Properties of the Typing
Relation



Type Safety

The safety (or soundness) of this type system can be expressed by
two properties:
1. Progress: A well-typed term is not stuck

If t : T then either t is a value or else t — t' for
some t'.

2. Preservation: Types are preserved by one-step evaluation
Ift : Tandt — t', then t' : T.



Inversion

Lemma:
1. If true : R, then R = Bool.
2. If false : R, then R = Bool.
3. If if t1 then t, else t3 : R, then t1 : Bool, t» : R, and
t3 : R.
If 0 : R, then R = Nat.
If succ t1 : R, then R = Nat and t; : Nat.
If pred t; : R, then R = Nat and t; : Nat.
If iszero ti : R, then R = Bool and t; : Nat.
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This leads directly to a recursive algorithm for calculating the type
of a term...



Typechecking Algorithm

typeof (t)

if t = true then Bool
else if t = false then Bool
else if t = if t1 then t2 else t3 then
let T1 = typeof(tl) in
let T2 = typeof(t2) in
let T3 = typeof(t3) in
if T1 = Bool and T2=T3 then T2
else "not typable"
else if t = 0 then Nat
else if t = succ tl1 then
let T1 = typeof(tl) in
if T1 = Nat then Nat else "not typable"
else if t = pred tl1 then
let T1 = typeof(tl) in
if Tl = Nat then Nat else "not typable"
else if t = iszero tl1 then
let T1 = typeof(tl) in
if Tl = Nat then Bool else "not typable"
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Canonical Forms

Lemma:
1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type Nat, then v is a numeric value.

Proof: Recall the syntax of values:

v on= values
true true value
false false value
nv numeric value
nv o= numeric values
0 zero value
succ nv successor value

For part 1, if v is true or false, the result is immediate. But v
cannot be 0 or succ nv, since the inversion lemma tells us that v
would then have type Nat, not Bool. Part 2 is similar.
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Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t’ with

t — t/.
Proof: By induction on a derivation of t : T.

The T-TRUE, T-FALSE, and T-ZERO cases are immediate, since
t in these cases is a value.

Case T-IF: t =if t; then ty else tj3

t1 : Bool to ! T t3 : T
By the induction hypothesis, either t; is a value or else there is
some t such that t; — t. If t; is a value, then the canonical
forms lemma tells us that it must be either true or false, in
which case either E-IFTRUE or E-IFFALSE applies to t. On the
other hand, if t; — t/, then, by E-IF,
t — if t] then ty else ts.



Progress

Theorem: Suppose t is a well-typed term (that is, t : T for some
type T). Then either t is a value or else there is some t’ with

t — t/.
Proof: By induction on a derivation of t : T.

The cases for rules T-ZERO, T-Succ, T-PRED, and T-ISZERO
are similar.

(Recommended: Try to reconstruct them.)
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Preservation

Theorem: If t : Tand t — t/, then t’ : T.
Proof: By induction on the given typing derivation.
Case T-TRUE: t = true T = Bool

Then t is a value, so it cannot be that t — t’ for any t/, and the
theorem is vacuously true.
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Theorem: If t : Tand t — t/, then t’ : T.

Proof: By induction on the given typing derivation.

Case T-IF:
t =1if t; then to else t3 t; :Bool to : T t3:T

There are three evaluation rules by which t — t/ can be derived:
E-IFTRUE, E-IFFALSE, and E-IF. Consider each case separately.

Subcase E-IFTRUE: t1 = true t/ = 1tg

Immediate, by the assumption t, : T.

(E-IFFALSE subcase: Similar.)



Preservation

Theorem: If t : Tand t — t/, then t’ : T.

Proof: By induction on the given typing derivation.

Case T-1Ir:

t =1if t; then to else t3 t; :Bool to : T t3:T
There are three evaluation rules by which t — t/ can be derived:
E-IFTRUE, E-IFFALSE, and E-IF. Consider each case separately.

Subcase E-IF:  t; — t] t' = if t) then t, else t3
Applying the IH to the subderivation of t; : Bool yields

t} : Bool. Combining this with the assumptions that t> : T and
t3 : T, we can apply rule T-IF to conclude that

if t] then ty else t3 : T, thatis, t’ : T.



