
Properties of the Typing
Relation



Type Safety

The safety (or soundness) of this type system can be expressed by
two properties:

1. Progress: A well-typed term is not stuck

If t : T, then either t is a value or else t �⇥ t0 for
some t0.

2. Preservation: Types are preserved by one-step evaluation

If t : T and t �⇥ t0, then t0 : T.



Inversion

Lemma:

1. If true : R, then R = Bool.

2. If false : R, then R = Bool.

3. If if t1 then t2 else t3 : R, then t1 : Bool, t2 : R, and
t3 : R.

4. If 0 : R, then R = Nat.

5. If succ t1 : R, then R = Nat and t1 : Nat.

6. If pred t1 : R, then R = Nat and t1 : Nat.

7. If iszero t1 : R, then R = Bool and t1 : Nat.

Proof: ...

This leads directly to a recursive algorithm for calculating the type
of a term...
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Typechecking Algorithm

typeof(t) = if t = true then Bool
else if t = false then Bool
else if t = if t1 then t2 else t3 then
let T1 = typeof(t1) in
let T2 = typeof(t2) in
let T3 = typeof(t3) in
if T1 = Bool and T2=T3 then T2
else "not typable"

else if t = 0 then Nat
else if t = succ t1 then
let T1 = typeof(t1) in
if T1 = Nat then Nat else "not typable"

else if t = pred t1 then
let T1 = typeof(t1) in
if T1 = Nat then Nat else "not typable"

else if t = iszero t1 then
let T1 = typeof(t1) in
if T1 = Nat then Bool else "not typable"



Canonical Forms

Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type Nat, then v is a numeric value.

Proof:

Recall the syntax of values:

v ::= values

true true value

false false value

nv numeric value

nv ::= numeric values

0 zero value

succ nv successor value

For part 1, if v is true or false, the result is immediate. But v
cannot be 0 or succ nv, since the inversion lemma tells us that v
would then have type Nat, not Bool. Part 2 is similar.
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Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t� with
t �⇥ t�.

Proof: By induction on a derivation of t : T.

The T-True, T-False, and T-Zero cases are immediate, since
t in these cases is a value.

Case T-If: t = if t1 then t2 else t3

t1 : Bool t2 : T t3 : T

By the induction hypothesis, either t1 is a value or else there is
some t�

1 such that t1 �⇥ t�
1. If t1 is a value, then the canonical

forms lemma tells us that it must be either true or false, in
which case either E-IfTrue or E-IfFalse applies to t. On the
other hand, if t1 �⇥ t�

1, then, by E-If,
t �⇥ if t�

1 then t2 else t3.
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Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t� with
t �⇥ t�.

Proof: By induction on a derivation of t : T.

The cases for rules T-Zero, T-Succ, T-Pred, and T-IsZero
are similar.

(Recommended: Try to reconstruct them.)



Preservation

Theorem: If t : T and t �⇥ t�, then t� : T.

Proof: By induction on the given typing derivation.



Preservation

Theorem: If t : T and t �⇥ t�, then t� : T.

Proof: By induction on the given typing derivation.



Preservation

Theorem: If t : T and t �⇥ t�, then t� : T.

Proof: By induction on the given typing derivation.

Case T-True: t = true T = Bool

Then t is a value, so it cannot be that t �⇥ t� for any t�, and the
theorem is vacuously true.
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There are three evaluation rules by which t �⇥ t� can be derived:
E-IfTrue, E-IfFalse, and E-If. Consider each case separately.



Preservation

Theorem: If t : T and t �⇥ t�, then t� : T.

Proof: By induction on the given typing derivation.

Case T-If:
t = if t1 then t2 else t3 t1 : Bool t2 : T t3 : T

There are three evaluation rules by which t �⇥ t� can be derived:
E-IfTrue, E-IfFalse, and E-If. Consider each case separately.

Subcase E-IfTrue: t1 = true t� = t2

Immediate, by the assumption t2 : T.

(E-IfFalse subcase: Similar.)



Preservation

Theorem: If t : T and t �⇥ t�, then t� : T.

Proof: By induction on the given typing derivation.

Case T-If:
t = if t1 then t2 else t3 t1 : Bool t2 : T t3 : T

There are three evaluation rules by which t �⇥ t� can be derived:
E-IfTrue, E-IfFalse, and E-If. Consider each case separately.

Subcase E-If: t1 �⇥ t�
1 t� = if t�

1 then t2 else t3

Applying the IH to the subderivation of t1 : Bool yields
t�

1 : Bool. Combining this with the assumptions that t2 : T and
t3 : T, we can apply rule T-If to conclude that
if t�

1 then t2 else t3 : T, that is, t� : T.


