
Universal Types



Motivation

In the simply typed lambda-calculus, we often have to write several
versions of the same code, di�ering only in type annotations.

doubleNat = �f:Nat�Nat. �x:Nat. f (f x)
doubleRcd = �f:{l:Bool}�{l:Bool}. �x:{l:Bool}. f (f x)
doubleFun = �f:(Nat�Nat)�(Nat�Nat). �x:Nat�Nat. f (f x)

Bad! Violates a basic principle of software engineering:

Write each piece of functionality once

... and parameterize it
on the details that vary from one instance to another.

Here, the details that vary are the types!



Motivation

In the simply typed lambda-calculus, we often have to write several
versions of the same code, di�ering only in type annotations.

doubleNat = �f:Nat�Nat. �x:Nat. f (f x)
doubleRcd = �f:{l:Bool}�{l:Bool}. �x:{l:Bool}. f (f x)
doubleFun = �f:(Nat�Nat)�(Nat�Nat). �x:Nat�Nat. f (f x)

Bad! Violates a basic principle of software engineering:

Write each piece of functionality once... and parameterize it
on the details that vary from one instance to another.

Here, the details that vary are the types!



Motivation

In the simply typed lambda-calculus, we often have to write several
versions of the same code, di�ering only in type annotations.

doubleNat = �f:Nat�Nat. �x:Nat. f (f x)
doubleRcd = �f:{l:Bool}�{l:Bool}. �x:{l:Bool}. f (f x)
doubleFun = �f:(Nat�Nat)�(Nat�Nat). �x:Nat�Nat. f (f x)

Bad! Violates a basic principle of software engineering:

Write each piece of functionality once... and parameterize it
on the details that vary from one instance to another.

Here, the details that vary are the types!



Idea

We’d like to be able to take a piece of code and “abstract out”
some type annotations.

We’ve already got a mechanism for doing this with terms:
�-abstraction. So let’s just re-use the notation.

Abstraction:
double = �X. �f:X⇥X. �x:X. f (f x)

Application:
double [Nat]
double [Bool]

Computation:
double [Nat] �⇥ �f:Nat⇥Nat. �x:Nat. f (f x)

(N.b.: Type application is commonly written t [T], though t T
would be more consistent.)



Idea

What is the type of a term like

�X. �f:X�X. �x:X. f (f x) ?

This term is a function that, when applied to a type X, yields a
term of type (X�X)�X�X.

I.e., for all types X, it yields a result of type (X�X)�X�X.

We’ll write it like this: ⇥X. (X�X)�X�X



Idea

What is the type of a term like

�X. �f:X�X. �x:X. f (f x) ?

This term is a function that, when applied to a type X, yields a
term of type (X�X)�X�X.

I.e., for all types X, it yields a result of type (X�X)�X�X.

We’ll write it like this: ⇥X. (X�X)�X�X



Idea

What is the type of a term like

�X. �f:X�X. �x:X. f (f x) ?

This term is a function that, when applied to a type X, yields a
term of type (X�X)�X�X.

I.e., for all types X, it yields a result of type (X�X)�X�X.

We’ll write it like this: ⇥X. (X�X)�X�X



System F

System F (aka “the polymorphic lambda-calculus”) formalizes this
idea by extending the simply typed lambda-calculus with type
abstraction and type application.

t ::= terms
x variable
�x:T.t abstraction
t t application
�X.t type abstraction
t [T] type application

v ::= values
�x:T.t abstraction value
�X.t type abstraction value



System F

System F (aka “the polymorphic lambda-calculus”) formalizes this
idea by extending the simply typed lambda-calculus with type
abstraction and type application.

t ::= terms
x variable
�x:T.t abstraction
t t application
�X.t type abstraction
t [T] type application

v ::= values
�x:T.t abstraction value
�X.t type abstraction value



System F: new evaluation rules

t1 �⇥ t0
1

t1 [T2] �⇥ t0
1 [T2]

(E-TApp)

(�X.t12) [T2] �⇥ [X ⇤⇥ T2]t12 (E-TappTabs)



System F: Types

To talk about the types of “terms abstracted on types,” we need
to introduce a new form of types:

T ::= types
X type variable
T�T type of functions
⇥X.T universal type



System F: Typing Rules

x:T ⇥ �

� ⇧ x : T
(T-Var)

�, x:T1 ⇧ t2 : T2

� ⇧ �x:T1.t2 : T1�T2
(T-Abs)

� ⇧ t1 : T11�T12 � ⇧ t2 : T11

� ⇧ t1 t2 : T12
(T-App)

�, X ⇧ t2 : T2

� ⇧ �X.t2 : ⌅X.T2
(T-TAbs)

� ⇧ t1 : ⌅X.T12

� ⇧ t1 [T2] : [X ⇤� T2]T12
(T-TApp)



History

Interestingly, System F was invented independently and almost
simultaneously by a computer scientist (John Reynolds) and a
logician (Jean-Yves Girard).

Their results look very di�erent at first sight — one is presented as
a tiny programming language, the other as a variety of
second-order logic.

The similarity (indeed, isomorphism!) between them is an example
of the Curry-Howard Correspondence.


