
From Metaobject Protocols
to Versatile Kernels for AOP

Éric Tanter
PhD Thesis Defense

Universidad de Chile
DCC - CWR

Université de Nantes
OBASCO - EMN/INRIA

Santiago, Chile - November 8th 2004

Thesis Committee
President

Prof. Eric Monfroy (U.Nantes, France)
Principal Examiners

Prof. Theo d’Hondt (VUB, Belgium)
Prof. Shigeru Chiba (TITECH, Japan)

Committee Members
Prof. Nancy Hitschfeld (DCC U.Chile, Chile)
Prof. Gustavo Rossi (LIFIA, Argentina)

Advisors
Prof. Pierre Cointe (EMN/INRIA, France)
Dr. Jacques Noyé (EMN/INRIA, France)
Prof. José Piquer (DCC U.Chile, Chile)

2

3

Context
Software design: fundamental trade-off

structure (modularization)
evolution (adaptation)

Basic principles
Separation of Concerns (SoC) [Dijkstra68]

Information hiding [Parnas72]

Technical means
modules, classes, objects: limits

4

Problem Statement
Computational reflection [Smith82]

most general approach
Issues of reflection limit its acceptance

cost, rigidity, complexity

Aspect-Oriented Programming [Kiczales+97]

More specific support for modularization
aspect languages

Sacrificing flexibility and extensibility

R AOP?

5

Thesis in a nutshell
An operational model of reflection

genericity of reflection and specificity of AOP

Versatile substrate for AOP
based on reflective model
combined with guidance of aspect languages

Validation
Prototype implementation in Java: Reflex
Significant applications

R AOP?

6

Contents

Thesis in a Nutshell
Concepts: reflection & AOP
Contributions
Conclusions & Perspectives

7

Computational Reflection

Computational system (CS)[Maes87]

program (text) + evaluator

Metasystem
CS manipulating other programs/CS
evaluator, debugger, ...

 Reflective system
CS accessing its own metasystem

[Smith82]

8

Reflection and Adaptation
Reflection operators [FriedmanWand84]

reification
absorption

A program can
observe its evaluator’s state (introspection)
modify its evaluator (intercession)

e.g. concurrency at the metalevel

meta

base

9

Reflection & OOP: MOPs

Structure metalevel interface with OO
get the benefits of object orientation

abstraction, encapsulation, localized extension

Metaobject Protocols (MOPs) [Kiczales+91]

Different models [Ferber89]

metaclass [Cointe87], metaobject [Maes87], message
reification, etc.

10

MOPs: Modeling Issues

nature of metalink [Matsuoka+91]

individual based, group wide, hybrid...

metalevel structure [McAffer96]

structural vs. operational decomposition

granularity, locality of change [GowingCahill96]
fine-grained MOPs, multiple reflective models

11

Mastering Locality

Central tension

support crosscutting views of a system?

“very often, the concepts that are most
natural to use at the metalevel crosscut

those provided at the base level”

[Kiczales92]

12

AOP Principles [Kiczales+97]

Modularization of crosscutting functionalities
providing extra composition mechanisms
GP languages: procedure call
responsible for code tangling

Aspects, Weaver

P

A

A
A

WEAVER

SYSTEM

13

AOP Languages

Join-point models [Masuhara+03]

join-points
points of reference in a base program that
aspects can affect

means of identifying join points
means of effecting at join points

14

AOP & Reflection
“AOP is a goal, for which reflection is one powerful tool”

“AOP is a principled subset of reflection”
“AOP is not reflection”

[Kiczales+97]

Relation
reflection can be used for aspect weaving
used in the early experiments on AOP

Intrigue
first, ideas of reflection and MOPs
then, shift to “reflection-free” discourse
what’s the reality behind? spectrum/range?

[Douence04]
[Kiczales01]

15

Contents

Thesis in a Nutshell
Concepts: reflection & AOP
Contributions
Conclusions & Perspectives

16

Contributions

Partial Behavioral Reflection
Versatile AOP Kernels
Reflex/Java, Open Implementation
Applications

R AOP?

17

Specific Context
Behavioral reflection / runtime MOPs

metaobjects reasoning and acting upon
reifications of a program described in terms
of operations [McA96]

Specific issues

base object

metaobject

reification

metalink

hookcontrol
flow

base

meta

18

1. Cost Issue
Reifying operation occurrences is
expensive

reify only when needed
reify only needed information (+how)

A a =
 o.foo(5);

A a =
 metaobj.handle(
 new Call(this, o,
 o.getClass().getMethod(“foo”),
 new Object[]{new Integer(5)}));

hook

19

2. Metalink Issue
Classical view on metalink

entity-based: per object, per class
leads to tangled metalevel

what we want: a concern-based metalevel

meta

base

meta

base

20

3. MOP Design Issue

Definition of the precise protocol
between levels
Trade-off

expressiveness / performance / flexibility

Frozen in existing reflective systems
at least rigid (e.g. [GowingCahill96])

21

Proposal

Operational model of Partial Reflection
Selective reification
Links as configurable first-class entities
Open MOP support / MOP specialization

[OOPSLA03]

22

Selective reification
Systematic analysis of partiality
Spatial selection

what should be reified?
entities, operations, operation occurrences

Temporal selection
when to reify?
dynamically-evaluated conditions
e.g. transparent futures

23

Links

Flexible metalink
Group selected hooks in a hookset (1st class, composable)

Bind hookset to metaobject
Attributes

scope: global, class, object
activation: predicate
control: before, after, replace
...

Event

Condition

Action

meta

base

linkClinkBlinkA

24

Open MOP Support

Specific MOPs are defined by metalevel
architects

what is an operation? which are supported?
interface of metaobjects (method and data)

Several MOPs can coexist

25

MOP Specialization

Flexible and fine-grained specialization
call generator descriptors
type, method and parameters

MOP descriptors per
operation
link
hookset

[SCCC04]

26

MOP Specialization for SOM
somLink = API.links().addLink(MsgReceive.class, ...);
somLink.setControl(Control.BEFORE_AFTER);

_mo_somLink.beforeMsgReceive([m, r, args]);
..
_mo_somLink.afterMsgReceive([m, r, args, res]);

Using standard MOP

somLink.setMOCall(Control.BEFORE, Scheduler.class, “enter”,
 nameP, argsP);
somLink.setMOCall(Control.AFTER, Scheduler.class, “exit”);

_mo_somLink.enter(“put”, [o]);
..
_mo_somLink.exit();

Using specialized MOP

[ECOOP04]

27

MOP Specialization for SOM

0

2,125

4,250

6,375

8,500

2 4 8 16 32 64 128

standard MOP specialized MOP

consumers

time (ms)

- buffer, 1 slot, 1 producer, n consumers -

as efficient as hand-made source code modification

0

1

2

3

4

2 4 8 16 32 64 128

speedup

28

Contributions

Partial Behavioral Reflection
Versatile AOP Kernels
Reflex/Java, Open Implementation
Applications

R AOP?

29

Specific Context

Variety of AOP proposals
exploring the design space

different models
domain-specific vs. general-purpose

combining different approaches
depending on tackled concern (domain)
positive reports [Rashid01]

30

Compatibility
Reuse of weaver

AOP Kernels

API

application

compose

weave

translate

compose

translate

L1 L2

KERNEL

Issues

application

weave

compose

weave

L1 L2

?!?

31

Features of AOP
Analysis of AOP proposals

asymmetric approaches (e.g., Pointcut-Advice)

Anatomy of AOP languages
sub-languages

cut: where
action: what
binding: association, instantiation

behavior and structure

[Masuhara+03,Wand+04]

32

Kernel Requirements

Aspect languages
open support, modular integration

Behavior and structure
expressive cut, complete action, separate binding

Composition and collaboration
Explicit interactions application/aspects
Base-language compliance

[EIWAS04]

33

Kernel Approach
Use partial reflection as base

generality + specializability

Mapping
cut: introspection (hookset, activation)
action: intercession (metaobject)
binding: metalink (link, MOP)

Abstraction gap
e.g., an AspectJ aspect with cflow

versatility

[GPCE05]

in cflow?

34

Kernel Requirements

Aspect languages
open support, modular integration

Behavior and structure
expressive cut, complete action, separate binding

Composition and collaboration
Explicit interactions application/aspects
Base-language compliance

35

Aspect Languages
Abstraction gap

1 aspect = 1 linkset = n links

Lightweight plugin architecture
plugin = AL parser + kernel definitions
AL general-purpose or domain-specific

Composition and traceability
conflicts detected on links
reported and resolved on linksets

schedule: BoundedBuffer with: MyScheduler

36

Contributions

Partial Behavioral Reflection
Versatile AOP Kernels
Reflex/Java, Open Implementation
Applications

37

Reflex for Java
Working implementation

portable and efficient
bytecode transformation (Javassist [Chiba00,Chiba+03])

Open Implementation
iterative process, progressive decoupling
intensive use of OI design guidelines [Kiczales+97b]

modular and extensible:
Core Reflex / API (180 classes)
Standard library: operations, base metaobjects...
Tools, examples, plugins...

[Reflection01,OOPSLA03,GPCE05]

38

Contributions

Partial Behavioral Reflection
Versatile AOP Kernels
Reflex/Java, Open Implementation
Applications

39

Applications
Reference management in mobile code

initial motivation and requirements

Transparent futures
expressive MOP and selection, temporal selection

Sequential Object Monitors (SOM)
MOP specialization, efficiency, DSAL

subset of AspectJ
dynamic crosscutting, efficiency, GPAL

[SCCC01,EWMOS02]

[OOPSLA03]

[ECOOP04]

[SCCC04]

40

Contents

Thesis in a Nutshell
Concepts: reflection & AOP
Contributions
Conclusions & Perspectives

41

Model of Partial Reflection
Achievements

balance trade-off between genericity/specificity
flexible metalink, MOP specialization

in between low-level and high-level tools
portable, efficient, applicable implementation

Perspectives
influence of “real-world constraints”
trade-off structure/adaptation
fully-static and fully-dynamic contexts

42

AOP Kernels
Achievements

identification of the need and analysis
first prototype, including composition
combine power of reflection and guidance of
aspect languages

Perspectives
AO models: prototypes, basic blocks
finer-grained, more precise, interactions
back to applications: Grid computing, Web apps, ...

DSALs: design, composition and interactions

Publications
with: Noury Bouraqadi, Denis Caromel (2), Pierre Cointe, Peter Ebraert (2), Luis Mateu,
Jacques Noyé (6), José Piquer (3), Leonardo Rodríguez (2), Marc Ségura, Michael Vernaillen

I n t . C o n f e r e n c e s
- “A Versatile Kernel for Multi-Language AOP”
@GPCE’05
- “Supporting Dynamic Crosscutting with Partial
Behavioral Reflection: a Case Study” @SCCC’04
- “Sequential Object Monitors” @ECOOP’04
- “Partial Behavioral Reflection: Spatial and
Temporal Selection of Reification” @OOPSLA’03
- “Altering Java Semantics via Bytecode
Manipulation” @GPCE’02
- “Managing References upon Object Migration:
Applying Separation of Concerns” @SCCC’01
- “Reflex - Towards an Open Reflective Extension
of Java” @Reflection’01

I n t . W o r k s h o p s
- “Motivation and Requirements for a
Versatile AOP Kernel” @EIWAS’04
- “A Concern-based Approach to
Software Evolution” @DAW/AOSD’04
- “A Flexible Approach to Runtime
Inspection” @ASARTI/ECOOP’03
- “Towards Transparent Adaptation of
Migration Policies”
@EWMOS/ECOOP’02
- “Runtime Metaobject Protocols: the
Quest for their Holy Application”
@PhDOOS/ECOOP’02

also: François Nollen, Angel Núñez, Guillaume Pothier, Rodolfo Toledo

