
Gadget: A Tool for Extracting the Dynamic Structure of Java Programs

JuanGargiulo andSpirosMancoridis
Departmentof Mathematics& ComputerScience

Drexel University
Philadelphia,PA, USA

e-mail:
�
gjgargiu,smancori� @mcs.drexel.edu

Abstract

Source codeanalysisand inspectiondoesnot provide
enoughinformationto describethe structure of an object-
orientedprogramcompletelybecausetherearecomponents
andrelationsthatonlyexist during its runtime.

This paper presentsa tool, called Gadget, that helps
software engineers extract thedynamicstructure of object-
orientedprogramswritten in the Java programminglan-
guage. Thetool usesprogramprofiling, filtering, andgraph
clusteringtechniques.

In this work we showhow Gadget is usedto analyzea
standard graphical user interfacelibrary for Java, called
Swing. This library hasa complex structure, part of which
weexposeusingdatagatheredbyGadgetduring theexecu-
tion of a simpleJavaprogramthatusesSwing.

1. Introduction

As the sizeof a softwaresystemincreases,so doesthe
complexity of its structure.Theuseof object-oriented(OO)
developmenttechniquesandlanguageshelpsprogrammers
managethis complexity by supportingdataabstraction,en-
capsulation,polymorphism,and reuse. However, the OO
approachmakesunderstandingthe structureof thesesys-
temsmore difficult becauseof featuressuch as dynamic
bindingandpolymorphism.

Understandingthedynamicstructureof asystemis help-
ful duringsoftwaremaintenance.Thedynamicstructureof
anOO programshows which objectsarecreatedandwhat
messagesare sentbetweentheseobjectsat runtime. Dy-
namic analysiscan be usedto complementstatic source-
level inspectionandanalysis,which maynot provide all of
the informationsoftwareengineersneedin orderto under-
standanOO system.For example,theFactoryOO design
pattern[3] is usedto “manufacture”objectsandmakethese
objectsaccessibleto client objectsthroughan abstractin-
terfaceat runtime. Static analysis,using a tool such as

Chava [6], would only reveal part of the completedesign.
Specifically, it would reveal the relationshipbetweenthe
client classandtheFactoryclassbut not betweentheclient
andtheobjectsthatwerecreatedby theFactoryat runtime.

This paperdescribesa tool, calledGadget,to helpsoft-
wareengineersextract the dynamicstructureof Java pro-
grams.In theprofiling phasethe tool gathersruntimedata
from theexecutingprogram.This datacapturesclassload-
ing, objectcreation,andmethodinvocationevents. In the
analysisphasethe tool usesfiltering andabstractiontech-
niquesto selectclassesof interest. The instancesof these
classesandtheir runtimerelationsare thendisplayedasa
graph.

In general,oneor morefeaturesof thetargetprogramis
analyzedata time(e.g.,theSavefeatureof awordprocess-
ing program).Therecordingof eventsthatoccurduringthe
executionof a featureis called tracing, andthe collection
of tracedatais calleda profile. The profile is analyzedby
the tool andthe dynamicstructureof the objectsandrela-
tions involved in the traceis shown as a DDG (Dynamic
Dependency Graph). A DDG is a graphwherenodesrep-
resentclassesor objectsandedgesrepresentrelations(i.e.,
methodinvocation)betweentwo objectsor betweenastatic
classand an object. A methodinvocationcan be an ob-
ject creation(i.e., call to a constructormethod)or a sim-
ple methodcall. Gadgetusesa tool from AT&T Research
calleddotty[4] to displaytheDDGs.An exampleof aDDG
is shown in Figure7.

Additionally, Gadgetusesa clusteringalgorithmto par-
tition theDDGs, thuspresentingthe dynamicstructuresin
amodularfashionthatis easierto understand.

Figure1 shows the architectureof Gadget,which con-
sistsof threemain components:Control, Repository, and
Profiler. The Control andProfiler componentsexecuteon
differentJava Virtual Machines(JVMs). TheControlcom-
ponentcontainsGadget’s executionand analysisengines
(i.e., GadgetExecutorandGadgetAnalyzer). The execu-
tion engineis in chargeof theexecutionof Gadgetandhas
somecontrol of the executionof the target programbeing



Profiling Data

JVM2

(file)

SergProf
JVMPI

Target
Application

Repository

Profiler

Analyzer
Gadget

Executor
Gadget

USER

Control

JVM1

Figure 1. Software Architecture of Gadget.

analyzed. The analysisengineis in charge of managing
the analysisprocesslogic. This includesthe interaction
with the repositoryandthe interactionwith the userinter-
face. Gadget’s repositoryis an external file that contains
dataaboutthe executionof the target program. This file
is first written by the profiler and then readby the analy-
sisengine.TheProfilercomponentis in chargeof running
thetargetprogramthroughtheSergProf profiling interface,
which is our implementationof Sun Microsystem’s Java
Virtual MachineProfilingInterface(JVMPI) [13]. SergProf
tracesclassloading, object allocation,methodinvocation
andstackinformationat thetime anobjectis allocated.

Thestructureof therestof this paperis asfollows: Sec-
tion 2 providesan overview of relatedresearch.Section3
providesbackgroundinformationaboutthePluggableLook
and Feel (PLAF) featureof the Java Swing library. Sec-
tion 4 usesGadgetto extractthestructureof thePLAF fea-
ture. This sectionpresentsthebasicfeaturesof Gadgetand
shows screencapturesof the tool, aswell asthe resultsof
the PLAF feature’s analysis. Section5 concludeswith a
summaryof thepaper, anoutlineof thecontributionsmade,
anda list of thelimitationsof thecurrentversionof Gadget.

2. Background

In this sectionwe outline thebodyof work that is most
closelyrelatedto the work presentedin this paper. At the
endof thesectionwestatethedistinguishingcharacteristics
of ourwork.

Jerding’s[5] approachto supportingOOprogramunder-
standingis basedon visualizingobjectinteractionsandin-

stantiationpatternsduringtheexecutionof a program.His
approachrequirestracingtheexecutionof theprogrambe-
inganalyzedandthenvisualizingthedynamicdatacaptured
by thetrace.This work is concernedwith searchingfor so-
lutionsto theproblemof visualizinglargedatasetsof run-
time data. It alsofocuseson detectinginconsistenciesbe-
tweenthedesignandimplementationof softwaresystems.

De Paw, Helm, KimelmanandVlissides[12] have cre-
ated a library for extracting and animating the behavior
of OO systems.They presentsummaryinformationabout
theexecutionof a programusinga chart-like visualization.
They alsopresenttechniquesto instrumentOOprogramsso
thattheir executionscanbetraced.

Richner, DuccasseandWuyts [10] uselogic program-
ming to filter data that is generatedby execution traces.
Theirapproachalsorequirescodeinstrumentation.

Shilling andStasko [11], andlaterStasko andMukher-
jea[9], workedonanimatingdesignsandalgorithms,which
canbehelpful during the designprocess.Unlike theother
work presentedin this section,their work doesnot involve
programtracinganddoesnot takeareverseengineeringap-
proach.

What distinguishesour work from the above research
is the emphasison filtering and clusteringthe tracedata
beforeproducingdesignvisualizations. Unlike Jerding’s
work, which triesto reducecomplexity by providing better
visualizations,our approachattemptsto reducecomplexity
by filtering out only theruntimedatathat is relevant to the
programfeaturebeinganalyzed.

AutomaticclusteringwasidentifiedbyBeladyandEvan-
gelisti [1] as a meansto producehigh-level views of the
structureof softwaresystems.We usethe Bunch [8] clus-
tering systemto group setsof objectsand their interrela-
tions in order to producea high-level “road map” of the
dynamicsoftwarestructure. Anotherdistinguishingchar-
acteristic is that our work doesnot rely on programin-
strumentationbut rather on capturingtrace data directly
from the Java virtual machineusing the JVMPI [13]. Fi-
nally, we are treating this work as an ongoing project
and hope to receive feedbackfrom users. For this rea-
sonwe provide a free copy of Gadgetfrom our web page
(http://serg.mcs.drexel.edu/gadget) and in-
tend to maintain the tool if a significantusercommunity
materializes.

Beforeweshow how Gadgetis usedto extractthestruc-
tureof Swing’s PLAF featurein Section4, we briefly pro-
vide somebackgroundmaterialon this featurein the next
section.



3. The Pluggable Look and Feel Feature of the
Swing Library

Swing is a Java library to supportthe developmentof
graphicaluserinterfacesfor Javaprograms.Oneof Swing’s
goals is to supportmultiple platformswhile preservinga
consistentlook andfeel.

TheSwingpluggablelook-and-feel(PLAF) designis the
portion of a GUI component’s implementationthat deals
with the presentation(the look) and event-handling(the
feel). Note that the LAF can be changedat runtime [2].
Figure2 showsthreedifferentGUI buttons,eachwith adif-
ferentLAF.

Figure 2. Example program with three diff er-
ent LAFs (default, Motif and Windo ws).

Swingenablesprogrammersto changetheLAF of aGUI
dynamicallyby meansof asimpleinterfaceasshown in the
following sourcecodefragment,wheretheLAF is changed
by usinga commandline argument.

...
5 if (args.length > 0 && args[0].equals("motif"))
6 UIManager.setLookAndFeel(

"com.sun.java.swing.plaf.motif.MotifLookAndFeel");
7 else if (args.length > 0 && args[0].equals("windows"))
8 UIManager.setLookAndFeel(

"com.sun.java.swing.plaf.windows.WindowsLookAndFeel");
...

As shown in lines 6 and 8 of the sourcecode, the
UIManager classis usedchangethe PLAF dynamically.
In orderto explaintheUIManager classlet usconsiderthe
processfor creatingaJButton component(seeFigure3).

The creationof the JButton componentincludesthe
installation of a correspondingUI delegate through the
UIManager class. TheUIManager thengetsthe name
for the UI delegate classfor this component,depending
on the installedLAF. For example the UI delegateclass
of the Windows LAF JButton is WindowsButtonUI.
Finally, a UI delegateobject is createdandtheJButton
componentobtainsa referenceto it. This processis called
UI Installation.

The UI delegateis installedby theUIManager class,
which is a static classthat hasknowledgeof the current
LAF. The UIManager class makes use of the UIDe-
faults class,which hasmethodsfor accessingspecific
types of information about look-and-feel. The UIDe-
faults classincludes,amongotherthings,default values
for presentation-relatedproperties(suchascolor, font, bor-
der, andicon) for eachUI delegate.

Figure 3 shows the classdiagramfor a programthat
usesa JButton with a PLAF. This diagramdescribes
Swing’s structure(for one component)showing the rela-
tionsbetweenthedifferentclasses.Examplesof inheritance
relations are the large edge relations betweenMotif-
ButtonUI andWindowsButtonUI with BasicBut-
tonUI (they bothextendBasicButtonUI). Thedotted
edgerelation betweenJButton andUIManager is an
exampleof a relationbetweenclassesthatdependon static
callsmadein theprocessof installinga PLAF to a compo-
nent.ThedashededgerelationbetweentheJButton class
andeachof the specificLAF classes(MotifButtonUI
andWindowsButtonUI) is an exampleof a runtimere-
lation.

4. Analysis of Swing’s PLAF Feature Using
Gadget

This sectionshows how Gadgetcanhelp programmers
extract the structureof the PLAF featureof Swing, which
wasdescribedin theprevioussection.

As anexamplewewill analyzeasmallprogramthatdis-
playsa window with a button. The programcontainsonly
oneclass,calledPLAFTester, which is alsothenameof the
program. The PLAFTesterprogramloadsa JFrame and
addsa JButton. To show a correlationbetweenthe ex-
tractedstructureof a JButton, as producedby Gadget,
andthedesigndescribedin Figure3, theWindowslook and
feelwassetduringruntime.

We next go through the step-by-stepprocessof ex-
tracting the structureof the PLAF featureusing Gadget.
Throughouttheexplanationof this process,screenshotsof
thetool will beshown. TheGadgetGUI hastwo mainpan-
els (seeFigures4-6, 8). Eachpanelis selectedby clicking
on a tab. Onetabrevealsthetracingpanelandtheotherthe
analysispanel.Theanalysispanelusesa “wizard” stylein-
terface,which helpsusersgo throughthecorrectsequence
of stepsvia Next andBack buttons.

4.1. Step 1: Tracing

Thefirst stepin theanalysisis to run PLAFTesterusing
Gadget’s tracingcapabilities.Theexecutioninvolvesstart-
ing theprogramuntil it displaysawindow. No furthertrac-



Figure 3. Architecture of the JButton UI Installation Process

Figure 4. Profiling Screen



Figure 5. Package Filtering Screen

ing is neededbecauseall of theobjectsrelatedto thePLAF
arealreadyloadedwhenthewindow is displayed.

Figure4 showsthenameof theclasscontainingthemain
methodin thetext field. Theusercanstartrunningthetar-
get programby pressingGadget’s Start Program button.
This action startsexecuting the programby displayinga
new window (if theprogramhasaGUI) or sendstheoutput
to theconsolefrom whereGadgetwasstarted.

After theprogramstartsrunning,theusercanbegin trac-
ing by pressingtheBegin Trace button. By doingthis, the
profiling interfacestartstracingandthetracedataisdumped
to the profile file (e.g.,serg.prof). By pressingthe Pause
Trace button,theprofilerstopsgeneratingdata.Thisoption
is usefulwhenthe userwantsto analyzeprogramfeatures
oneat a time.

4.2. Step 2: Selecting Packages

Oncethe traceis performed,Gadget’s analysistool is
started.Thefirst stepin theanalysisis to selectthepackages
to beincludedin theanalysis.

Figure5 shows a screenshotof thefirst analysisscreen.
On this screenthe userspecifiesthe profile file nameand
then the packagenamesto include in the analysis. Users
mayspecifywhich packagesareto beincludedin theanal-
ysis eithermanually, usingthe Add andRemove buttons,

or automaticallyusing the Search button. The list in the
centerof the screenis the packages list, which shows the
selectedpackagescontainingtheclassesto beanalyzed.

4.3. Step 3: Selecting Classes

After selectingthepackages,thenext stepis to selectthe
classesfrom the selectedpackages.By pressingthe Next
buttonon thePackage Filtering Screen, Gadgetperforms
thefilteringof theprofile. After thefiltering is complete,the
Class Filtering Screen is displayed,showing the classes
thatparticipatedin theexecution.

Thescreenpresentedin Figure6 containstwo lists. One
containsthe selectedclassesto be includedin the analysis
andtheothercontainstheclassesthatwill beignored.

4.4. Step 4: Showing the Dynamic Dependency
Graph

After selectingthe classes,Gadgetdisplays a DDG,
which representstheruntimerelationsasedgesandtheob-
jectsasnodes.Thegraphis shown in Figure7; darknodes
representclassesthatwerenot instantiated,but thatinteract
with objectsvia staticmethods,and light nodesrepresent
objectsthatwerecreatedat runtime.



Figure 6. Class Filtering Screen

Figure 7 essentiallypresentsthe sameinformation as
Figure 3 from a runtime perspective. The numberson
the edgesof the DDG in Figure 7 indicate the order of
the method invocationsbetweenthe objects at runtime.
For example, the JButton first sendsa messageto the
UIManager, thentheUIManager sendsamessageto the
UIDefaults object,andsoon. UnlikeFigure3, Figure7
doesnot show inheritancerelationsbecausethey arestatic
notdynamicrelations.

In mostcases,softwareengineersdo not have accessto
documentationabouttheOO designof thesystemthey are
trying to understand.In theabsenceof suchdocumentation,
a tool suchasGadgetcanprovide oneof moreDDGs that
canserve asa goodstartingpoint for the programunder-
standingprocess.

4.5. Step 5: Performing Clustering on the DDG

By pressingthe Next button in the Class Filtering
Screen, the Clustering Screen (Figure 8) appears. Be-
fore showing this screen,Gadgetcalls the Bunch [7] tool
to cluster the current DDG. The Bunch algorithm parti-
tions the DDG so objectsthat are tightly linked via rela-
tionsaregroupedtogether, assuchobjectsaremorelikely
to be closely related. The algorithm also tries to mini-
mize the numberof relationsacrossclusterboundaries.In

essence,the algorithmbalancesthe tradeoff betweentight
intra-clustercohesionandlooseinter-clustercoupling.

In Figure8 theusercanseetheclusteredDDG by press-
ing the View Graph button. This view shows all of the
clustersandtheobjectsandrelationsin eachcluster. If the
View Cluster button is pressed,the classeswithin the se-
lectedclusteraredisplayedin the graphusingdotty. This
filtering optionis usefulwhenworkingwith a largenumber
of objects,whosecomplex DDG may be difficult to read.
Gadgetalsoshows theclustersusinga directorytreerepre-
sentation,whereeachfolder in thetreerepresentsa cluster
(seeFigure8). Usersmayshow or hidethecontentsof each
clusterby pressingthe plus or minus sign on eachfolder
icon,respectively.

5. Conclusions

We describeda tool calledGadgetandshowedhow this
tool canbeusedto extracttheruntimestructureof OOpro-
gramswritten Java. In order to study the PLAF feature,
we appliedGadgetto a small programthat usesa Swing
JButton.

The paper concludeswith the technicaland research
contributionsof this work alongwith a descriptionof this
work’s limitations, which presentopportunitiesfor future
work.



javax.swing.plaf.basic.BasicButtonUI

javax.swing.UIManager

13

javax.swing.DefaultButtonModel

8

javax.swing.JComponent

17

com.sun.java.swing.plaf.windows.WindowsButtonUI

15

javax.swing.UIDefaults

2

com.sun.java.swing.plaf.windows.WindowsLookAndFeel

11

javax.swing.plaf.basic.BasicLookAndFeel

12

4

javax.swing.JButton

3

9

10

18

javax.swing.plaf.ComponentUI

19

21

20

10

916

14

5

1

22

plaf.PLAFTester

7

6

Figure 7. The DDG of the PLAFTesterprogram.

Figure 8. Clustering Screen



5.1. Contributions

� Gadget’sfiltering featuresfor reducingthesizeof pro-
gramexecutiontracesareessentialwhendealingwith
complex OOsoftware.For themostpart,thetool’sfil-
teringtechniquestake advantageof theway Java pro-
gramsareorganizedinto packagesandclasses.In ad-
dition to packageandclassfiltering, thetool supports
anothertypeof filtering thatenablesusersto traceindi-
vidual featuresof a programby usingGadget’s Begin
Trace, Pause Trace, andEnd Trace buttons.

� Gadgetusessoftware clusteringtechniquesto make
largedynamicstructuresmoremodularand,thus,eas-
ier to understand.Most of thework on softwareclus-
teringhasbeenon clusteringstaticcodeartifactssuch
asmethods,classes,modules,andfiles.

� Gadgetallowssoftwareengineersto analyzeJavapro-
gramswithout instrumentingthesourcecode.

� Gadgetis available,freeof charge,from ourwebpage.

5.2. Limitations

� Gadgetusesfiles to storetraces,thus,its performance
is poorwhenlargeprofilesareanalyzed.

� The currentversionof Gadgetonly runson the Win-
dows platform becauseSergProf is implementedasa
Windowsdynamicallylinkedlibrary.

� Gadgetonly workswith Java programs.Oneof goals
is to supportC++ in thenearfuture.

Acknowledgments

This researchis sponsoredby two grantsfrom theNationalScienceFoun-

dation(NSF):aCAREERAwardundergrantCCR-9733569andanInstru-

mentationAwardundergrantCISE-9986105.Additionalsupportwaspro-

videdby grantsfrom theresearchlaboratoriesof AT&T andSunMicrosys-

tems.Any opinions,findings,conclusionsor recommendationsexpressed

in this materialarethoseof theauthorsanddo not necessarilyreflectthe

views of theNSF, theU.S.government,AT&T, or SunMicrosystems.

References

[1] L. BeladyandC. Evangelisti.Systempartitioningand
its measure.Journalof SystemsandSoftware, 2, pages
23–29,1981.

[2] A. Fowler. A swing architecture overview:
The inside story on jfc component design.
http://java.sun.com/products/jfc/tsc/articles/-
architecture/index.html, August1998.

[3] E. Gamma,R. Helm, R. Johnson,and J. Vlissides.
Designpatterns:Elementsof reusableobject-oriented
software.Addison-Wesley, 1995.

[4] E. Gansner, E. Koutsofios, S. North, and K. Vo.
A techniquefor drawing directedgraphs. Transac-
tionsonSoftwareEngineering, 19(3):214–230,March
1993.

[5] D. F. Jerding.VisualizingInteractionPatternsIn Pro-
gram Executions. PhD thesis,Georgia Institute of
Technology, November1997.

[6] J. Korn, Y. Chen,andE. Koutsofios.Chava: Reverse
engineeringand tracking of java applets. Working
Conferenceon ReverseEngineering, 1999.

[7] S. Mancoridis,B. Mitchell, Y. Chen,andE. Gansner.
Bunch: A clusteringtool for the recovery andmain-
tenanceof softwaresystemstructures.IEEEProceed-
ingsof the1999InternationalConferenceonSoftware
Maintenance(ICSM99). IEEE, 1999.

[8] S. Mancoridis,B. Mitchell, C. Rorres,Y. Chen,and
E. Gansner. Using automaticclusteringto produce
high-level systemorganizationsof sourcecode. In
Proceedingsof the 6th Intl. Workshopon Program
Comprehension, June1998.

[9] S. Mukherjea and J. Stasko. Toward visual de-
bugging: Integratingalgorithmanimationcapabilities
within a source-level debugger. ACM Transactions
on Computer-HumanInteraction,Vol. 1 No. 3, pages
215–244,1994.

[10] T. Richner and S. Ducasse. Recovering high-level
views of object-orientedapplicationsfrom staticand
dynamicinformation. In Proceedingsof the Interna-
tional Conferenceon Software Maintenance(ICSM),
Oxford, pages13–22,September1999.

[11] J. Shilling andJ. Stasko. Using animationto design,
documentandtraceobject-orientedsystems.Techni-
cal ReportGIT-GVU-92-12,Graphics,Visualization,
andUsability Center, Georgia Instituteof technology,
Collegeof Computing,Atlanta,GA, June1992.

[12] R. H. W. De Paw, D. Kimelman,andJ.Vlissides.Vi-
sualizingthe behavior of object-orientedsystems.In
Proceedingsof the ACM OOPSLA’93 Conference,
Washington,D.C., pages326–337,October1993.

[13] www.javasoft.com. Jvmpi - java
virtual machine profiling interface.
http://java.sun.com/j2se/1.3/docs/guide/jvmpi/jvmpi.html,
2000.


