
Review: Proving progress

Let’s quickly review the steps in the proof of the progress theorem:

� inversion lemma for typing relation

� canonical forms lemma

� progress theorem



Inversion

Lemma:

1. If Γ � true : R, then R = Bool.

2. If Γ � false : R, then R = Bool.

3. If Γ � if t1 then t2 else t3 : R, then Γ � t1 : Bool and
Γ � t2, t3 : R.

4. If Γ � x : R, then

x:R ∈ Γ.

5. If Γ � λx:T1.t2 : R, then R = T1→R2 for some R2 with
Γ, x:T1 � t2 : R2.

6. If Γ � t1 t2 : R, then there is some type T11 such that
Γ � t1 : T11→R and Γ � t2 : T11.
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Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type T1→T2, then v has the form λx:T1.t2.



Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type T1→T2, then v has the form λx:T1.t2.



Progress

Theorem: Suppose t is a closed, well-typed term (that is, � t : T
for some T). Then either t is a value or else there is some t� with
t −→ t�.



Preservation (and Weaking,
Permutation, Substitution)



Preservation

Theorem: If Γ � t : T and t −→ t�, then Γ � t� : T.

Steps of proof:

� Weakening

� Permutation

� Substitution preserves types

� Reduction preserves types (i.e., preservation)



Weakening and Permutation

Weakening tells us that we can add assumptions to the context
without losing any true typing statements.

Lemma: If Γ � t : T and x /∈ dom(Γ), then Γ, x:S � t : T.

Moreover, the latter derivation has the same depth as the former.

Permutation tells us that the order of assumptions in (the list) Γ
does not matter.

Lemma: If Γ � t : T and ∆ is a permutation of Γ, then ∆ � t : T.

Moreover, the latter derivation has the same depth as the former.
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Preservation

Theorem: If Γ � t : T and t −→ t�, then Γ � t� : T.

Proof: By induction

on typing derivations.
Case T-App: Given t = t1 t2

Γ �t1 : T11→T12

Γ �t2 : T11

T = T12

Show Γ � t� : T12

By the inversion lemma for evaluation, there are three subcases...
Subcase: t1 = λx:T11. t12

t2 a value v2

t� = [x �→ v2]t12

Uh oh. What do we need to know to make this case go through??
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The “Substitution Lemma”

Lemma: If Γ, x:S � t : T and Γ � s : S, then Γ � [x �→ s]t : T.

I.e., “Types are preserved under substitition.”

Proof: By induction on the depth of a derivation of
Γ, x:S � t : T. Proceed by cases on the final typing rule used in
the derivation.
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The “Substitution Lemma”

Lemma: If Γ, x:S � t : T and Γ � s : S, then Γ � [x �→ s]t : T.

Proof: By induction on the depth of a derivation of

Γ, x:S � t : T. Proceed by cases on the final typing rule used in

the derivation.

Case T-Var: t = z
with z:T ∈ (Γ, x:S)

There are two sub-cases to consider, depending on whether z is x
or another variable. If z = x, then [x �→ s]z = s. The required

result is then Γ � s : S, which is among the assumptions of the

lemma. Otherwise, [x �→ s]z = z, and the desired result is

immediate.



The “Substitution Lemma”

Lemma: If Γ, x:S � t : T and Γ � s : S, then Γ � [x �→ s]t : T.

Proof: By induction on the depth of a derivation of
Γ, x:S � t : T. Proceed by cases on the final typing rule used in
the derivation.

Case T-Abs: t = λy:T2.t1 T = T2→T1

Γ, x:S, y:T2 � t1 : T1

By our conventions on choice of bound variable names, we may
assume x �= y and y /∈ FV(s). Using permutation on the given
subderivation, we obtain Γ, y:T2, x:S � t1 : T1. Using weakening
on the other given derivation (Γ � s : S), we obtain
Γ, y:T2 � s : S. Now, by the induction hypothesis,
Γ, y:T2 � [x �→ s]t1 : T1. By T-Abs,
Γ � λy:T2. [x �→ s]t1 : T2→T1, i.e. (by the definition of
substitution), Γ � [x �→ s]λy:T2. t1 : T2→T1.


