/X], ol |ty a2 /X] = p(G)a/X], € l/a ) and fg:)/(a/ "
PG
Then we know that:

W e[ [a® /X] = p(GY)a/X]). eala™ Ita[ a2 /X] = p(G)[@/X])) € Thixisa [GY]

If the following term reduces to error, then the result follows immediately.

WE s e[a [ /X] = p(GY)[a/X])
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If the above is not true, then the following terms reduce to values (v’;r) and IW""”" > W’" such
that (W””,0"1£,0"2¢) € V pixsa][GY] and W j+ k* + m = W' j.

W= e eifaliti[a /X] = p(Ga/X]) —* W E; > U;f
Note that
WSy > er[of ]t [aBr /X = p(G))[e/X]) —K
W By s ei[a oy = p(GY)a/X]) —™
Wll// .
=1

>0
1f

By definition of consistency and the evidence we know that ¢[X] + W"”".E;A, X + G ~ G].
Then we instantiate the induction hypothesis in the previous result with G = G| and ¢ = ¢[X].
Calling p” = p[X +— «], then we obtain that:

W, pi(e[XDvif == p'(GY), py(elXT)var == p'(GY)) € Ty [G1]
but as p(e[X]) = ef[aE"] which is equivalent to

W (e [a™ Norg = p(Gle/X], (e [ )vgs = p(GDI/X]) € T [G]]
Therefore,
LW, 05, 03) € Ty [G1]
where ([ W"").j + k™ + k + m = W’"_j, and the result follows immediately.

Case (Pairs: G = Gy X G2). Similar to function case.

Case (A)(Type Names: G = «). This means that a € dom(Z). We know that (W, ¢1u; = a, &up =
a) € Vy[a] and &; - WE; + G; ~ a, then ¢; = (E;, aF). Also we know that ¢ F Z;A F a ~ G,
therefore ¢ = (aET,E;), and ef = (aEl*,E;‘) = ¢, because ¢ can not have free type variable, so
¢ FEFa~ G Since (W,v1,v2) € V,[a], we instantiate its definition with ¢ F E + a ~ G,
E, such that W € S[=] and G’. Therefore, we know that (W, ev; :: G, v, :: G’), and the results
follows immediately.

Case (B)(Type Variables: G = X). Suppose that p(X) = a. We know that « ¢ =, i.e. « may not be
in sync, that (W, e1u; == @, eoup = @) € V,[X] and that ¢; - WE; F G; ~ a, then ¢; = (E}, afhy.

Then by construction of evidences, ¢ must be either (X, X) or (?,?) (any other case will fail when
the meet is computed).

e (¢ = (X, X)). Then sip = (pi(X), pi(X)). But p;(X) is the type that contains the initial precision
for . Therefore afi C p;(X), and by Lemma 6.30, ¢; ;ef = ¢; and the result holds immediately
by Lemma 6.14 (notice that if G” = ? then we have to show that they are related to a which
is part of the premise).

o (¢ =(2,7)). By Lemma 6.30 (glp =(2,?7), € (2, ?) = ¢ and the result holds immediately by
Lemma 6.14.

Case (C)(Unknown: G = ?). We know that (W, eyuy :: 2, eup = ?) € Vy[?] and &, F WE;  G; ~ 2.
We are going to proceed by case analysis on ¢;:

(C.i) (¢; = (E;, @F)). Then this means we know that
(W, U1 L A, E9Up it a) € (Vp [[aﬂ

and &; F WE; + G; ~ a, then ¢; = (E;, aF).
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(a) (Case ¢ = (a™, Ey)). Then as (E;,a%)  Z;A + G; ~ ?, then by Lemma 6.27 (E;, a%i) I
=;A F G; ~ a. Also we know that ? € G, then G = ?, and a E G. Finally, we reduce this
case to the Case Aif« € Z or Case Bif o ¢ =.

(b) (¢ = (2,?)). Then G’ = ?, and does ¢; § ¢ = ¢;. Then we have to prove that (| W, e1uq =
2, 6up 2 ?) € V,[?], and as const(af?) = « that is equivalent to prove that (|, W, ey =
a, eup = @) € V,[ar] which follows by the premise and Lemma 6.14.

©) (¢ = (2, %" )). Where  cannot transitively point to some unsync variable. Then by
definition of the transitivity operator, ¢; § ¢ = (E/, BEY (where (E;, ai) 5 (2, ﬁ"“?) =
(E{’,E{"")). Then we have to prove that

LW, (B B Yy = G (B B Y = G €V, [G]

where G’ is either ? or S. In any case this is equivalent to prove that

(LW, (EY, BE Yuy = B (EY, B Yuy = ) € V, [B]

Therefore, we have to prove
(k=1 W, (B EYYuy : G”, (EY E}) Yug :: G”') € V,[G”]

where G” = W.E,(B) = W.E,(p) (note that § is sync). As (E;, aFi) 5 (2, ﬁ""?> = (E/,E!"),
then we can reduce the demonstration to prove that:

5

UktW, ((By, @) 5 (2, B Yoy = G, ((Bpy ) 5 (2, B Vg = G) € V,[G”]

Thus, we reduce this case to this same case (note that we have base case because the
sequence ends in ?).

Also, we have to prove that (VE’, ¢/, G* such that (|, ;W € S[E'] A&’ FE" + f ~ G*), we
get that

(LW, &' (Y, B Yuy = B) = G, € ((EY, B5 Yuy =2 B) = G¥) € T,[G™])
or what is the same (((E/, f¥1") 5 ¢’) fails the result follows immediately)

Lo W (B B5) 5 € = G, (B ) 5 €z = G7) € Vp[GT])
where ¢’ = (B, E3),e'.n=k"andG"” = W'.E(B) = W’.E,(). By definition of transitivity
and Lemma 6.30, we know that

(', B50) 5 (BB = (YL EY") § (E7 E3)

(i a5 (") = (Efp p50) = (E{LE}")
Thus G” = p’ or G” = ?, in any case we know that ({x—1W, (E{’, E{")uy == B',(E}, E}/ Yuy =:
B e V,[B].
We know that (E},E;) + B’ + G” ~ G*. Since (E},E;) + E + G” ~ G, [ W € S[E],
(k=1 WL (EY E Yuy = B/ (EY EY Yup == ') € V,[B’], by the definition of V,[f'], we
know that (since ((E{’, E{"’) § ¢’) does not fail then ((E{’, E{"’) 3 (E}, E;)) also does not fail
by the transitivity rules and (E}, E;) F 2" + ' ~ G¥)
k1= W, ((E{ EY") § (EL, Ex))un = G, ((EY EY) § (ETL Ep))uz = G¥) € V, [G])

The result follows immediately.
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(d) (¢ = (2, f°)). Then by definition of the transitivity operator, ¢; § ¢ = (E;, ,B"’Ei ). Then we
have to prove that

(LW, (Ey, B Yy 52 G, (B, B Yty 2 G') € V,[G]
where G’ is either ? or . In any case this is equivalent to prove that

LW, (Ev B Y = B (o B Yz = B) € V6]

Therefore, we have to prove that

Uk W, (Er, aBiyuy = G, (Eyy aP2yuy = G7) € V,[G”'] where G = W.E,(B) = W.E,(f) =
? (note that 8 is sync). Therefore, we have to prove that (| x_;W, (E1, @%)uy = a, (Eo, a®2)uy =
a) € V,[a] which follows immediately by premise and Lemma 6.14.

Also, we have to prove that (VE’, ¢/, G* such that (|,-{W € S[E'] A&’ FE' + f ~ G¥), we
get that

Ukt W. & (Er B Yy = B) 5 G e/ (En, " Yty = ) = G) € TH[GY])

or what is the same (((E;, ﬁ”‘Ei) ¢ ¢’) fails the result follows immediately)

Uk W (v B 5 €y 2 G (B B2 ) 5 €ty 2 G7) € V,[G7)

where ¢’ = (,BET,EQ, e.n=k"and G” = W.E{(f) = W'.E,(f) = ?. By definition of
transitivity and Lemma 6.30, we know that

E, * ’
(Ei, B* ") 5 (B™1, E3) = (Ei, i) 5 (E}, Ey)
We know that (E},E;) F ' F G” ~ G*. Since (E},E;) F E v G” ~ G*, [, W € S[E'],
(ko1 W, (Ev, oDy = a, (Ey, aF2)uy = a) € YV, [a], by the definition of S[Z]a, we know
that (since ((E1, 1) ¢ ¢’) does not fail then ((E;, a1) g (E}, E3)) also does not fail by the
transitivity rules and (E7, E;) F E' + a ~ G¥)

(Lko1-eW, ((Er, @) § (B, E3)un = G, ((Ea, a%2) 3 (E}, E3)up == G¥) € V,[G'])

The result follows immediately.
(C.ii) (¢; = (Hj1, Hi2)). Let G” = const(H;j,), and we know that G”” € HEADTYPE. By unfolding of
the logical relation for ?, we also know that

(W, <H11,H12)u1 4 G”, <H21,H22>u2 b GN) € er [G”]]
and we have to prove that
(LW, (i1, Hiz) § €0)uy = G, ((Har, Hoz) § ) Jup 2 G') € V,o[G']

Note that for consistent transitivity to hold, then ¢ has to take the following forms:

(a) ¢ = (H3, E4). Thenas ¢ I Z;A + ? ~ G’, by Lemma 6.27, ¢ I Z; A + const(Hs) ~ G, and we
proceed just like Case D, where G € HEADTYPE (G = G”).

(b) € =(2,?). Then G’ = ? and (H;1, Hi2) 5 (?,?) = (H;1, Hiz). The result follows immediately
by premise and Lemma 6.14.

(c) £ = (2, ). Then we know that W=;(a) = ?, and by inspection of the consistent transitivity
rules, (H;y, Hiz) 3 (2, &’) = (Hj1, af’i2). Then by definition of the interpretation of G, which
may be ? or «), in any case, we have to prove that
(LW, (Hiy, a2y o a, (Hay, a™22)uy ) € V,[a]

Therefore, we have to prove that ({x—1W, (Hi1, Hi2)uy = 2, (Hyy, Hyo)up : ?) €V, 7]
which follows by premise and Lemma 6.14.
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Also, we have to prove that (VE’, ¢/, G* such that (|,-{W € S[E'] A&’ FE' + f ~ G¥), we
get that

(AW, &"((Hy1, O{H”)ul sa) G e'((Hy, aH22>u2 ta):GY) e 7;[[G*]])
or what is the same (((H;, a™?) § ¢’) fails the result follows immediately)
ko= W, (Hi @) 3 €'y 2 GF, ((Hor, ) 5 €)uy == G*) € V,[G*])
where ¢’ = (a1, E}), ¢’.n = k’. By definition of transitivity and Lemma 6.30, we know that
(Hin, a""2) 5 (@™ Ey) = (Hiy, Hpp) § (H;, E3)
Therefore, we have to prove that
(Uk—1='W, ((H11, H12) § (Hy, E5))uy == G*, ((Ha1, Hyz) § (Hy, E3))ug = G*) € V, [GT])
We know that (Ej,E;) + 2’ + ? ~ G*. Since (E},E;) - E + ? ~ G*, |11 W € S[E'], we
follow by this Case(a), but with evidence (H}, E}). The result follows immediately.

(d) e = (2, aﬁE4). Then we know that WE;(a) € {f,?} (WE;(a) = Giz3) and by inspection
of the consistent transitivity rules, (Hj1, H;2) § (7, aﬂEM) = (H{,, aﬁE;“), where (H;1, Hiz) §
(2, Eiq) = (Hi1, E},).

Then by definition of the interpretation of a (after one or two unfolding of G’ = ?), we
have to prove that

(Lk-1W, ((Hfl,,BEi“)ul it Gra3)s ((Hél,ﬁE§4)u2 = Gig3)) € 7;)[[G123]])
or what is the same

(LiaW, ((Hiy, Hiz) § (2 B2 uy =2 B

((Ha1, Haz) 5 2, B5))ua =2 B) € V, [ ]
and then we proceed to the same case one more time (notice that the recursion is finite,
until we get to the previous sub case).
Also, we have to prove that (VE’, ¢/, G* such that (|,-{W € S[E']A &' F E' F a ~ G¥), we
get that

Ei' * !’ 4 E/' % *
UeaaW, & ((H o yuy @) = G e/ ((Hyy o *yup = @) = G*) € T,[G7])

or what is the same (((Hj,, aFis) ¢ ¢) fails the result follows immediately)

Ef ’ * ’ E o * *
U1k W, ((H{ @) 5 &0y 5 G, ((Hyy, af ™) 5 €)up 2 G7) € V,[G7])
where ¢/ = (aE; ,E3), ¢’.n = k’. By definition of transitivity and Lemma 6.30, we know that
’ E; o ’ . %k
<Hi1,aﬁ 4> 9 <05E1,E2> = <Hi1,ﬁE'2> $ (E1, E3)

Therefore, we have to prove that

(Lecamie W, ((HY . BE5) § (B Ep)uy = G*, ((Har, B50) 5 (EfL E3)up == G*) € V,o[G*])

We know that (E}, E;) F 2’ + Gi3 ~ G*. Since (E},E;) F E + Gip3 ~ G*, [—1W € S[E'],

and ({1 W, ((H{,, BB s == Gigs), ((H}, BE2)uy = Gizs)) € T,[Gizs]), by instantiating the
definition of V, [f], the result follows immediately.

Case (D) (Head Types: G € HEADTYPE). We know that (W, e1uy =2 p(G), &2uz = p(G)) € V,[G]
and ¢; F WE; + G; ~ G. Also ¢; = (Hj1, Hiz), for some H;y, H;;. We proceed by case analysis on G’
and ¢.
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(D.i) (¢ = (Hs, a®)). Then G’ = @, or G’ = ?. Notice that as a®* cannot have free type variables
therefore H; neither. Then ¢ = p;(¢). As a is sync, then let us call G = W.E;(«). In either
case G’ = a, or G’ = ?, what we have to prove boils down to

(lkW’ (El ; <H3’ aE4>)u1 L a, (82 8 <H3’ aE4>)u2 o C() € (V,D Ha]]

Therefore, we have to prove that

(Lk=1W, (&1 § (H3, Eq))uy :: G”, (&2 § (H3, Eq))up :: G”) € V,[G”]

Then we proceed by case analysis on &:

e (Case ¢ = (Hj, aﬁE4)). We know that « T G’ and that (Hs, aﬂE4) F ZA G~ G,
then by Lemma 6.27, we know that (Hj, aﬁE4) F Z;A+ G ~ a. Also by Lemma 6.29,
<H3,ﬁE4> FE;AFG~G”. As ﬁE4 C G”, then G” can either be ? or S.
If G” = ?, then by definition of V,[?], we have to prove that the resulting values belong
to V,[B]. Also as (Hs, B¥*) + 2;A + G ~ ?, by Lemma 6.27, (Hs, ff*) + E;A + G ~ B,
and then we proceed just like this case once again (this is process is finite as there are no
circular references by construction and it ends up in something different to a type name).
If G = B we use an analogous argument as for G = ?.

e (Case ¢ = (Hs, af*)). Then we have to prove that

(Le-1W, (e1 3 (Hs, Hy))us == G”, (e2 3 (H3, Ha)Juz = G”) € V,[G”]

By Lemma 6.29, (Hs,Hy) + Z;A + G ~ G”. Then if G” = ?, we proceed as the case
G € HEADTYPE, G’ = ? with ¢ = (Hs, Hy) (Case (D.ii)). If G”” € HEADTYPE, we proceed as
the case G € HEaADTYPE, G’ € HEADTYPE with ¢ = (Hs, Hy), where H;, H, € HEADTYPE
(Case (D.iii)).
Also, we have to prove that (VZ’, ¢/, G* such that ([;W € S[E'] A’ FE +a~G)Ae =
(@B, E) Ae'.n=k', we get that

(LW, €' ((e1 5 (Hs, @™ Yuy == ) :: G*, €' (e3¢ (Hs, oY )uy : a0) : G¥) € 7,1G*])
or what is the same (((¢; § (Hs, Hy)) § (Es, Eg)) fails the result follows immediately)
(k—wW, (&1 § ((H3, Hy) § (Es, Eo)))uy == G, (&2 § ((H3, Hy) § (Es, Eg)))uz :: G*) € V,[G*])

where ((Hs, Hy) § (Es, Eg)).n = (k + k) We know that (W, £1u; = p(G), &2uz :: p(G)) € V,[G],
therefore (W, e1u; = p(G), e2u; = p(G)) € V,[G], by Lemma 6.14, where now ¢;.n = [ + k.
Then we apply the induction hypothesis on (| W, e1u; :: p(G), e2u; =: p(G)) € V,[G] and the
evidence ({H3, Hy) $ {(Gs, Gg)), but where ((Hs, Hy) § (G5, G¢)).n = k’. Therefore the results
follows immediately:

(k=W (e1 5 ((H3, Hy) § (Gs, Go)))uy == G, (&2 5 ((H3, Hy) 5 (G5, Go))tig :: G*) € V,[G"])

(D.ii) (G" =?,¢ = (Hs, Hy)). We have to prove that
(LW, (e pr(e)uy = 2, (€25 pa(e)uz = ?) € V,[7]
which is equivalent to prove that
(LW, (e1 3 p1(e))ur = H, (e2 3 pa(e))uz :: H) € V,[H]

for H = const(H;z) (and H € HEADTYPE). But notice that as ¢ + E;A + G ~ ?, then as
Hy C H C ?, then by Lemma 6.27, ¢ + Z;A + G ~ H, then we proceed just like the case
G € HeapTyrE and G’ € HEADTYPE (Case (D.iii)).
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(D.ii) (G" € HEADTYPE). These cases are already analyzed, by structural analysis of types (Case
G=G{ = G/ and G’ = G| — G)), (Case G = VX.G{" and G’ = VX.G)), (Case G = (G{, G,)
and G’ = (G, G})) and (Case G = Band G’ = B).

O

LEMMA 10.5 (ASCRIPTIONS PRESERVE RELATIONS). If (W, v,v2) € V, [G], e v E5AF G ~ G,
W e S[E], and (W, p) € D[A], then (W, p1(e)vy :: p(G'), pa(e)vy = p(G”)) € T,[G'].

Proor. Direct by Prop. 6.17. ]

LEMMA 6.18 (ASSOCIATIVITY OF THE EVIDENCE).
(e1582) 563 =¢13(e25¢3)
Proor. By induction on the structure of evidences.
Case (¢; = (Eq1, af12), e, = (aF?, Eyy), e5 = (E31, Es2)). By definition of consistent transitivity, we
know that
o (e15¢62) 53 = ((E11, Er2) § (Ea1, Ea2)) § (Es1, Esp)
o 15 (e25e3) = (E1n, Er2) § ((Ea1, Ezz) § (Es1, E32))
Then by the induction hypothesis ((E11, E12) § (Ez1, E22)) § (E31, Es2) = (E11, E12) § ((Ea1, Ez2) §
(Es31, Es2)), and the result follows immediately.
Case (1 = {E11, Ex2), e2 = (Eg1, aF2), &5 = (P, E3y)). Similar to the previous.
Case (e; = {aP", E1p), €2 = (Ea1, E2), £3 = (E31, E32)). By definition of consistent transitivity, we
know that
L4 (51 g 52) 3 & = <aE1’E2> ; <E31’ E32> = <aE;9Eé>: Where <E19E2> = (<E119E12> ; <E21sE22>)’
(EL, E5) = ((E11, E12) § (E21, E22)) § (Es1, Es2).

o 1 5(e2583) = (@, Exp) § ((Ears Ezz) § (Esn. Es))
e Note that by the induction hypothesis (E{,E;) = ({E11,E12) § (E21, Es2)) § (E31,E32) =

(E11, E12) § (E21, E22) § (E31, Es2))
Then, the result follows immediately because (', E15) § ((Ea1, E22) § (Es1, Es2)) = (aF1, E;).
Case (¢; = (E11, E12), &2 = (Ea1, Egz), €3 = (E31, «®2)). Similar to the previous.
Case (e1 = (?,?), €2 = (E21, Ea2), €3 = (E31, Es2)). Trivially, by definition of consistent transitivity.
Case (e1 = (E11, E12), &2 = (7, 7), €5 = (E31, E32)).
Case (e1 = (E11, E12), €2 = (Ea1, E22), €3 = (2,?)). Trivially, by definition of consistent transitivity.
Case (¢1 = (En1, E12), &2 = (Ea1, Ez2), &5 = (1,7)).

Trivially, by definition of consistent transitivity.

Trivially, by definition of consistent transitivity.

The other cases are pretty similar.

LEMMA 6.19. If (W, t1,t;) € T,[G], then (|W, t1, 1) € 7,[G]
ProoF. By definition of 7, [G]. i

PROPOSITION 6.20. dom(e; § €5) = dom(es) § dom(ey)

Proor. Direct by inspection on the inductive definition of consistent transitivity. ]
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PROPOSITION 6.21. cod(e; § €2) = cod(er) § cod(er)

Proor. Direct by inspection on the inductive definition of consistent transitivity. ]

PROPOSITION 6.22. (&1 § &2)[E] = &[E] § &[E].
Proor. Direct by inspection on the inductive definition of consistent transitivity. m|
LEmMA 6.23. (Optimality of consistent transitivity).
Ifes = €1 § €5 is defined, then m1(e3) E my(e1) and ma(e3) E ma(e2).
Proor. Direct by inspection on the inductive definition of consistent transitivity. O
LEMMA 6.24. Ife F ;A + Gy ~ Gp, W € S[E] and (W, p) € D[A] then e’ + WE;; A+ p(Gy) ~
p(Ga), where e = p;(e).

Proor. Direct by induction on the structure of the types G; and G,. ]

LEMMA 6.25. IfE;AT vt 2 G, W e S[E], (W, p) € D[A] and (W,y) € G,[I'] then WE; +
pyi((®)) : p(G).

Proor. Direct by induction on the structure of the term. O

LEmMA 6.26. If
- FWE; G ~p(G), e =&
eFE;AFG~G
- W e S[E], (W, p) € D[A]
— Va € E.afi € py(e;) = E] =E,

then e1 § p1(e) &= €25 pa(e).
Proor. We proceed by induction on the judgment ¢; F WE; + G; ~ G.

Case (¢; = (Bj, B;)). Then the result is trivial as by definition of ¢ = ¢, B; = By, therefore
&1 = &. As ¢ cannot have free type variables (otherwise the result holds immediately), proving that
£1 56 & ¢ ¢ is trivial.

Case (e; = (2,7?)). As the combination with (?, ?) never produce runtime errors, the result follows
immediately as both operation never fail.

Case (¢; = (Ey;, a™)). We branch on two sub cases:

e Case @ € Z. Then ¢ has to have the form (a3, E4), (2,?) or (2, f ) (otherwise the transitivity
operator will always fails in both branches). Also E4 cannot be a type variable X for instance,
because X is consistent with only X or ?, and in either case the evidence gives you X on both
sides of the evidence. And « cannot point to a type variable by construction (e.g, type aX
does not exists). Then ¢ cannot have free type variables, therefore p;(¢) = ¢, and therefore
we have to prove: ¢; §¢ &= &, §¢. For cases where ¢ = (?,?) or ¢ = (2, ﬂ'“?), then as they
never produce runtime errors, the result follows immediately as both operation never fail.
The interesting case is ¢ = (a®, E;). By definition of transitivity (E;;, a®) 5 (a3, E,) =
<E1i,E2i> H <E3,E4>. By Lemma 6.29, <E1i,E2i> FWE; F G; ~ E(O() and <E3,E4> FWE; -
E(a) ~ G'. Also we know by premise that E;; = Ej;, then by induction hypothesis (E11, E21) §
(Es,Ey) &= (E12,Ez) § (Es, E4), and the result follows immediately.
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e Case o ¢ Z.In this case ¢ has to have the form (X, X) (where p;(¢) = (liftw_ai(a), liftW_Ei (a))),
(?,?) or (2, ﬂ"'?>, (otherwise the transitivity always fail in both cases). For cases where
e=Nore=, B “'?), by the definition of transitivity, they never produce runtime errors,
then the result follows immediately as both operation never fail.

If ¢ = (X, X), by construction of evidence, af ¢ liftW_Ei(a) E ?, then by Lemma 6.30, we
know that ¢; § p;(¢) = ¢;, and the result holds.

Case (e; = {(aF", E;»)). Then ¢ has the form (E3, E,), where p;(¢) = (E;3, Ei4). By the definition of
transitivity we know that:

(afivFy s (Eis,E) <= (Ei1,Eiz) § (Ei3, Eia)
Then by the induction hypothesis with:

(Ei1, Eiz) F WE; F WE(a) ~ p(G)
eFEAFG~G

we know that:

(E11, E22) § (E13, E1a) & (E21, E2) § (E23, Ea)
Then the result follows immediately.
Case (¢; = (E11; — E12i, E21; — Ej2;i)). We analyze cases for ¢:

e Casee = (2,?) ore = (2, ,5“'?), then transitivity never fails as explained in previous cases.
o Case ¢ = (E3; — Esp, Es1 — Ey). Then p;(¢) = (Es1; — Esgi, Es1; — Eaz;). By definition of
interior and meet, the definition of transitivity for functions, can be rewritten like this:
(Earis Es1i) § (E21i> Enti) = (Eis, Eir)  (Euzis E22i) § (Es2is Ea2i) = (Ei2, Eia)
(E11i = E12i, Ez1i = Ea2i) § (Es1i — Es2i, Es1i — Ea2i) = (Ein — Eiz, Eis — Eja)

Also notice as the definition of interior is symmetrical (as consistency is symmetric), (E41;, E315)$
(E21i, E113) = (Ei3, Ei1) can be computed as (E11;, E21;) § (E315, E415) = (Ei1, Ei3) . Also e = &
implies that dom(e;) = dom(e;) and cod(e;) = cod(e;). And that dom(e) - Z; A + dom(G’) ~
dom(G) is equivalent to:

(mra(dom(e)), w1 (dom(e))) + E; A + dom(G) ~ dom(G’)

where cod(¢) - E; A + cod(G) ~ cod(G’). The result holds by applying induction hypothesis
on:
(E11i, E211) F E; A+ dom(G;) ~ dom(p(G))
(my(dom(e)), mi(dom(e))) I+ E; A + dom(G) ~ dom(G’)
and
(E12is Ea2i) I+ 25 A+ cod(G;) ~ cod(p(G))
cod(e) - Z; A + cod(G) ~ cod(G")

e Case ¢ = (E3; — Esy, afE2) Then p;(¢) = (E31; — Esgi, aFi~F2i) We use a similar
argument to the previous item noticing that

(Es1i» E313) § (E21i» E11i) = (Eis, Ein)  (E12i» E22:) § (E32i» Ea2i) = (Eiz, Eia)
(E11i = En2i, Ea1i = Ea2i) § (Es1i — Esi, Esii = Eai) = (Ein — Ei, Eis — Eis)

(E11i = Er2i, Ez1i = Ez2:) § (E31 = Esp, afn™Fy = (E; — Ejp, aFn—Fis)
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and that if G’ = ¢ by Lemma 6.29
(Es1 = Es3,Eq1 = Eg) F E5AF G ~ E(a)
(E3; = Esp,afa2Ee)y L 2A LG ~
and if G’ = ? by Lemma 6.29
(Es1 = Es2,Ey1 > E2) FE;AFG ~ 7

(E3; — Esp,afn™Be)y p BA G ~?

Case (¢; = (VX.Eq;, YX.Es;)).
We proceed similar to the function case using induction hypothesis on the subtypes.
Case (¢; = (E1; X Eyj, Es; X Ey;)).

We proceed similar to the function case using induction hypothesis on the subtypes. ]

LEmMA 6.27. If(Eq, E3) F E; A+ Gy ~ Gy, then
(1) VGs, unllft(Ez) C Gs C Gy, <E1,E2> FZ;A+ Gy ~ Gs, and
(2) VGs, unllft(El) CG3C G1,<E1,E2> FE;AFGy ~ Gy

Proor. By definition of evidence and interior noticing that always E; E G;. O

LEMMA 6.28. If(af',E2) F 2;A + a ~ G, then (E1, E;) ;A + E(a) ~ G.

Proor. Direct by definition of interior and evidence. m|

LEMMA 6.29. If(Ey,a®?) v 2;A + G ~ a, then (E1, E3) + Z;A + G ~ E(a).

Proor. Direct by definition of interior and evidence. O

LEMMA 6.30. Isz c E3 then <E1,E2> H <E3,E3> = <E1,E2>.

Proor. We proceed by induction on (Ey, E;). If (E3, E3) = (?,?) by definition of transitivity the
result holds immediately so we do not consider this case in the following.

Case ({E1, E2) = (2,?)). Then we know that E5 = ?, and the result follows immediately.

Case ((E1, E;) = (E1, a®2)). Then (Es, E3) = (%, aPs). Then (E;, a®2) ¢ (a®, %) boils down to
(E1,E}) § (E}, E5), if E) = B | then Ej has to be B and we repeat this process. Let us assume
that E) ¢ SITyPENAME, then by definition of meet E] ¢ SITyPENAME. By definition of precision
if afe !; aEé,,ther} E; C E;. j[’hen by induction hypothesis (Ei, E;) § (E;, E;) = (Ei, E;), then
(E1, a2y 5 (aFs, aBs) = (Eq, aP2) and the result holds.

Case ((E1, E;) = (aF1, E;)). Then (a1, E,) ¢ (Es, E3) boils down to (E’, E,) § (Es, E3). We know that
E, C Es. Then by induction hypothesis (E], E2) § (Es, E3) = (Ej, E;), then (aF1,Ey) § (Es, E3) =
(aEi, E,) and the result holds.

Case ({E1, Ez) = (B, B)). Then by definition of precision Ejs is either ? (case we wont analyze) or B.
But (B, B) ¢ (B, B) = (B, B) and the result holds.

Case ((E1, E;) = (E11 — Eq2,E21 — Eg)). Then E; has to have the form E3; — Es,. By defini-
tion of precision, if E;; — Ej;; T E3; — Esp then Ey; T Esp and E;p £ Esp. As (Esq, Esq) §
<E21, E11> = ((En, E21> 3 <E31, E31>)_1. BY induction hypothesis <E11, E21> ; <E31, E31> = <E11, E21> and
(E12,Ez2) § (Esp, Es) = (E1g, Ez2). Therefore (Eyy — Eiz, Ezy — Egg) § (E3y — Esg, E3; — Esp) =
(E11 = Eig, E21 — Es,) and the result holds.
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O
|

i [11eCy =G| {(C,ty|(t,C)|Ct|tC|eC:G|op(t,C1t)|C[G]|mi(C) (GSFe Contexts)
Cy == Ax:G.C|AX.C|{(Cy,u)| {(u,Cy)
Cs u= C|Cy

FC:(E;ATFG) w (B AT + G’) | Well-typed contexts
=cz’ ACN rcr’ E;AFT ELA RTY
FI]:EMTEG) » BN T +G)

(Cid)

FC:(E;AT,x:G1FG)» (B AT, x: G+ Gy)
FAx:G1.C: (B;0T,x : G1 F G) »» (E);A;T F Gy — Gy)

(&)

FC:(E;AX;THFG)w (BGA X T'HG)  E;ART ELGAN T

(CA)
FAX.C:(Z:AX:T F G) w (25 A5 FVX.G)
FC:(E;ATHG) w (BN T G ELAT vt:Go
(CpairL)
F(C, 1) : (B;0T FG) » (B AT Gy X Gy)
ELAN TGy FC:(E;NTEG)w (BN T FGy)
(CpairR)
F(,C): (E;0TFG) »w (BN T Gy X Go)
(Casd) FCs:(E;MTHG) » (EANTHG) ek ZAG ~G”
asc
FeCs =G (B;AT FG) w (B AT + G”)
ENAST R :Gl FC:(E;0T +G)w (EGALT FGs)
ESAGT ki Gy ty(op) = (G1,G3,Gz) — G”
(Cop) — L — — =1 AT ’”
Fop(t1,C, t2) : (E; 0T F G) w» (B AT G
FC:(EATHG)w (B5AT' FGL—> Gy)  ESA T FiE:Gy
(CappL)
FCt:(E;MTFG)w (E;AT FGy)
ESNT'rt:Gr > Gy FC:(E;MTHG) w (BN FGy)
(CappR) - e —
FEtC:(E;ATEG)w (BAT FGy)
FC:(E;ATHFG)w (BN T FVX.G) ELGAN G
(CappG)

FCIG"]: ;AT FG) »w BN T+ G'[G7/X])

FC:(E;ATHG) » (B AT F Gy X Go)
Fri(C): (B50T F G) w (B AT+ Gy)

(Cpairi)

Fig. 24. GSFe: Syntax and Static Semantics - Contexts

Case ((E1, E2) = (VX.E11,VX.Es1) or (Eq, E3) = (E11 X Eq2, E21 X Eg2)). Analogous to function case.

O

6.3 Contextual Equivalence

In this section we show that the logical relation is sound with respect to contextual approximation
(and therefore contextual equivalence). Figure 24 presents the syntax and static semantics of
contexts.
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Definition 6.31 (Contextual Approximation and Equivalence).
EATHE <Pt :G2E,AT+HH:GAZE;ATHE:GAVYCE,G.
FC:(EMTHG) w (B G )= (B'rull= E'»0 ) A
(32,.2"» C[t;] —" E; » error = 3E,.E" > C[12] —" E, > error))
EATFH A 6 :GEE;ATFE <P :GAZ;ATHE <™t :G
THEOREM 6.32 (SOUNDNESS W.R.T. CONTEXTUAL APPROXIMATION). IfE;A;T +t; < t; : G then
AT R <ty G
Proor. The proof follows the usual route of going through congruence and adequacy.
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7 PARAMETRICITY VS. THE DGG IN GSF

In this section, we present the proofs of the auxiliary Lemmas need to show that the definition of
parametricity for GSF is incompatible with the DGG.

LEMMA 10.6. Let+ (AX.Ax : 2.t) ~> v, : VX.? > X and + v ~> vy, : 2. For any G, and G,, such
that const(Gy) # const(Gz), if - » v, [Gi] — a:=Gipejv; 2?2 > G, ek ? > a~?—> G;
then VW € S[-], VR € ReLw ;[G1, G2], (W R (@, G1, G2, R), dom(ey)vyp :: 2, dom(ez)vp =2 ?) € Txse[?]

Proor. Notice that v, has to be of the form (¢/(AX.e”"(Ax : 2.t') = ? = X) = VX.? — X)), where
e =(WX?->X,VX.? > X)and¢” = (? — X,? > X).Then ->v, [G;] +— (? — &;,? — E;)t’ for
some ¢/, where d; = lift,, ,; (@) and E; = lift (G;). We know that -;-;- + v, : ? then as X ¢ FTV(v),
X+ F vy @ ?, therefore by the fundamental property (Thm 10.1), - X;- + vp < vp : ?, therefore
as W € S[], we can pick W = W R (a, G1,G2,R) € S[], and (W', X +— a) € D[X] and thus
conclude that (W’,vp, vp) € Txsa[?]- Now notice that dom(e;) = (2,?), but € §(2,?) = ¢ for
any evidence ¢, therefore a := G; > dom(¢;)vp = ? — a := G; » v, then we have to prove that
(W’  vp, vp) € Txise[?] which follows directly from the weakening lemma. |

LEmMA 10.7. Foranyt+ v :? and v+ G, we have (AX.Ax : ?.x :: X) [G] v || error.

Proor. Let idy £ AX Ax :?2.x = X, b ido ~ v, : ¥X.? > X,and v s.t. kv ~> vy : 2.

By the fundamental property (Th. 10.1), v v, < v, : VX.? — X so for any W, € S[],
(Wo, va,vq) € Tp[VX.? — X]. Because v, is a value, (Wy, vg,v,) € Vp[¥VX.? — X]. By reduc-
tion, - > v, [G;] —" El» ¢lv; = ? — G; for some ¢, ¢; and ¢;,, where E! = {a := G;} and
v; = €;(Ax : 2.(¢j4x 1 @)) = ? — a. We can instantiate the definition of Vp[VX.? — X] with W,
Gi = G and G; structurally different (and different from ?), some R € ReLyy; . ilG1, G2, v1, v2, €] and
¢, then we have that (Wy, vy, v2) € Txe[? = X], where Wy = ([(W) ® (a, G1, G2, R)). As vy and
v, are values, (W, v1, v2) € Vxse[? — X]. Also, by associativity of consistent transitivity, the
reduction of &} » (¢/v; :: ? — G;) v» is equivalent to that of 2] » cod(e])(v; (dom(e])v; = ?)) == G;.

By the fundamental property (Th. 10.1) we know that v, < v}, : ?; we can instantiate this
definition with W), and we have that (Wy, vp,v) € Vp[?]. By Lemma 10.6, (Wy, dom(e])v, ::
2, dom(e))vr 2 ?) € Txise[?]. If dom(e])v; = ? reduces to error then the result follows immediately.

Otherwise, E} > dom(e])v; = ? +—" El» 0!, and (Wp, v}, v)) € Vxisa[?], where Wy =] W;,

and some v]" and v;’. We can instantiate the definition of Vx4 [? — X] with W, vy and vy,
obtaining that (W, v v, v; v}') € Txse[X]. We then proceed by contradiction. Suppose that

=/ i ’” * o= ’ oo 3 "o— o . 1
Eiv v v " EY » o] (for a big-enough step index). If v;" = ¢/’ u :: ?, then by evaluation
’

v = ¢l u :: a, for some ¢/, . But by definition of Vx,.[X], it must be the case that for some

Ws = Wy, (Ws, e u : Gy, e, u = Go) € R, which is impossible because u cannot be ascribed to
structurally different types G; and G,. Therefore v; v{’ cannot reduce to a value, and hence the
term v, [G] vp cannot reduce to a value either. Because v, is non-diverging, its application must

produce error. O
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8 A CHEAP THEOREM IN GSF

This section shows the proof of the cheap theorem presented in the paper and some auxiliary
results.

Definition 8.1. Let X(t, «) a predicate that holds if and only if in each evidence of term t, if
is present, then it appears on both sides of the evidence and in the same structural position. This
predicate is defined inductively as follows:

Ve e t,X(e,a)
X(t, a)
where
a ¢ FTN(E;) U FTN(E) X((E1, E3),a) X((E2,Eq) , )
X({oE, o), a) X((E1,E2), @) X((E1 — E2,E3 — E4), @)
X((E1,E3),a) X((E2,E4),a) X((E1,E2),a)
X(<E1 X Eg, E3 XE4>,0() X((VX.El,VX.E2>,0{)

COROLLARY 10.9. Lett and v be static terms such thatv+ t : VX.T,r v : T, and t[T'] v | v’.
(1) IfFYX.TEVX.X — ? then (t = VX.X - )[T'] v | v", and v’ < v”.
(2) IfFVX.TEVX.? > X then (t = VX.? - X)[T'] v || v”, and v’ < v”.

Proor. Direct by Lemmas 9.4 and 9.7. |

LEmma 8.2. YW € S[E], p,y.(W, p) € D[A]A(W,y) € G,[T]), such that Vv € cod(y;), X (v, a).
If X(p(yi(t:), ), then Z > p(yi(t;)) ¥ E’ >t and X(t', @)

Proor. By induction on the structure of t;. The proof is direct by looking at the inductive
definition of construction of evidences (interior), noticing that VG, I(X, G) = I(G, X) = (X, X).
Then by inspection of consistent transitivity we know that, for any evidence of a value (E;, E;)

(Ev, Ep) 5 (af,af) = (E,a®YNE| #+ a" & Ey=a® AE #a*
but if that is the case ~(X({E1, E2), @)), which contradicts the premise. O

THEOREM 10.10. Let v = AX . Ax : 2.t for some t, such that+ v : VX.? — X. Then for any+ v’ : G,
we either have v [G] v’ |} error orv [G] v’ 1.

PrRoOF. Let - v ~» vy : VX.? — X, v’ ~» vy : 2. Because + vy : VX.? = X and } v; : ?, by the
fundamental property (Theorem 10.1) we know that

(Wo, vy, vy) € Vp[¥X.? — X]

(Wh, 02, 07) € V) [[7]]

Let vy = e(AX.(Ax : 2.1)) = VX.? —> X, where ¢ + ;- + VX.? > X ~ VX.? — X, and therefore
e=(VX.? > X,VX.? - X).

Note that by the reduction rules we know that

Eroy [Gl— Bl re(a(Ax:2t) 2?2 > a)2? > G

for some t’, where ¢, = (? = af,? > E), e, = (2 — af,? — &), E = lift (G), El=E,a=0G.

By definition of Vy[VX.? — X] if we pick G; = G, = G, and some R, then for some W; we know
that (Wi, v1, v2) € Vxiso[? — X], where v; = e;(Ax : 2.t") = ? — a.

Also, by the reduction rules we know that Zi>(¢1v; :: ? = G) v, &= Ercod(e1)(v; (dom(er)vr =
7)) :: G. As dom(eq) = (2,?), then E' > dom(ey)v; :: ? +— B/ » v, : 2. As @ ¢ FTN(vy), then X(v;, @).
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Also we know that X(v;, a). Then by Lemma 8.2, if 2’ » t'[v7] —" v/, then X(¢v’, @), but that is a
contradiction because if (Wy, v, v") € V, [«], then =X(v’, &) and the result holds. O
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9 EMBEDDING DYNAMIC SEALING IN GSF

In this section, we prove Theorem 11.1, using the simulation relation = between A, and GSFe,
defined in Figure 15. We also define a direct embedding of A, into GSFe to make the proof simpler.

[x]e =x
[o]e =suf
[0]e = ep(epb = B) = ?
[Ax.1]e = er2(ErmpAx 1] e 2?2 > ) 2 ?
[{t1, 12)1e = encalltile, Tt27]e) 2
[7i(£)]e = mi(enc [t]e =2 X7?)
[op(1)]e =let X : ? = [1] in epop(e5X = B) == ?
[vx.t]e = let x = sue in [t],
[ty t2]e =letx =[H]einlety = [H]s in(e22x =2 > )y
[{ti}e,]e =letx =[t1]cinlet y = [12] in (er2mi(eroy 22X ?) 22 = ?) x

[let {z},, =t int3]e =letx =[r1]cinlety = [12]e inlet z = e omp(enrx 22X ?) 2?2 = 2y in [13],

Fig. 25. Compilation from Ay, to GSFe

Definition 9.1. We said that ; and = are synchronized, denoted y = E, ifand only if 0 € p &=
c:=7€kE.

LEMMA 9.2. Lett be a Aseql term. IfE;T F [t] ~> t, : ? then [t]. = t,.

Proor. The proof is straightforward by induction on the syntax of ¢, and following definitions
of [t],E;T F [t] ~ t. : ? and [t],. O

LEMMA 9.3. IfE;T F [t] ~> t. : 2, then ;55T vt = t,. : 2, for some i = E.

Proor. By Lemma 9.2, we know that ¢, = [t],. Therefore, we are required to prove that
w2 T Ft =~ [t], : 2. We follow by induction on the syntax of ¢. Since translation preserves
typing (Theorem ??), we know that =;T + [t], : 2.

Case (x). Then, we know that

|—x-|£ =X
We have ¢ = x. By premise we know that Z;T" + x : ? which implies that x : ? € T and Z;+ T.
Therefore, 1;E;T + t = [t], : ? by Rule (Rx) and the result follows immediately.

Case (b). Then, we know that

[b]s = ep(egb = B) =2 ?
We have t = b. Then, we have to prove that ;;; Z;T + b ~ eg(egb :: B) : ? : 2. We know by the Rule
(Rb) that ;; Z;T + b =~ egb =: ? : 2. Therefore, by the Rule (Ru) the result follows immediately.

Case (Ax.t"). Then, we know that
|—A.x.t/-|g = S?%?(S?H?Ax.rtqg n? > 7) 2 ?

We have ¢ = Ax.t". Then, we have to prove that ;; ;T + Ax.t" = ey 2(er2Ax. [t ], 2?2 = 2) 21 2.
Since E;T' + [t]. : ? and by Lemma 9.13, we know that E;T,x : ? + [t"], : ?, thus by the
induction hypothesis j;; =; T, x : ? + ' = [t"], : ?. Therefore, by the Rule (RA) that j; Z;T + Ax.t" =
&r-72Ax.[t"]; :: 7 : 2. Therefore, by the Rule (Ru) the result follows immediately.
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Case (o). Then, we know that
[o]e = suf

We have t = o. Then, we have to prove that ;;5;T' + ¢ = su? : ?. By premise we know that
=;T F su? : ? which implies that ¢ := ? € E and E + I'. Therefore, by the Rule (Rs) the result
follows immediately.

Case (t1 t;). Then, we know that
[t1 2]e =letx =[t;]e inlety = [t2]: in(&—x 2?2 > )y
We have ¢ = t; 1. Then, we have to prove that
wLETrh hrletx=[t]inlety =[] in(exa?—>2)y:?

Since Z;T F [t], : ? and by Lemma 9.13, we know that Z;T + [#;], : ?and Z;T F [£;]. : 7. By the
induction hypothesis, we know that j;; Z;T F t; = [t1]. : ?and j; Z;T + 5 = [12], : 2. Therefore, by
the Rule (RappL) the result follows immediately.

Case (;(t")). Then, we know that

[7:i(t)]e = milerne [t ], 2% ?)

We have ¢ = ;(t"). Then, we have to prove that ;; Z;T + 7;(t") = mi(er2[t"]e 22X ?) : 2. Since
Z;T+ [t]e : ? and by Lemma 9.13, we know that ;T + [#"], : ?. By the induction hypothesis, we
know that ;; ;T + t” = [t"], : ?. Therefore, by the Rule (Rpi) the result follows immediately.

Case ({t1}4,). Then, we know that
[{ti}r,]e =letx =[t1]s inlet y = [1]; in (ermrmi(enoy 22X ?) 2?2 = ) x
We have t = {t,},,. Then, we have to prove that
wETE{ti}y, letx =[t];inlety =[t]: in (rmrm(erey 22X ) 2?2 =5 ) x:?

Since Z;T + [f], : ? and by Lemma 9.13, we know that ;T  [#;], : ?and E;T F [t,], : ?.By the
induction hypothesis, we know that j;; Z;T + t; = [#1], : 2and j; Z;T + 1, = [£,], : ?. Therefore, by
the Rule (Rsed1L) the result follows immediately.

Case (let {x}; = t; in t3). Then, we know that

[let {x}; =t2int3]e =letx =[t1]c inlety = [12]; inlet z = eroma(erox 22X ?) 2?2 = 2y in [13],

We have t = let {x}; = t; in t3. Then, we have to prove that
wETElet {x};, =trintz = letx =[t1]c inlety =[t2]e inlet z = ermaerex 22X ?) 2 ? = 2yin [13], :?
Since ;T + [t], : ? and by Lemma 9.13, we know that Z;T + [#;], : 2, E;T + [f]e = ?
and E;T,x : ? + [f3], : ?. By the induction hypothesis, we know that ;; =;T + t; = [t1], : 2,

wE;T kit =[] : ?and 113 E;T,x : ? + 13 = [13]. : ?. Therefore, by the Rule (RunsL) the result
follows immediately.

Case ({t1, t;)). Then, we know that

[t 1) e = enallti]e, [2]e) =2

We have t = (t1, t,). Then, we have to prove that ;; Z;T F (f1, 12) = exo{[t1]e, [£2]e) == ? : 2. Since
=;T + [t]e : ? and by Lemma 9.13, we know that ;T + [t;], : ? and ;T + [#,], : 2. By the
induction hypothesis, we know that j;; Z;T + t; = [#1], : ?and j; E;T + 1, = 5], : ?. Therefore, by
the Rule (Rpt) the result follows immediately.
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Case (op(t')). Then, we know that
fop(t')]e =letx:2=[t']in epop(egX = B)::?
We have ¢ = op(t’). Then, we have to prove that
12Tk op(t) ~ let X : 2 = [1'] in egop(ezX = B):?:?
Since Z;T F [t]y :? andl)y Leinma 9.13, we know that Z;T F [t/], : 2. By the induction hypothesis,
we know that ;;; Z;T + ¢/ = [t'], : ?. Therefore, by the Rule (Rop) the result follows immediately.
Case (vx.t"). Then, we know that
[vx.t'], = let x = su, in [t'],

We have t = vx.t’. Then, we have to prove that ;; Z;T + vx.t’ = let x = su, in [t"], : ?. Since
;T k let x = sue in [t : ?, we know that Z;T,x : ? + [t'], : ?. By the induction hypothesis, we
know that y;; Z;T,x : ? + t" = [t"], : ?. Therefore, by the Rule (RsG) the result follows immediately.

|
LEMMA 11.7. Ifv [t] ~> t, : 2, then Ft = t, : 2.

Proor. Direct by 9.3. O

LEMMA 9.4. If ;2 rvxt:?, thenEvt —"Evv’, and ;2 F v % v’ : ?, for somev’.

Proor. The proof is a straightforward induction on the derivation of the rule ;= v = t : 2.
We only take into account rule cases where the term on the left can be a value.
Case (Rb). Trivial case because both terms in the relation are values.
ty(b) = B

(Rb) —
ILEFb~egh?:?

Case (Rs). Trivial case because both terms in the relation are values.

oc:=7€kE
[Rs)

LEroxsu® :?

Case (Ru).
WLErvRepU?:?

(Ru)
WLEFv=ep(epu D) ?:?

If t = ep(epu :: D) :: ?, then we know by the reduction rules of GSFe that:
Ertro Erepu?

Note that ¢p § ep = ep by Lemma 9.12. Then, we have to prove that ;;E F v = epu :: ? : 2, which is
a premise. Therefore, the result follows immediately.

Case (Rp). Trivial case because both terms in the relation are values.

Erv Repurn?:? ERUy Repup n?i?

(Rp)

[1]

SE R (01, 02) ® epxp, (Ur, uz) =717
Case (RA). Trivial case because both terms in the relation are values.
LEx P2kt Rty ?

ILEF (Ax.t) = erp(Axtp) 2?21 ?

RA)
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Case (Rpt).
WERL =L :? Er Rt ?

(Rpt) = Y
IEF (t, b) = et ty) = ?7:7

We have t = e(t], t;) = 2. We know that (¢, ;) = (vi,v;) for some v; and v,. Also, we know
by premise that ;2 + v; = t] : ?and ;; 2 + vy = t; : 7. Then, by the induction hypothesis, we
know that exists v] and v such that E» t] " Ev 0], E>t; —" E> 0}, 152 + v; ~ 0] : ? and
W E vy = vy 7. Now, we have to prove that ;5 + (v1, v2) = e2x2(vy, v;) : ? : 2. But the result
follows immediately by the rule (Rpt).

Case (Rsed1).
WERL =t ? ErRfhxt)?

(Rsed1) — - y
IE Rt} = eom(enat] 22X 2) 22— 2127

We have t = &,_»mi(e20t] : ? X ?) : ? — ? t,. Also, we know that {t,},, = {v},, for some v and 0.
Then, we know that y; = + v = t;: ?and ;2 + o = t] : ?. Then, by the induction hypothesis, we
know that exists v] and v; and such that Z > ¢/ — = v, Evt, — =2 Uy, JI5E F o = o) ?and
13 E kv = v, : 2. By the rule (Rs), we know that v] = su?. By the dynamic semantics of GSFe, we
know that

Ert " B oom(enosul ©?2X?) 12> 2 v "

Er(o’ =522 5 D(Ax:0o.6x:2) 7 Vp > B e (B, o™)u s ?) 22— Ev (B, 0)u = ?
where v; = (Eq, Ey)u :: ?. Therefore, we have to prove that j; 2 + {v}, = (Ey, oByu 72 As we
know that ;;E + v = v, : ? or what is the same ;E + v = (Ey, Eo)u =: ? : ?, by the Rule (Rsed2), the
result follows immediately.

Case (Rsed1).

HOR N R R S ;ZTroy=0):?
H 1 H 2
(Rsed1)

ET F{o1}o, ® ermpm(eneuy 22X ?2) 2?2 = 2 0] :?

We have t = e,_,mi(e200; :: ? X ?) : 2 — ? v]. Also, we know that {v; },, = {v}, for some v and
0. Then, we know that ;;Z + v % v] : ?and ;2 + ¢ = v, : 2. By the rule (Rs), we know that
v, = sug . By the dynamic semantics of GSFe, we know that

Ert " B o om(enesul 22x72) 1?5 20 "

Ee(ol =527 5 D(Mx:oex?) 7 V) B e (B o™)u?) 22— Ev (B, 0P)u 2
where v] = (E;, Ez)u :: ?. Therefore, we have to prove that ;2 + {v}, = (E, ofYu = 7:2 As we
know that ;;E + v = v] : ? or what is the same ;& + v = (Ey, Eg)u =: ? : ?, by the Rule (Rsed2), the
result follows immediately.

Case (Rsed1L).
wET R =t :?  mETrhxt):?

(Rsed1L)
WETF{ti}, xletx=t]inlety =1t in (e m(enoy = ?2X?) 2?2 —7?)x:?
We have
t=letx=1t]inlety =1} in (eroom(eroy 2 ?2Xx?) 2?2 > N x

Also, we know that {t,},, = {v},, for some v and ¢. Then, we know that /;= + v ~ t] : ? and
W E + o = t; : ?. Then, by the induction hypothesis, we know that exists v; and v; such that
Ext/—"Evv,Ext)—" Er v, 52 o ~v):?2and ;58 F 0 ~ 0] : 2. By the rule (Rs), we
know that v; = su?. By the dynamic semantics of GSFe, we know that

Ert " Eroe(om(esul 2 ?2x?2)u? > 20)) 2?0 ?2—"
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Ese(e(o’ — 2,7 - )(Ax gepxu?)u?uy)u?n?
Ze (e (B, of)yu =) 22) 1222 B (B, 0 ) u = ?

where v] = (El,Ez)u : 2. Therefore, we have to prove that ;2 + {0}, ~ (E1,0%)u 2 : 2. As we
know that ;;E + v = v] : ? or what is the same ;& + v = (Ey, Eo)u =: ? : 2, by the Rule (RsedZ) the
result follows immediately.

[1]

Case (Rsed1R).

wETro =0 :?  ETrL=t):?
(Rsed1R)

E T F{vi}, =lety =t in (e omenoy = ?2X?2) 2?2 = oy :?
We have
t=lety =t in (erom(eroy :?2X2) 2 = ?) 0]

Also, we know that {v;},, = {v},, for some v and o. Then, we know that ;& + v ~ v] : ?
and /;E + o = t; : 2. Then, by the induction hypothesis, we know that exists v, such that
E»t,+—" Evrv)and ;;E + o ~ v} : 2. By the rule (Rs), we know that v} = suZ. By the dynamic
semantics of GSFe, we know that

Ert " Eraermenosul 22Xx2) 2?25 20)) 2?2

Er ({07 = 2,2 > D(Ax:0.60x ) 2 205) 1 2 —

Ee (e (B, 0P u=?2) 2 ?) 1 2> B (Ey, 0%)u =
where v] = (E;, E2)u :: 2. Therefore, we have to prove that ;= + {v}, » <E1 0E2>u 2 7:7. As we
know that ;;E + v = v] : ? or what is the same ;& + v = (Ey, Eo)u =: 7 : 2, by the Rule (RsedZ) the
result follows immediately.
Case (Rsed2). Trivial case because both terms in the relation are values.

WLErvx(E,E)uu?:? o0:=?€E

(Rsed2)
E R {v}e = (E, 0P )u=2:?

Case (R?).
LETroxt :?
R?)

LETromet «?:7?
We have t = &t :: 7, where 11, E; F + v =~ t’ : 2. Then, by the induction hypothesis, we have that
Evt' —" 0 and ;2T Fo=0"”: 2 By the dynamic semantics of GSFe, we know that

Evot s ?2—"Erev” 22— Evv”

Therefore, the result follows immediately.

*

LEMMA 11.3. If ;2 F v = t, : 7, then there exists v, .. E>t, — Ev> v, and 52 F v r v, 2 7.

Proor. Direct by Lemma 9.4. O

*

LEMMA9S. IfisE vt =t :2andt || g — t' || ', thenEvt, —
for some t].

Eotland ;B bt =t 12,

Proor. The proof is a straightforward induction on ;;= + ¢ = t, : ? and case analysis on
t|| g — t’ || . The following rules are the only ones that can be applied in this case.
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Case (RsG).
WE;X PR R ?
(RsG)

P E R vx.t = let x = sug int] :?
Since ¢ || p — t’ || i/, we know that t = vx.t;. By the reduction rules of Ay, we know that
g — ti[o/x] || 4, 0. By Lemma 9.15, we know that = » su, +—" =, o := ?» su?. By Rule (Rs),
we know that i1, 0, E,0 :=? + 0 ~ su? : ?. By the reduction rules of GSFe, we know that

Evletx=su.int] —"E,0:=?pletx=sul int] — E,0 := ?l>£7(t1[su?/x]) w?

Then, we are required to show that 1, 0;E, 0 :=? + t1[0/x] = e(t][su? /x]) :: ? : 2. We know by
the premise that ;;Z;x : ? F 1] = t : ?, or what is the same j, 055, 0 :=%;x: 2 - | = t : 7. Since
posE, 0 =x: 0k Rt 7andp, ;8,0 =7+ o0 = su? :?, by the Lemma 9.16 andRule (R?)
the result follows immedlately.

Case (Runs).

WErv v :? pEruvymoy:? Eizi?riz Rt c?
(Runs)

EFlet {z},, = vy ints xletz =g m(egv] 2 ?Xx?)u? =20 int]:?
Sincet || p — t' || i/, we know that t = let {z}, = {v}, in t5. By the reduction rules of A,

we know that ¢ || 4 — #3[v/z] || 1. We know by the premises that ;=2 + 0 =~ o] : ? and y,:

{v}, ~ v} : 2. Therefore, by Rules (Rs) and (Rsed2), we know that v; = su? and v, = (E;, 0™)u
for some u, E; and E;. By the reduction rules of GSFe, we know that

Evlet z= e omy(enosul =2x?) 2 — 2 ((Ey,0™)u=?)in t] —
Evletz=(2— 0,2 DAx:2e2x:0):?) (B, o2 u=?)in 5 —
Evlet z = ((Ey, Ex)u = ?) in tg +—" E > t][(Ey, E2)u = ?/x]
We are required to show that ;2 + #3[v/z] = t;[(E1, Es)u :: ?/2] : ?, but we know that ;2 +
27

(v}, = (E1,0%)u == 2 : 2, therefore we know by the rule (Rsed2) that j; = + v = (Ey, Ex)u =
Finally, by the Lemma 9.16, the result follows immediately.

Case (Rop).

?.

B Triy~t:B ty(op)=B— B

(Rop)
wE;TFop(ty) = op(eBtz B):?:B
Applying the induction hypothesis, reduction rules of A, and GSFe, and Rule (RS).

Case (RunsL).

,u;EI—tlzt’:? ILEF b~ tZ:? ,u;E;z:?l-tgzt’:?
(RunsL)

WE Flet {z}; =t in t5~letx—t in Iety—t inlet z = e om(erxox :?X?2) 2?2 > ?2yin t3’:?

Sincet || p — t’ || i/, we know that t = let {z}, = {v}, in t5. By the reduction rules of /Isea|,
we know that ¢ || 4 — t3[v/z] || 1. We know by the premises that ;2 F o = t] : ? and LE +
{v}s = t; : ?. Therefore, by Lemma 9.4, we know that = » t] — B ru, B t) —" B> vy,
WEFoxv :?and ;55 F {v}, = vy : 2, for some v; and v;. By Rules (Rs) and (RsedZ) we know
that v; = su? and v, = (Ej, o)y :: ?, for some u, E; and E,. By the reduction rules of GSFe, we
know that

Evletx =t/ inlety=1t;in Ietzzevﬂvﬂz(wxm..?x?) "7—>7yin th—
Ev erer(let z = &7 omy(enosul =2 x?) 2 — 2 ((Ey,0™)u = ?) in ty) 2 u? "

Eeooletz=(2—>0,7— 7)(Ax 2.650x :0) 1 ?) ((E, %) u = ?) in t3) 2?2
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Ereoe(letz=((EnLEun?)inty) = ?: 2" B oeoe(t[(EnL Eu s ?/x]) u?2?20?

We are required to show that ;1,2 + 13[v/z] = eee(ti[(Er, Ep)u = ?/z]) = 222272 : 2, but
we know that ;2 + {v}, ~ (E,c%)u:=? : ?, therefore we know by the rule (Rsed2) that
2 F v~ (E,Ex)u::? ¢ 2. Finally, by the Lemma 9.16 and the Rule (R?), the result follows
immediately.

Case (RunsR).
BErv R :? ErRL Rt ? Bzt ?

(RunsR) — - - -
WEFlet {z}, =t intsxlety=t)inlet z = e, m(encvy 2 ?2X?2) 2?2 = 2yint;:?

Sincet || p — t’ || i/, we know that ¢t = let {z}, = {v}, in t5. By the reduction rules of Ay,
we know that ¢ [| 1 — #3[v/z] || 1. We know by the premises that ;2 + 0 ~ v] : ?and ;2 +
{v}s =t : ?. Therefore, by Lemma 9.4, we know that & » ¢, —"Evvyand 5 E F {v)}, 2 vy : 7,
for some v;. By Rules (Rs) and (Rsed2), we know that v; = su? and v, = (Ey, 0%2)u :: 2, for some u,
E; and E;. By the reduction rules of GSFe, we know that

Evlety=tyinlet z = e m(encv] 22X ?2) 2?2 > 2yint, —"

B elet z = eromlenosul = ?2x?)? — ? ((E, o2y ?)in ty) 2 "

*

Eraletz=(2—> 0,2 = DAx:2ex:0):2) ((E,o)u=?)in )= ?
Evelet z=((EnLEnu=?)inty) = ? +— E v oe(t[ (B, Ex)u i ?/x]) 2 ?
We are required to show that ;2 + 13[v/z] = e2e(t5[(E1, Ez)u :: ?/z]) 2 2 :: 2 : 2, but we know
that ;2 + {0}, ~ (E;,0f)u = ? : 2, therefore we know by the rule (Rsed2) that ;;=Z + v ~
(E1, Ex)u :: ? : 7. Finally, by the Lemma 9.16 and the Rule (R?), the result follows immediately.

Case (Rapp).

Fog=o):?  Ervy Uy :?

[1]

T

(Rapp)

[1]

sE v v = (e v) 2?2 > ) vy ?
Since t || 4 — t" || ', we know that t = (Ax.t]") v,, where v; = (Ax.t]"). Therefore, we know that
E F (Ax.t]") = v] : ?and 1, E + v, = v : 2. By the rule (RA), we know that v] = &,_2Ax.t;" =2 2,
where E;x : 2 - 1] = 1] 1 2.

By the dynamic semantics of As.,;, we know that

Ax.t/) vy || p — #]'[v2/x] ||

By the dynamic semantics of GSFe, we know that

244 *

=b (5747(£?H?/1x.t1 ) n?—>7?) Ué —

Ev (er0(Ax.t]) 2?2 > ?) vy — B ep(t]"[vy/x]) = ?

Since j;E;x:? + 1 = t/” : ?and ;;E + v; = v) : ?, we know by Lemma 9.16 that ;;E
t'[vy/x] = (t]"[v;/x]) : ?. By the Rule (R?), we know that /;E + 1]"[v, /x| = &(t]"[vy/x]) =2 ? 2 2,
thus the result follows.

Case (RappL).
WERL =t :? ErL=t:?

(RappL) —— ~letx—t inletu—11 7 oo
WwErhtyxletx =t inlety=1t,in (e x=?—>2)y:7

Since t || p — t" || ', we know that t = (Ax.t]") v;, where t; = (Ax.t]") and t; = v,. Therefore,

we know that ;;E + (Ax.t]) =t/ : ?and ;2 + v; = t, : ?. By Lemma 9.4, we know that
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— ’ * = ’r = ’ * = ’ .= I\ ~v oyl .= ~ oy . ’
Evti—" Evov,Brty—" Evoy, 38 F (Ax.t]) = v] : ?and ;2 + v, = v; : ?, for some v] and
v;. By the rule (RA), we know that v] = &_2Ax.t]"” = ?, where E;x : 2+ 1] = t]" : 2.

By the dynamic semantics of As,;, we know that

Ax.ty) vz [l p — t'[ve/x] |l p
By the dynamic semantics of GSFe, we know that
Erletx=t]inlety=t;in (ex 2?2 > ) yr="Evaee Axt])u? > vy ?n?
Evoa(e(t] Tog/x]) = ?) 2?2 :2?
Since j;E;x:? + 1 = ¢/ : ?and ;;E + v; = v : ?, we know by Lemma 9.16 that ;5 +
t'[vy/x] = (t]"[v;/x]) : ?. By the Rule (R?), we know that /;E + 1]"[v, /x| = e(t]"[vy/x]) =2 ? 2 2,
therefore we have ;2 + t/"[vy/x] = er60(e2(t]"[v5/x]) :: ?) :: 2 :: 2 : 2, thus the result follows.

Case (RappR).

WErv o :?  ERL Rt ?
(RappR)——— T ;
wErv t xlety =1t in(e 0 =?—>?)y:?

Sincet || p — t" || ', weknow that t = (Ax.t]") v, where v; = (Ax.1]’) and t, = v,. Therefore, we
know that ;2 + (Ax.1]") = v{ : ?and j;; E + vy = t; : ?. By Lemma 9.4, we know that Z»¢, —" Ervy
and /s E + v, = v, : ?, for some v;. By the rule (R1), we know that v] = &_2Ax.t;"” :: ?, where
Eix 2kt =]

By the dynamic semantics of Asc,, we know that

ety wn | g — tToa/x] I
By the dynamic semantics of GSFe, we know that
Erlety=t5in (60 2?2 > ) y+—" Everero(Ax.t]”) 2?2 > ?) vy) n?
B ele(t] [og/x]) 2 7) = ?

Since ;8;x:? F 1" = ¢/ : 2and |;E + v, = v, : ?, we know by Lemma 9.16 that ;2 +
t'[vy/x] = (t]"[v;/x]) : ?. By the Rule (R?), we know that ;5 + 1]"[v, /x| = &(t]"[vy/x]) = ? 2 2,
therefore we have ;2 + /"[vy/x] = ex(e2(t;""[v5/x]) :: ?) 2 7 : 2, thus the result follows.

Case (Rpi).

(Rpi) — .
2 Fo(t) = mi(erot’ = 2X?):?
Applying the induction hypothesis, reduction rules of As.,; and GSFe, and Rules (Rp) and (Rpt).
Case (R?). We have that

LERE=E 0 ?

(R?) —
LE Rt et 2?7
We have t, = et =: ?, where ;; E + t = t;' : 2. Then, by the induction hypothesis, we have that
* =y

Evt) —" B>t and p'; 2" F ' = )" : 7. We are required to show that /;E" + 1" = ept]" = ?: 2.
But the result follows immediately by the Rule (R?).

O

LEMMA 9.6. Let j;5 + vy =~ eu = ?: 2. Then, vy = Ax.ty if and only ifu = Ax : ?.t; and € = &,_5,.

Proor. The proof follow by the exploration of rules in ;; E + v; = ¢u :: ? : ? and the definition
of the evidence. o
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COROLLARY 9.7. Let ;5 + vy =~ cu = ?: 2. Then, vy # Ax.t; thenu # Ax : ?.t; and ¢ # ¢6,-6,.

Proor. By Lemma 9.6. o

LEMMA 9.8. If ;2 -t~ t,:?andt || p — error, then E > t, —" error.

Proor. The proof is a straightforward induction on ;= + t = t, : ?. The following rule is the
only one that can be applied in this case (¢ || 1 — error).

Case (Rapp).

. ~ 7 . . ~ 7 .
wErv 2o :? ERuvy vy ?

(Rapp) =
WE R vy R (0] 2?2 > ) vy ?

Since t || 4 — type_error, we know that v is not a function, and by Corollary 9.7 and y;; E +
’

v = o] : ?, we know that v] also can not be a function and its evidence, syntactically, can not be a

function. Let suppose that v] = ejuy :: 2. Then, we know that &; § £;_,; fails, and the result holds.
Ze (e0(e1ug 2 ?) 2?2 > ?) vy " error

Case (RappL).

WE R =t :?  Erhxt?

(RappL) — T T
wErhtyxletx=tlinlety=1t,in(e_x=?—>2)y:?
ByLemma 9.4, ;2 + t; ~ ] : 2and ;B + 1, ~ 1} : 2, we know that Ext] +—" Evv], Ert) —" Ebv),
WE v = vy :?and ;2 F vy 2 vy 2 ?, for some o] and v;. Since ¢ || 1 — type_error, we know
that v; is not a function, and by Corollary 9.7 and ;£ + v; = v : ?, we know that v] also can not
be a function and its evidence, syntactically, can not be a function. Let suppose that v] = juy :: 2.
Then, we know that &, § €7, fails, and the result holds.

Evletx=t/inlety=tin (e xu?—>?)yr—"
Ev oer(ermo(eiug = ?) ? > ?) vy) 2 2 ? —> error

Case (RappR).
WErv o :?  Erh Rt ?

(RappR) = ;
IE RV xlety=1t)in (e 0] 2?2 —2)y:?
By Lemma 9.4 and /;;Z + £, = t; : ?, we know that Z » ¢ — = vy and ;5 + vy = vy 2 ?, for
some v,. Since ¢ || 4 — type_error, we know that v; is not a function, and by Corollary 9.7 and
ILEFU R z){ : ?, we know that v{ also can not be a function and its evidence, syntactically, can
not be a function. Let suppose that v] = eu; :: ?. Then, we know that & § &, fails, and the result
holds.

Erlety=tyin (500 1?2 > ) yr—o"
Ev> oo p(aug 2 ?) = ? > ?) vy) i ? —> error
wE Tkttt :?

Case (TRpi). (TRpi)—— Similar to the function application case.
12T Foi(t) = mi(errt’ 22X 7?): ?

Case (Runs).

pErv v :? Ervyroy:? Eizi?riymg?

(Runs) — - ;
EFlet {z},, = vy ints xletz =g om(engv] 2 ?Xx?) 2?20 int]:?
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Sincet || g — unseal_error, we know thatt = let {z}, = {v}, in I3, where o # ¢’. We know
by the premises that ;2 + ¢ ~ 0] : ?and ;2 + {v}, = v, : ?2Therefore, by Rules (Rs) and (Rsed2),
we know that v; = su? and v, = (Ej, cr’Ez)u :: 2, for some u, E; and E;. By the reduction rules of
GSFe, we know that

Evlet x = e ma(ersosul = ?2x7?) 2 = 2 ((Ey, o5y ?) in ty "
Erletx=(?— 0’2 = (Ax: 2.e,0x : 0) : ?) ((Ey, o’Fyu  ?) in ty —"
Evlet x = ({07, 2)(e,2((Ey, 0')u = ?) :: 0) :: ?) in t] —> error

Note that the transitivity between (E;, 0'F2) 5 ¢ . fails because ¢’ # o. Thus the results follows
immediately.

Case (RunsL).

,u;EI—tlztl’:? ,u;EI—tzztéz? ,u;E;z:?l-tgzté:?
(RunsL)

EFlet {z}y =t ints ~letx =t/ inlety =t inlet z = &2 ,oma(ererx = ?X?2) 22 = 2yint]:?

Since? || g — unseal_error, we know thatt = let {z}, = {v}, in I3, where o # ¢’. We know
by the premises that j;Z + o = t] : ?and j;E + {v}, = t; : ?. Therefore, by Lemma 9.4, we know
that 2>t/ " E1p 01, Evt) " B> vy, 52 F 0~ vy : 2and i3 E F {v}, & vy : 2, for some v;
and v,. By Rules (Rs) and (Rsed2), we know that v; = sug and v; = (E, o'F2yy 2, for some u, E;
and E,. By the reduction rules of GSFe, we know that

Exletx=t/inlety=1t;inlet z = e mernox 12X ) 2?2 > 2yinty +—"
E e oe(let z = e yma(enosul = ?2x?) 2?2 = ? ((E, o’FYu = ?)in ty) 2?2 "
Evoeletz=(?— 0,2 (Ax:2ex0):?) (B, o'™)u:?)in ty) 2 u 2"
E o e6(let x = (o, ?) (e, ((Ey, Py ?) o) ?)in t;) 7 ? —> error

Note that the transitivity between (E, o'F2y e ¢, fails because o’ # o. Thus the results follows
immediately.

Case (RunsR).

Runsk) WwErv o :? Erbxty? Ejzi PRl ?
uns.

WEFlet {z}, =t intz xlety=1t)inlet z= e om(erncvy 22X ?) 2?2 > 2yint;:?

Sincet || 4 — unseal_error, we know that r = let {z}, = {v}, in 3, where ¢ # o’. We know
by the premises that ;; 2 + 0 = v} : ?and ;;E + {v}, = t; : ?. Therefore, by Lemma 9.4, we know
that >t —" E»> vy and ;32 + {0}, ~ v, : 2, for some v,. By Rules (Rs) and (Rsed2), we know
that v; = sug and v, = (Ej, o'F2yu 2 2, for some u, E; and E,. By the reduction rules of GSFe, we
know that

Evlety=tyinlet z = e om(encv] 22X ?2) 2?2 > 2yint, "
Erelet z = e om(enosul = 2x?) =2 — ? ((Ey, o’FYu ?)in t5) 2"
Evelet z=((? = 0,7 = D(Ax : 2epox o) 2 2) (B0 ™)u = 2) in ) 2 ="

Zv e(let x = ({07, 2)(e 2 ((Eq, By ?)6) 1 ?)in £3) = ? +—> error

Note that the transitivity between (E;, o'?) § ¢_- fails because o’ # . Thus the results follows
immediately.
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Case (R?). ,
E R~ b2 ?

R?) =
WE R Rt ?:7?

Since t || p — error, we know by the induction hypothesis on ;£ + ¢ = t1= : ? that E» t1+ +—
error. Thus the result follows immediately.

O

LEMMA 9.9. Ifi;E vt =t :2andt || p+—t' || i/, thenEvt, —" /vt and ;" Ft/ =t : 2,
for some t,.

Proor. The proof is a straightforward induction on j;; E + 1; = t; : ?. We only take into account
the rules that can be applied.

Case (Rpt).
[l;El—tlztl*l? /l;El—tzztz*l?

(Rpt) = P
IEF (t, b)) = by, toe) 207

Ift || p — t’ || p/, then by Lemma 9.5, the result follows immediately. Else, if ¢ || y +— t" || 1/,
we have the following two cases:
o i =(t,1) = f[t;], where f = ([], 12).
Therefore, we have that ¢, || p+— ] [| p".
By the induction hypothesis, we get that = » t;: —" =
we know that

"> t;,and ;B F 1] ~ t], : 2. Thus,
Ev ety tye) = 20" B o eno(t], 1) =2
Therefore, the result follows immediately by Rule (Rpt).

o = (t1,ty) = (vi. 1) = f[t2] , where f = (v, []). Therefore, we have that t, || 1, || p'.
By the induction hypothesis, we get that E > tp- +—" &’ > 1, and ;& + 1) ~ 1}, : 2. Since
[;E F vy & b= 2 ?, by Lemma 9.4, we know that E» t;« —" Ev v« and [ E F 0; = vps 2 2.
Thus, we know that

Eb ena(ty, tpr) 2 F=" Eoeno(vl, tpe) 1 20— B b (v, t.) = ?
Therefore, the result follows immediately by Rule (Rpt).

Case (R?). B ,
TGN o S ST

R?) p
IE Rt R ety ?:?

Ift || g — " || p’, then by Lemma 9.5, the result follows immediately. Else, if ¢ || pz +—— ¢ || i/,
we have that ¢, || p v+ 1] || p'.
By the induction hypothesis, we get that = » t;- +—" Z’» ti.and ;2 - t] = t], : 2. Thus, we
know that
ot 2" B Ertfu 1t ?
Therefore, the result follows immediately by Rule (R?).

Case (RappL).
/l;EI—t]ztl*l? 'U;El-tgztz*l?

(RappL) = ; X
WLEFh hrletx=tinlety =ty in(eoxu?—>2)y:?

Ift || p — t’ || p/, then by Lemma 9.5, the result follows immediately. Else, if ¢ || y +— t" || 1/,
we have the following two cases:
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e t =1 t, = f[t;], where f =[] t,. Therefore, we have that ¢, || z+— ; || p'.
By the induction hypothesis, we get that Z» t;- +—" E’> ¢/, and y/;E" + 1] ~ t]. : 2. Thus,
we know that

Evletx =t;-inlety =ty in (e x:? > ?)yr—"
E'vletx =t inlety =ty in(e_ox:?—>7)y

Therefore, the result follows immediately by Rule (RappL).

o [ =11y =0ty = f[t], where f = v; []. Therefore, we have that , || p — t; || ;. By the
induction hypothesis, we get that 2 > t,- —" E’> t;, and y/;E' F 1) ~ ). : ?. Since ;5 +
v ~ t1+ : 2, by Lemma 9.4, we know that E » t;+ —" E» v+ and ;2 + v; = vy : 2. Thus,
we know that

Evletx =t;-inlety =ty in (e x 2?2 > ?)yr—"
Evletx=vcinlety =ty in (rox 2?2 > ) yr—
Evelety =ty in (6700 22 > ) y) 2 "
E'veolety =ty in (6201 2?2 > ) y) 2 ?
Therefore, the result follows immediately by Rules (RappR) and (R?).
Case (RappR).

WLEFU RO ? ILE R Rt ?

(RappR)—— X
LE R b =lety =ty in (69500 2?2 > )y :?

Ift || p — t’ || p/, then by Lemma 9.5, the result follows immediately. Else, if ¢ || g — " || 1/,
we know that t = vy 1, = f[t;] , where f = v; []. Therefore, we have that , || y +— ¢ || y’. By the
induction hypothesis, we get that = » t,. — R t,. and p’;E" + 1) = t,. : 2. Thus, we know that

Evlety =ty in (v 2?2 > )y +—"
E'vlety =ty in(e v 2?2 >y
Therefore, the result follows immediately by Rule (RappR).

Case (Rpi).
WE R Rty ?

(Rpi) =
W E b omi(t) = mi(enots 2 ?7X72):?

Ift || g — " || i/, then by Lemma 9.5, the result follows immediately. Else, if ¢ || p +— t" || i/,
we know that ¢ = 7;(t;) = f[t;], where 7;([]).
Therefore, we have that #; || p+— ] [| 1".
By the induction hypothesis, we get that Z > t;- —" &> t/, and //;E’ + 1] ~ t]. : 2. Thus, we
know that
Eo mi(erotyr 12X ?) " B e mi(enot]s 12X 7?)
Therefore, the result follows immediately by Rule (Rpi).

Case (Rsed1L).
/l;El—tlztl*I? ‘U;El-tgztz*i?

(Rsed1L) — - -
wE R {1}, mletx =t inlety = to in (eoom(enoy 2 ?2X2) 2?2 > 2) x:?

Ift || p — t’ || /, then by Lemma 9.5, the result follows immediately. Else, if ¢ || y +— &' || 1/,
we have the following two cases:
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ot ={t1},, = flt:], where f = {[]},,.
Therefore, we have that ¢, [| p+— ] [| p".
By the induction hypothesis, we get that 2> t;+ —" E’ >/, and y/;E + 1] ~ t/, : 2. Thus,
we know that

Evletx =t inlet y =ty in (eom(ernoy = ?2X2) 2?2 > ) x —"

E'vletx =t inlety =ty in (e m(ey =?2x2)=? > ) x
Therefore, the result follows immediately by Rule (Rsed1L).
o 1 ={ti}s, = {vi}s, = flt2] , where f = {v1})). Therefore, we have that ¢, || ¢, || ;. By
the induction hypothesis, we get that E» t- —" &' > t;. and pi’; O ty. = 2. Since
[ F vy = ty- ¢ 2, by Lemma 9.4, we know that E v 1« —" Evov- and (5 F 0; = v 2 2.

Thus, we know that

1 2

Evletx =t inlety =ty in (e om(emoy = ?2Xx2) 2?2 > ?) x —"
Evletx =0l inlety =ty in (eom(enoy = ?2Xx2) 2?5 ?) x —
Ero(lety =t in (eromi(eroy 272X ) 2?2 > 2) o) 2 2 9"
E' v olety =ty in (ermom(ency 12X ) 2 > ) v) u ?
Therefore, the result follows immediately by Rules (Rsed1R) and (R?).

Case (Rsed1R).
WLEFU RO ? B R R ?

(Rsed1R) — -
WEF{v ), = lety =ty in (ermom(enoy 22X ?2) 2?2 = ?) vgs : ?

Ift || p — t' || i/, then by Lemma 9.5, the result follows immediately. Else, if t || z — ¢’ || p/, we
know that t = {t;},, = {v1},, = f[t2] , where f = {v; }{}. Therefore, we have that t, || p ¢, || p".
By the induction hypothesis, we get that E > tp +—" 2’ > 1}, and y/;E’ + t, ~ t;, : ?. Thus, we
know that

%

Evlety =ty in (e menoy :2X?) 2?2 > ?) vl —
E'vlety =t in (eom(enoy 22X ?) 2?2 > ?) vl
Therefore, the result follows immediately by Rule (Rsed1R).

Case (RunsL).
E R R ?  E Rl Rt ? Bz ?7RI3 R I3 17

(RunsL) — - - - -
wEFlet{z}, =tint3 xletx =t inlety =ty inlet z = &rom(errx =?X?) 2?2 > 2y ints : ?

Ift || g — t' || i/, then by Lemma 9.5, the result follows immediately. Else, if t || z +— &' || 1/,
we have the following two cases:
ot =let {z}, =ty ints = f[t;], where f = let {z};; = 15 in t5.
Therefore, we have that ¢, || p+— ] [| 1".
By the induction hypothesis, we get that Z» t;- +—" E’ > /. and y/;E" 1] ~ t]. : 2. Thus,
we know that

Evletx =t inlety =ty inlet z = & om(errx 22X ?) 22 = 2y in tge —"
E'eletx =t inlety =ty inlet z= e oma(erex = ?2X?) =2 = 2yin t3

Therefore, the result follows immediately by Rule (RunsL).
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o t =let {z};, =t,int; =let {z},, =ty int3 = f[t,], where f = let {z},, =[] in t5. Therefore,
we have that t, || 4 — t} || ;//. By the induction hypothesis, we get that Z >ty —" B> 17,
and ;B + ty =ty : ?.Since j;E + vy = ty+ : ?,by Lemma 9.4, we know that 2 » #; —" 2> v
and ;= F v; & vy« : 2. Thus, we know that

1] 1l

Evletx=t+inlety =ty inlet z = &7 oma(erurx 22X ?) 22 = 2y in tge "
Evletx =vi-inlety =ty inlet z = erom(errx 22X ?) 2?2 > 2y in 3+ —>
Erelety =ty inlet z = e om(errvrr 22X ?2) 2 > 2yintz) = 2 —"
> elety =ty inlet z = eroma(ervrr 22X ?) 2?2 > 2yintge) = ?
Therefore, the result follows immediately by Rules (RunsR) and (R?).

Case (RunsR).

IE RV ROt ? B R Rt ? 3Bz 7R3 Rty i ?
(RunsR)

WEFlet {z}y, =t intz = lety =ty inlet z = &7 oma(er2v1* 22X ?) 2?2 > 2yintz : ?

Ift || p — t' || i, then by Lemma 9.5, the result follows immediately. Else, if ¢ || pz +— ¢" || i/,
then we know thatt = let {z};, =t, int3 = let {z},, =tz in t3 = f[ty], where [ = let {z},, =[] in t5.

Therefore, we have that t, || 1 — ¢, || 1’. By the induction hypothesis, we get that = » to +—" E > 17,
and y//;E’ + 1) = t;, : 2. Thus, we know that

Evlety =ty inlet z = &, ma(errvs 22X ?) 2?2 = 2yin 3 "
2o lety =ty inlet z = eromaerurr 12X 2) 2 > 2y in t3

Therefore, the result follows immediately by Rule (RunsR).

Case (RsG).
ET,x: 2kt =t]:7?
(RsG)

Bk vx.ty = let x = sug int] :?
Since ¢ = vx.t;, we know that ¢ || x — ' || . Therefore, by Lemma 9.5, the result follows imme-
diately.
Case (Runs).

WErv v :?  pErvymoy:? Eizi?riz Rt c?

(Runs) — - -
EFlet {z}, = vy ints xletz =g m(enev] 2 ?Xx?)u? =20 int] :?

Since t = let {z},, = vy in t3, we know that ¢ || g — ' || y/. Therefore, by Lemma 9.5, the result
follows immediately.

Case (Rapp).

= ~ /. = ~ 7.
WwErv v :? Ervy;Ruy:?

(Rapp) =
EF U Uy R (800) 22 = ) vy ?

Since t = v; vy, we know that ¢ || x — " || . Therefore, by Lemma 9.5, the result follows imme-
diately.

LEMMA 9.10. If 52 vty =t :?,E CE andT C T/, thenZ";T" rt; m 1y : 7.

Proor. The proof is a straightforward induction on j;; = F t; = t5 : 2. ]

LEMMA 9.11. If 52 rt = t, :?andt || p — error, thenZ > t —" error.
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Proor. The proof is a straightforward induction on y;; E + 1; = t; : ?. We only take into account
the rules that can be applied (¢ ||  — error).

Case (Rpt).
/l;El—tlztl*Z? /I;El-tzztz*l?

(Rpt) -
W E k(L b)) & enotys, tar) 2207

Ift || 1 — error, then by Lemma 9.8, the result follows immediately. Else, if

t || p+— error

, we have the following two cases:
o t =(t1,1,) = f[t;], where f = ([], t2). Therefore, we have that ¢, || z — error. By the in-
duction hypothesis, we get that = » t;- —" error. Therefore, the result follows immediately.
o t = (t1, 1) = (v, 12) = f[t2], where f = (v, []).
Therefore, we have that #, || 1 — error. By the induction hypothesis, we get that = » t,+ —" error.
Since /;E F vy ~ t+ : ?, by Lemma 9.4, we know that Z v t;- —" E> vy and (1 + v; =
vy : 2. Thus, we know that

> oo (tye, tpe) 2 2 " B b ero(Uge, fpr) 1 7 +—" error
Therefore, the result follows immediately.

Case (R?). B ,
TR N SR ST

R?) =
WE R R ety ?:7?

Ift || 1 — error, then by Lemma 9.8, the result follows immediately. Else, if

t || g — error

, we have that t; ||  — error. By the induction hypothesis, we get that = > ;- +—" error. Thus,

we know that
= > ety 2 —" error

Therefore, the result follows immediately.

Case (RappL).
WE R Rt :?  E R Rty ?

(RappL) ——— : .
WLEFRh hrletx=t-inlety =1ty in(exu:?—>?)y:?

Ift || p — error, then by Lemma 9.8, the result follows immediately. Else, if
t || p+— error
, we have the following two cases:

e t =1 t, = f[t;], where f =[] t,. Therefore, we have that t; || ;1 — error. By the induction
hypothesis, we get that = » t;+ —" error. Thus, we know that

Evlet x =t inlet y = tpr in (ox 2 = ?) y —" error

Therefore, the result follows immediately by Rule (RappL).
o =1 ly,=0 1= f[tz] ,Wheref =D H
Therefore, we have that t, || 1 — error. By the induction hypothesis, we get that £ » t,« —" error.
Since /;E F v; ~ t+ : ?, by Lemma 9.4, we know that Ev t;- —" Ev vy and (1, F v; =
v1+ : 2. Thus, we know that

Evletx =t inlety =ty in(sx:? > ) yr—"
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Evletx=vicinlety =ty in (erox 2?2 > ) yr—
Evealet y =ty in (870001 2?2 > ?2) y) = 2 " error
Therefore, the result follows immediately.
Case (RappR).
ILEFU RUp 1 ? E R Rty ?

(RappR) = ;
WLE U b xlety =t in(evpr 2?2 > ) y:?

Ift || 1 — error, then by Lemma 9.8, the result follows immediately. Else, if

t || g — error

, we know that t = vy t, = f[t;], where f = v [].
Therefore, we have that #, ||  — error. By the induction hypothesis, we get that Z » t, —" error.
Thus, we know that

Evlety =ty in (67701 2?2 — ?) y —" error
Therefore, the result follows immediately.

Case (Rpi).
WE R Rty ?

(Rpi) -
W E Fomi(t) = mi(enots 2 ?7X72):?

Ift || g — " || p/, then by Lemma 9.5, the result follows immediately. Else, if ¢ || p +— t" || i/,
we know that ¢ = 7;(t;) = f[t;], where 7;([]).
Therefore, we have that t; || > t] [| 1/,
By the induction hypothesis, we get that Z > t;- —" E’ > t/, and //; E’ + 1] ~ t]. : 2. Thus, we
know that
Eo mi(erotyr 12X ?) " B e mi(enot]s 12X 7?)

Therefore, the result follows immediately by Rule (Rpi).

Case (Rsed1L).
WLE R R ? IE R Rty ?

(Rsed1L) — - -
WE R {1}, mletx =t- inlet y =ty in (ermom(ernoy 2 ?2X2) 2?2 = 2) x:?

Ift || p — error, then by Lemma 9.8, the result follows immediately. Else, if
t|| g +— error

, we have the following two cases:
o t ={t1};, = f[t1], where f = {[]},,. Therefore, we have that ¢, || z — error. By the induc-
tion hypothesis, we get that Z » t;+ —" error. Thus, we know that
Evlet x =t inlet y = tp in (e om(e20y = ? X ?) 22 — ?) x —" error

Therefore, the result follows immediately.
o= {tl}tz = {Ul}tz = f[tZ] ,Wheref = {Ul}[]
Therefore, we have that t, || ;1 — error. By the induction hypothesis, we get that Z » t,+ —" error.
Since /;E F vy = t+ : ?, by Lemma 9.4, we know that Z > t« —" E > vy and ;2 F vy =
vy @ ?. Thus, we know that
Evletx =t inlet y =ty in (e om(eroy = ?2X2) 2?2 > ?) x "
Evletx =0 inlety =ty in (er0om(erey :?2X2) 2?2 > ?) x —

Evelety =t in (eomi(eroy 22X ?) 2?2 > ?) v).) = 2 +—" error
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Therefore, the result follows immediately.

Case (Rsed1R).
WLE RV RO ? B R Rt ?

(Rsed1R) — -
WE v}y, mlety =ty in (eroom(enoy 2 ?2X?2) 2? = ?) vgs 1 ?

Ift || p — error, then by Lemma 9.8, the result follows immediately. Else, if
t|| g+ error
, we know that t = {t1},, = {v1},, = f[t2] , where f = {v;}}). Therefore, we have that
ty || u — error
By the induction hypothesis, we get that Z » t,- —" error. Thus, we know that
Exlet y =ty in (eroomi(eroy 12X 2) 2?2 = ?) v, —" error
Therefore, the result follows immediately.

Case (RunsL).

IERL Rt :? E Ry Rt ? E;zi? ki3 R 3 ?
(RunsL)

wEFlet{z}; =trints~letx=txinlety =ty inlet z=erom(errx 2 ?2X?2) 2?2 > 2yints :?
Ift || ¢ — error, then by Lemma 9.8, the result follows immediately. Else, if
t || g +— error
, we have the following two cases:
ot =let {z}, =1ty int3 = f[t;], where f = let {z};; = 1, in t3. Therefore, we have that
t; || g — error
By the induction hypothesis, we get that = » t;- —" error. Thus, we know that
Evlet x =t;« inlety =ty inlet z = & om(errx 2 ?x?) 2?2 = 2 yin t3« —" error

Therefore, the result follows immediately.
o t =let {z}; =tyint3 =let {z},, =ty int3 = f[t,], where f = let {z},, =[] in t5. Therefore,
we have that
ty || g — error

By the induction hypothesis, we get that = » t,« —" error. Since ;;E + v; = t;+ : 2, by
Lemma 9.4, we know that Z » t;« +—" E > v« and j; E + v; ~ vy : 2. Thus, we know that

Evletx =t inlety =ty inlet z = e om(errx 22X ?) 2?2 = 2 yin tge —"
Evletx =vy«inlety =ty inlet z = eroma(errx 22X ?) 2?2 > 2y in 3¢ >
Evelet y =ty inlet z = & om(erovr 22X ?) 2?2 — 2 yint3+) = ? —" error
Therefore, the result follows immediately.

Case (RunsR).
E R RO 2?7 B Rt ? 3Bz ki3 Rty 1 ?

(RunsR) — - - -
WEFlet {z}y, =t intz xlety =tor in let z = eroma(errvrr 22X ?2) = ? = 2y infge : ?

Ift || g — error, then by Lemma 9.8, the result follows immediately. Else, if
t || g +— error
,then we know that t = let {z},, = t; in t5 = let {z},, = t; in t5 = f[t;], where f = let {z},, =[] in t5.

Therefore, we have that
t || p — error



Gradual System F: Auxiliary Definitions and Proofs 103

By the induction hypothesis, we get that = > t,» —" error Thus, we know that
Evlety =ty inlet z = &5 oma(e9xrv1+ 22X ?) 2?2 = 2 yin t3« —" error
Therefore, the result follows immediately.

Case (Runs).

= ~ 7 . = ~ o/ . . . ~ t .
wErv v :? wEruvy vy ? Eizi kb ?

(Runs) — - -
EFlet {z},, = vy ints mletz =g om(exv] 2 ?Xx?) 2?20 int]:?

Since t = let {z},, = v, in t3, we know that ¢ || 1 — error. Therefore, by Lemma 9.8, the result
follows immediately.

O
LEMMA 9.12. Ife = (E,E), thene i e = ¢.
Proor. Straightforward induction on the shape of the evidence ¢. ]
LEMMA 9.13. IfE;T + [t], : G then G = 2.
Proor. Straightforward induction on the syntax of t. ]
Lemma 11.2. If s EsT Rt =t : 2 then E;T k8 2.
Proor. Direct by Lemma 9.13. ]
LEMMA 9.14. Ift is closed Aseq) term, then -+ ;- F 1], : 2.
Proor. Straightforward induction on the syntax of t. ]
LEMMA 9.15. E» su, " E,0 := ?» su?, whereo :=? ¢ =.
Proor. Following the reduction rules of GSF. ]

LEMMA 9.16 (SUBSTITUTION PRESERVES ). If 15 5; T, x : 2t = t* : 2 and ;;5;T + v = v* : ?, then
2Tk ito/x] = t'[v*/x] : 2.

Proor. The proof is a straightforward induction on the derivation of j;; =; T, x : 2 F t = " : 7.

Case (Rx).

x:?7€el,x:?
(Rx)

wmELx:?Frx~x:?
We have that ¢ = x and t* = x. By the definition of substitution, we have that x[v/x] = v and
x[v*/x] = v*. Therefore, we are required to prove that ;;; Z;T + v ~ v : ?, which follows by the
premise.

If we have
y:?2el,x:?

(Rx)
wELx:?ry~y:?
We have that ¢ = y and t* = y. By the definition of substitution, we have that y[v/x| = y and
y[v*/x] = y. Therefore, we are required to prove that ;;;Z;T + y ~ y : ?, which follows by the
premise /;=;T,x : ? -y ~ y : ? and Lemma 9.10.
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Case (RDb).
ty(b) = B
wELx:?2rbmegh?:7?
We have that t = b and t* = egb :: ?. By the definition of substitution, we have that b[v/x| = b and
epb : ?[v*/x] = epb :: ?. Therefore, we are required to prove that ;;; Z;T F b ~ egb :: ? : 2, which
follows by the premise j; Z;T,x : ? + b = e¢gb :: 7 : ? and Lemma 9.10.

Case (Ru).

(Rb)

weELx:?rvymepu?:?

(Ru) —
12T, x:? vy mep(epu D) 2 ?2:?

We have that t = v; and t* = ep(epu = D) :: 2. By the definition of substitution, we have that
(ep(epu = D) = D)[v*/x] = ep(epu[v*/x] : D) = 2. Therefore, we are required to prove that 1; Z; T +
v1[v/x] = ep(epu[v*/x] :: D) :: ? : ?, or what is the same ;;;Z;T + vi[v/x] = (epul[v*/x] =?) : ?
which follows by the induction hypothesis on j;; Z;T, x : ? vy = epu =2 ?: 2.

Case (Rs).

oc:=7€e=
(Rs)

wELx:?ro=sul :?
We have that t = ¢ and t* = suZ. By the definition of substitution, we have that o[v/x] = ¢ and
suZ[v*/x] = su?. Therefore, we are required to prove that ;;Z;T + o = suZ : ?, which follows by
the premise ;; Z;T,x : ? - 0 = su? : ? and Lemma 9.10.
Case (Rp).

wEL,x:? vy mepug :?7:?7 E L, x:?Fvy mepyug i ?:7?

(Rp) =
wE;T, x: 2 F (U1, v2) = ep,xp, (Ur, Ug) = ?:7?
We have that t = (vq,v,) and t* = ep,xp, (U1, uz) :: ?. By the definition of substitution, we have that
(01, 02)[0/x] = (01 [0/x], 02[0/x]) and (e, a1, 1) 5 D07 /x] = ep,e, G [0° ], wal0” /x]) 35 2.
Therefore, we are required to prove that y1; Z; T + (v [v/x], v2[v/x]) = ep,xp, {ur[V* [x], up[v*/x]) = ?:
?, or what is the same by Rule (Rp) that ;;Z;T + vi[v/x]| = ep,us[v*/x] =? : 2 and ;5T *
vyv/x] = ep,uz[v*/x] : 7 : 2. By the induction hypothesis on y;; Z;T,x : ? - vy ® ep,ug = ?: ? and
2T, x:? F vy = ep,up = 7 : ? the result follows immediately.
Case (RA).
ElLx:2y: 2kt =ty:?
wE T, x: 2 F (Ay.ty) = ero(Aytp) =222

We have that t = (Ay.t;) and t* = &_,7(Ay.t) == ?. By the definition of substitution, we have
that (Ay.t;)[v/x] = (Ay.t1[v/x]) and (e:—2(Ay.t2) = D[V /x] = e2(Ay.t[v*/x]) == ?. Therefore,
we are required to prove that ;;=;T + (Ay.t;[v/x]) = e(Ay.tz[v*/x]) 2 ? : 2, or what is
the same ;;=;T,y : ? + t1[v/x] = t[v*/x] : ? which follows by the induction hypothesis on
LELx:2y:?rh =t 2

Case (Rpt).

RA)

L= . ~ ! . = . ~ ! .
y,._,l",x.?l—t1~t1.? ,u,_‘,l",x.?l—t2~t2.?

(Rpt) — ’ o4
T, x 02k (1, ) = epeot], ty) =222

We have that ¢ = (t1, 1) and t* = ey (t],t;) = ?. By the definition of substitution, we have
that (11, 1)[0/x] = (4o /x], tlo/x]) and (enolt) 1) 5 Dlo*/x] = (enolt[o" /x], G0 fx]) = ).
Therefore, we are required to prove that ;; Z;T + (t1[v/x], t2[v/x]) = (2ot [V* /x], t[0" [x]) = ?) :
?, or what is the same by Rule (Rpt) that ;;Z;T + t;[v/x] = t{[v*/x] : ? and |, E;T + [v/x] =
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t;[v*/x] : 2. By the induction hypothesis on j;Z;T,x : ? -ty = t] : 2and ;s ;T x : 2 F Ly = 85 ?
the result follows immediately.

Case (Rapp).
wELx:?2ro =0 :?  ET,x:?rvyxvy:?

(Rapp) = ? N N
EL,x: 2 k0 vy % (8200; 22 = 2 vy 7

We have that t = v; vy and t* = (&_,7v] 1 ? — ?) v;. By the definition of substitution, we have that
(v1 vo)[v/x] = v1[v/x] vo[v/x]

and

(2201 2 = ) vy)[v" /x] = (8220107 /x] 2 7 — ?) vg[v" /x]
Therefore, we are required to prove that

wE T Fo[v/x] valv/x] = (e500] [0 /x] 2?2 = ) vy[v*[x] : ?
, or what is the same by Rule (Rapp) that ;; Z;T + vi[v/x] = v{[v*/x] : ? and /1, 5;T + vy[v/x] =
vy[v* /x] : ?. By the induction hypothesis on ;; Z;T,x : ? vy ® v] : ?and ;1 ;T x : 2 F vy 2 vy 2 ?
the result follows immediately.
Case (RappL).

wELx: 2kt =t 2 ET,x: 2kt =ty :?

(RappL) = > ~ T T > 5 5
wELx: 2kt hxletz=tinlety=t)in(e z:?2—>2)y:?

We have that t = ; t, and t* = let z = t] in let y = t; in (e,7z :: 7 — ?) y. By the definition of
substitution, we have that
(t t)[v/x] = ti[v/x] t2[v/x]

and
(letz=t]inlety =15 in (&2 = 2 > ?) y)[v*/x] = let z = t{[v* /x] in let y = t;[0" /x] in (2222 > D)y
Therefore, we are required to prove that

wE Tk hv/x] klv/x] = let z = t{[v"/x] in let y = t,[0"/x] in (6102 2 ? > )y 2 ?
, or what is the same by Rule (RappL) that ;;; Z;T' + t1[v/x] = t{[v"/x] : ? and ;1; ;T + 1[v/x] =
t;[v*/x] : ?. By the induction hypothesis on j;Z;T,x : 2+ t; = t] : ?and ;s 5,1, x : 2 F Ly = 85 : ?
the result follows immediately.
Case (RappR).

e x:?ro =0 :?  ELx: 2k =t):?

(RappR) Lo ) ~ — 4 ’ 2 )
wELx:?ro tyxlety=t)in (0] 2?2 —>2)y:7

We have that t = v; 1, and t* = let y = t; in (&,,0] : ? — ?) y. By the definition of substitution,
we have that
(01 t2)[v/x] = vi[v/x] t2[v/x]
and
(let y =t in (67707 = ? = ?) Y)[v"/x] = let y = t,[v" /x] in (er00][0"/x] =2 > ?) y
Therefore, we are required to prove that
wE;T Foo/x] tlo/x] = let y = 5[0 /x] in (e2000][0"[x] 2?2 > ) y:?
, or what is the same by Rule (RappR) that /; Z;T + v[v/x] = v][v*/x] : ?and j; E;T + t[v/x] =
t;[v*/x] : 2. By the induction hypothesis on /;;Z;T,x : ? vy = v] : 2and ;5,1 x : 2 -ty = £ 1 ?
the result follows immediately.
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Case (R?). , ,
LELx:?rtxt 27

(R?) —
LE T, x: 2kt met ?:7

We have that t* = &’ :: ?. By the definition of substitution, we have that
(ert” = D[V /x] = et [V [x] 2 ?
Therefore, we are required to prove that
wE; Tk tlo/x] = et [v"/x] = ?:?
, or what is the same by Rule (R?) that ;; ;T + t[v/x] = t'[v*/x] : ?. By the induction hypothesis

on;E;T,x:?Ft =1’ :? the result follows immediately.

Case (Rpi).
5 Tx 2kt =t :?

(Rpi) — 17 ’
wE;Tx 2k (1) = it 22X ?) 1 ?

We have that t = 7;(t"") and t* = 7;(ex2t” :: ? X ?). By the definition of substitution, we have that
mi(t")[v/x] = mi(t"[v/x])
and
(mi(errt” = 2 X )" [x] = mi(ereot’ [0 [x] : 2 X ?)
Therefore, we are required to prove that
5Tk mi(t[v)/x]) = mi(epot’ [07/x] 22X ?) 1 ?
, or what is the same by Rule (Rpi) that 1; Z;T + t"'[v/x]| = t'[v*/x] : ?. By the induction hypothesis
on;5;T,x:?+t” = t':? the result follows immediately.
Case (RsG).

e T,x 2,220t =t 0 ?
(RsG)

wE L x:? vzt = letz=su, int':?
We have that t = vz.t"" and t* = let z = su, in t’. By the definition of substitution, we have that
(vz.t")|v/x] = vz.t""[v/x]

and
(let z = su, in t")[v*/x] = let z = su in t'[v"/x]

Therefore, we are required to prove that
wE; Tk vzt [v/x] = let z = su, int'[v"/x] : ?

, or what is the same by Rule (RsG) that j;=;T,z: ? + t"[v/x] = t'[v"/x] : ?. By the induction
hypothesis on j1;E;T,x : 2,z : 2+ t"" =~ t' : ? the result follows immediately.

Case (Rsed1).

.= . ~ o - .= . ~ o) -
wELx:?roy=o:?  ELx:?Fvy~v):?

(Rsed1) — ; -
wET, x: 2k {ui}e, ® e omi(enceuy 22X ?) 2?2 =20 :?

We have that t = {v;},, and t* = &7, m1 (23005 =2 ? X ?) :: ? — ? v]. By the definition of substitution,
we have that

{vi}te,[v/x] = {v1lv/x]}o,0/x]
and

(eromi(ernvy = 2X2) 2 = 2 0))[v" /x] = e omi(enovy[v7/x] 2% ?) 2 7 — 2 vf[v" /x]
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Therefore, we are required to prove that
2T F {or[v/x]}o,0/x] ® ©rmi(enouy[v /x] 22X ?) 2 = 2 0f[0"/x] : ?
, or what is the same by Rule (Rsed1) that /;Z;T + v[v/x] = v{[v*/x] : ?and j; 25T + vy[v/x] =
v,[v*/x] : ?. By the induction hypothesis on ; ;T x : ? F vy ® 0] : ?and ;i E; T, x : 2 F vy = vy 2 ?
the result follows immediately.
Case (Rsed1L).
wET,x: 2kt =t :?  ELLx:?ri=t):?

(Rsed1L) — T T
E D x: 2k {t1}y, letz=tinlety =t; in (e m(eney 22X 2?2 —2)z:7?

We have that t = {t;},, and t* = let z =] inlet y = ¢, in (e_rm1(e20y :: ? X ?) : ? — ?) z. By the
definition of substitution, we have that
{ti},[v/x] = {t1[v/x]}y10/x]
and
(letz =1t inlety =t; in (ermi(erney = ?2X2) = 2 > ?) 2)[v*/x] =
let z = t][v"/x] in let y = 5[0 /x] in (eromi(erry 22X ) 22 > ) z
Therefore, we are required to prove that
2T FA{t[v/x]} 102 = let z = t[v" /x] in let y = t[0" /x] in (eomi(eroy 22X ) 2?2 > 2) z:7
, or what is the same by Rule (Rsed1L) that j; Z;T + 1 [v/x]| = t][v*/x] : 2 and j; 2T + t[v/x] =
t;[v*/x] : 2. By the induction hypothesis on j;E;T,x: ? -ty = t] : 2and ;s ;T x : 2 F Ly = 8y ?
the result follows immediately.
Case (Rsed1R).

wE T, x:?roy 0] :?  ELx: 2k =t):?

(Rsed1R) — - ’
wEL,x 2k {v1}y, =lety =t in (e2m(eney 22X ) 2?2 =) vy :?

We have that t = {v},, and t* = let y = t; in (&2 (e20y =2 ? X ?) :: 2 — ?) v]. By the definition
of substitution, we have that
{vite[v/x] = {vi[v/x]} g [0/x]
and
(lety = 1 in (ermomi(eroy 22X 2) 2 = ?) o))" /x] =
let y = t5[0" /x] in (eromi(enry = 2X ?) = 2 = ?) v [0 /x]
Therefore, we are required to prove that
25T F {oi[v/x]} 105 = let y = o™ /x] in (ermmi(enoy = 2% ?) = ? = ?) vf[v"/x] : ?
, or what is the same by Rule (Rsed1R) that ;;; Z;T + vi[v/x]| = v][v"/x] : ? and |, E;T + t[v/x] =
t;[v*/x] : ?. By the induction hypothesis on /;;Z; T, x : ? - vy = v] : 2and ;5,1 x : 2 -ty = £ 1 ?
the result follows immediately.

Case (Rsed2).

[1]

E L x:?r0 = (E,Ej)u=?:? og:=7¢€
ET,x: 2k {0} = (Bo™)u=2:?
We have that t = {v’}, and t* = (E;, %?)u :: 2. By the definition of substitution, we have that
{v"}olv/x] = {v'[v/x]}s

(Rsed2)

and
(1. o™y = D[o* [x] = ((Er, oP2)u[v* [x] = ?)



108 Elizabeth Labrada, Matias Toro, and Eric Tanter

Therefore, we are required to prove that
pET F {0 [0/x]}o ~ ((Er,0™)ulv"/x] :7) : 2

, or what is the same by Rule (Rsed2) that ;;; Z;T + v'[v/x]| = (Ei, Ez)u[v*/x] = ? : ?. By the
induction hypothesis on ;;; Z;T,x : ? + 0" = (E1, Ex)u = ? : ? the result follows immediately.

Case (Runs).

wE T, x:?rovy o) :?  mELx:?ruyrvy:? 1ETx:2,z:7k3x1:7

(Runs) — - X
wET,x: 2k let {z},, =voints = let z = ey oma(eru] 22X ?) 2?2 > 20vjint;:?

We have that ¢ = let {z},, = vy int3 and t* = let z = &,_,my(erov; 2 X ?) 2?2 —= 2 v; in t;. By
the definition of substitution, we have that
(let {z}o, = v in t)[0/x] = let {=}oy(0/a1 = valo/x] in ts[0/x]
and
(let z = eroma(ersrvy = 2% ?) 2?2 > 2 v) in t5)[v"/x] =
let z = &rrma(erncovi[07/x] : 27X ?) : 2 —= 2 vg[v" /x] in t5[0" /x]
Therefore, we are required to prove that
18T Flet {2}y, [o/x] = v2lv/x] in t3[v/x] = let z = &2 oma(errv] [0 /x] : 2% ?) 2 2 = 2 vg[0™ /x] in t3[0" /x] : ?

Or what is the same by Rule (Runs) that ;5;T + vi[v/x] = v{[v*/x] : ?, s E;T + vsv/x] =
vy[v*/x]: ?and ;; 25T,z : 2 + 130" /x| = tj[v*/x] : ?.By the induction hypothesis on y;; E; T, x : ? -
v = vy L, ET,x:? kv vy s ?and s E;T,x:2,2:? - 13 = t; ¢ ? the result follows
immediately.

Case (RunsL).

LELx 2kt~ :? mETx: 2ty =ty :?  ETx:2,2: 2013217

(RunsL) - - - .
BE;T,x: 2k let {2z}, =fints=letw=tinlety=t]inlet z=er omaerow :?2X?2) 2?2 = 2y intg:?

We have that = let {z},, =1, in 15 and

" =letw=t/inlety=tyinlet z= ey merow 2 ?2X?2) 2?5 ?2yint
By the definition of substitution, we have that

(let {z},, =tz in 3)[v/x] = let {z}4,[0/x] = t2[v/x] in 13]v/x]

and

(letw=1t]inlety =t inletz =& om(erow 2 ?X?) = ? = 2y in )[v"/x] =

let w= t{[v*/x] inlety = té[v*/x] inlet z =g _m(exow 2 ?XxX?2) 2?2 > 2yin té[v*/x]

Therefore, we are required to prove that

E;T F let {z}y[o/x] = t2lv/x] in 3[0/x] =

let w = t{[0"/x] in let y = t5[0" /x] inlet z = eroma(enow = 2X ?) = 2 = 2y in f[v" /x] : ?
Or what is the same by Rule (RunsL) that ;;Z;T + ti[v/x] = t][v*/x] : 2, s E;T v Hv/x] =
tolo*/x] : ?and 1, B;T,z : 2 + 13[0" /x| = t;[v"/x] : ?. By the induction hypothesis on y;; Z; T, x : ? +
bt E T, x: 2k =t ?and ;1 5;T,x: 2,2 : 2+ 13 = 15 : ? the result follows immediately.
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Case (RunsR).

pE T, x: 2oy =o]:? ELx:?rly=ty:? ET,x:?,z: 2k l3x15:7?

(RunsR) — - - -
wEL,x: 2k let {z}, = inz xlety=t)inlet z= e om(enov; 2 ?X?2) 2?2 = 2yint]:?

We have that t = let {z},, = 1, in t3 and
" =lety=t;inlet z = ermlenco] 12X ?) 2?2 > ?2yint,
By the definition of substitution, we have that

(let {z}o, =tz in t3)[v/x] = let {z}y,[v/x] = t2[V/x] in t3]0/x]
and

(lety = tz' inletz= 5?—>?7T2(5?><?Ui 2?%x?)u?—>?yin té)[v*/x] =

let y = t5[0"/x] in let z = &> oma(erovy [0 /x] = 2% ?) 2 2 = 2y in 5[0 /x]
Therefore, we are required to prove that
E;T ket {z}y,[o/x] = t2[v/x] in t3[v/x] =
let y = ty[0"/x] in let z = eroma(errvg [0 /x] : 2% ?) 2 ? = 2 yin t[0" /x] : ?
Or what is the same by Rule (RunsR) that /;;5;T + vi[v/x] = v{[v*/x] : 2, ;5 5;T v t[v/x] =
t[v*/x]:?and p; 25T,z : 2+ t3[v" /x| = t;[v* /x] : ?. By the induction hypothesis on y;; =; ', x : ? +
fe, wEsLx:? k&t 2 ?and 1 E;T,x:2,2:? F 15 & 1] : ? the result follows

1 2 3
immediately.

)

O
LEMMA 114. If i EsT,x: 2kt =t s 2and s 5;T F v = v, : 2, then s BT F t{o/x] = te[ve/x] = 2.
Proor. Direct by Lemma 9.16. ]

The remaining theorems and lemmas are in the main text.
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10  GRADUAL EXISTENTIAL TYPES IN GSF

This session presents a motivational example for the extension of GSF with existential directly
instead of using the encoding of existential into universal types. Also, we show the translation
from GSF= to GSF? and the proof of the fundamental property for existential types.

10.1 Existential types: primitive or encoded?

The benefit of a direct treatment of existential types can already be appreciated in the fully-static
setting, with the simple examples of packages s; and s, above. Suppose we want to show that s;
and s; are contextually equivalent, i.e. indistinguishable by any context. To show this equivalence,
it is sufficient to show that the packages are logically related. The proof of this based on the direct
interpretation of the existential types is considerably easier and more intuitive than proving that
their encodings are related. To illustrate this point, we sketch these two proof techniques below in
System F.

Proof with primitive existentials. Two packages are logically related at an existential type,
if there exists a relation R between values of their representation types, such that their term
components respect the relation R. Here, for v; and v, to respect R means that the following three
conditions hold:

e The created semaphores with the operation bit are related. In this case, this imposes that
(true, 1) € R.

o If two semaphores are related, then changing their states with the operation flip yields related
semaphores. Here, applying the flip operation of each package s; and s; to the values true
and 1, respectively, yields false and 0. Therefore, (false, 0) € R. Applying the flip operations
on these values yields again true and 1, which are related.

o If two semaphores are related, then the Bool value obtained by applying the operation read
must be the same. It is easy to see that this condition is also satisfied.

Formally, two packages are logically related at an existential type in standard System F (follow-
ing [Ahmed 2006]):

Vo[3X.T] = {(pack(T1,v1) as IX.p(T), pack(T2, vz) as AX.p(T)) € Atom[3X.T] |
3R € ReL[Ty, T2].(v1,v2) € VxR, 1, 1) [T}

By this definition, in order to prove that s; is logically related to s, at type Sem, it is required to
show that there exists a relation R between the types Bool and Int such that

(v1,v2) € Vx5 (R.Bool, Int)] [X X (X — X) x (X — Bool)]
Taking R = {(true, 1), (false, 0)}, it is easy to check that the implementations of s; and s; preserve
this relation.

Proof with encoded existentials. Using the encoding of Sem in terms of universal types in order
to prove that s; and s; are logically related is considerably more complex. First, we have to transform
the packages s; and s; to type abstractions and prove that

((AY.Af : Semgjign;.f [Bool] v1), (AY.Af : Semgjign;. f [Int] v2)) € V,[VY.Semejins — Y]

where Semcjiens = VX.X X (X — X) X (X — Bool) — Y. The proof of the above leads us to show
that for any type T} and T, and any relation R’ between these types, the following type applications
are related:

((AY.Af : Semgjien;-f [Bool] v1) [Tl,]» (AY.Af : Semgjien;- f [Int] vz) [Tg,]) € 7EYH(R’,T{,T£)] [Semcliens — Y]



Gradual System F: Auxiliary Definitions and Proofs m

Several steps further in the proof, we have to show that (f; [Bool] vy, f> [Int] v;) € YR, T, T)] Y],
for any fi and f; such that

(f1> 2) € Vv, 17,131 [Semctient]
Since fi and f; are related under a universal type, we can instantiate them at any types T; and T,
and any relation Q between these types, keeping the resulting terms related:

(fi [, f2 [T2]) € Tryosrr, 17,13). x5(0.13, o)) [(X X (X — X) X (X — Bool) — Y)]

At this point, we can pick the same relation as above, R = {(true, 1), (false, 0)}, such that v; and
v, are related.
(v1,v2) € Vixi(R,Bool, Int)] [X X (X = X) x (X — Bool)]

Hence, we can instantiate T; and T, with the types Bool and Int, and Q with the relation R, obtaining
that

(fi [Booll, f2 [Int]) € Tfyrs(r, 17, 1), X1-(R, Bool, Int)] [(X X (X — X) X (X — Bool) — Y)]
In a few more steps, we can instantiate the above with v; and v,, since they are related, finally
obtaining the desired result.

As we can see, as part of the second approach (using the encoding) is needed to prove the same
that is required by the first approach (directly on existential types) and more; being the second
extremely more complex. The equivalence example that we use to illustrate the previous is very
simple. But, for instance, Ahmed et al. [2009a] prove challenging cases of equivalences in the
presence of abstract data types and mutable references, where the use of the encoding would have
hindered the work.

10.2 Translation from GSF? to GSF?
Figure 26 shows the translation from GSF- to GSFZ.

AT Fo:G[G'/X] ~ o' :G[G'/X] A+G’
A;T + pack(G’,v) as 3X.G ~» packu(G’,v") as 3X.G : 3X.G

(Gpacku)

t#v ANTrt~t G e=I1G,GG'/X]) ArG
A;T + pack(G’, t) as 3X.G ~» pack(G’, ¢t : G[G’/X]) as AX.G : AX.G

(Gpack)

N;T kit~ t{ : Gy Gy — HX.G{ &= I(Gl,HX.Gi)
A,X;r,x:G{l—tz’\»té:Gz A+ Gy

A;T + unpack(X, x) = t1 in t ~> unpack(X,x) = et] = IX.G] int; : G,

(Gunpack)

Fig. 26. Translation from GSF3 to GSF]

10.3 Properties of GSF-

PROPOSITION 12.1 (GSF: PRECISION, INDUCTIVELY). The inductive definition of type precision
given in Figure 17 is equivalent to Definition 6.1.

Proor. Direct by induction on the type structure of G; and G,. Similar to Prop. 6.2. O

PROPOSITION 12.2 (GSF7: CONSISTENCY, INDUCTIVELY). The inductive definition of type consistency
given in Figure 17 is equivalent to Definition 6.5.
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Proor. Similar to Prop. 6.6. |

PROPOSITION 12.3 (GSF: STATIC EQUIVALENCE FOR STATIC TERMS). Let t be a static term and G a
static type (G =T). We havers t : T ifand only if -t : T.

PROOF. Smilar to Prop. 6.9. |

PROPOSITION 12.4 (GSF?: STATIC GRADUAL GUARANTEE). Let t and t’ be closed GSF? terms such
thatt T t' andv+ t:G. Then+t' : G and GC G'.

Proor. Similar to Prop. 6.10. ]

10.4 GSF7: Parametricity
THEOREM 10.1 (FUNDAMENTAL PROPERTY). If Z;A;T +t:GthenE;A;THE <t:G.

We follow by induction on the structure of t.

Proor.

Case (packu). Then t = ¢(packu(G’,v) as 3X.G”) :: G, and therefore by the typing rules Epacku
and Easc we have that

[1]

ATro:G"[G/X] E:A+G  erEA+3X.G' ~G
Z; 05T F e(packu(G’,v) as AX.G") = G : G

(Epack & Easc)

Then we have to prove that:
Z; AT + e(packu(G’,v) as AX.G”') :: G < e(packu(G’,v) as AX.G"”) = G: G

By induction hypotheses we already know that Z; A;T + v < v : G”[G’/X]. But the result follows
directly by Prop 10.2 (Compatibility of packu).
Case (pack). Then t = pack(G’,t") as 3X.G"”, and therefore by the typing rules Epack we have
that
E;NTHEY :G'[G/X] ZE;A+G
=; AT+ pack(G’,t’y as 3X.G” : IX.G”

(Epack)

Then we have to prove that:
Z;A;T + pack(G’, ') as 3X.G" < pack(G’,t') as AX.G” : IX.G"

By induction hypotheses we already know that Z; A;T + ¢’ < ¢’ : G”’[G’/X]. But the result follows
directly by Prop 10.3 (Compatibility of pack).
Case (unpack). Then t = unpack(X, x) = t; in f,, and therefore:
AT HE :3AX.G1 EAXT,x:Girtr:Gy  E;AFG)
Z; AT F unpack(X, x) = t1 in t2 : Gy

(Eunpack)

where G = G,. Then we have to prove that:
E; AT + unpack(X,x) = t1 in t < unpack(X,x) =t inty: G

By induction hypotheses we already know that Z; A;T + #; < t; : 3X.G; and E; A, X;T,x : Gy +
t; <t : Gy. But the result follows directly by Prop 10.4 (Compatibility of unpack).
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Definition 10.1 (Operators over evidence).
7;(¢) £ (Ex, E«)  where E. = liftz (unlifi(;(¢))) ﬁiz(é‘) 2 (E«,Ex) where Ex=m;(¢)
(E1, E2) [X] = (E1[X]. E2[X]) (E1, E2)[Es, E4] = (E1[Es], E2[E4])

(E1, E2) [Es, E4, X] = (E1[E3/X], E2[E4/X])

ProposITION 10.2 (COMPATIBILITY-EPACKU). IfE; A;T + vyy < v1p : G”[G'/X], E; A+ G’ and
el Z;A+F3IAX.G” ~ G, then

Z; 05T + e(packu(G’,v11) as AX.G") : G < e(packu(G’,v12) as AX.G") G : G
Proor. First, we are required to prove that
E; AT + e(packu(G’,vy;) as 3X.G”’) = G: G
But by unfolding the premises we know that Z; A; T + vy; : G”[G’/X], therefore:

AT o :G7[G')/X] E;AFG v E;AFIXG ~G
= AT e(pack(G’,vq;) as AX.G”) = G: G

(Epack & Easc)

Consider arbitrary W, p, y such that W € S[E], (W, p) € D[A] and (W,y) € G,[I']. We are
required to show that

(W, p(y1(e(packu(G’, v11) as 3X.G”) :: G)), p(y2(e(packu(G’, v12) as IX.G”) : G))) € 7,[G]
First we have to prove that:
W.E; + p(yi(e(packu(G’,vy;) as AX.G”) :: G)) : p(G)

As we know that Z; A; T + e(packu(G’, v1;) as 3X.G”) :: G : G, by Lemma 6.25 the result follows
immediately.
By definition of substitutions

p(yi(e(packu(G’, vy;) as AX.G”) :: G)) = £/ (packu(p(G"), p(yi(v1:))) as IX.p(G")) == p(G)

where ¢/ = pi(e) and ¢” .n = k. Therefore we have to prove that

(W, £ (packu(p(G'), p(y1(v11))) as IX.p(G")) :: p(G), £ (packu(p(G’), p(ya(v12))) as IX.p(G")) =: p(G)) € T, [G]
Or what is the same

(W, &} (packu(p(G’), p(y1(v11))) as 3X.p(G")) = p(G), £} (packu(p(G"), plya(v12))) as AX.p(G")) :: p(G)) € V,[G]

The type G can be 3X.G/, for some G, ? or a TYPENAME.
Let u; = packu(p(G’), v1;) as 3X.p(G”) and G* = X.G", we have to prove that:

w’, sful 2 p(G), g§u2 = p(G)) € V,[G]
(1) If G = 3X.G], by the definition of V,[3X.G]], we have to prove that YW” > W,a.3R €
ReLy~ j[p(G"), p(G”)] such that Ve’ I E; dom(p) + 3X.G| ~ IX.G] (¢'.n = ) it is true that
(W, (p1(e) 5 pr(eNIG, dlon = p(G)er/ X, (pa(e) § pa(e")Ca, dlvra = p(G)a/X])) € Tpixsal [G1]
where W* = W” ® (a, p(G’), p(G’), R).
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or what is the same, we have to prove that

(W*, (p1(e 5 NG, dlors = p(GDla/X], (p2(e § €))Ga. dlorz = p(GIa/X])) € Tyixisa] [G1]
By Proposition 10.8 (decomposition of the evidence) we know that
pile 3 NG, &) = mj(pile 3 NG, dl 5 pile s €, d]
Lets take R = V, [G'].
Note that
o W' =W"®(a, p(G'), p(G'), V,[G']) = W’
e E} = lifty,. £ (p(G)),
® Ei. = lifty. =,(Gpi), Gpi = unlift(mi(pi(e 5 7)) C p(G”),
o p'=plX > al
o &l =mi(piles NG, ] = (E,-*[E;/X],Ei*[aEi /X1),suchthate;™! = W*.B; + p(G”[G'/X]) ~
p(G"[a/X]), afi = lift,,. = (@), and E] = lifty,. 2 (p(G")), & '.n = k and
o (W, v11,v12) € V,[G”[G’/X]], then (W*, 11, v12) € V,[G”[G"/X]].
By the Lemma §10.6 (compositionality) we know that

(wr, mi(p1(es f/))[é', aloy = P’(G”), mi(pa(e s f/))[é's alugg P/(GH))) € 7;:’ [G”]]

or what is the same

(W*, 7 (pi(e 5 NG, dlony = p(G)er/X], 7i (pale s €IG, dlvrz = p(G)e/X])) € Tpixisa) [G]
Then we know that

(LeW*. eju] = p(C)a/X]. 5} = (G /X)) € Vol [”]
where vy; = e],u; :: p(G”[G'/X]) and ¢] = ¢}, § 7 (pi(e 5 NG, a).
Note now that
o (LW*efu] = p(G)a/X ). eju) = p(G)a/X])) € Vyxral [67]
o (e5e)X]FE;AX G ~Gy, (e5e)[X]n=1
o [ W* e S[E] and (| W™, p) € D[A, X],
Then, by Lemma 10.5 (Ascription Lemma), we know that

UirtW?, (7 5 p1((e 5 eN[XD)ug = p"(GY), (&5 3 po((e 5 €)X D)uy == p'(G))) € Vi [Gi]
or what is the same
Uk+tW™, (e7 5 pi(e s €)@, al)uy = p(GDler/X], (5 § pale § €M), éDuy == p(GDI/X])) € Vpixia)[Gl]
The result follows immediately.
(W™, (pi(e 3 €NIG, dlo = p(G)la/X], (pale 3 €)[Ga. dlorz = p(G)[ar/X])) € Toix—a)[G1]

(2) If G € TypENAME then ¢ = (Hj, aF*). Notice that as a* cannot have free type variables
therefore H; neither. Then ¢ = p;(¢). As « is sync, then let us call G = W.E;(«). We have to
prove that:

(W, (Hs, a®*Y uy = a, (Hs, @) up ) € YV, ]
which, by definition of V,[«], is equivalent to prove that:
(W, (Hs, Es) uy :: G"”,(E3, Eq) ug : G”') € V,[G"]

Then we proceed by case analysis on &:
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e (Case ¢ = (Hs, aﬁE4)). We know that (Hs, aﬁE4) F Z;A F G* ~ a, then by Lemma 6.29,
(H3, ﬁE4) FE;ARG  ~G. As ﬁE“ E G’”, then G””’ can either be ? or 5.
If G = ?, then by definition of V,[?], we have to prove that the resulting values belong
to V,[f]. Also as (Hs, BE) v E;A + G* ~ 2, by Lemma 6.27, (Hs, &) + E;A + G* ~ B,
and then we proceed just like this case once again (this is process is finite as there are no
circular references by construction and it ends up in something different to a type name).
If G’ = f we use an analogous argument as for G = 2.

e (Case ¢ = (Hs, a'™)). We have to prove that

(lW, <H3, H4> Uy = GIN, <H3,H4> Uy :: G”/) S (Vp [[G,H]]

By Lemma 6.29, (H3, Hy) + Z; A + G* ~ G”. Then if G”” = ?, we proceed as the case G’ = ?,
with the evidence ¢ = (Hj, Hy). If G’ € HEADTYPE, we proceed as the previous case where
G’ = VX.G, and the evidence ¢ = (H3, Hy).

Also, we have to prove that (VE’,¢’,G], such that &'.n = k, ¢’ = (aET*,E;*) (w e
S[E']Ae" FE"F a ~ G;), we get that

(LW, &' ((Hs, @™ yuy = @) = Gy, &' ((Ha, )z == @) =2 G}) € T,[G])

or what is the same (((Hs, ™) § ¢’) fails the result follows immediately)

(LiskW, ((Hs, @) 5 €y = G, ((Ho, @) § €)up = GY) € V,[GL])
By definition of transitivity and Lemma 6.30, we know that
<H3a aH4> g <aEr*,E2**> = <H3’ H4> ; <Ei<*’ E;*>
We know that (E}*, E;*) + E' + G” ~ Gj. Since (E]*,E;*) v E + G ~ G}, 1W € S[E'],

105
(11W, (Hs, Hy)uy == G”, (Hy, Hy)uy :: G”’) € V,[G”], by Lemma 6.17, we know that (since
({(Hs, a™) 5 ¢") does not fail then ((Hs, Hy) (E7*,E;")) also does not fail by the transitivity
rules)

(1+xW, ((Hs, Hy) § (EY", E5"))us =2 Gy, ((Hs, Ha) § (EY", By )ug = GY) € V,[G])

The result follows immediately.
(3) If G = ? we have the following cases:
e (G =?,¢ = (Hs, Hy)). By the definition of V,[?] in this case we have to prove that:

(W, pi()us 5 p(G), pa(e)ut = p(G)) € V) [const(Hy)]
but as const(H,) = 3X.?, we proceed just like the case where G = 3X.G{, where G| = 2.
e (G = ?,¢ = (Hs,a®)). Notice that as a® cannot have free type variables therefore E;
neither. Then ¢ = p;(¢). By the definition of V,[?] we have to prove that

(W, (Hs, a®*Y uy = a, (Hs, a5 up ) € YV, ]

Note that by Lemma 6.27 we know that ¢  Z; A + G* ~ a. Then we proceed just like the
case G € TYPENAME.

O

PrROPOSITION 10.3 (COMPATIBILITY-EPACK). IfE;A; T+t <t : G”[G'/X],E; A + G, then

;AT + pack(G’, t1) as AX.G” < pack(G', t;) as IX.G" : IX.G"
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Proor. First, we are required to prove that
E; AT F pack(G’, t;) as AX.G” : AX.G"”
But by unfolding the premises we know that =; A;T + t; : G”[G’/X], therefore:

ENTrHE:G'[G/X] E;A+G

(Epack & Easc)
Z;A;T F pack(G’, t;) as 3X.G" : X.G"”

Consider arbitrary W, p, y such that W € S[Z], (W, p) € D[A] and (W,y) € G,[I']. We are
required to show that

(W, p(y1(pack(G’, t;) as 3X.G")), p(y2(pack(G’, t;) as 3X.G"))) € 7,[IX.G"']
First we have to prove that:
W.E; + p(yi((pack(G’, t;) as IX.G"))) : p(IX.G")
As we know that =; A; T + (pack(G’, t;) as 3X.G”") : 3X.G", by Lemma 6.25 the result follows

immediately.
By definition of substitutions

p(yi((pack(G’, ;) as 3X.G"))) = (pack(p(G"), p(yi(t:))) as 3X.p(G"))

Therefore we have to prove that

(W, (pack{(p(G’), p(y1(t1))) as 3X.p(G")), (pack{p(G’), p(y2(t2))) as 3X.p(G"))) € 7,[3X.G”]
Second, consider arbitrary i < W.j, ;. Either there exist v; such that:
W.E » (pack(p(G), p(y1(11))) as IX.p(G”)) —>' E; > vy

or

W.E; » (pack(p(G'). p(y1(1))) as IX.p(G")) —' error

Let us suppose that W.Z >(pack{p(G"), p(y1(t1))) as 3X.p(G")) +—' Z,>0,. Hence, by inspection
of the operational semantics, it follows that there exist i; < i, =;; and v;; such that:

W.E; » (pack(p(G), p(y1(11))) as IX.p(G”)) —>" E11 > (pack(p(G'), v11) as IX.p(G")) '
B v gf(packu(p(G'), v11) as AX.p(G”)) = AX.p(G”)

where ¢ = (3X.G”,3X.G”) and ef = p;(e).
We instantiate the hypothesis Z; A;T + t; < t; : G”[G’/X] with W, p and y to obtain that:

(W, p(y1(t1)), p(y2(t2))) € T,[G”[G"/X]]

We instantiate 7,[G”[G’/X]] with iy, 21, and vy (note that iy < i < W.j), hence there exists
v1z and Wi, such that Wy > W, Wy.j = W.j — i1, W.E, b p(y2(t2)) —" W.E, b vy, W.E; = By,
and (Wi, v11,v12) € V,[G”[G’/X]] (Note that if W.E; » p(y1(t1)) " error the result follows
immediately). Let’ s take W’ =];W;. Note that we get that (W', v1, v12) € V,[G”[G"/X]].

Then we have to prove that

w’, sf(packu(p(G'), v11) as AX.p(G”)) = IX.p(G"),

gg(packu(p(G’), v12) as 3X.p(G")) = AX.p(G")) € V, [3X.p(G")]
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Let u; = packu{p(G’), vy;) as AX.p(G”) and 3X.G; = IX.G”, we have to prove that:
(W', ePuy = 3AX.p(G"), e up : AX.p(G")) € V,[3X.G”']

(1) By the definition of V,, [3X.G;], we have to prove that VW' > W', «.3R € ReLw~ ;[p(G’), p(G’)]
such that Ve’ IF 25 dom(p) + 3X.G] ~ IX.G] (¢'.n = ) it is true that

(W, (p1(e) 5 pr ()G, @on = p(GDLa/X], (pa(e) 5 pa(e)[Ga, lor 3= p(G)ar/X])) € Tpixisa[G1]
where W* = W” ® (a, p(G’), p(G’), R).
or what is the same, we have to prove that
(W, (p1(e 5 )G, élon = p(Gla/X], (pale 5 £))[Co, @lora = p(GY)a/X])) € Tpixsal[Gi]
By Proposition 10.8 (decomposition of the evidence) we know that
pie §€G", @] = my(pi(e 5 )G, a1 § pile 5 )@, d]
Lets take R = V, [G'].
Note that
o W' =W"R(a,p(G), p(G"), V,[G']) = W’
e El= IWW*.Ei(P(G,))s
o Ei. = lifty. 5 (Gpi). Gpi = unlifi(my(pi(e 5 ¢'))) € p(G),
o p'=plX > al
o &7l = 1l (pie s €)G', d] = (EnlEl/X], Ei[@i /X]), such thate; ™' = W*.E; + p(G”[G'/X]) ~
p(G"[a/X])), afi = lifty,. z (@), and E] = lifty,. 2 (p(G")), & '.n = k and
o (W, v11,012) € V,[G”[G'/X]], then (W*, v1y, v12) € V,[G”[G'/X]].
By the Lemma §10.6 (compositionality) we know that

(W mi(pi(e 5 €NIG, dlon = p'(G”), mlpae 5 )G, évrs = p'(G™))) € T [G”]

or what is the same

(W*, i (pa(e 5 G, Glon = p(G)a/X], 7! (pale 5 € )IG, @lonz = p(G™)@/X])) € Tpixsa)[G”]

Then we know that

(LW, efu] = p(G")a/X], e+ p(G™)/XT)) € Vit [G']
where vy; = e],u; :: p(G”[G'/X]) and ¢] = £, § 7 (pi(e 5 NG, a).
Note now that
o (LW, efu] = p(G)a/X]. ejuty = p(G™)[@/X]) € Voxna[G”]
o (e5e)X]FE;AX G ~Gy, (e5e)[X]n=1
o iW* e S[E] and (W™, p’) € DA, X],
Then, by Lemma 10.5 (Ascription Lemma), we know that

UatW™, (] p1((e 5 €NXDug = p'(GY), (&5 5 p5((e 5 eNXDuy == p'(GY)) € Vi [G]
or what is the same

UeetW™, (613 pale s )[a auy = p(Gla/X], (¢5 5 pa(e 5 €M)l d, d]ug = p(GDIa/X])) € Vpixisa[Gi]

The result follows immediately.

(W, (p1(e 5 €)IG, dlon = p(Gla/X], (pale 5 €))[Ca, @lorz = p(Ga/X])) € Tpixma) [G1]
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ProPOSITION 10.4 (COMPATIBILITY-EUNPACK). IfZ;A;T F i <1 : 3X.G, E; A X;T,x : G +

t] <t : Gy and Z;A v Gy, then 25 A;T + unpack(X,x) = t; int] < unpack(X,x) =t int, : G,.
Proor. First, we are required to prove that
Z;A;T Funpack(X,x) = t;int] : Gy
But by unfolding the premises we know that Z;A;T + t; : 3X.Gy, E; A, X;T,x : Gy + t] : Gy and
Z; A + Gy, therefore:
20Tkt 3X.Gy E;A,X;F,X:Gll—t{:Gz ZAF Gy

(Eunpack) -
E; AT F unpack(X, x) = ¢t; in tl.’ : Gy

Consider arbitrary W, p,y such that W € S[Z], (W, p) € D[A] and (W,y) € G,[I']. We are
required to show that
(W, p(y1(unpack(X, x) = t; in t7)), p(y2(unpack(X, x) =t in t;))) € 7,[G:]
First we have to prove that:
W.E; + p(yi(unpack(X,x) = t; in t])) : p(Gz)

As we know that Z; A;T + unpack(X,x) = t; in t/ : Gy, by Lemma 6.25 the result follows
immediately.
By definition of substitutions

p(ys(unpack(X,x) = t; in £})) = unpack(X,x) = p(yi(ty)) in p(yi(t)))

Therefore we have to prove that

(W, unpack(X, x) = p(y1(t1)) in p(y1(t))), unpack(X, x) = p(y2(t2)) in p(y2(t;))) € 7,[G.]
Second, consider arbitrary i < W.j, ;. Either there exist v; such that:

W.E; » unpack(X, x) = p(y1(t1)) in p(y1(t])) —"' E1 > 01

or

W.E, » unpack(X.x) = p(yi(t1)) in p(y1(t]) ' E; » error

Let us suppose that W.Z; > unpack(X, x) = p(y1(t1)) in p(y1(])) —' E; > 1.
Hence, by inspection of the operational semantics, it follows that there exist iy < i, 21; and vy;
such that:
W.E» p(y1(t1)) —" Eq1 > 011

Instantiate the second conjunct of Z; A; T + #; < £, : 3X.G; with W, p, and y. Note that W € S[=],
(W,p) € D[A] and (W,y) € G,[I']. Then we have that (W, p(y1(t1)), p(y2(t2))) € 7,[3X.Gq].
Instantiate this with i;, Z; and vy; . Note that i; < W.j which follows from i; < i < W.j.

Hence,there exists W; > W and vy, such that W.E, b p(y2(t;)) =" Wi.E, > v12, (Wh, v11, v12) €
(Vp [[ElXGl]] and le +i; = W,j.

Hence, vy; = ¢/(packu(G/, v{) as 3X.G}’) :: 3X.p(G), where ¢] = k.n and v] = &y;u; :: Gp;.

From (Wi, v11,v12) € V,[3X.G1], it follows that there exists R € ReLw, ;j[G], G;] such that
Ve' Ik ;A + 3X.Gy ~ 3X.G; (¢/.n = 1) it is true that

(WY, (e] 3 pr(eNIG), é1o] = p(Gola/X], () 5 pa(e DG, alvs = p(G)[e/X]) € Toixsa[Gi]
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where W/ = Wi ® (o, G{, G, R). If we take ¢’ = I5(3X.Gy, 3X.G;), then
(ei 5 pieN) = ¢

Therefore we know that

(W, €1[G}. dloy = p(Go)la/X], &5 Gy, 1o} = p(G)[a/X]) € Tpixisal[Gi]
If W/, » ¢][G]. @]} =: p(G1)[a/X] —> error the result follows immediately. Otherwise, if

W/Ey > ][G], d]o] = p(G)lar/X] —" T W/E) b op
where vp1 = (g1 38{[61, aluy = p(Gy)[ae/X], then

W/E, > )[G). dlvy = p(Gy)a/X] " W[.Ez > vps

where vy = (e 5 ¢, [é;, aluy = p(Gy)[ar/X] and (W), vp1, Vp2) € Vpiximal[G1], where W) =iy,
W/ and W) .j+k+1=W/.j.
Note that )
W.Eq > unpack(X, x) = p(y1(t1)) in p(y1(t])) —"
W1.E; » unpack(X, x) = vy in p(y1(])) sk WLE > toa/X][vp1/x] ¥ E1 > vy

wherei =iy +k+1+i,.
Instantiate the second conjunct of Z;A, XTI x : Gy + t] < 1 Gy with W), p[X — «],

ty
ylx = (vp1,vp2)]. Note that W, € S[E](W, = W), (W,, p[X — «a]) € D[A, X] and (W,, y[x —
(Vp1,Vp2)]) € G, [T, x : G1]. Then we have that

Wy, ri(pD)a/XT[vpr /x], va(p(t))a/X[vp2 /x]) € Tpixisal[Gel

Instantiate this with i, < W, .j = Wj—iy —k—1(i, =i—i; —k —1,i < W,j), E; and v; . Hence,
there exists W, > W, and v; such that

W’ By e ya(p(t))[d/ X [vpe/x] =" Wo By b v, Wo By = B, Wp.j + i, = W, .j and

(Wa, v1,v2) € Vpixima1[G2]
We are required to show that there exists W, > W and v, such that
W.E, » unpack(X, x) = p(y2(t2)) in p(y2(t;)) —" WoE, > v,

S Woj+i= W](I/Vz] =Wj—-i— k-1- Ip,i =11 + k+1+ iz) and (%,01,02) [S (Vp[[Gzﬂ, which
follows from (W, vy, v3) € Vyx1a][G2] and E; A + G,. O

PROPOSITION 10.5 (ASCRIPTIONS PRESERVE RELATIONS). If (W, v1,v2) € V,[G], e I ;A +
G~ G, W e S[E] and (W, p) € D[A], then (W, p1(e)v1 :: p(G'), pa(e)vy == p(G”)) € T,[G'].

Proor. We only prove the case for existential, the other cases are in 6.2.

Case (G = 3X.G{ and G’ = 3X.G]). We know that
(W, v1,v2) € V,[3X.G/]

Where v; = ¢;(packu(G;*,v;) as AX.p(G;"")) :: 3AX.p(G}') and &; + WE; + X .p(G;”) ~ X .p(G)).
Let’s suppose that p;(¢).n = k and ¢;.n = m. We have to prove that

(W, p1(e)or = 3X.p(Gy), pa(e)vg :: 3X.p(GY)) € T,[3X.G{]
If (&1 ¢ p1(e)) fails, then we apply Lemma 6.26 to show that (¢, § p2(¢)) also fails, therefore the proof
holds immediately. In the other case, (¢; § pi(¢)) do not fail, then by the definition of 7,[3X.G/],
we have to prove that:
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(LKW, (e13p1(e))(packu(Gy ™, o]) as 3X.p(G})) = 3X.p(Gy). (e23p2(e))(packu(Gy™, v3) as IX.p(GY")) = 3X.p(G}))

€ V,[3X.G]]

or what is the same:

YW” = W, @.3R € ReLy [GE, G3].
(W".Ey F GE AW".Ey + G} AVE, ¢ I E;dom(p) + 3X.G| ~ IX.G/,E € S[E], ¢’ .n = L.

(W™ (e1 5 prle 5 eDGE o] = p(GPla/X), (e2 5 pa(e 5 €)G d10f = p(G)a/X]) € Toixisa) [G]]

where W' = (W) ® (a, G, G, R)).
Let’s suppose that v] = ¢;"u; :: G{”[G]]. Therefore, we are required to prove that

((UesremW"Ner" 515 pa(e 5 €))[Gy dlur = p(G]la/X],
e2" 5 (e2 5 pale 3 €' )IGy, dluz = p(G)[a/X]) € Vppxsa) [G1]

Note that by Lemma 10.9 we get that
(i 3 pile 3 NG, @] = (e 3 72 (pile § HIGE, 413 pile § ), é] =
(i 3 pi(ni(e 3 IGE, 13 pile 3 €))d é]

By premise, we know that (W, v1,v,) € V,[3X.G]]. Then, we instantiate this definition with
Te W) =W W” = (liW) = (Tx W’) = TrlxW) and a. Therefore, 3R € ReLy~[G], G} ],
such that for all evidence ¢/ I+ E’;dom(p) + 3X.G ~ 3X.G}, in particular ¢ = (e 5¢’)

(7i(e 5 ¢’).n = k). Therefore, we know that (W"’ = (W” ® (a, G}, G}, R))):
(W' (e1 3 p1(ri(e s MG @lv] = p(GYe/X ), (e2 5 pa(ni(e 5 € DGy dlvy = p(GY)e/X])
€ 7;)[Xb—>a] [[Gi,]]

Then, we get that:
((LestW""), 01", 05") € Vo x1541[G]']

where v] = &" 5 (¢ § pi(ri(e 5 )G, lu; = p(Gy)a/X].
By induction hypothesis on (({x+; W), v1",v}") € Vyxisa1[G]], With (e 5 &)[X] - Z;A, X +
G/ ~ G (e 3.¢)[X].n = m), (Leut W) € S[E] and (Leut W), p") € DIAX] , p = pIX > a,

we get that:
((xstW""), pi((e 5 NXD0Y” = p(GDIa/XT, pi((e 5 )X Dvy” = p(GDa/X]) € Tpixi-a1[G1]
or what is the same (note that p}((e § ¢")[X]) = pi(e § £")[d, @]):

((rrtW'"), pr(e s €Nl alof” = p(GDla/X], pae s €M)ld dlvy” = p(GDla/X]) € Tp[xia) [G1]

or what is the same:
(U+14mW""), UT’ ’U;) € Voixisal [[G{]]
where v = ¢, 5 ((¢; § pi(n{ (e § G, @l 5 pile § el @y = p(Ger/X].

By the reduction rule
W 51> (13 p1(es 5’))[@1‘, alog = p(G)la/X] —skrmil g, (o

Therefore, the results follows immediately (Lx+1+mW'"), v}, v;) € Vpixma][G1])-
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PROPOSITION 10.6 (COMPOSITIONALITYEX). If

o W.E;(a) = p(G’) and W.k(a) = V,[G'],

e E} = lifty, 5,(p(G")),

o E; = lifty, = (Gp) for some G, T p(G),

o p'=p[Xal

o ¢ = (Ei[aFi /X1, Ei[E;/X]), such that e; + WE; + p(Gla/X]) ~ p(G[G'/X]), and

o &1 = (E;[E}/X], Ei[a®i/X1), such that e, + W.E; F p(G[G’/X]) ~ p(Gla/X]), then
(1)
(W, e{uy == p'(G), equp == p'(G)) € Vy[G] =

(W, e1(equr = p(G)) = p(G [G'[X]), e2(e3uz == p(G)) == p(G [G'/X])) € T,[G [G'/X]]
()
(W, ejur = p(G [G'/X]), equz == p(G [G'/X])) € Vo [G [G'/X]] =
(W.e1 (efur = p(G [G'/X])) 1 p'(G). &2~ (ejuz = p(G [G'/X])) = p'(G)) € T [G]

Proor. We only prove the case for existential, the other cases are in 6.2. We proceed by induction
on G. Let v; = ¢/u; = p’(G), A = dom(p). We prove (1) first. Let’s suppose that e].n = k, e;.n =1
and e;7'.n = m.

Case (3Y.G;). We know that
(W, etuy == p'(G), e3uz = p'(G)) € Vy[G]
where u; = packu(G;}, v}) as 3Y.G;’ and G = 3Y.G;. Therefore, we have to prove that
(W, ex(e{uy 5 p(G) 5 p(G [G[X]), ex(efus 5 p(G)) = p(G [GIXT) € V,[G [G'/X]]

If ] § ¢; is not defined, the result follows immediately. If it is defined, we have to prove that:

(LW), (e1 s en)ur = p(G [G'/X], (3§ e2)uz = p(G [G'/X])) € V,[G [G'/X]]
or what is the same by the definition of V,[G [G’/X]], we have to prove that:

YW’ = ([;W), §.3R € ReLy (G}, G} .
(W"E1 + G AW"E, F Gz AVYe FE;AFIY.G1[G/X] ~ TY.Gy [G’{X]A/\ en=k
(W, (e] § €15 p1(e)IGT, Blog = p(GilG'[XIIB/YD), (€5 5 €2 5 pa(e”)IGS, flvy == p(G1[G"/X1[B/Y]))

€ Toivp[G1G"/X1]

where W' = (W”) ® (a, G, G, R)). Therefore, we are required to prove that
(ka1 W)™ 5 (1 5 1 3,01(8/))[@?%])"{ = p(G1[G'/X][B/YD),

(2" 5 (¢} 5 225 pa(e )Gy, Bug = p(GiG IXNIB/YD) € Typyrs ) [GrIG/X]]
where v] = ¢;"u] : G/'[G]/Y].

Note that by Lemma 10.10 we know that ¢; = p;(¢"*)[e, p(G’), X] for some ¢ + Z;A, X +

3Y.G; ~ 3Y.G;. Therefore, by Lemma 10.11 we get that for some ¢* I+ Z; A, X + 3Y.G; ~ 3Y.Gy:
(e] 3 €i 3 pie NG B = (¢ 5 pi(e™)la, p(G'), X1 5 pi(e NG, Bl =
(] 3 pieMle, . XDIGE, B3 (5 (pi(e)la, p(G'), Y13 pile DB, B =
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(e 3 P(ENIC, 15 (3 (pile™ et p(G), Y15 pile”DIB, B]

By premise, we know that (W, ¢]u; :: p'(G), ejuz = p'(G)) € V,y[3Y.G1]. Then, we instantiate
this definition with (T; W) > W (W"” > ([;W) =T W” = (T;];W)) and . Therefore, 3R €
RELy~ j[G], G;], such that for all evidence ¢ I E;A,X + 3X.G] ~ 3X.Gj, in particular, we
instantiate with ¢” = ¢*[X] (¢”.n = I). Therefore, we know that (W""” = (W") ® (8, G}, G;, R))):

(M W7, (e 5 pL(eNIGE, Blog = p (GOIB/Y . (e) 5 py(e NG, Blug = p/(GDIB/Y] € Toriyis s [Gi]
Therefore, we know that
LW v, vy) € Vyrysp[Gi]

where o] = & 5 (¢] 5 p|(e")IG}, fluf = p'(GDIB/Y].
Note that, for some G, C p[Y +— B](G1), we get E} = liftyn = (Gpn) such that:

unlifi(ry(plY = Bli(e%)) = Gph € plY > FI(Gy) and E; = liftyyn, = (Gpr)
75 (pi(eNLB, Bl = my(plY = Blie™)) = (E}, E}), by the definition of 7; ()[.]
7y (pi(e*)e, p(G'), X][B, B] = 75 (plY = Bli(e*)la, p(G'), X] o
(E;[a®i/X), E;[E;/X]) = (E}. E}) [a. p(G'). X] = 7 (pi(e™))[a. p(G") X][. ]
Now, by the induction hypothesis we get:

o (LW, v, v)) € Vpryop[Gi]

o W/ E(a) = p[Y = BI(G’) and W.k(ar) = Vv 51 [G'],

o Ef = liftyym = (p[Y — BI(G)),

o E; = liftynz (Gpa), Gpn © plY = BI(Gy),

o p” =plY = BlIX — al, o

o e = (E;[a%i /X1, E{[E[/X]) = m;(pi(e")et, p(G"), Y][ . ] (ein-n = 1), such that

ein F WWEik plY o Bl(Gila/X]) ~ plY = BIGI[G'/X])

(LW, eipoy’ = plY = BIGIG/X]), e2nvy == plY = BI(GIIG'/X])) € Tpiyispi[G1lG/X]]

If the combination of evidence does not succeed, then the result follows immediately. Otherwise,

we get that
(lk+lW,’/W,,/’ U{//’ vé/l) c (VP[YHﬁ] [[Gl [G/X]]]

where v/ = (e, 5 (¢] § pi(e")[G?, Bl 5 e = p[Y = BUGI[G'/X])

i

By the ascription Lemma 10.5:

o (LW, 01", 0)") € Vv p)[GilG/X]]

o J[Y]HE;A Y FGG'/X] ~ Gi[G'/X] ('[Y].n=K)

o LW € S[E] and ({x /W, p[Y = B]) € D[A, Y]
then we have:

UretW", pr(eN)IB, Bloy” == plY = BIGI[G'/X])),
p2(eNB. Blvy” = plY = BI(G1[G'/X])) € Tpiympi[G1IG/X]]

If the combination of evidence does not succeed, then the result follows immediately. Otherwise,
we get that

Ukeatee W, 01", 0)") € Voiys g1 [G1G/X]]
where v}’ = (e;" 5 (e] $ p(eN[GL. B 5 ean 3 pi(e B, P == p[Y > BI(G1[G’/X]) Note that
WE » (] s 215 pi(e))[Gy. Blof = p(Gi[G/X][BY]) —F+ W5, » 0]
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And, we have to prove
(W™, (e 5 615 pi(eDGy, Blof = p(Gal G IXNBIYY), (5 5 225 pale )G, Blog = p(GIG'/X1IB/ YD)

€ Toiymp [G1IG'/X]]
Therefore, the result follows immediately (L k+14xW "), v, v)"") € V,iysp1[G1[G/X]]).

|
LemMaA 10.7. Ife k- E; A+ 3X.Gy ~ AX.G; thene [X] F E5A, X F Gy ~ Ga.
Proor. Straightforward by induction on the evidences. ]
LEmMmA 10.8.
¢[E1, Ez] = n} (¢)[E1, E2] § e[ Ea, E2] = m2(e)[Ex, E2] § e[ Ez, Ez]
Proor. Straightforward induction on the evidence structure. ]
LeEmMmA 10.9.
(e 3 €")Er, Eo] = (e 3 1} (¢")[En. 2] § €' [Ea, E2] = (¢ § 2(¢"))[Ex, E2] § €[z, Ex]
Proor. Straightforward induction on the evidence structure. |

LEMMA 10.10. Ife; - WE; + p(G) ~ p(G), W € S[E] and (W, p) € D[A], then Ie + E,A+ G ~
G such that e; = p;(¢).

Proor. Straightforward induction on the evidence structure. ]

LEMMA 10.11 (EVIDENCE DECOMPOSITION). If
—akFEAX,YEG~G
-6 FEAXFG[IG/Y]~G” andE;A + G’
~ W e S[EL, (W, p[X - al[Y — BI) € DA, X, Y], WE(@) = p(Gi) and W.E(B) = p(G)
then3de v E;AX,Y+G~G
(pi(e)lB, G, Y15 pi(e2))|Gis @, X] = (pile)[B, B, YDIGi» ., X1 5 (m3(pi(e))B, G, Y15 pile2))ex, &, X]
Proor. We proceed by induction on G.

Case (G = Band G” = B). Then, we know that ¢; = (B, B). Therefore, if we choose ¢ = (B, B) the
results follows immediately.

Case (G = G — G/, and G” = G; — G, ). We know that
-k EAX,Y+HG — G ~G; — G implies that
idom®(e1) ¥ ;A X, Y F G} ~ G/’
- &k EAX (G — G))G'/Y] ~ G] — G, implies that
idom* (e,) ¥ B A, X + GY[G' /Y] ~ G|
Therefore by the induction hypothesis, we know that 3¢" - Z; A, X, Y + G}’ ~ G/’ such that
(pilidom*(e)[B.G', Y] 5 pilidom* ()G, a. X] =

(pi(e"B. B, YDIGi, &, X1 3 (755 (pi(e )P, G, Y1 § pa(idom® (e2)))[et, t, X]
Also we know that
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- FEAX, Y G — G/ ~G{ — G implies that
icod*(e1) F B;A,X,Y + Gy ~ Gy
- 6 FEAX (G — G))IG' /Y] ~ G| — G, implies that
icod®(¢,) - 2;A, X + GJ[G' /Y] ~ G
Therefore by the induction hypothesis, we know that 3¢” I Z;A, X, Y + G} ~ G}/ such that
(pilicod* (e))[B. G, Y15 pilicod (e2))[Gr @ X] =

(pi(e"B. B, YDIGi, &, X1 3 (5 (pi(e NP, G, Y1 § pi(icod® (e2)))a, &, X]
Therefore, it follows that 3¢ I Z;A, X, Y + G’ = G ~ Gy — G/, such that the result follows
immediately (¢ = (m1(¢”) — m(e”), m2(¢”) — ma(e””))). Note that
. idomﬂ(s) =¢
° icodﬁ(s) =g
o idom*((pi(e1)[B, G, Y13 pi(e))[Gy, 2, X]) =
(pi(idom® (e)))[B, G', Y15 pi(idom® (e,))[Gi, &, X] =
(PP, B, YDIGi, &, X153 (5 (pile )P, G, Y1 § pilidom? (e2)))er, o, X] =
idom®((pi(e)[B, B YDIGi, ot X1 5 (73 (pi(e)IB. G, Y1 § pae2))lex, . X])
o icod*((pi(en)[B. G, Y15 pi(e2))[Gi . X]) =
(icod* (pi(icod® (e1))[B, G, Y] § pilicod® (e2)))[Gi, 2, X] =
(pi(e")B, . YDIGi, &, X1 3 (73 (pi(e" DB, G, Y15 pilicod® (e2)))[er, o, X] =
icod®((pi(e)[B. B. YDIGiv a, X1 5 (3 (pi())[B. G, Y15 pi(e2))er, &, X))

Note that two evidences are equals if and only if their idom* and icod* equals too.
Case (G = VX.G{ and G” = VX.Gj). Similar to function case.
Case (G = G; X G2). Similar to function case.

Case (G = a). This means that evidences do not have type variables, therefore, type substitutions
are not applied. For this reason, the result follows immediately.

Case (G = ). This means that evidences do not have type variables, therefore, type substitutions
are not applied. For this reason, the result follows immediately.

Case (G = ). This means that evidences do not have type variables, therefore, type substitutions
are not applied. For this reason, the result follows immediately.

Case (G = X). Then, we know that ¢; = (X, X) and ¢, = (X, X). Therefore, with ¢ = (X, X) the
result follows immediately.

Case (G = Y). Then, we know that ¢; = (Y, Y). Since, &, + Z;A,X + G’ ~ G” and Z;A + G’
(without X), we know that

pi(e2)[Gi, a, X] = pi(ex)[a, &, X] = pi(e2)
Therefore, 3¢ = (Y, Y), such that the result follows immediately.

Case (G = Z). Then, we know that ¢; = (Z,Z) and ¢, = (Z, Z). Therefore, with ¢ = (Z, Z) the
result follows immediately.

Case (G = ?). We follow by case in the evidences.
e ¢ = (2,7?), then 3¢ = &, such that the results follows immediately (by Lemma 10.8).
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Strict type precision

G1 <Gy
3X.G; < 3X.G;

‘ QrZE;»s:G<Eyrs: G ‘ Strict term precision (for conciseness, s ranges over both t and )

<
<

( k) Gi SGé QFrE;rv; ZGl[Gi/X] < Ey> vy :Gz[Gé/X] 3X.G1 C 3X.Gy
<packu
packtte Q+ E1 » packu(G/,v1) as IX.G; : 3X.G1 < Ey > packu(G),v2) as 3X.G, : IX.Gy
o) G <G, QrEiot;:GIG|/X]<Eyrty:GlGy/X]  IX.Gi < AX.G
<pac
packe Q+ Eq > pack(G/, t1) as AX.G1 : IX.G1 < Ey > pack(G/, tz) as X.G : IX.G

QrE;pt:IX.G1 < Eprt2:3X.Ga Qx:G1EGFE vt 1G] <Ep»t): Gy

(<unpack,) = o = —
QF E;»unpack(X,x) =ty int] : G| < Ez»unpack(X,x) =tzint;: G,

Type matching

?— 3dX.?

‘ Qrv:G< v:G ‘Strict value precision
G/ <Gy Qrou:Gy <uv:G) 3IX.GIEIX.G: G NGi[G]/X] < G NG[G]/X]
Q + pack(G!,v1) as AX.G; : 3X.G1 < pack(G),v2) as IX.G, : AX.G;

Qrt:G<t:G|Strict term precision

(<packu)

ot G| <G, Qrh:Gy<t:G) 3X.G <3X.G; G NGi[G]/X]< G} NGG}/X]
Q + pack(G/, t1) as AX.G; : 3X.G1 < pack(G), t3) as 3X.G2 : AX.Gy
QrH:G1 <t :Gy  Q,x: schmg(Gl) C schmg(Gg) Ft i Gy <ty G
(<unpack)

Q + unpack(X, x) = t1 in t] : G| < unpack(X,x) =tz int; : G,
Fig. 27. GSF? and GSF7: Strict term precision

o ¢, = (2,7), then 3¢ = £ such that the results follows immediately (by Lemma 10.8).
o The other evidence cases are covered in other cases of the proof.

PROPOSITION 12.5. IfE;A;T by ~ £y : G, thenE; AT F 1) % 15 : G.
ProoOF. Similar to Th. 6.32. |

10.5 A Weak Dynamic Gradual Guarantee for GSF3

ProPOSITION 10.12. If Q + t] : G} < t; : G5, Q =17 C I, A;T; v & ~ £ : Gj, then
Qret G S Ep»t57: G;.

Proor. We follow by induction on Q + £ : G| < t; : G;. We avoid the notation Q + ¢ : G} <
t; : G, and use t] < t; instead, for simplicity, when the typing environments are not relevant. We
use metavariable v or u in GSF to range over constants, functions and type abstractions. We only
proof here the cases related to existential types. Other cases where proved in Section 5.
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Case (<v).
Qru;:G) < up: Gy, G <G

Qru :G) <uy:G;
ATy Fug ~ uf Gl G = I(G],Gy)
ATy b g~ egrup = Gyt Gy
ATy Fuy ~ uy G Gy = 1(G;, Gy)

(sv)

(Gu)

(Gu)
N Fuy ~ eG;ué =Gy G

We have to prove that Q r EGlxui =Gy < gg;ué : Gy : G} < Gj. By the rule (<asc,), we are
required to prove that eg: < eg;, Q F uf < uy : Gf < Gj; and G} T Gj. Since G} < Gj and
Proposition 10.22, we know that G < €G;- Also, by Proposition 10.23 and G} < G;, we now that
G; C G;j. Therefore, we only have required to prove that Q + u] < u; : G] < G,. We follow
by case analysis on Q + u; : G} <, uz : G;. We only take into account the package, where

u; = packu(Gj, v;) as 3X.G}" and G; = 3X.G;’, where 3X.G{’ < 3X.G;’. We know that

G{ < Gé Qrro: G K E3p 0y : Gy ElX.G{’ c ElX.Gé’ G n G{'[G{/X] <Gy M Gé/[Gg/X]
(<pack)

Q r»rpack(Gy, v1) as 3X.G{ : AX.G}’ < E; » pack(Gj, v2) as 3X.G; : IX.G)/
ATy oy i GY[G/X] ~ o) - GY[Gy/X]

A;Ty + pack(G{, vq) as 3X.G" ~ packu(G},v;") as AX.G}" : IAX.G/

ATy F oy GY[Gy/X] ~ vy - GG,/ X]
ATy + pack(G;, v2) as 3X.G;' ~ packu(G;,v;') as AX.G) : IX.G}

We have to prove that Q + »packu(G},v;") as 3X.G}’ : 3IX.G{’ < E,» packu(G;,v;') as AX.G} :
3X.GJ, or what is the same by the rule (<packu,), we have to prove that G| < Gj, Q + »v]" :
G/'[G{/X] € Eyp vy : GJ[G;/X] and 3X.G]’ € 3X.G,/. By premise, G| < G, and 3X.G{’ € 3X.G;/
(Proposition 10.16) follows immediately. Therefore, we only have required to prove that Q + v} :
G/[G/X] < By vy : G/[G;/X], which follows by the induction hypothesis. We know that

v’ = 0] = G{'[G]/X] where ¢, = (G, G{'[G]/X])
vy = &y = Gy |G,/ X] where ¢, = (G, G [G3/X])
where A;T; F v; ~, ] : G, and therefore Q + v] < v, : G; < Ga.

By rule (<asc,), we are required to prove that &; < &, Q + v] < v, : G; < G and G'[G]/X] E
G;'[G,/X]. By induction hypothesis on Q + Z; > v; : G < E3» 03 : Gy, we know that Q + v] < vy :
G < G,. By Proposition 10.26, G" < Gy and G| < G;, we know that G'[G]/X] < G}/[G;/X], and

therefore G{'[G]/X] C G;'[G;/X]. By Proposition 10.14 and G; 1 G{'[G;/X] < G, G/[G,/X], we
know that

(Gpack)

(Gpack)

& = I(Gy, GY[G{/X]) =I1(G1 N G{/[Gi/X], G n Gi'[G{/X]) <
I(G2 NG [Gy/X]), G2 N Gy [Gy/X]) = T(Ga, G [Gy/X]) = &2
Therefore, the results holds.

Case (<ascv). We know that

Qru: G < up: Gy Gy'MGy <GyNG, GjCG,
Qru =G :G]<u :Gj:Gj
ATy Fug~ G e = (G, GY)
ATy Fug = G~ e = GY 2 Gy

(<ascv)

(Gascu)



Gradual System F: Auxiliary Definitions and Proofs 127

AT rup~ uy G e = 1(G),Gy)
ATk up = Gy~ euy Gy i Gy

We have to prove that Q + ¢ju] = G < suy = G; : G] < Gj, or what is the same by the rule
(<asc,), we have to prove that ¢; < &, Q + u; < u; : GI* < G;* and G C G;. By Proposition 10.13,
we know that ¢; = I(G}*, G}) = I(G]" N G}, G;" N G)) and &, = I(G}*, G;) = L(G;* N G, G, M G;).
Since G{* NG| < G;*NG;, then ¢, = 1(G}*,G)) = [(G;" NG}, G"NG)) < I(Gy* NG, G MG;) =
I(G}*, G;) = &, by Proposition 10.14. Thus, we only have to prove that Q + u] < u; : GI* < G,
and we know that Q + u] : GI* <, uj : G;*. We follow by case analysis on Q  u; : GI* <, uy : G}*.
We only take into account the package, where u; = pack(G}, v;) as 3X.G;’ and G; = 3X.G}’, where
3X.G’ < 3X.G}'. We know that

(Gascu)

G/<G, QFvsv;:G<Epp0:G, 3IXG/CIXG) G NGY[G,/X] < G,NGY[G)/X]
<pack
(<pacld Q r >pack(G}, v1) as 3X.G}/ : IX.G| < E5 > pack(G}, v) as IX.G} : AX.GY
ATy R o = GY[G]/X] ~ o) : G[G/X]
(Gpack)

A;Ty + pack(G{, vq) as 3X.G{" ~ packu(G},v]’) as AX.G}" : IX.G/
AT vy i GY[Gy/X] ~ vy - GY[G,/X]
A;T; + pack(Gj, vz) as 3X.G}’ ~» packu(G;,v,’) as IX.G; : 3X.G)

We have to prove that Q + »packu(G},v;") as 3X.G;" : AX.G; < E;,» packu(G;, v,’) as IX.G; :
3X.Gy/, or what is the same by the rule (<packu,), we have to prove that G| < G}, Q + »v; :
G/[G/X] < Bypvy : GY[G,/X] and 3X.G{ C 3X.G,/. By premise, G; < G; and 3X.G}' € 3X.G;
(Proposition 10.16) follows immediately. Therefore, we only have required to prove that Q + »v{" :
G/[G]/X] < Eyv» vy : G/[G;/X], which follows by the induction hypothesis.

We know that

(Gpack)

v’ = 0] = GY'[G]/X] where ¢, = (G, G{'[G]/X])
vy = &y = G |G,/ X] where ¢, = I(G,, G [G3/X])
where A;T; F v; ~, ] : G, and therefore Q + v] < v, : Gy < Ga.

By rule (<asc,), we are required to prove that &; < &, Q + v] < v}, : G; < Gy and G'[G]/X] E
G;'[G,/X]. By induction hypothesis on Q + Z; > v; : G < E3» 03 : Gy, we know that Q + v] < vy :
G1 < G,. By Proposition 10.26, G” < Gy and G| < G;, we know that G{'[G]/X] < G}/[G;/X], and
therefore G{'[G]/X] C G;'[G;/X]. By Proposition 10.14 and G; N G{'[G;/X] < G, G/[G,/X], we
know that

&1 = 1(G, GY'[G}/X]) = I(Gy N GY'[G}/X], Gy N GY'[G}/X]) <

1(G2 M Gy[Gy/X], G2 M Gy [Gy/X]) = 1(G2. G [G,/X]) = e

Therefore, the results holds.

Case (<pack). We know that

G <G, Qrrt;:G<Eyrty:Gy; 3IX.G<3IX.G) G NG/[G]/X] <G NG)[Gy/X]
<pack
(Spack) Q r ppack(Gy, t;) as AX.G; : 3X.G}’ < B, » pack(G,, 1) as AX.G}' : 3X.G)/
A;H F it~ t{ : G1 tl’/ = norm(tl’,Gl,Gi’[G{/X])
(Gpack)

A;Ty F pack(Gy, t1) as 3X.G{’ ~» pack(G],t") as IX.G : IX.GY
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AT rty~ t): Gy t) = norm(ty, Gy, G)/[G,/X])
A;T; + pack(Gy, tp) as 3X.G}' ~» pack(G,, t,’) as IX.G; : 3X.G)

We have to prove that Q + »pack(G],t;") as AX.G]" : AX.G]" < E; » pack(Gj, t;') as AX.G; :
3X.GJ, or what is the same by the rule (<pack.), we have to prove that G| < G;, Q + »t]" :
G/[G]/X] < Eypty : G/[G;/X] and 3X.G]" < 3X.G}. By premise, G; < G, and 3X.G}’ < 3X.G)/
(Proposition 10.16) follows immediately. Therefore, we only have required to prove that Q + >, :
G/[G]/X] < Ey»ty : GJ[G,/X]. We know that

t;" = norm(t{, G1, G{'[G]/X]) = e1t] = G{'[G]/X] where &; = (G, G'[G;/X])

t,) = norm(ty, Ga, GG/ X]) = exty == G/ [Gy/X] where ¢, = I(Ga, G [G3/X])

By rule (<asc,), we are required to prove that &; < &, Q - t] < t; : G; < Gz and G/'[G]/X] E
G;'[G,/X]. By induction hypothesis on Q + »t; : G; < Ey >ty : Gy, we know that Q + ] < ¢, :
G < G,. By Proposition 10.26, G’ < G’ and G| < G, we know that G{'[G]/X] < G'[G;/X], and
therefore G{'[G;/X] C G;'[G;/X]. By Proposition 10.14 and G; N G{'[G]/X] < G, N G'[G,/X], we
know that

(Gpack)

&1 = 1(Gr, GY'[G}/X]) = I(Gy N GY'[G}/X], Gy N GY'[G}/X]) <
1(Ga NGy [G3/X], G2 MGy [Gy/X]) = T(G2, G [G5/X]) = &2
Therefore, the results holds.

Case (unpack). We know that

QFroty;: Gy < Eyp ity Gy Q,x: schmg(Gl) c SChmg(Gg) F>lig Gi < Egbiy: Gé

(<unpack) - -
Q rrunpack(X,x) = ti1 in t15 : G] < Ey > unpack(X,x) = ty; in ty : G
ATy kit~ t] Gy )] = norm(t],, Gy, Elvarﬁ(Gl).schmg(Gl))
ATy, x e schmg(Gl) F g~ t], : G
(Gunpack) - X
ATy + unpack(X, x) = t11 in 3 ~> unpack(X,x) = t]] int], : G]
ATy kb~ by, Gy by = normt,,, G, Elvarﬁ(Gg).schmg(Gz))
ATy, x : schmf(Gy) F 1y ~> 1, : G}
(Gunpack)

A;Ty + unpack(X, x) = ty1 in 2 ~> unpack(X,x) =t} int}, : G,

We have to prove that Q + unpack(X,x) = t{] in t/, < unpack(X,x) = t;] int,, : G| < G, or
what is the same by the rule (<unpack, ), we have to prove that Q + ¢ < ] : Hvarﬁ(Gl).schmg(Gl) <
Evar“(Gz).schmg(Gz) and Q, x : schmg(Gl) c schmg(Gz) Ft, < t, : G] < Gj. By the induc-
tion hypothesis on Q, x : schmg(Gl) c schmg(Gz) koot 2 G
Q,x: schmg(Gl) c schmg(Gz) F 1], < t,, : G < Gj. Therefore, we only are required to prove that

Qri<ty: Hvarﬁ(Gl).schmg(Gl) < Elvarﬁ(Gz).schmg(Gz). We know that

X
< By »typ ¢ Gy, we know that

1y = norm(t},. Gr. Ivar* (Gy).schmb(G)) = 11, = Ivart (Gy).schmf(Gy)
where &1 = I(Gy, Ivart(Gy).schmf (G1)) = T@vart (Gy).schm? (G1), Bvart(Gy).schmf (Gy)) =
£ 3vark (Gy)..schmf (G)
t31 = norm(ty;. o, 3vart (Gy).schmf(Gp)) = e2ty, = Ivark(Gy).schml(Gy)
where &5 = 1(Ga, vart (Go).schm®(G2)) = I(3vart (Go).schm (Gz), Fvart (Go).schm(G»)) =

Eﬂvar”(Gg).schmg(Gz)
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By induction hypothesis on Q F t1; : G; < t31 : Gy, we know that Q + »t{, : Gy < Eyr iy, : Gy, and
by Proposition 10.16, we know that G; C Gy, thus Jvart (Gl).schmg(Gl) C Elvarﬁ(Gg).schmg(Gg).
Therefore, we only have to prove by rule (<Masc,) that ¢; E ¢,. But, by Proposition 10.15 and
Jvart (Gl).schmg(Gl) c Elvarﬁ(Gg).schmg (Gs) the results holds.

O
ProrosITION 10.13. J=(Gy M Gy, G; M G;) = I2(Gy, Go)
Proor. By the definition of M and 7= (Gy, Gs). O
ProrosITION 10.14. IfG; M Gy < G; M G, then
I=(Gy, Gy) = I=(G1 N G2, G1 M Gy) < I2(G] M Gy, Gy N Gy) = I=(GY, Gy)
Proor. By Proposition 10.13 and the definition of < in evidence. ]
ProrosITION 10.15. If Gy < G, then
IE(Gl, Gl) [y (Gz, Gz)
Proor. By the definition of 7z and the C in evidence. O
PROPOSITION 10.16. Q + Z; > 51 : Gy < Eyb sy : Gy then G C Gs.
Proor. By the definition of M and 7= (Gy, G,). O

ProPOSITION 10.17. IfE; Ft] S Ep F t;, andE > t] — E]

=/ ok =/ 3k
El R <EjRty

EES = * ’:*/ 3k
> ", thenEy > t; — E5» 1" and

Proor. If E; + tf < By + £, we know that - ] < t; : G] < G, E; < By, By F 1] : G]
and Z, + t; : G;. We follow by induction on + t; < t; : G] < G;. We avoid the notation
Ft1 <t : Gy < Gy, and use t; < t; instead, for simplicity, when the typing environments are not
relevant. We only take into account the existential unpack case.

Case (pack). We know that
Gi, < Gé/ F El > 11t Gll[Gil/X] < EZ > fop ¢ Gzz[Gé’/X] ElX.Gn < ElX.Gzz
F 21 > pack(G{’, t11) as 3X.Gy; : AX.Gy11 < Ey > pack(G}/, tz2) as IX.Gyy : AX.Gyo

—

Also, since Z; » t] — E] v t], we know that #;; = v;;. By Proposition 10.27 and + Z; » t1 :
G]][G{’/X] S Egpiy: Gzz[Gé,/X], we know that ty; = vy,
By the reduction rules, we know that

(<pack)

g » pack(Gy, v11) as AX.G11 — Ep > £3x .G, packu(Gy’, v11) as AX.Gy1 = IX.G1y
By > pack(Gy/, vg2) as 3X.Gay — B3> £3x.G,,packu(Gy, va2) as 3X.Goy == 3X.Gap

We are required to prove that
F e3x.G,, packu(Gy,v11) as 3X.Gy; = IX.Gyy <<

€3X.Gppacku(Gy, vaz) as IX.Gyp = IX.Gpp : AX.Gyy < IX.Gpp
This follows immediately by rules (<packu,) and (<asc,). Note that e5x G,, < ¢3x.6,,, by Lemma 10.15.
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Case (unpack). We know that
FE>t: AX.Gp S Egp iy AX.Gy x: Gy EGZI-ElDtlzZGi < Eg bty Gé

(<unpack) - -
F 21 > unpack(X, x) =ty in t15 : G] < Ey > unpack(X,x) = ty; in tpy : G

Also, since 2y > t; —> E]»t], we know that t;; = ey1packu(G;, e1uy :: G11[G]'/X]) as 3X.Gyy =
3X.G;. By Proposition 10.27 and + E; » t17 : 3X.G; < E, » tp1 : 3X.G,, we know that £ =
egapacku(Gy, eauy :: Goo[ G}/ /X]) as AX.Gyp :: AX.G,. By the reduction rules, we know that

E1 > unpack(X,x) = t11 in tig — E] > ti2[a/X][((e1 3511[G{'a aluy = Gila/X])/x]
where 2] = Eq, a0 := G/ and d; = liftE,I(a).

We know that e; < e, 2] < E} and G < G/, therefore by Proposition 10.19, we know
that £,,[G},d] < e2[G}, @]. Therefore, we know that (¢ § 1,[G/,d]) < (2 § 22[GY, &), by
Proposition 10.20 and ¢; < &;.

Therefore, we know that

Z2 > unpack(X, x) = fa1 in tg —> 25> taa[@/X][((e2 86‘22[@', al)uz = Ga[a/X])/x]

where 2 = 55,0 := G and o, = liftE;(a).
Since E; < E; and G’ < G;/, we know that 2] < E}. Therefore, we only are required to prove
that

tialé/X1[((e1 3 1[G, @lur = Gila/X1)/x] : G} < toald/X][((e2 5 €22[GY, @z = Gala/X])/x] : Gy

By Proposition 10.21 we know that t15[d; /X] < t22[d2/X].

We know that ((¢1 5 e11[GY, @Dus = Gila/XD) < ((e2 5 e22G). &l)uz = Gala/X]), by the Rule
(<asc,) and since u; < uy, (&1 811[61/, al) < (e ezz[ég’, a]) and G,[a/X] C Gy[a/X] (by Proposi-
tion 10.24 and Proposition 10.25). Finally, by Proposition 10.18 the result holds.

O

PROPOSITION 10.18 (SUBSTITUTION PRESERVES PRECISION). IfQ',x : Gi C Ga 51 < 52 : G| < G
and Q'+ v; < vy : Gy < Gy, then Q' + s1[v1/x] < s3[va/x] : G] < G,

Proor. We follow by induction on Q’,x : G; E Gy + t; < t : G] < G;. We avoid the notation
Q,x: G CE G+t <t:G] <Gy, andusety < tp instead, for simplicity, when the typing
environments are not relevant. Let suppose that Q = Q’, x : G; C Ga.

Case (packu). We know that
GI"< Gy QrEirv: GG /X] < Eyru,: GG /X] 3X.G] E3IX.G,
Q + E; » packu(Gy*, v7) as AX.G] : 3X.G] < E; » packu(G;*, v;) as IX.G; : IX.G;

(<packu,)

Note that we are required to prove that
Q + E; » packu(G]", v{[v1/x]) as AX.G] : IX.G] < By » packu(G;", vy[vz/x]) as 3X.G; : IX.G,
or what is the same Q + Z; » v{'[v1/x] : G{[G]"/X] < E;» v)'[va/x] : G;[G;*/X]. But the result
follows immediately by the induction hypothesis on Q + Z; > 0] : G{[G]*/X] < Ep»v; : GJ[G/X].
Case (pack). We know that
GI"<Gy QrE;»t:GlG/X]<Eyrt: GG /X] 3IX.G] < 3X.G;
Q + 2y » pack(G}*, t;) as 3X.G| : AX.G] < B, » pack(G}", tz) as X.G; : IX.G]

(<pack,)
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Note that we are required to prove that
Q + E; » pack(G]", t1[v1/x]) as X.G] : AX.G] < E, » pack(G;", tz[vz/x]) as IX.G; : IX.G,

or what is the same Q + Z; » t;[v1/x] : G[G]"/X] < B, » t2[va/x] : G;[G;*/X]. But the result
follows immediately by the induction hypothesis on Q + Z; > t; : GJ[G]*/X] < By 1y : GJ[G/X].

Case (unpack). We know that
QFE st :3X.G <Eyr1,:3X.G, Qx:G CGLFE >t : G <Eyot): Gy

(<unpack,) - -
Q+ E; > unpack(X,x) =ty int] : GI* < Ep > unpack(X,x) =ty int, : G;*

Note that we are required to prove that Q" + Z; » unpack(X, x) = t;[v;/x] in t][v1/x] : G* <

By > unpack(X, x) = ty[va/x] in tj[vy/x] : G;*. Or what is the same Q' + E; > t;[v1/x] : 3X.G] <

Eypbh[vy/x] : AX.G] and Q',x : G} C G, + By > t{[v1/x] : GI* < Ey»ti[va/x] : G;*. But the result

follows immediately by the induction hypothesis on Q + Z; > #; : AX.G] < E; > £, : 3X.G] and

Qx:GICEG,FE >t :G" <Eyrt): Gy

O

PROPOSITION 10.19. Ife; < 2, Gy < G, By < Eg, a := Gy € B, a := G, € E, and 51[61,0?1]
is defined, then €[Gy, d1] < &[G, 3], where d; = liftal(a), ay = liftEZ(a), Gy = liftEl(Gl) and
G, = liftz (Gy).

Proor. Note that ¢; < ¢, and G; < G, by Proposition 10.22. Suppose that ¢; = (3X.E, 3X.E’)
and &, = (3X.E”,3X.E"") (since &[Gy, @] is defined). We are required to prove that

&[G, di] = (E[G1/X], E'[d1/X]) < (E"[G2/X1,E""[d2/X]) = e2[Go, 2]
Thus, we are required to prove that E[G,/X] < E”[G,/X] and E’[¢1/X] < E"[d,/X]. Since
&1 < &, we know that (3X.E, 3X.E") < (IX.E”,3X.E"’), and therefore E < E” and E’ < E"’. By
Proposition 10.26 and ¢; < d, and G; < G,, we know that E[G,/X] < E”[G,/X] and E’[d;/X] <
E’"”’[d>/X]. Therefore the result holds. O

ProprosITION 10.20 (MONOTONICITY OF EVIDENCE TRANSITIVITY). Ifé] < €3, €3 < &4, and €1 § &3
is defined, then &1 § e3 < €5 § €4.

Proor. By definition of consistent transitivity for = and the definition of precision. We only take
into account the existential type case.

Case ([3]- &; = (3X.E;,AX.E})). By the definition of <, we know that (Ey, E]) < (Ej, E;) and
(Es, E;) < (E4, E}). By the definition of transitivity we know that (X .E;, 3X.E{)$(3X.E3, AX.E;) =
(3X.Es, 3X.E) and (3X.Ey, IX.E})§(3IX.Ey, AX.E}) = (3X.Eq, IX.E.), where (Es, EL) = (Ey, E})3
(Es, E5) and (Eq, Eg) = (Eg, E;) § (Ey, Ej). Therefore, we are required to prove that (Es, E;) <
(Eg, E¢). But the result follows immediately by the induction hypothesis on (Ej, E]) < (E3, E;) and
(Es, E3) < (E4, Ey).

PROPOSITION 10.21 (MONOTONICITY OF EVIDENCE SUBSTITUTION). IfQ + s7 < 55 : G] < G]
and 21 < Ey, then Qa/X] + si[d1/X] < s;[dy/X] : Gila/X] < Gj|a/X], where a := G]* €
a =Gy € By, di = liftz (@) and d; = liftz ().
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Proor. We follow by induction on Q + s7 < s, : G| < G;. We avoid the notation Q F s} <'sJ :
Gila/X] < Gj[a/X], and use s] < s instead, for simplicity, when the typing environments are not
relevant. We only take into account the cases related to existential types.

Case (packu). We know that

[1]

G{ < Gé Q FEi > Gl[Gi/Y] < Zyb Uy Gz[Gé/Y] 3Y.G; C 3Y.G,
Q + E; » packu(G/,v1) as 3Y.G; : AY.G; < E, » packu(G,, v,) as 3Y.G, : AY.G;

(<packu,)

We are required to show
Qla/X]+ 21 > packu(G][ar/X], v1[d1/X]) as Y.G1[a/X] :< Eg>

packu(Gj, va[d1/X]) as AY.Gy : IY.Gy[a/X] < Y.Gz[a/X]

Note that G{[a/X] < Gj[a/X] by Proposition 10.26 and 3Y.G;[a/X] E 3Y.Gz[a/X] by Propo-
sition 10.25. Therefore, we are required to prove Q[a/X] + Z; » (v1[d1/X]) : G1[G;/Y][a/X] <
By > (02[d2/X]) : Go[G,/Y][a/X]. But the results follows immediately by the induction hypothesis
on Q+E;r vy Gi[G]/Y] < Eyp vy : Go[Gy/Y].

Case (pack). We know that
G{ < Gé Qr El > 1 GI[G{/Y] < EZ > 1y : Gz[Gé/Y] EYGI < HYGZ
Q + E; v pack(Gy, t;) as AY.G; : IY.G; < E; » pack(G;, t;) as IY.G, : AY.G,

(<pack,)

We are required to show
Qla/X|+FE 1> pack(Gi[a/X], t1[a1/X]) as AY.G1a/X] : < Egp ¢

pack(Gé, to|d1/X]) as AY.Gy : AY.Gy[a/X] < TY.Gy|a/X]
Note that G{[a/X] < G,[a/X] by Proposition 10.26 and 3Y.G;[a/X] < 3Y.G,[a/X] by Propo-
sition 10.26. Therefore, we are required to prove Q[a/X] + E; » (t1[d1/X]) : G1[G;/Y][a/X] <
By > (t[d2/X]) : G2[G;/Y][a/X]. But the results follows immediately by the induction hypothesis
on Q+E; >ty Gi[G]/Y] < Eypty: Go[Gy/Y].
Case (unpack). We know that
QrE;»t:3Y.Gi<Eypt:3Y.Gy Qx:GEG FE >t G <Eyrt): G,

Qr ;> unpack(Y,x) =ty int] : G} < Ey > unpack(Y,x) =ty int, : G]

(Sunpack,)

We are required to show
Qla/X] + Eqpunpack(Y, x) = t1[d1/X]int][d1/X] : G{[(x/X] < Egrunpack(Y, x) = ta[d2/X]in tz'[afz/X] : Gé[a/X]

Therefore, we are required to prove Q[a/X]| F E1 > (#1[d1/X]) : FY.Gi[a/X] < By » (t2]d2/X]) -
3Y.Gyla/X] and Qla/X], x : Gi[a/X] E Gala/X] F By » (t][d1/X]) : Gila/X] < B> (t;[d2/X]) :
G;[a/X]. But the results follows immediately by the induction hypothesis on Q + Z; > t; : Y.Gy <
Eopty:AY.Gpand Q,x:GIEGy FE pt] : G < Ep» 1y : Gy

ProposITION 10.22 (LIFT ENVIRONMENT PRECISION). IfG; < Gy and 21 < E,, then Gi < Gy,
where Gy = liftz (G1) and G; = liftz (Go).
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Proor. Remember that

liftz(G1) — lifiz(G2) G=G1 — G
VX lift-(G1) G =VX.G;
i (G) = 3X.lift=(Gy) G = 3X.G,
= lift=(Gy) x liftz(G2) G =Gy X Gy
qft=E@) G=a
G otherwise

The prove follows by the definition of G; = liftz (G1) and induction on the structure of the type.
Case (G; = 3X.Gj). We know that G| < Gj. We are required to prove that 3X.liftz (G]) <

3X.liftz, (G}), or what is the same liftz (G]) < lifiz,(G}). By the induction hypothesis on G| < G}
and Z; < E, the result follows immediately.

ProposiTION 10.23. IfG] < G] then G| C G.
Proor. Examining < rules.

Case (AX.G; < 3X.Gy). We know that
G <Gy
3X.G; < AX.G;

By the induction hypothesis on G; < G, we know that G; T G,. We are required to prove that
3X.G; C 3X.G,, which follows immediately by the rule

G C G,
dX.G; C 3X.G,

<
<

ProrosITION 10.24. IfG] E G; and G] C G; then G{[G;/X] E G;[G;/X].
Proor. Follow by induction on G} C G;. We only take into account the existential type case.
Case (3X.G, C 3X.G;). We know that
G C G,
3X.G; E 3X.G,
By the definition of C, we know that G; E G,. We are required to prove that

(3X.GIG{/X] = (3X.G:[G]/X]) E (3X.G2[G}/X]) = (3X.G)[G;/X]

Or what is the same that (G,[G{/X]) C (G;[G,/X]). But the result follows immediately by the
induction hypothesis on G; C G,.

ProposITION 10.25. IfGy E G, and G| < G, then G1[G{/X] C G,[G;/X].

Proor. By Proposition 10.23 and Proposition 10.24 the results follows immediately. ]

ProposITION 10.26. IfG; < Gy and G| < G, then G1[G]/X] < G3[G;/X].



134 Elizabeth Labrada, Matias Toro, and Eric Tanter

Proor. Straightforward induction on G; < G;. Very similar to Proposition 10.24. ]

ProrosITION 10.27. Ifv; < t; then t; = v;.

Proor. Exploring < rules. ]

PROPOSITION 10.28. IfE; F t; K Ep F ly and By >ty +— E| > t], then Ey >ty +—> Ej > t; and
Bl Rt <Ejrt]

Proor. If E; F t; < Ey + 1, we know that + t; < £, : Gy < Gy, 1 € Z9, 21 F 11 : Gy and
=, F 1y : G2. We avoid the notation - t; < £, : G < Gy, and use t; < t; instead, for simplicity, when
the typing environments are not relevant.

By induction on reduction Z; » t; — E] » t;. We only take into account the existential unpack
case.

Case (21 > unpack(X, x) = t11 in t;3 — E] > unpack(X, x) = t], in t;3). By inspection of <, t; =
unpack(X, x) = ty1 in typ, where t; < tp; and t, < tz. By induction hypothesison Z; » t1; +— E > ¢
—r -

we know that =, >ty — E) > t;,, where 2] + t{; < E; r t;. Then, by <, we know that
E] Funpack(X,x) = t{, in t;3 < E} + unpack(X, x) = t;, in ty, and the result holds.

’
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