
Subtyping



Motivation

With our usual typing rule for applications

� ⇤ t1 : T11⇥T12 � ⇤ t2 : T11

� ⇤ t1 t2 : T12
(T-App)

the term
(�r:{x:Nat}. r.x) {x=0,y=1}

is not well typed.

But this is silly: all we’re doing is passing the function a better
argument than it needs.



Motivation

With our usual typing rule for applications

� ⇤ t1 : T11⇥T12 � ⇤ t2 : T11

� ⇤ t1 t2 : T12
(T-App)

the term
(�r:{x:Nat}. r.x) {x=0,y=1}

is not well typed.

But this is silly: all we’re doing is passing the function a better
argument than it needs.



Polymorphism

A polymorphic function may be applied to many di⇤erent types of
data.

Varieties of polymorphism:

I Parametric polymorphism (ML-style)

I Subtype polymorphism (OO-style)

I Ad-hoc polymorphism (overloading)

Our topic for the next few lectures is subtype polymorphism, which
is based on the idea of subsumption.



Subsumption

More generally: some types are better than others, in the sense
that a value of one can always safely be used where a value of the
other is expected.

We can formalize this intuition by introducing

1. a subtyping relation between types, written S <: T

2. a rule of subsumption stating that, if S <: T, then any value of
type S can also be regarded as having type T

� ⇤ t : S S <: T

� ⇤ t : T
(T-Sub)



The Subtype Relation: General rules

S <: S (S-Refl)

S <: U U <: T

S <: T
(S-Trans)



Example

We will define subtyping between record types so that, for example,

{x:Nat, y:Nat} <: {x:Nat}

So, by subsumption,

⇤ {x=0,y=1} : {x:Nat}

and hence
(�r:{x:Nat}. r.x) {x=0,y=1}

is well typed.



The Subtype Relation: Records

“Width subtyping” (forgetting fields on the right):

{li:Ti
i21..n+k} <: {li:Ti

i21..n} (S-RcdWidth)

Intuition: {x:Nat} is the type of all records with at least a
numeric x field.

Note that the record type with more fields is a subtype of the
record type with fewer fields.

Reason: the type with more fields places a stronger constraint on
values, so it describes fewer values.



The Subtype Relation: Records

Permutation of fields:

{kj:Sj
j21..n} is a permutation of {li:Ti

i21..n}

{kj:Sj
j21..n} <: {li:Ti

i21..n}
(S-RcdPerm)

By using S-RcdPerm together with S-RcdWidth and
S-Trans allows us to drop arbitrary fields within records.



The Subtype Relation: Records

“Depth subtyping” within fields:

for each i Si <: Ti

{li:Si
i21..n} <: {li:Ti

i21..n}
(S-RcdDepth)

The types of individual fields may change.



Example

S-RcdWidth

{a:Nat,b:Nat} <: {a:Nat}
S-RcdWidth

{m:Nat} <: {}
S-RcdDepth

{x:{a:Nat,b:Nat},y:{m:Nat}} <: {x:{a:Nat},y:{}}



Another example

{x:Nat,y:Nat} <: {y:Nat}

(board)



Variations

Real languages often choose not to adopt all of these record
subtyping rules. For example, in Java,

I A subclass may not change the argument or result types of a
method of its superclass (i.e., no depth subtyping)

I Each class has just one superclass (“single inheritance” of
classes)

�⇥ each class member (field or method) can be
assigned a single index, adding new indices “on the
right” as more members are added in subclasses
(i.e., no permutation for classes)

I A class may implement multiple interfaces (“multiple
inheritance” of interfaces)
I.e., permutation is allowed for interfaces.



The Subtype Relation: Arrow types

T1 <: S1 S2 <: T2

S1⇥S2 <: T1⇥T2
(S-Arrow)

Note the order of T1 and S1 in the first premise. The subtype
relation is contravariant in the left-hand sides of arrows and
covariant in the right-hand sides.

Intuition: if we have a function f of type S1⇥S2, then we know
that f accepts elements of type S1; clearly, f will also accept
elements of any subtype T1 of S1. The type of f also tells us that
it returns elements of type S2; we can also view these results
belonging to any supertype T2 of S2. That is, any function f of
type S1⇥S2 can also be viewed as having type T1⇥T2.



The Subtype Relation: Top

It is convenient to have a type that is a supertype of every type.
We introduce a new type constant Top, plus a rule that makes Top
a maximum element of the subtype relation.

S <: Top (S-Top)

Cf. Object in Java.



Subtype relation

S <: S (S-Refl)

S <: U U <: T

S <: T
(S-Trans)

{li:Ti
i21..n+k} <: {li:Ti

i21..n} (S-RcdWidth)

for each i Si <: Ti

{li:Si
i21..n} <: {li:Ti

i21..n}
(S-RcdDepth)

{kj:Sj
j21..n} is a permutation of {li:Ti

i21..n}

{kj:Sj
j21..n} <: {li:Ti

i21..n}
(S-RcdPerm)

T1 <: S1 S2 <: T2

S1⇥S2 <: T1⇥T2
(S-Arrow)

S <: Top (S-Top)



Aside: Structural vs. declared subtyping

The subtype relation we have defined is structural: We decide
whether S is a subtype of T by examining the structure of S and T.

By contrast, the subtype relation in most OO languages (e.g.,
Java) is explicitly declared: S is a subtype of T only if the
programmer has stated that it should be.

There are pragmatic arguments for both.

For the moment, we’ll concentrate on structural subtyping, which
is the more fundamental of the two. (It is sound to declare S to be
a subtype of T only when S is structurally a subtype of T.)

We’ll come back to declared subtyping when we talk about
Featherweight Java.


