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The simply typed lambda-calculus

The system we are about to define is commonly called the simply
typed lambda-calculus, or λ→ for short.

Unlike the untyped lambda-calculus, the “pure” form of λ→ (with
no primitive values or operations) is not very interesting; to talk
about λ→, we always begin with some set of “base types.”

� So, strictly speaking, there are many variants of λ→,
depending on the choice of base types.

� For now, we’ll work with a variant constructed over the
booleans.



Untyped lambda-calculus with booleans

t ::= terms
x variable
λx.t abstraction
t t application
true constant true
false constant false
if t then t else t conditional

v ::= values
λx.t abstraction value
true true value
false false value



“Simple Types”

T ::= types
Bool type of booleans
T→T types of functions



Type Annotations

We now have a choice to make. Do we...

� annotate lambda-abstractions with the expected type of the

argument

λx:T1. t2

(as in most mainstream programming languages), or

� continue to write lambda-abstractions as before

λx. t2

and ask the typing rules to “guess” an appropriate annotation

(as in OCaml)?

Both are reasonable choices, but the first makes the job of defining

the typin rules simpler. Let’s take this choice for now.



Typing rules

true : Bool (T-True)

false : Bool (T-False)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-If)

λx:T1.t2 : T1→T2
(T-Abs)

x:T ∈ Γ

Γ �x : T
(T-Var)

Γ �t1 : T11→T12 Γ �t2 : T11

Γ �t1 t2 : T12
(T-App)
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Typing Derivations

What derivations justify the following typing statements?

� � (λx:Bool.x) true : Bool

� f:Bool→Bool � f (if false then true else false) :
Bool

� f:Bool→Bool �
λx:Bool. f (if x then false else x) : Bool→Bool



Properties of λ→

The fundamental property of the type system we have just defined
is soundness with respect to the operational semantics.

1. Progress: A closed, well-typed term is not stuck

If � t : T, then either t is a value or else t −→ t�

for some t�.

2. Preservation: Types are preserved by one-step evaluation

If Γ � t : T and t −→ t�, then Γ � t� : T.



Proving progress

Same steps as before...

� inversion lemma for typing relation

� canonical forms lemma

� progress theorem
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Inversion

Lemma:

1. If Γ � true : R, then R = Bool.

2. If Γ � false : R, then R = Bool.

3. If Γ � if t1 then t2 else t3 : R, then Γ � t1 : Bool and
Γ � t2, t3 : R.

4. If Γ � x : R, then x:R ∈ Γ.

5. If Γ � λx:T1.t2 : R, then R = T1→R2 for some R2 with
Γ, x:T1 � t2 : R2.

6. If Γ � t1 t2 : R, then there is some type T11 such that
Γ � t1 : T11→R and Γ � t2 : T11.
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Canonical Forms
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2. If v is a value of type T1→T2, then v has the form λx:T1.t2.
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Lemma:

1. If v is a value of type Bool, then v is either true or false.
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Progress

Theorem: Suppose t is a closed, well-typed term (that is, � t : T
for some T). Then either t is a value or else there is some t� with
t −→ t�.

Proof: By induction

on typing derivations. The cases for boolean
constants and conditions are the same as before. The variable case
is trivial (because t is closed). The abstraction case is immediate,
since abstractions are values.
Consider the case for application, where t = t1 t2 with
� t1 : T11→T12 and � t2 : T11. By the induction hypothesis,
either t1 is a value or else it can make a step of evaluation, and
likewise t2. If t1 can take a step, then rule E-App1 applies to t.
If t1 is a value and t2 can take a step, then rule E-App2 applies.
Finally, if both t1 and t2 are values, then the canonical forms
lemma tells us that t1 has the form λx:T11.t12, and so rule
E-AppAbs applies to t.
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