
Supporting Dynamic Crosscutting with
Partial Behavioral Reflection: a Case Study

Leonardo Rodŕıguez1 Éric Tanter2,3 Jacques Noýe4,3

1 Universidad de la Reṕublica, Instituto de Computación
Julio Herrera y Reissig 565, Montevideo, Uruguay

2 Universidad de Chile, Departamento de Ciencias de la Computación
Av. Blanco Encalada 2120, Santiago, Chile

3 OBASCO Project, Ecole des Mines de Nantes – INRIA
4 rue Alfred Kastler, Nantes, France

4 INRIA Rennes, Campus universitaire de Beaulieu, Rennes, France
lrodrigu@fing.edu.uy etanter@dcc.uchile.cl noye@emn.fr

Abstract

The relationship between reflection and aspect-oriented
programming is still under exploration. This paper reports
on an experiment to support a widely-accepted, general-
purpose aspect language mechanism –AspectJ’s dynamic
crosscutting–, with a model of partial behavioral reflection.
We present a first approach to such a mapping, identify some
extensions that can improve the effectiveness of the map-
ping, and validate our proposal through a revisited map-
ping. These extensions have been integrated into our Java
reflective platform, Reflex.

1. Introduction

Since the advent of object-oriented programming (OOP),
a number of advanced modularization issues have been
pointed out, for which OOP (as well as other program-
ming paradigms) does not suffice. In particular, the no-
tion of properties thatcrosscutthe natural hierarchical de-
composition of a system has been identified as responsible
for bad modularization such asduplicated codeand code
tangling [16]. Tangled code refers to a piece of code that
no more reflects a single concern of the design phase, but
rather represents a hardly-intelligible mix of several con-
cerns. Both phenomena significantly reduce reuse, evolu-
tion and maintenance perspectives.

The last decade has seen the emergence of a great va-
riety of models and proposals for advancedseparation of
concerns[8, 26, 2]. In particular, much attention has been

paid to the benefits of using reflection and metaprogram-
ming [20, 38, 7, 37]. Since reflection supports the notion
of metacomputations, that is, computations about compu-
tations, it provides a powerful framework for dealing sep-
arately with different concerns. It does so by separating
basecomputation and metacomputations into two differ-
ent levels: thebase leveland themetalevel. These levels
are causally connected [19]. This means that, on the one
hand, a reflective program running at the base level has ac-
cess to its representation at the metalevel, and that, on the
other hand, a modification of this representation will affect
further base computations. Various applications of reflec-
tion and metaprogramming techniques have been made to
achieve better separation of concerns, typically by imple-
menting technical, crosscutting concerns such as distribu-
tion, parallelism, fault-tolerance, and synchronization at the
metalevel [9, 30, 25, 36, 22].

Experiments with reflection in the context of object-
oriented programming has led to the study ofmetaobject
protocols [14, 13, 5] andopen implementations, showing
that an object-oriented organization of the metalevel brings
various benefits in terms of extensibility and modularity. In
1992, Gregor Kiczales and his group at Xerox PARC be-
gan to identify a new model of abstraction in software engi-
neering [12], which finally led to the introduction ofaspect-
oriented programming(AOP) in 1997 [16]. Since then, a
significant activity around AOP and related modularization
technologies has taken place, as illustrated by the regular
tracks on AOP in language conferences such as ECOOP
and OOPSLA, and the success of the ACM AOSD confer-
ence, dedicated to issues in aspect-oriented software devel-
opment. Among the great variety of AOP proposals, As-

pectJ [15] is a reference: it is a simple, well-designed and
production-quality extension to the Java programming lan-
guage, which allows a modular implementation of crosscut-
ting concerns. The AspectJ language is a general-purpose
aspect language, as opposed to domain-specific aspect lan-
guages [29, 3, 18, 24].

Aspect-oriented programming is deeply connected to re-
flection and metaprogramming. In short, AOP can be seen
as a principled, structured, and language-supported way of
doing meta- and reflective programming. The present pa-
per lies in the context of such a connection between AOP
and reflection. We have been working on metaobject proto-
cols for behavioral reflection (i.e., reflection about thebe-
havior of an application), introducing a fine-grained model
for partial behavioral reflection [34]. Recent extensions of
this work draws from the observation that there are many
AOP proposals out there and much more to explore, which
have to “reinvent the wheel” each time, and furthermore are
not compatible between each other. We aim at the analy-
sis and design of a reflective kernel for AOP, which can be
used to effectively explore the design space of AOP and sup-
port new AOP features and languages. A major dimension
of such an AOP kernel is to provide support for the compo-
sition and collaboration between approaches [33, 32], hence
being a major factor of consolidation in the field.

In order to validate our claim that partial reflection is an
appropriate low-level framework for supporting AOP ap-
proaches in an open manner, we need to carry out conse-
quent case studies of partial behavioral reflection. We have
already studied the support of a lightweight domain-specific
aspect language for concurrent programming [4, 33], which
gave us confidence in the direction we are taking. However,
to seriously validate our approach, we need to study the sup-
port of a general-purpose, expressive, and widely-accepted
aspect language, e.g., the AspectJ language. This paper re-
ports on the first and most fundamental step: studying the
mapping of AspectJ’s dynamic crosscutting mechanism.

The structure of this paper is as follows. Section 2 briefly
introduces partial behavioral reflection and Reflex, our Java
open implementation. Section 3 gives an overview of As-
pectJ’s dynamic crosscutting mechanism. Once necessary
concepts have been introduced, Section 4 discusses a pre-
liminary approach to supporting AspectJ, from which we
identify two extensions to our model of partial behavioral
reflection. Such extensions are not necessary to handle As-
pectJ, but are needed in order to achieve efficiency and el-
egance. Section 5 details the mapping with the two exten-
sions at hand. Finally, Section 6 discusses related work and
Section 7 concludes with perspectives.

2. Partial Behavioral Reflection

Partial behavioral reflection [34] is a model of behavioral
reflection that relies on high selectivity, to enhance perfor-
mance, and configurability, to enhance usability. Our basic
model structures the metalevel in terms ofmetaobjectsrea-
soning and acting uponreificationsof the base-level com-
putation described in terms ofoperations[23]. By operation
we mean the basic mechanisms offered by the language,
such as message sending, object creation, field access, etc.
The reificationof an operation occurrence is an object rep-
resenting such an operation occurrence, which metaobjects
can therefore manipulate to change the semantics of the op-
eration occurrence.

The combination of reification and metalevel computa-
tion is a powerful mechanism, but fairly costly when real-
ized at runtime. Jumping to the metalevel consists of first
reifying the operation occurrence, and then delegating (at
least part of) its interpretation to the metaobject. In the fol-
lowing, a hook is the base-level piece of code responsible
for performing a reification and giving control to the asso-
ciated metaobject(s).

Partial behavioral reflection addresses the issue of flexi-
bility vs. efficiency by limiting, to the greatest extent possi-
ble, the number of control flow shifts occurring at runtime.
This relies on bothspatial and temporalselection of reifi-
cation, precisely selecting which entities (classes, objects)
are subject to which reifications, and when these intercep-
tions are active.

Our model relies on the notion ofhooksets, as compos-
able sets that gather execution points scattered in various
objects (Fig. 1). Hooksets make it possible to apply a meta-
object that modularly implements a concern thatcrosscuts
the object decomposition. In our model the metalink –to
which we will refer aslink– which binds a hookset to a
metaobject, is made explicit and is characterized by several
attributes, such as its scope, control and activation. Scope
is used to tailor the granularity of metaobjects (per object,
per class, or global). Control makes it possible to specify
the time when a metaobject is given control (before, after,
or instead of). Finally, the link has an activation condition,
which is dynamically evaluated and can be set with differ-
ent scopes, in order to achieve expressive temporal selec-
tion.

Reflex is a portable Java implementation of this model,
operating on bytecode. In Reflex, spatial selection is done
by specifyingclass selectorsandoperation selectors, pred-
icates that select the points in program text that should be
hooked. A hookset in Reflex is either aprimitive hookset,
which consists of an operation class, a class selector and an
operation selector, or acomposite hookset, which is made
up of other hooksets, that may be related to various opera-
tions. In Reflex, the link is reified as a highly configurable

: hookset : hook : link

: metaobject : activation condition

metalevel

base level

Figure 1. The model of hooksets.

Link object that binds a hookset to a metaobject. Further-
more, Reflex is designed as anopenreflective extension of
Java. It is open in the sense that it does not impose any spe-
cific MetaObject Protocol (MOP) [14, 13, 5], thanks to a
layered architecture. Indeed, Reflex allows metalevel archi-
tects to define their own MOP, based on theCore Reflex
framework, possibly reusing parts of astandard MOPli-
brary. Architects can define which operations can be rei-
fied, and how, by defining anoperation support. For more
details on partial behavioral reflection and Reflex, we re-
fer the reader to [34].

3. AspectJ

AspectJ [15] extends the Java language with a new unit
of modularity,aspects, to implement crosscutting concerns
modularly. AspectJ supports two kinds of crosscutting:dy-
namic crosscuttingmakes it possible to define additional be-
havior to run at certain well-defined points in the execution
of a program;static crosscuttingmakes it possible to mod-
ify the static structure of a program (e.g.adding new meth-
ods, implementing new interfaces, modifying the class hier-
archy)1. This study is concerned with the most distinguish-
ing mechanism of AspectJ: dynamic crosscutting. AspectJ
follows the Pointcut and Advice model for AOP [21, 35].

3.1. AspectJ basics

In AspectJ a join point represents a well-defined point in
the execution of a program, where program behavior can be
extended with a crosscutting behavior. AspectJ supports dif-
ferent kinds of join points, which correspond to different op-
erations of the underlying language, Java: method call, field
set, handler execution, etc. Since a join point is an execu-
tion point, it has a static counterpart at the code level, called
the join pointshadow[21]. A join point may further be dis-
criminated by a dynamically-evaluated condition, called the

1 The terminology of static and dynamic crosscutting was introduced
in [15]; we could alternatively use the terms structural and behavioral
crosscutting.

join point residue[11], in order to determine whether a run-
time occurrence of the join point shadow actually is an ex-
pected join point.

The AspectJ language provides the means to group join
points of interest into apointcut, in order to specify the
places where an aspect actually affects a base application. A
pointcut definition may also specify thecontext information
that should be passed to the aspect (e.g. the arguments of
the current join point). Pointcuts are specified using several
primitive pointcut designators(PCDs) which can be com-
bined using the standard logic operators. For instance, the
following AspectJ code:

pointcut move(int x, int y):
call(* Point.moveXY(int,int))
&& args(x,y);

defines a pointcut namedmove that combines two prim-
itive PCDs in order to select all calls to methodmoveXYof
classPoint , and expose both method parameters as con-
text information.

Finally, the crosscutting behavior that should be applied
upon occurrences of join points matched by a given point-
cut definition is called anadvice. An advice is a method-
like construction that defines the additional behavior to ex-
ecute at certain join points. When defining an advice, one
must explicitly bind it to a pointcut. There are fivekinds
of advice, which differentiate the moment at which the ad-
vice is executed with respect to the join point execution: be-
fore (before the join point execution), after (after the join
point execution), after throwing (after the join point exe-
cution, returning with an exception), after returning (after
the join point execution, returning normally), around (re-
place the join point execution). An around advice can in-
clude a specialproceed statement to trigger the execution
of the join point it replaces. Advices may have parameters,
in which case they must be bound to the pointcut context ex-
posure parameters. For instance, the following AspectJ ad-
vice:

void around(int x,int y): move(x,y){
proceed(max(0,x), max(0,y));

}

simply ensures that a point cannot be moved to negative val-
ues ofx or y .

3.2. Properties of PCDs

Pointcut designators in AspectJ do not all have the same
properties. They can be characterized based on the follow-
ing properties2:

• statically matched: some PCDs can be resolved com-
pletely by looking at the program text. Such PCDs may
express:

2 A more exhaustive presentation of pointcut designators can be found
in [15] and on the AspectJ website [1].

– a kind restriction: match only certain kinds of
join point, for instancecall , which matches
method or constructor calls (caller side), or
execution , which matches effective method
or constructor executions (callee side).

– a signature restriction: restrict join points based
on their signatures. AspectJ offers wildcard-
ing in signatures for convenience; for instance,
call(* *.move()) restrict join points of
kind call to calls to a no-argmove method.

– location restriction: restrict join points based on
the location in source code where they occur. Ex-
amples arewithin andwithincode .

• dynamically matched: such PCDs require runtime in-
formation to determine whether they match a candi-
date join point or not. Such checks are implemented by
dynamically-evaluated conditions, calledresidues. As-
pectJ supports three types of residues:control flow
residues for expressing control-flow based crosscut-
ting, instanceOf residues for runtime type check-
ing, and if residues for evaluating arbitrary (though
static) boolean expressions.

• context exposure: such PCDs expose join point infor-
mation to the context. Examples arearg andthis .

4. Mapping Dynamic Crosscutting

In this section, we present how partial behavioral reflec-
tion can support the dynamic crosscutting mechanism of
AspectJ. The presentation is informal, example-based, and
does not enter into details. It just explains how such a map-
ping is achieved, in order to make clear some limitations of
the current model. We end this section by presenting two
minor extensions to the current model of partial behavioral
reflection, which lead us to a much better mapping, pre-
sented in more details in Section 5.

4.1. Scope of the mapping

We hereby only focus on the dynamic crosscutting mech-
anism of AspectJ. In order to keep the argumentation clear
and concise, static crosscutting is not considered. Concern-
ing dynamic crosscutting, we limit ourselves to the main
concepts –join points, pointcuts and advices–, and do not
address more advanced features such as aspect instantiation,
privileged aspects and so on.

4.2. Running example

The mapping is presented using a simpleshape editor
system(Fig. 2). The system manages three kinds of shapes:
Line , Point andComposite . A Line has two edges

points.Composite is a shape container. All of them are
subclasses ofShape , which is an abstract class with one
method,moveXY. This method is meant to move the cen-
ter of a concrete shape to the specified coordinates, there-
fore, for Point it moves the point to the new coordi-
nates, forLine it moves the middle point of the line to
the new coordinates, consequently moving its edges, and for
Composite it move the center of the overall shape to the
new coordinates, consequently moving all its inner shapes.

+moveXY(x:int, y:int)

Shape

+moveXY(x:int, y:int)

Line

+moveXY(x:int, y:int)

Point

+moveXY(x:int, y:int)

Composite
2

*

Figure 2. Simple shape editor system

4.3. Initial approach

In this section we present an overview of the mapping
of AspectJ dynamic crosscutting to the model of partial be-
havioral reflection as presented in [34]. Conceptually, an as-
pect is a metalevel entity, since its primary subject matter is
to affect the execution semantics of another program.

A first possible mapping of AspectJ on top of behav-
ioral reflection would consist in reifying whatever occurs
in the base program (similarly to a debugging mode) and
pass it to some “aspect controller” (a global metaobject) that
will dynamically determine which pointcuts match, and ex-
ecute the corresponding advices. Needless to say, such an
approach would be far from satisfying in terms of efficiency.

Rather than entirely matching pointcuts dynamically,
partial behavioral reflection gives room for a more staged
approach whereby the static projections of pointcuts (their
shadows) are represented as hooksets. Hence only execu-
tion points of potential interest are reified. Links are con-
figured to delegate control to the appropriate metaobject
when needed. The metaobject is then in charge of complet-
ing pointcut matching and, if appropriate, executing the ad-
vice. This section gives more details on this approach, eval-
uates it, and concludes with a suggestion of how to improve
the model of partial behavioral reflection presented in [34].

4.3.1. PointcutsAs seen in Section 3.2, pointcut designa-
tors may impose statically and dynamically matched restric-
tions over join points. The main matter of pointcut mapping
lies in how such restrictions are expressed within Reflex.

Let us first consider static restrictions, with the following
simple user-defined pointcut designator,move:

pointcut move(): call(* *.moveXY(int, int));

This pointcut designator uses AspectJ wildcard
mechanism: it refers to any invocation of a method
moveXY(int,int) occurring in any class. In Re-
flex, mapping themove PCD is done simply by defining a
primitive hookset characterized by:

• theMsgSend operation class;

• a class selector that selects all classes;

• an operation selector that selects only message send
occurrences for a method namedmoveXY that re-
ceives twoint arguments.

Note that thecall PCD can entirely be matched stati-
cally, based on program text. In other words, it is fully de-
termined by its shadow. In Reflex vocabulary, a join point
shadow is a hook. By extension, a pointcut shadow is a
hookset. Hence, mapping PCDs that are statically deter-
mined is straightforward in Reflex.

Now consider the following extension to the previous
pointcut designator:

movePoint(): call(* *.moveXY(int, int))
&& target(Point);

This pointcut adds the restriction that the target object of
a call tomoveXYbe of typePoint . Such a restriction can-
not be completely resolved statically (if it can) without us-
ing an expensive static analysis of concrete types. In pro-
gram text, it is only possible to select calls that are done on
an object whose declared type is eitherPoint , or any su-
per and subclass of it. Since the concrete type of a variable is
only determined at runtime, this pointcut requires a residue
that dynamically checks the type of the target of the call
(via instanceof). In Reflex, residues do not have a di-
rect counterpart3. However, they can be handled as an extra
condition checked at the metalevel. When a reification oc-
curs, the context information is all passed to the metaobject
controlling the considered hookset. Such a metaobject starts
by checking the residue condition before continuing.

Residues are all checked in the same way. How-
ever, a control flow residue deserves special attention.
The pointcut designators related to control flow (cflow
and cflowbelow) allow picking out join points based
on whether they are in a particular control-flow relation-
ship with other join points. Checking this relationship
represents nothing new compared to other residues, how-
ever, setting up this relationship implies exposing the
control flow information of other join points.

Let us discuss this with an example:
moveSinglePoint(): movePoint()

&& !cflowbelow(move());

3 Only activation conditions are available, which are not meant to rea-
son about context information other than the currently executing ob-
ject [34].

This PCD further restricts themovePoint PCD,
matching only those invocations that are not made be-
low the control flow of any join point matched by the
move PCD. In other words, it matches only the moving of
a stand-alone point (top-level calls). Note that this point-
cut definition implies the definition of two nested pointcuts:
the one inside thecflowbelow (move) and the one af-
fected by a control flow restriction (movePoint).

To be able to determine whethermovePoint is
matched in the control flow ofmove, we first need to ex-
pose the control flow information ofmove: this is done us-
ing the notion ofevent collectors[33]. Event collectors
gather execution events to expose parts of a program execu-
tion (nesting, sequences, etc.), under any structure (counter,
stack, tree, DAGs, graphs, etc.), for dynamic introspec-
tion. In particular they are used to expose control flow
information. Indeed, event collectors are just like meta-
objects, except that their purpose is only toexposeelements
of program execution, rather than toaffectprogram execu-
tion. In order to supportcflow and cflowbelow , ex-
posing a simple counter that keeps track of entries and
exits in a pointcut suffices. Consequently, mapping a con-
trol flow PCD implies two separate tasks:

• defining a separate link for an event collector expos-
ing control flow information of the pointcut passed as
argument tocflowbelow ;

• defining a condition that checks the exposed control
flow information.

Hence, in our example, the metaobject must check two
residues: the control flow condition, and the instanceof con-
dition.

4.3.2. Pointcut parametersConsider the following ex-
tension of the pointcut designatormoveSinglePoint :

moveSinglePointArg(int x, int y):
moveSinglePoint() && args(x,y);

This pointcut designator extends the previous example
by exposing the arguments of the invocation of method
moveXY(int,int) in Point . These arguments will
then be available when defining an advice bound to this
pointcut.

In Reflex, the information that is reified is defined at
the operation level: when support for a particular operation
(e.g.message sending) is added to Reflex, an entity respon-
sible for the low-level code transformation is given. Such an
entity (called a hook installer [34]) determines which infor-
mation is reified and how. This unfortunate coupling implies
that we either need to define a new operation support each
time a different piece of context information is needed, or
always reify all context information and let the metaobject
extract the needed pieces.

4.3.3. AdvicesSince an aspect may contain any legal Java
class member, it must be mapped to an ordinary class, fol-
lowing the singleton pattern. It could be mapped to a meta-
object class, however, due to the extra work we leave in
metaobjects (checking residues, extracting context informa-
tion), it is preferable to get a better separation and stick to a
clean aspect class.

Advices are transformed into methods of the aspect
class. Its name is generated by the translator and its argu-
ments are the same as in the advice definition. For instance:

aspect MovingPoint {
// -- pointcut definitions --

after(int x, int y):
moveSinglePointArg(x,y){

log.println("Point moved to: "
+ x + "," + y);

} }

This logging aspect is transformed into a class with the
same name, with a method corresponding to the advice
(Fig. 3). Besides, the pointcutmoveSinglePointArg
results in one hookseths-move (since the shadow of this
pointcut is defined by the pointcutmove) and the meta-
object moveSPA. The associated metaobject is respon-
sible for checking the residues (forcflowbelow and
target), collecting the values of the arguments, and fi-
nally invoking the aspect advice method. The binding be-
tween the metaobject and the hookset is done through a link.
The kind of the advice (before, after, around)4 is mapped to
the control attribute of the link (in this case,after).

moveSPA

hs−move

advice

event collector

2. cflow?

1. target?
3. invoke advice

Figure 3. Initial mapping of the aspect
MovingPoint

SincemoveSinglePointArg is affected by a control
flow restriction over the pointcutmove, an additional link
is required: this link binds the same hookseths-move to
an event collector metaobject. Such a metaobject is a simple
counter that keeps track of entries and exits in the hookset.
Therefore the link control is set tobefore after .

4 Reflex does not yet supportafter throwing, although there are plans to
support it in a near future.

4.4. Issues of the Mapping

Our initial approach shows that the model of partial be-
havioral reflection as presented in [34] is expressive enough
to handle the dynamic crosscutting mechanism of As-
pectJ in a non-naive manner (conversely to the all-dynamic
approach consisting of a centralized pointcut match-
ing process occurring at runtime). However, this experi-
ment also highlights interesting issues that could be re-
solved to achieve a better mapping.

First of all, pointcuts are not handled as efficiently as
they could, since we are not able to embed residues in the
code: they need to be checked at the metalevel. This has the
bad property of forcing reification even in cases where the
residues reject a particular occurrence. And reification is a
major source of overhead in reflective systems.

Furthermore, the handling of selective pointcut parame-
ter exposure is not satisfactory: one of the alternatives men-
tioned in section 4.3.2 implies reifying all available pieces
of information, which is highly inefficient, and the other one
implies defining new operation supports each time a differ-
ent piece of information is required. Recall from [34] that
an operation support is made up of an operation class and
a hook installer. This last alternative is efficient since hook
installers determine the required pieces of information, but
would be really cumbersome in practice: it might result in
a myriad of defined operation supports for what is concep-
tually the same operation (which just happens to be reified
differently).

Finally, these two limitations forced us to introduce an
extra indirection from metaobjects to aspect objects, in or-
der to cope with them. In the next section we introduce two
extensions to the model of partial behavioral reflection that
make it possible to circumvent these limitations. We aim at
a mapping that is both efficient and clear. Clarity would be
obtained by having metaobjects simply implement advices,
embedding other concerns within hooksets and links.

4.5. Two model extensions

In order to solve the issues presented above, we propose
two extensions to our model of partial behavioral reflection:

MOP descriptors – to describe,at the link level(as op-
posed to the operation level), which information has
to be reified, and how, upon occurrences of a given op-
eration;

hookset restrictions – to embed dynamically-evaluated,
but fixed, conditions in generated hook code.

4.5.1. MOP descriptors A MOP descriptor is an object
that describes how an operation should be reified: it defines
the expected type of the metaobject as well as the method
to invoke. This description is completed by a specification

of the parameters that should be passed to the metaobject
method. The metaobject class should obviously be compat-
ible with the specified type and implement the method cor-
responding to the given name and parameters.

Parameters are simply objects that implement a dedi-
cated interface,Parameter :

interface Parameter {
public String getCode(Operation aOp);

}

The role of a parameter object is to generate the source
code that, when executed, results in the reference to the de-
sired information. Standard parameters are provided, such
as CONTEXT, which refers to the currently executing ob-
ject (or class if within a static member), orTARGET, which
refers to the target object of the considered operation oc-
currence. Another example is a parameter that resolves
to the reference to the metaobject associated to a given
link. Operation-specific parameters are also provided by
hook installers viaparameter pools. For example, for the
MsgReceive operation, the parameter pool makes it pos-
sible to obtain a parameter object for a method object, or a
parameter (at a given index) of the invocation. Finally, cus-
tom parameters can be specified. The user then needs to give
the source code, in the extended Java language supported by
Javassist [6], that should be evaluated.

A MOP descriptor makes it possible to specify whether
a set of parameters should be passed as plain arguments to
the metaobject, packed into an object array, or encapsulated
into some object, instance of a user-defined class.

Since MOP descriptors completely decouple the speci-
fication of the MOP from the capability of reifying an op-
eration (implemented in hook installers), it is now possible
to use different MOP descriptors for the same operation in
different links, which greatly simplifies the mapping of the
pointcut context exposure feature of AspectJ.

4.5.2. Hookset restrictionsA hookset restriction is a
dynamically-evaluated condition that should be true in or-
der for a hook to trigger reification and metaobject invo-
cation. Such a restriction is hardwired in the hook code
at generation time to improve performance. Hookset re-
strictions are specified when creating a link. In case the
hookset bound to a given link is compound, it is possi-
ble to set a restriction that applies to all or only some of the
sub-hooksets.

The restriction is specified as a static method and hence
can be computed based on globally-available information
(i.e. static fields or methods), as well as parameters if
needed. Parameters are specified when declaring the restric-
tion in a similar manner as for MOP descriptors. The list of
parameters must be compatible with the signature of the re-
striction method.

For example, pointcutmovePoint implied a restriction
that the target object of amoveXYcall be of typePoint .

This pointcut introduces the need for aninstanceOf
residue, which can be specified as the following restriction,
to which the parameterTARGETis given:

public static boolean accept(Object o){
return o instanceof Point;

}

When attached to the hookset selecting calls tomoveXY
this restriction discards, at runtime, calls to objects which
are not of a subtype ofPoint .

5. Revisiting the Mapping

In this section we revisit the mapping of the dynamic
crosscutting mechanism of AspectJ to Reflex, taking into
account the two extensions to the model of partial behav-
ioral reflection presented in Section 4.5. This section illus-
trates that these extensions allow us to greatly improve the
quality of the mapping, both in terms of efficiency and clar-
ity. Besides explaining how such extensions do enhance the
mapping, we give a more detailed presentation of the in-
volved translation.

5.1. Pointcuts

Thanks to the extensions presented above, we are able
to completely map a pointcut declaration without having to
postpone extra responsibilities to the metaobject. In other
words, the result of translating a pointcut is a (possibly com-
posite) hookset, along with hookset restrictions and appro-
priate information for the MOP descriptor of the link. We
hereby give an overview of the pointcut translation process.

5.1.1. The translation processOnce parsed, a pointcut
is represented by a tree with PCDs as leaves, and logi-
cal operators as nodes. Our translation algorithm is pretty
straightforward. The first step consists of building an inter-
mediate isomorphic tree in which each leaf is replaced by
a quadruple. Such a quadruple is generated based on the
properties of the PCD (see Section 3.2). It is of the form
(PH,SR,DR, CE), where:

• PH represents a primitive hookset.PH is non-empty
only if the given PCD restricts the join point kind, such
ascall , in which casePH holds the operation that
corresponds to the PCD kind. If the PCD is further re-
stricted by a signature pattern, such a pattern is mapped
to class and operation selectors.

• SR is a static restriction expression.SR is non-empty
only if the given PCD serves for stating location or sig-
nature restrictions, such aswithin .

• DR is a dynamic restriction expression that corre-
sponds to the residues of a PCD, if any. Recall that
PCDs such asthis andcflow do require residues,
whereascall does not.

• CE holds the list of context parameters exposed by the
PCD, if any.

The second step of the translation algorithm is to reduce
the tree as much as possible, before converting it to ele-
ments of Reflex. This reduction is done by applying a set
of reduction rules that basically discard nodes and compose
the quadruples accordingly. The principle followed by the
reduction process is simple: eliminate all the nodes with!
or && operators. To this end, reduction rules are applied in
a given order, and most of them are straightforward; for in-
stance, “in case at least one child of an&&operator is an||
operator, perform distributive composition of quadruples”,
or, “the negation of a quadruple reduces to the negation of
all its components”.

Distributive composition of quadruples is done as fol-
lows: PHs that relate to the same operation are com-
posed together via primitive hookset composition operators
(union, intersection, etc.);SRs, as well asDRs, are com-
posed together using the usual logical operators; andCEs
are composed together by simply merging their lists. Negat-
ing PHs implies negating corresponding class and opera-
tion selectors, while negatingSRs andDRs simply means
negating the expressions (or nothing if empty). Once the re-
duction rules have been applied thePH is composed with
theSR by merging the additional static restriction expres-
sion inSR into additional class and/or operation selectors
in PH.

If the resulting tree is a single leaf, then it represents
a single primitive hookset. Otherwise, the tree represents
a composite hookset: all nodes are union operators and
leaves contain the different primitive hooksets with their as-
sociated dynamic restrictions and context exposure require-
ments. To finally define the pointcut in Reflex, the resulting
(composite) hookset is created and defined. When defining
the link, for each sub-hookset, the hookset restrictions are
specified and the MOP descriptor is configured to reify the
required parameters.

5.1.2. Illustration Let us explain how the point-
cut movePoint , presented previously, is translated.
First, it is represented by a tree with one node (the logi-
cal &&) and two leaves: one for thecall PCD, which em-
beds its signature restriction and one for thetarget PCD,
with its type restriction.

Thecall PCD is replaced by the quadruple({ph}, {},
{}, {}) whereph is the primitive hookset described in Sec-
tion 4.3.1 for the pointcutmove. The target PCD ex-
presses a restriction that is partially matched statically (the
target type must be eitherPoint or a subtype or supertype
of Point). It must be completed by a dynamic restriction
(instanceOf(Point)). Hence, this PCD is replaced by
a quadruple({}, {sr}, {dr}, {}), wheresr and dr repre-
sent the static and dynamic restrictions respectively. Note

that since this PCD does not impose any kind restriction,
thePH component of the quadruple is empty.

This tree is simply reduced by composing both quadru-
ples, resulting in a quadruple({ph}, {sr}, {dr}, {}). To fin-
ish,sr is composed withph.

Now, consider the pointcutmoveSinglePoint ,
which adds a control flow restriction tomovePoint .
The cflowbelow PCD is replaced by a quadru-
ple ({}, {}, {dr’}, {}), where dr’ expresses the con-
trol flow condition to be dynamically checked. In addition,
the translation process triggers the translation of the in-
ternal pointcutmove, in order to generate the required
control flow information (via an event collector, re-
call Section 4.3.1). The reduction implies negating the
cflowbelow quadruple (thus negatingdr’) and com-
posing it with the movePoint quadruple. The result-
ing dynamic restriction would then bedr && !dr’ , which
would be implemented by the following hookset restric-
tion:

public static boolean accept(Shape s){
return (s instanceof Point) &&

!(MoveCflow.getCounter() > 1);
}

5.1.3. Evaluation Using hookset restrictions and MOP
descriptors, we do not need anymore intermediate meta-
objects between the cut and the aspect behavior: meta-
objects can simply be objects that implement advices.

Indeed, using hookset restrictions to implement residues
avoids the need for checking residues at the intermediate
metaobject level. Using MOP descriptors to specify which
information should be reified frees the intermediate meta-
object of the task of collecting parameters before calling
the associated behavior. Furthermore, since a MOP descrip-
tor also specifies which method to call on the metaobject,
we can directly invoke the appropriate advice method.

hs−move

restriction
(cflow & target)

advice

event collector

Figure 4. Revised mapping of the aspect
MovingPoint

Hence, the two extensions to the model of partial be-
havioral reflection not only enhance performance signifi-
cantly, they also greatly simplify the overall picture of the
mapping: pointcuts are mapped to hooksets and restric-
tions, advices to metaobject methods, and binding spec-
ification is handled in the link (context exposure, advice

kind, etc.). Fig. 4 shows the revised mapping of the aspect
MovingPoint (to be compared with Fig. 3.

5.2. Advices

We are now able to simply map an advice to a metaobject
method that receives the advice parameters. Apart from this
simplification, the mapping principle remains the same as
exposed in the previous section. Nevertheless, we now dis-
cuss some advanced issues with advices that we ignored in
the previous section. Advice bodies in AspectJ have two
special features that make them different from simple Java
methods:proceed statements, and access to reflective in-
formation about a join point.

5.2.1. Proceed statementAn around advice traps the ex-
ecution of a join point and runs instead of it. The original
computation of the join point can be invoked through a spe-
cial proceed statement, which acts as a method call. It
accepts the same exposed parameters of the original join
point, and returns what the original join point returns. The
arguments of theproceed may actually replace the origi-
nal values (Section 3).

In Reflex, a standard supported operation has a corre-
spondingdynamic operationclass [34]. A dynamic opera-
tion encapsulates runtime information describing an opera-
tion occurrence, and also provides aperform method that
actually executes the intercepted operation occurrence.

As seen in Section 5.1.1, MOP descriptors can be con-
figured to specify the parameters required by each quadru-
ple. In case of an around advice, we specify an extra implicit
parameter which is a command object [10] wrapping a dy-
namic operation. The command object embeds operation-
specific logic related to mappingproceed parameters to
that of the dynamic operation. Allproceed statements in
an advice body are subsequently replaced by execution of
the command object.

5.2.2. Join point reflective information AspectJ pro-
vides three implicit references that provide reflective infor-
mation of the current join point. They can be used from the
body of any advice or from anif PCD. These three im-
plicit references are:

• thisJoinPoint : provides reflective informa-
tion about the static part (i.e. the signature of the join
point) and the dynamic part (e.g.the values of the ar-
guments) of the current join point.

• thisJoinPointStaticPart is a subset of the
thisJoinPoint , which only provides reflective in-
formation about the static part.

• thisEnclosingJoinPointStaticPart pro-
vides reflective information about the static part of the

enclosingjoin point, that is to say, the method (or con-
structor, or static initializer) in which the current join
point occurred.

These instances essentially collect all the current join
point context information, plus the reflective static informa-
tion describing the actual signature of the join point and ex-
pose it by implementing a set of interfaces defined by As-
pectJ.

As seen in Section 4.5, parameters specified in MOP de-
scriptors give access to context information of a hook, thus
easily handling the dynamic part ofthisJoinPoint .
In addition to this, when parameters are resolved at gen-
eration time, they have access to the static informa-
tion of operation occurrences, a direct counterpart of
thisJoinPointStaticPart . Furthermore, this in-
formation includes information about where the occur-
rence is located, thereby making it possible to compute
thisEnclosingJoinPointStaticPart .

Therefore, providing access to these variables in the con-
text of the mapping simply implies providing (1) a set of
classes that implement the interfaces defined by AspectJ,
and (2) three parameters (one for each instance) that in-
stantiate such classes with the necessary information. These
parameters are passed as implicit parameters to the advice
body, exactly as in done for AspectJ as described in [11],
without having to transform advice bodies.

6. Related Work

The idea that reflection can support AOP is not new (see
for instance [31, 17]) and has been a matter of (often mun-
dane) discussion since the beginning of AOP. We have been
going one step further by actually showing that an essential
part of an efficient AOP language, AspectJ, implemented
without resorting to reflection, could actually be supported
by reflection in an effective way.

A basis of our proposal has been the work on the im-
plementation of AspectJ [11], which suggested that an effi-
cient implementation of residues was a key issue. We have
been able to do this without leaving the framework of re-
flection.

It is also interesting to compare our work with other
proposals that focus on flexible solutions for AOP such as
JAC [27] and PROSE [28]. These proposals rely on basic
technology that is fairly close to reflection and makes it
possible to weave aspects at runtime. However, their im-
plementation is sealed and only accessible via a predefined
high-level language. Also, dynamic weaving results in a sig-
nificant overhead due to the use of wrappers in JAC and the
Java debugging interface in PROSE. The use of partial re-
flection and a careful design makes it possible to reduce this
overhead without sacrificing flexibility.

7. Conclusion

Not surprisingly, partial behavioral reflection isconcep-
tually expressive enough to support the kind of dynamic
crosscutting offered by AspectJ. This is not surprising be-
cause, conceptually, any form of behavioral reflection can
cover dynamic crosscutting. The real challenge is to do so
practically, in a natural and direct manner. Partial behav-
ioral reflection as presented in [34] was already a progress
in this sense over more classical approaches to behavioral
reflection. Still, from the critical study of a first experi-
ment, we have identified and validated two small exten-
sions to our model (hookset restrictions and MOP descrip-
tors) that allow for a clearer and more effective mapping.
We are presently carrying benchmarks to validate the inter-
est of our approach.

This work is part of a much larger project around the
study of how partial reflection can support AOP mecha-
nisms in a general, extensible, yet efficient manner. This
project targets the design and implementation of a versa-
tile kernel for AOP [32, 33]. In this direction, with respect
to AspectJ, the next step is to study the support of the other
mechanisms, such as static crosscutting.

References

[1] The AspectJ website, 2002. http://www.eclipse.org/aspectj.
[2] J. Brichau, M. Glandrup, S. Clarke, and L. Bergmans. Ad-

vanced separation of concerns workshop report. InECOOP
2001 Workshop Proceedings, Lecture Notes in Computer
Science. Springer-Verlag, 2002.

[3] J. Brichau, K. Mens, and K. De Volder. Building compos-
able aspect-specific languages with logic metaprogramming.
In D. Batory, C. Consel, and W. Taha, editors,Proceedings of
the 1st ACM SIGPLAN/SIGSOFT Conference on Generative
Programming and Component Engineering (GPCE 2002),
volume 2487 ofLecture Notes in Computer Science, pages
110–127, Pittsburgh, PA, USA, Oct. 2002. Springer-Verlag.

[4] D. Caromel, L. Mateu, and́E. Tanter. Sequential ob-
ject monitors. In M. Odersky, editor,Proceedings of the
18th European Conference on Object-Oriented Program-
ming (ECOOP 2004), number 3086 in Lecture Notes in
Computer Science, pages 316–340, Oslo, Norway, June
2004. Springer-Verlag.

[5] S. Chiba. A metaobject protocol for C++. InProceedings of
the 10th International Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications (OOPSLA
95), pages 285–299, Austin, Texas, USA, Oct. 1995. ACM
Press. ACM SIGPLAN Notices, 30(10).

[6] S. Chiba and M. Nishizawa. An easy-to-use toolkit for
efficient Java bytecode translators. In F. Pfenning and
Y. Smaragdakis, editors,Proceedings of the 2nd ACM SIG-
PLAN/SIGSOFT Conference on Generative Programming
and Component Engineering (GPCE 2003), volume 2830 of
Lecture Notes in Computer Science, pages 364–376, Erfurt,
Germany, Sept. 2003. Springer-Verlag.

[7] P. Cointe, editor.Proceedings of the 2nd International Con-
ference on Metalevel Architectures and Reflection (Reflec-
tion 99), volume 1616 ofLecture Notes in Computer Sci-
ence, Saint-Malo, France, July 1999. Springer-Verlag.

[8] E. W. Dijkstra. The structure of THE multiprogramming
system.Communications of the ACM, 11(5):341–346, May
1968.

[9] J.-C. Fabre, V. Nicomette, T. Pérennou, R. J. Stroud, and
Z. Wu. Implementing fault tolerant applications using re-
flective object-oriented programming. InProceedings of the
25th International Symposium on Fault-Tolerant Computing,
pages 489–498, Pasadena, CA, USA, June 1995. IEEE Com-
puter Society Press.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.De-
sign Patterns: Elements of Reusable Object-Oriented Soft-
ware. Professional Computing Series. Addison-Wesley, Oc-
tober 1994.

[11] E. Hilsdale and J. Hugunin. Advice weaving in AspectJ.
In K. Lieberherr, editor,Proceedings of the 3rd Interna-
tional Conference on Aspect-Oriented Software Develop-
ment (AOSD 2004), pages 26–35, Lancaster, UK, Mar. 2004.
ACM Press.

[12] G. Kiczales. Towards a new model of abstraction in software
engineering. InProceedings of the IMSA 92 Workshop on
Reflection and Metalevel Architectures. Akinori Yonezawa
and Brian C. Smith, editors, 1992.

[13] G. Kiczales, J. M. Ashley, L. Rodriguez, A. Vahdat, and
D. G. Bobrow. Metaobject protocols: Why we want them
and what else they can do. In A. Paepcke, editor,Object-
Oriented Programming: The CLOS Perspective, pages 101–
118. MIT Press, 1993.

[14] G. Kiczales, J. des Rivières, and D. G. Bobrow.The Art of
the Metaobject Protocol. MIT Press, 1991.

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. Griswold. An overview of AspectJ. In J. L. Knud-
sen, editor,Proceedings of the 15th European Conference
on Object-Oriented Programming (ECOOP 2001), number
2072 in Lecture Notes in Computer Science, pages 327–353,
Budapest, Hungary, June 2001. Springer-Verlag.

[16] G. Kiczales, J. Irwin, J. Lamping, J. Loingtier, C. Lopes,
C. Maeda, and A. Mendhekar. Aspect oriented program-
ming. In Special Issues in Object-Oriented Programming.
Max Muehlhaeuser (general editor) et al., 1996.

[17] S. Kojarski, K. Lieberherr, D. H. Lorenz, and R. Hirschfeld.
Aspectual reflection. InAOSD 2003 Workshop on Software-
engineering Properties of Languages for Aspect Technolo-
gies, 2003.

[18] C. V. Lopes.D: A Language Framework for Distributed Pro-
gramming. PhD thesis, College of Computer Science, North-
eastern University, 1997.

[19] P. Maes.Computional reflection. PhD thesis, Artificial in-
telligence laboratory, Vrije Universiteit, Brussels, Belgium,
1987.

[20] P. Maes and D. Nardi, editors.Meta-Level Architectures and
Reflection. North-Holland, Alghero, Sardinia, Oct. 1988.

[21] H. Masuhara, G. Kiczales, and C. Dutchyn. A compila-
tion and optimization model for aspect-oriented programs.

In G. Hedin, editor,Proceedings of Compiler Construction
(CC2003), volume 2622 ofLecture Notes in Computer Sci-
ence, pages 46–60. Springer-Verlag, 2003.

[22] H. Masuhara, S. Matsuoka, and A. Yonezawa. An object-
oriented concurrent reflective language for dynamic resource
management in highly parallel computing. InIPSJ SIG
Notes, volume 94-PRG-18, 1994.

[23] J. McAffer. Engineering the meta-level. In G. Kiczales,
editor, Proceedings of the 1st International Conference on
Metalevel Architectures and Reflection (Reflection 96), pages
39–61, San Francisco, CA, USA, Apr. 1996.

[24] A. Mendhekar, G. Kiczales, and J. Lamping. RG: A case-
study for aspect-oriented programming. Technical Report
SPL97-009P9710044, Xerox PARC, Feb. 1997.

[25] H. Okamura and Y. Ishikawa. Object location control using
meta-level programming. In M. Tokoro and R. Pareschi, edi-
tors,Proceedings of the 8th European Conference on Object-
Oriented Programming (ECOOP 94), volume 821 ofLec-
ture Notes in Computer Science, pages 299–319. Springer-
Verlag, July 1994.

[26] D. Parnas. On the criteria for decomposing systems into
modules.Communications of the ACM, 15(12):1053–1058,
Dec. 1972.

[27] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. JAC: A
flexible solution for aspect-oriented programming in Java. In
Yonezawa and Matsuoka [37], pages 1–24.

[28] A. Popovici, T. Gross, and G. Alonso. Dynamic weaving
for aspect-oriented programming. In1st International Con-
ference on Aspect Oriented Software Development (AOSD).
Springer-Verlag, 2002.

[29] M. Shonle, K. Lieberherr, and A. Shah. XAspects: An ex-
tensible system for domain-specific aspect languages. In
OOPSLA 2003 Domain-Driven Development Track, October
2003.

[30] R. J. Stroud and Z. Wu.Advances in Object-Oriented Meta-
level Architectures and Reflection, chapter Using Metaobject
Protocols to Satisfy Non-Functional Requirements, pages
31–52. CRC Press, 1996.

[31] G. Sullivan. Aspect-oriented programming using reflection
and metaobject protocols.Communications of the ACM,
44(10), Oct. 2001.

[32] É. Tanter and J. Noýe. Motivation and requirements for a ver-
satile AOP kernel. In1st European Interactive Workshop on
Aspects in Software (EIWAS 2004), Berlin, Germany, Sept.
2004.

[33] É. Tanter and J. Noýe. Versatile kernels for aspect-oriented
programming. Research Report RR-5275, INRIA, July 2004.

[34] É. Tanter, J. Noýe, D. Caromel, and P. Cointe. Partial be-
havioral reflection: Spatial and temporal selection of reifica-
tion. In R. Crocker and G. L. Steele, Jr., editors,Proceedings
of the 18th ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications (OOP-
SLA 2003), pages 27–46, Anaheim, CA, USA, Oct. 2003.
ACM Press. ACM SIGPLAN Notices, 38(11).

[35] M. Wand, G. Kiczales, and C. Dutchyn. A semantics for
advice and dynamic join points in aspect-oriented program-
ming. ACM Transactions on Programming Languages and
Systems, 26(5):890–910, Sept. 2004.

[36] T. Watanabe and A. Yonezawa. Reflection in an object-
oriented concurrent language. In N. Meyrowitz, editor,Pro-
ceedings of the 3rd International Conference on Object-
Oriented Programming Systems, Languages and Applica-
tions (OOPSLA 88), pages 306–315, San Diego, California,
USA, Sept. 1988. ACM Press. ACM SIGPLAN Notices,
23(11).

[37] A. Yonezawa and S. Matsuoka, editors.Proceedings of the
3rd International Conference on Metalevel Architectures and
Advanced Separation of Concerns (Reflection 2001), volume
2192 ofLecture Notes in Computer Science, Kyoto, Japan,
Sept. 2001. Springer-Verlag.

[38] C. Zimmermann. Advances in Object-Oriented Metalevel
Architectures and Reflection. CRC Press, 1996.

