
Type Systems
some terminology

based on the first pages of 
“Type Systems”, Luca Cardelli

CRC Handbook of Computer Science and Engineering

1



Execution errors

• Obvious symptoms
- illegal instruction fault, illegal memory reference fault

• More subtle
- data corruption (no immediate symptom)

• Not so easy
- some software faults are not prevented by type systems
- some languages without type systems where faults never 

occur

2



Typed and untyped languages

• Program variable can assume a range of values during execution
- a type is an upper bound of such a range

• typed language: where variables can be given (non-trivial) types

•untyped language (*) range of variables is unrestricted
- no type, or eq., a single universal type that contains all values)
- application to inappropriate arguments can lead to an arbitrary 

value, a fault, an exception, or an unspecified effect
- extreme case: λ-calculus, untyped, yet no faults

(*) also called “dynamically-typed”, “latently-typed”, “dynamically-checked”

3



Type system

• Component of a typed language that keeps track of the types of 
expressions in a program

• Used to determine whether programs are well-behaved

• Discard bad programs before they are run

• Typed language: ∃ type system for it
- can be explicitly typed (types are part of the syntax)
- can be implicitly typed
- or mix (ML, Haskell)

4



Execution errors

• Two kinds of errors

• Trapped errors: cause computation to stop immediately
- eg. division by zero
- eg. accessing an illegal address

• Untrapped errors: can go unnoticed (for a while)
- eg. improperly accessing a legal address
- eg. jump to the wrong address

5



Safety

• A program fragment is safe if it does not cause untrapped 
errors to occur

• Safe language: language where all programs are safe
- untyped languages may enforce safety by performing runtime 

checks
- typed languages may enforce safety by statically rejecting 

programs that are potentially unsafe
- typed languages may use a mixture of runtime and static checks

• Typed languages usually aim to rule out also large classes of trapped 
errors

6



Well-behaved programs

• We may designate a subset of the possible execution errors as 
forbidden errors
- forbidden = untrapped + subset of trapped

• Good behavior = no forbidden error occurs

• Strongly checked language: all programs are well-behaved
- no untrapped errors (safety)
- no forbidden errors
- other trapped errors can occur (programmer’s responsability)

7



Well-behaved programs

• Typed languages can enforce good behavior by performing static 
checks
- called statically-checked languages
- checking process is called typechecking
- algorithm is called typechecker
- program that passes the typechecker is well typed (otherwise 

it is ill typed)
- ill-typed does not necessarily mean ill-behaved

8



Well-behaved programs

• Untyped languages can enforce good behavior (including safety) 
by performing sufficiently detailed runtime checks
- eg. check array bounds, division operations, generate 

recoverable exceptions when forbidden errors would happen
- process: dynamic checking
- such languages are strongly checked! (even though they have no 

static checking, no type system)

• Even statically-checked languages usually perform some tests at 
runtime (for safety)
- static checking does not mean execution can proceed blindly

9



Dynamic type checks

• Java and others have constructs to discriminate based on the 
runtime type of an object
- instanceof, cast

• Not fully statically checked, even though the dynamic tests are 
defined on the basis of the static type system
- dynamic tests for type equality are compatible with statics

10



Lack of safety

• Well-behaved => safe

• Some statically-checked languages are not safe
- ie. forbidden errors do not include all untrapped errors
- sometimes called weakly-checked (weakly-typed)
- C has many unsafe, widely used features (pointer arithmetic, 

casting)

• Most untyped languages are, by necessity, completely safe

11



Safety

Typed Untyped

Safe ML, Java
Lisp, 

Smalltalk

Unsafe C Assembler

12



Why unsafe?

• Advantage:
- execution time

• Problems: 
- development and maintenance time
- security holes

13



Soundness

• Type systems define a notion of well typing, a static 
approximation of good behavior (including safety)

• How can we guarantee that:
- well typed programs are well behaved

• Type soundness theorem
- “type system is sound”
- sometimes also called “type safety” (!= language safety)

14


