Review: Proving progress

Let's quickly review the steps in the proof of the progress theorem:

- inversion lemma for typing relation
- canonical forms lemma
- progress theorem

- 1. If $\Gamma \vdash \text{true} : R$, then R = Bool.
- 2. If $\Gamma \vdash$ false : R, then R = Bool.
- 3. If $\Gamma \vdash if t_1$ then t_2 else $t_3 : R$, then $\Gamma \vdash t_1 :$ Bool and $\Gamma \vdash t_2, t_3 : R$.
- 4. If $\Gamma \vdash x : R$, then

- 1. If $\Gamma \vdash \text{true} : R$, then R = Bool.
- 2. If $\Gamma \vdash false : R$, then R = Bool.
- 3. If $\Gamma \vdash if t_1$ then t_2 else $t_3 : R$, then $\Gamma \vdash t_1 :$ Bool and $\Gamma \vdash t_2, t_3 : R$.
- 4. If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.
- 5. If $\Gamma \vdash \lambda x: T_1.t_2 : R$, then

- 1. If $\Gamma \vdash \text{true} : R$, then R = Bool.
- 2. If $\Gamma \vdash false : R$, then R = Bool.
- 3. If $\Gamma \vdash if t_1$ then t_2 else $t_3 : R$, then $\Gamma \vdash t_1 : Bool and \Gamma \vdash t_2, t_3 : R$.
- 4. If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.
- 5. If $\Gamma \vdash \lambda x: T_1 \cdot t_2 : R$, then $R = T_1 \rightarrow R_2$ for some R_2 with $\Gamma, x: T_1 \vdash t_2 : R_2$.
- 6. If $\Gamma \vdash t_1 t_2 : R$, then

- 1. If $\Gamma \vdash \text{true} : R$, then R = Bool.
- 2. If $\Gamma \vdash false : R$, then R = Bool.
- 3. If $\Gamma \vdash if t_1$ then t_2 else $t_3 : R$, then $\Gamma \vdash t_1 : Bool and \Gamma \vdash t_2, t_3 : R$.
- 4. If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.
- 5. If $\Gamma \vdash \lambda x: T_1 \cdot t_2 : R$, then $R = T_1 \rightarrow R_2$ for some R_2 with $\Gamma, x: T_1 \vdash t_2 : R_2$.
- 6. If $\Gamma \vdash t_1 \ t_2 : R$, then there is some type T_{11} such that $\Gamma \vdash t_1 : T_{11} \rightarrow R$ and $\Gamma \vdash t_2 : T_{11}$.

Canonical Forms

Canonical Forms

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type $T_1 \rightarrow T_2$, then v has the form $\lambda x: T_1.t_2$.

Progress

Theorem: Suppose t is a closed, well-typed term (that is, $\vdash t : T$ for some T). Then either t is a value or else there is some t' with $t \longrightarrow t'$.

Preservation (and Weaking, Permutation, Substitution)

Theorem: If $\Gamma \vdash t$: T and t \longrightarrow t', then $\Gamma \vdash t'$: T.

Steps of proof:

- Weakening
- Permutation
- Substitution preserves types
- Reduction preserves types (i.e., preservation)

Weakening and Permutation

Weakening tells us that we can *add assumptions* to the context without losing any true typing statements.

Lemma: If $\Gamma \vdash t$: T and $x \notin dom(\Gamma)$, then Γ , x:S $\vdash t$: T.

Weakening and Permutation

Weakening tells us that we can *add assumptions* to the context without losing any true typing statements.

```
Lemma: If \Gamma \vdash t : T and x \notin dom(\Gamma), then \Gamma, x: S \vdash t : T.
```

Permutation tells us that the order of assumptions in (the list) $\mbox{\sc F}$ does not matter.

Lemma: If $\Gamma \vdash t$: T and Δ is a permutation of Γ , then $\Delta \vdash t$: T.

Weakening and Permutation

Weakening tells us that we can *add assumptions* to the context without losing any true typing statements.

Lemma: If $\Gamma \vdash t$: T and $x \notin dom(\Gamma)$, then $\Gamma, x: S \vdash t : T$.

Moreover, the latter derivation has the same depth as the former.

Permutation tells us that the order of assumptions in (the list) $\mbox{\sc r}$ does not matter.

Lemma: If $\Gamma \vdash t$: T and Δ is a permutation of Γ , then $\Delta \vdash t$: T.

Moreover, the latter derivation has the same depth as the former.

Theorem: If $\Gamma \vdash t$: T and t \longrightarrow t', then $\Gamma \vdash t'$: T.

Proof: By induction

Theorem: If $\Gamma \vdash t$: T and t \longrightarrow t', then $\Gamma \vdash t'$: T.

Proof: By induction on typing derivations.

Which case is the hard one??

 $\begin{array}{l} \textit{Theorem:} \ \text{If } \Gamma \vdash t \ : \ T \ \text{and } t \longrightarrow t', \ \text{then } \Gamma \vdash t' \ : \ T. \\ \textit{Proof:} \ \ \text{By induction on typing derivations.} \\ \textit{Case T-APP:} \ \ \text{Given} \ \ t = t_1 \ t_2 \\ \Gamma \vdash t_1 \ : \ T_{11} \longrightarrow T_{12} \\ \Gamma \vdash t_2 \ : \ T_{11} \\ T = T_{12} \\ \textit{Show} \ \ \Gamma \vdash t' \ : \ T_{12} \end{array}$

Theorem: If $\Gamma \vdash t$: T and t \longrightarrow t', then $\Gamma \vdash t'$: T. Proof: By induction on typing derivations. Case T-APP: Given $t = t_1 t_2$ $\Gamma \vdash t_1 : T_{11} \rightarrow T_{12}$ $\Gamma \vdash t_2 : T_{11}$ $T = T_{12}$ Show $\Gamma \vdash t' : T_{12}$ By the inversion lemma for evaluation, there are three subcases...

Theorem: If $\Gamma \vdash t$: T and t \longrightarrow t', then $\Gamma \vdash t'$: T. *Proof:* By induction on typing derivations. Case T-APP: Given $t = t_1 t_2$ $\Gamma \vdash t_1 : T_{11} \rightarrow T_{12}$ $\Gamma \vdash t_2 : T_{11}$ $T = T_{12}$ Show $\Gamma \vdash t' : T_{12}$ By the inversion lemma for evaluation, there are three subcases... Subcase: $t_1 = \lambda x: T_{11}$. t_{12} t_2 a value v_2 $\mathtt{t}' = [\mathtt{x} \mapsto \mathtt{v}_2] \mathtt{t}_{12}$

Theorem: If $\Gamma \vdash t$: T and t \longrightarrow t', then $\Gamma \vdash t'$: T. *Proof:* By induction on typing derivations. Case T-APP: Given $t = t_1 t_2$ $\Gamma \vdash t_1 : T_{11} \rightarrow T_{12}$ $\Gamma \vdash t_2 : T_{11}$ $T = T_{12}$ Show $\Gamma \vdash t' : T_{12}$ By the inversion lemma for evaluation, there are three subcases... Subcase: $t_1 = \lambda x: T_{11}$. t_{12} t_2 a value v_2 $\mathtt{t}' = [\mathtt{x} \mapsto \mathtt{v}_2] \mathtt{t}_{12}$ Uh oh.

Theorem: If $\Gamma \vdash t$: T and t \longrightarrow t', then $\Gamma \vdash t'$: T. *Proof:* By induction on typing derivations. Case T-APP: Given $t = t_1 t_2$ $\Gamma \vdash t_1 : T_{11} \rightarrow T_{12}$ $\Gamma \vdash t_2 : T_{11}$ $T = T_{12}$ Show $\Gamma \vdash t' : T_{12}$ By the inversion lemma for evaluation, there are three subcases... Subcase: $t_1 = \lambda x: T_{11}$. t_{12} t_2 a value v_2 $\mathbf{t}' = [\mathbf{x} \mapsto \mathbf{v}_2]\mathbf{t}_{12}$

Uh oh. What do we need to know to make this case go through??

The "Substitution Lemma"

Lemma: If Γ , x:S \vdash t : T and Γ \vdash s : S, then Γ \vdash [x \mapsto s]t : T.

I.e., "Types are preserved under substitition."

Proof: By induction on the *depth* of a derivation of $\Gamma, x: S \vdash t : T$. Proceed by cases on the final typing rule used in the derivation.

Proof: By induction on the *depth* of a derivation of $\Gamma, x: S \vdash t : T$. Proceed by cases on the final typing rule used in the derivation.

By the induction hypothesis, $\Gamma \vdash [x \mapsto s]t_1 : T_2 \rightarrow T_1$ and $\Gamma \vdash [x \mapsto s]t_2 : T_2$. By T-APP, $\Gamma \vdash [x \mapsto s]t_1 \ [x \mapsto s]t_2 : T$, i.e., $\Gamma \vdash [x \mapsto s](t_1 \ t_2) : T$.

Proof: By induction on the *depth* of a derivation of $\Gamma, x: S \vdash t : T$. Proceed by cases on the final typing rule used in the derivation.

Case T-VAR: t = zwith $z:T \in (\Gamma, x:S)$

There are two sub-cases to consider, depending on whether z is x or another variable. If z = x, then $[x \mapsto s]z = s$. The required result is then $\Gamma \vdash s : S$, which is among the assumptions of the lemma. Otherwise, $[x \mapsto s]z = z$, and the desired result is immediate.

Proof: By induction on the *depth* of a derivation of $\Gamma, x: S \vdash t : T$. Proceed by cases on the final typing rule used in the derivation.

By our conventions on choice of bound variable names, we may assume $x \neq y$ and $y \notin FV(s)$. Using *permutation* on the given subderivation, we obtain Γ , $y:T_2, x:S \vdash t_1 : T_1$. Using *weakening* on the other given derivation ($\Gamma \vdash s : S$), we obtain Γ , $y:T_2 \vdash s : S$. Now, by the induction hypothesis, Γ , $y:T_2 \vdash [x \mapsto s]t_1 : T_1$. By T-ABS, $\Gamma \vdash \lambda y:T_2$. $[x \mapsto s]t_1 : T_2 \rightarrow T_1$, i.e. (by the definition of substitution), $\Gamma \vdash [x \mapsto s]\lambda y:T_2$. $t_1 : T_2 \rightarrow T_1$.