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Example: Commutativity of addition

1 _+_ : ℕ → ℕ → ℕ

2 zero + n = n

3 (suc m) + n = suc (m + n)

1 comm : (m n : ℕ) → m + n ≡ n + m

2 comm zero n = refl -- zero + n ≡ n + zero

3 comm (suc m) n = cong suc (comm m n) -- (suc m) + n ≡ n + suc m
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Example: Commutativity of addition

1 +comm-zero : (m : ℕ) → m + zero ≡ zero + m

2 +comm-suc : (m n : ℕ) → m + (suc n) ≡ (suc n) + m

3
4 {-# REWRITE +comm-zero +comm-suc #-}

5
6 comm : (m n : ℕ) → m + n ≡ n + m

7 comm zero n = refl

8 comm (suc m) n = cong suc (comm m n)



Example: Exceptional Type Theory

1 hd : {A : Set} → List A → Maybe A

2 hd [] = nothing

3 hd (x :: xs) = just x

4
5 hd : {A : Set} (l : List A) → len l > 0 → A

6 hd [] ()

7 hd (x :: xs) _ = x

1 hd : {A : Set} → List A → A

2 hd [] = ???

3 hd (x :: xs) = x



Example: Exceptional Type Theory

1 postulate

2 -- Type for exceptions

3 Exc : Set

4
5 -- Some exception

6 errorEmptyList : Exc

7
8 -- How to raise an exception

9 raise : {A : Set} (exc : Exc) → A



Example: Exceptional Type Theory

1 postulate

2 -- New induction principle for List

3 catch-List : (A : Set) (P : List A → Set)

4 (Pnil : P [])

5 (Pcons : (a : A) (l : List A) → P l → P (a :: l))

6 (Pexc : ∀ e → P (raise e))

7 → (l : List a) → P l

8 -- The usual cases

9 catch-nil : ∀ (A : Set) (P : List A → Set) Pnil Pcons Pexc

10 → catch-List A P Pnil Pcons Pexc [] ≡ Pnil

11 catch-cons : ∀ (A : Set) (P : List A → Set) Pnil Pcons Pexc a l

12 → catch-List A P Pnil Pcons Pexc (cons a l)

13 ≡ Pcons a l (catch-List A P Pnil Pcons Pexc l)

14 -- How to handle exceptions

15 catch-exc : ∀ (A : Set) (P : List A → Set) Pnil Pcons Pexc e

16 → catch-List A P Pnil Pcons Pexc (raise e) ≡ Pexc e

17
18 {-# REWRITE catch-nil catch-cons catch-exc #-}



Example: Exceptional Type Theory

Now, our head function looks like this1:
1 hd : {A : Set} → List A → A

2 hd [] = raise errorEmptyList

3 hd (x :: xs) = x

4 hd (raise e) = raise e

head [] ≡ raise errorEmptyList

head 1 :: raise e ≡ 1

1not really :(



Rewrite rules can be used to...

Add computation rules to existing definitions
m + zero ~> m

m + (suc n) ~> suc (m + n)

Define new primitives that compute
Exceptions, gradual types, observational equality, quotient
types, etc...



The shape of rewrite rules

?x ?y ?z︸ ︷︷ ︸
pattern variables

` f p1 . . . pn︸ ︷︷ ︸
lhs

_ rhs

p ::= ?x
| C p1 . . . pn

1. Pattern variables must be left-linear (i.e. appear exactly
once in the lhs).

2. f must be fresh.



Rewrite rules: Do they break things? What do
they brake? Let’s find out!

1. Logical consistency.
2. Decidable typechecking.
3. Type safety.



Logical consistency

Adding the rewrite rule 0 _ 1 breaks consistency, but...

... so does adding 0 = 1 as an axiom.

Theorem
If for each rewrite rule l _ r we have a proof that ` e : l = r ,
then the system is consistent.
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Decidable typechecking

Each rewrite rule l _ r is an application of the reflection rule:

Γ ` e : lσ =A rσ
Γ ` lσ = rσ

This breaks decidable type checking in general, but...

... for confluent systems the usual algorithm is still correct if it
terminates.
If the system is strongly normalizing, we have decidable
typechecking.



Decidable typechecking

Each rewrite rule l _ r is an application of the reflection rule:
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Type safety

We cannot have any set of rewrite rules. The rule
(N → N) _ (N → B) breaks type safety!

zero' : 𝔹

zero' = (λx.x : ℕ → 𝔹) zero

test = if zero' then true else false



Confluence to the rescue

To regain subject reduction we have two requirements:
1. Rewrite rules should only rewrite fresh symbols.
2. The combination of rewrite rules and β-reduction should

be confluent

Confluence: Every way to rewrite a term yields the same
result



Parallel reduction

Parallel reduction (V) reduces all immediate redexes by one
step:
(suc a) + ((λx.x + b) 0) V suc (a + (0 + b))

Used by Tait and Martin-Löf to prove confluence of the
untyped lambda calculus.



Triangle property

Each t has a optimal reduct ρ(t):

t

u ρ(t)

This implies global confluence:

t

u u′

ρ(t)

Can be checked modularly!
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Revisiting the Commutativity of addition

1 +comm-zero : (m : ℕ) → m + zero ≡ zero + m

2 +comm-suc : (m n : ℕ) → m + (suc n) ≡ (suc n) + m

3
4 +comm-sucsuc : (m n : ℕ) → (suc m) + (suc n) ≡ suc (suc (m + n))

5
6 {-# REWRITE +comm-zero +comm-suc +comm-sucsuc #-}

7
8 comm : (m n : ℕ) → m + n ≡ n + m

9 comm zero n = refl

10 comm (suc m) n = cong suc (comm m n)



Get your hands dirty

I Formalized in MetaCoq
I Supported in Agda
I Will be available in Coq soon™
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