
Universal Types



Motivation

In the simply typed lambda-calculus, we often have to write several
versions of the same code, di�ering only in type annotations.

doubleNat = �f:Nat�Nat. �x:Nat. f (f x)
doubleRcd = �f:{l:Bool}�{l:Bool}. �x:{l:Bool}. f (f x)
doubleFun = �f:(Nat�Nat)�(Nat�Nat). �x:Nat�Nat. f (f x)

Bad! Violates a basic principle of software engineering:

Write each piece of functionality once

... and parameterize it
on the details that vary from one instance to another.

Here, the details that vary are the types!
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Idea

We’d like to be able to take a piece of code and “abstract out”
some type annotations.

We’ve already got a mechanism for doing this with terms:
�-abstraction. So let’s just re-use the notation.

Abstraction:
double = �X. �f:X⇥X. �x:X. f (f x)

Application:
double [Nat]
double [Bool]

Computation:
double [Nat] �⇥ �f:Nat⇥Nat. �x:Nat. f (f x)

(N.b.: Type application is commonly written t [T], though t T
would be more consistent.)



Idea

What is the type of a term like

�X. �f:X�X. �x:X. f (f x) ?

This term is a function that, when applied to a type X, yields a
term of type (X�X)�X�X.

I.e., for all types X, it yields a result of type (X�X)�X�X.

We’ll write it like this: ⇥X. (X�X)�X�X
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System F

System F (aka “the polymorphic lambda-calculus”) formalizes this
idea by extending the simply typed lambda-calculus with type
abstraction and type application.

t ::= terms
x variable
�x:T.t abstraction
t t application
�X.t type abstraction
t [T] type application

v ::= values
�x:T.t abstraction value
�X.t type abstraction value
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System F: new evaluation rules

t1 �⇥ t0
1

t1 [T2] �⇥ t0
1 [T2]

(E-TApp)

(�X.t12) [T2] �⇥ [X ⇤⇥ T2]t12 (E-TappTabs)



System F: Types

To talk about the types of “terms abstracted on types,” we need
to introduce a new form of types:

T ::= types
X type variable
T�T type of functions
⇥X.T universal type



System F: Typing Rules

x:T ⇥ �

� ⇧ x : T
(T-Var)

�, x:T1 ⇧ t2 : T2

� ⇧ �x:T1.t2 : T1�T2
(T-Abs)

� ⇧ t1 : T11�T12 � ⇧ t2 : T11

� ⇧ t1 t2 : T12
(T-App)

�, X ⇧ t2 : T2

� ⇧ �X.t2 : ⌅X.T2
(T-TAbs)

� ⇧ t1 : ⌅X.T12

� ⇧ t1 [T2] : [X ⇤� T2]T12
(T-TApp)



History

Interestingly, System F was invented independently and almost
simultaneously by a computer scientist (John Reynolds) and a
logician (Jean-Yves Girard).

Their results look very di�erent at first sight — one is presented as
a tiny programming language, the other as a variety of
second-order logic.

The similarity (indeed, isomorphism!) between them is an example
of the Curry-Howard Correspondence.


