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Abstract

Very large data sets often have a flat but regular structure and span multiple disks and
machines. Examples include telephone call records, network logs, and web document reposi-
tories. These large data sets are not amenable to study using traditional database techniques, if
only because they can be too large to fit in a single relational database. On the other hand, many
of the analyses done on them can be expressed using simple, easily distributed computations:
filtering, aggregation, extraction of statistics, and so on.

We present a system for automating such analyses. A filtering phase, in which a query
is expressed using a new programming language, emits data to an aggregation phase. Both
phases are distributed over hundreds or even thousands of computers. The results are then
collated and saved to a file. The design – including the separation into two phases, the form
of the programming language, and the properties of the aggregators – exploits the parallelism
inherent in having data and computation distributed across many machines.

1 Introduction

Many data sets are too large, too dynamic, or just too unwieldy to be housed productively in a
relational database. One common scenario is a set of many plain files – sometimes amounting to
petabytes of data – distributed across many disks on many computers (Figure 1). The files in turn
comprise many records, organized along some obvious axes such as time or geography. Examples
might include a web page repository used to construct the index for an internet search engine, the
system health records from thousands of on-line server machines, telephone call records or other
business transaction logs, network packet traces, web server query logs, or even higher-level data
such as satellite imagery.

Quite often the analyses applied to these data sets can be expressed simply, using operations much
less sophisticated than a general SQL query. For instance, we might wish to count records that
satisfy a certain property, or extract them, or search for anomalous records, or construct frequency
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Figure 1: Five racks of 50-55 working computers each, with four disks per machine. Such
a configuration might have 250 TB of data to be interpreted. Tremendous parallelism can be
achieved by running a filtering phase independently on all 250+ machines and aggregating
their emitted results over a network between them (the arcs).

histograms of the values of certain fields in the records. In other cases the analyses might be more
intricate but still be expressible as a series of simpler steps, operations that can be mapped easily
onto a set of records in files.

Since the data records live on many machines, it would be fruitful to exploit the computing power
of those machines to perform these analyses. In particular, if the individual steps can be expressed
as operations that can be evaluated one record at a time, we can distribute the calculation across
all the machines and achieve very high throughput. (All the examples mentioned above have this
form.) The results of these simple operations will then require an aggregation phase. For example,
if we are counting records, we need to gather the counts from the individual machines before we
can report the total count.

We therefore break our calculations into two phases. The first phase evaluates the analysis on
each record individually, while the second phase aggregates the results (Figure 2). The system
described in this paper goes even further, however. The analysis in the first phase is expressed in a
new programming language that executes one record at a time, in isolation, while the second phase
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is restricted to a set of predefined aggregators that process the intermediate results generated by
the first phase. By restricting the calculations to this model, we can achieve very high throughput.
Although not all calculations fit this model well, the ability to harness a thousand or more machines
with a few lines of code provides some compensation.

Aggregator 

Sorted results Emitted data 

 
 

Filters 

Raw data 

Figure 2: The overall flow of filtering, aggregating, and collating. Each stage typically
involves less data than the previous.

Of course, there are still many subproblems that remain to be solved. The calculation must be
divided into pieces and distributed across the machines holding the data, keeping the computation
as near the data as possible to avoid network bottlenecks. And when there are many machines
there is a high probability of some of them failing during the analysis, so the system must be
fault tolerant. These are difficult and interesting problems, but they should be handled without
the involvement of the user of the system. Google has several pieces of infrastructure, including
GFS [9] and MapReduce [8], that cope with fault tolerance and reliability and provide a powerful
framework upon which to implement a large, parallel system for distributed analysis. We therefore
hide the details from the user and concentrate on the job at hand: expressing the analysis cleanly
and executing it quickly.

2 Overview

To summarize, our system takes a user query written in a special-purpose programming language,
applies it in isolation to each record in the data set on many machines in parallel, gathers the
results, and aggregates them using a rich set of high-performance aggregators. These two stages
run separately, often on different sets of computers.
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A typical job will process anywhere from a gigabyte to many terabytes of data on hundreds or
even thousands of machines in parallel. An analysis may consume months of CPU time, but with
a thousand machines that will only take a few hours of real time.

The system’s design is influenced by two observations.

First, if the querying operations are commutative across records, the order in which the records are
processed is unimportant. We can therefore work through the input in arbitrary order.

Second, if the aggregation operations are commutative, the order in which the intermediate values
are processed is unimporant. Moreover, if they are also associative, the intermediate values can
be grouped arbitrarily or even aggregated in stages. As an example, counting involves addition,
which is guaranteed to be the same independent of the order in which the values are added and
independent of any intermediate subtotals that are formed to coalesce intermediate values.

The constraints of commutativity and associativity are not too restrictive; they permit a wide range
of valuable analyses, including: counting, filtering, sampling, generating histograms, finding the
most frequent items, and many more.

The set of aggregations is limited but the query phase can involve more general computations,
which we express in a new interpreted programming language called Sawzall.1 (An interpreted
language is fast enough: most of the programs are small and on large data sets the calculation tends
to be I/O bound, as is discussed in the section on performance.)

An analysis operates as follows. First the input is divided into pieces to be processed separately,
perhaps individual files or groups of records, which are located on multiple storage nodes. There
may be many more data pieces than computers.

Next, a Sawzall interpreter is instantiated for each piece of data. This will involve many machines,
perhaps the same machines that store the data or perhaps a different, nearby set.

The Sawzall program operates on each input record individually. The output of the program is, for
each record, zero or more intermediate values – integers, strings, key-value pairs, tuples, etc. – to
be combined with values from other records.

These intermediate values are sent to further computation nodes running the aggregators, which
collate and reduce the intermediate values to create the final results. In a typical run, the majority
of machines will run Sawzall and a smaller fraction will run the aggregators, reflecting not only
computational overhead but also network load balancing issues; at each stage, the amount of data
flowing is less than at the stage before (see Figure 2).

Once all the processing is complete, the results will be sorted, formatted, and saved to a file.
1Not related to the portable reciprocating power saw trademark of the Milwaukee Electric Tool Corporation.
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3 A Simple Example

These ideas may become clearer in the context of a simple example. Let’s say our input is a
set of files comprising records that each contain one floating-point number. This complete Sawzall
program will read the input and produce three results: the number of records, the sum of the values,
and the sum of the squares of the values.

count: table sum of int;
total: table sum of float;
sum_of_squares: table sum of float;
x: float = input;
emit count <- 1;
emit sum <- x;
emit sum_of_squares <- x * x;

The first three lines declare the aggregators count, total, and sum of squares. The key-
word table introduces an aggregator type; aggregators are called tables in Sawzall even though
they may be singletons. These particular tables are sum tables; they add up the values emitted to
them, ints or floats as appropriate.

For each input record, Sawzall initializes the pre-defined variable input to the uninterpreted byte
string of the input record. Therefore, the line

x: float = input;

converts the input record from its external representation into a native floating-point number, which
is stored in a local variable x. Finally, the three emit statements send intermediate values to the
aggregators.

When run, the program is instantiated once for each input record. Local variables declared by the
program are created anew for each instance, while tables declared in the program are shared by
all instances. Emitted values are summed up by the global tables. When all records have been
processed, the values in the tables are saved in one or more files.

The next few sections outline some of the Google infrastructure this system is built upon: protocol
buffers, the Google File System, the Workqueue, and MapReduce. Subsequent sections describe
the language and other novel components of the system in more detail.

4 Protocol Buffers

Although originally conceived for defining the messages communicated between servers, Google’s
protocol buffers are also used to describe the format of permanent records stored on disk. They
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serve a purpose similar to XML, but have a much denser, binary representation and an external
data description language (DDL) that a protocol compiler can translate into support code for a
wide variety of languages.

The DDL forms a clear, compact, extensible notation describing the layout of the binary records
and naming the fields. The binary format is fairly dense but is often wrapped by an additional
compression layer when the records are to be stored on disk.

The protocol compiler reads a DDL description and generates code for assembling, accessing,
marshaling, and unmarshaling the data. A compile-time flag specifies the output language: C++,
Java, Python, etc. The generated code is linked to the application to provide efficient, clean access
to the records. There is also a tool suite for examining and debugging stored protocol buffers.

Most of the data sets our system operates on are stored as records in protocol buffer format. The
protocol compiler was extended by adding support for Sawzall to enable efficient I/O of protocol
buffers in the new language.

5 Google File System (GFS)

The data sets are often stored in GFS, the Google File System [9]. GFS provides a reliable dis-
tributed storage system that can grow to petabyte scale by keeping data in 64-megabyte “chunks”
stored on disks spread across thousands of machines. Each chunk is replicated, usually 3 times, on
different machines so GFS can recover seamlessly from disk or machine failure.

GFS runs as an application-level file system with a traditional hierarchical naming scheme. The
data sets themselves are usually held in a regular structure represented by a large set of individual
GFS files each around a gigabyte in size. For example, a document repository (the result of a web
crawl) holding a few billion HTML pages might be stored as several thousand files each storing a
million or so documents of a few kilobytes each, compressed.

6 Workqueue and MapReduce

The business of scheduling a job to run on a cluster of machines is handled by software called
(somewhat misleadingly) the Workqueue. In effect, the Workqueue creates a large-scale time shar-
ing system out of an array of computers and their disks. It schedules jobs, allocates resources,
reports status, and collects the results.

The Workqueue is similar to several other systems such as Condor [15]. We often overlay a
Workqueue cluster and a GFS cluster on the same cluster of machines. Since GFS is a storage sys-
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tem, its CPUs are often lightly loaded, and the free computing cycles can be used to run Workqueue
jobs.

MapReduce [8] is a library for applications that run on the Workqueue. It performs three primary
services. First, it provides an execution model for programs that operate on many data items in
parallel. Second, it isolates the application from the details of running a distributed program,
including issues such as data distribution, scheduling, and fault tolerance. Finally, when possible
it schedules the computations so each unit runs on the machine or rack that holds its GFS data,
reducing the load on the network.

As the name implies, the execution model consists of two phases: a first phase that maps an exe-
cution across all the items in the data set; and a second phase that reduces the results of the first
phase to arrive at a final answer. For example, a sort prorgram using MapReduce would map a
standard sort algorithm upon each of the files in the data set, then reduce the individual results by
running a merge sort to produce the final output. On a thousand-machine cluster, a MapReduce
implementation can sort a terabyte of data at an aggregate rate of a gigabyte per second [9].

Our data processing system is built on top of MapReduce. The Sawzall interpreter runs in the map
phase. It is instantiated in parallel on many machines, with each instantiation processing one file or
perhaps GFS chunk. The Sawzall program executes once for each record of the data set. The output
of this map phase is a set of data items to be accumulated in the aggregators. The aggregators run
in the reduce phase to condense the results to the final output.

The following sections describe these pieces in more detail.

7 Sawzall Language Overview

The query language, Sawzall, operates at about the level of a type-safe scripting language. For
problems that can be solved in Sawzall, the resulting code is much simpler and shorter – by a
factor of ten or more – than the corresponding C++ code in MapReduce.

The syntax of statements and expressions is borrowed largely from C; for loops, while loops, if
statements and so on take their familiar form. Declarations borrow from the Pascal tradition:

i: int; # a simple integer declaration
i: int = 0; # a declaration with an initial value

The basic types include integer (int), a 64-bit signed value; floating point (float), a double-
precision IEEE value; and special integer-like types called time and fingerprint. The time
type has microsecond resolution and the libraries include convenient functions for decomposing
and manipulating these values. The fingerprint type represents an implementation-defined
hash value, to make it easy to construct data structures such as aggregators indexed by the finger-
print of a datum.
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There are also two primitive array-like types: bytes, similar to a C array of unsigned chars;
and string, which is defined to hold characters from the Unicode character set. There is no
“character” type; the elements of byte arrays and strings are ints, although an int is capable of
holding a much larger value than will fit in a byte or string element.

Compound types include arrays, maps (an overloaded term in this paper), and tuples. Array are
indexed by integer values, while maps are like associative arrays or Python dictionaries and may
be indexed by any type, with the indices unordered and the storage for the elements created on
demand. Finally, tuples represent arbitrary groupings of data, like a C struct or Pascal record. Any
type may be given a formal name.

Conversion operators translate values from one type to another, and encapsulate a wide range of
conversions. For instance, to extract the floating point number represented by a string, one simply
converts the value:

f: float;
s: string = "1.234";
f = float(s);

Some conversions take parameters; for example

string(1234, 16)

generates the hexadecimal representation of the integer, while

string(utf8_bytes, "UTF-8")

will interpret the byte array in UTF-8 representation and return a string of the resulting Unicode
character values.

For convenience, and to avoid the stutter endemic in some languages’ declaration syntaxes, in
initializations the appropriate conversion operation (with default parameter values) is supplied im-
plicitly by the compiler. Thus

b: bytes = "Hello, world!\n";

is equivalent to the more verbose

b: bytes = bytes("Hello, world!\n", "UTF-8");

Values of any type can be converted into strings to aid debugging.

One of the most important conversion operations is associated with protocol buffers. A compile-
time directive in Sawzall, proto, somewhat analogous to C’s #include directive, imports the
DDL for a protocol buffer from a file and defines the Sawzall tuple type that describes the layout.
Given that tuple description, one can convert the input protocol buffer to a Sawzall value.
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For each input record, the special variable input is initialized by the interpreter to the uninter-
preted byte array holding the data, typically a protocol buffer. In effect, the execution of the Sawzall
program for each record begins with the implicit statement:

input: bytes = next_record_from_input();

Therefore, if the file some record.proto includes the definition of a protocol buffer of type
Record, the following code will parse each input record and store it in the variable r:

proto "some_record.proto" # define ’Record’
r: Record = input; # convert input to Record

The language has a number of other traditional features such as functions and a wide selection of
intrinsic library calls. Among the intrinsics are functions that connect to existing code for interna-
tionalization, document parsing, and so on.

7.1 Input and Aggregation

Although at the statement level Sawzall is a fairly ordinary language, it has two very unusual
features, both in some sense outside the language itself:

1. A Sawzall program defines the operations to be performed on a single record of the data.
There is nothing in the language to enable examining multiple input records simultaneously,
or even to have the contents of one input record influence the processing of another.

2. The only output primitive in the language is the emit statement, which sends data to an
external aggregator that gathers the results from each record and correlates and processes the
result.

Thus the usual behavior of a Sawzall program is to take the input variable, parse it into a data
structure by a conversion operation, examine the data, and emit some values. We saw this pattern
in the simple example of Section 3.

Here is a more representative Sawzall program. Given a set of logs of the submissions to our source
code management system, this program will show how the rate of submission varies through the
week, at one-minute resolution:

proto "p4stat.proto"
submitsthroughweek: table sum[minute: int] of count: int;

log: P4ChangelistStats = input;
t: time = log.time; # microseconds

minute: int = minuteof(t)+60*(hourof(t)+24*(dayofweek(t)-1));
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emit submitsthroughweek[minute] <- 1;

The program begins by importing the protocol buffer description from the file p4stat.proto.
In particular, it declares the type P4ChangelistStats. (The programmer must know the type
that will arise from the proto directive, but this is an accepted property of the protocol buffer
DDL.)

The declaration of submitsthroughweek appears next. It defines a table of sum values, in-
dexed by the integer minute. Note that the index value in the declaration of the table is given an
optional name (minute). This name serves no semantic purpose, but makes the declaration easier
to understand and provides a label for the field in the aggregated output.

The declaration of log converts the input byte array (using code generated by the proto direc-
tive) into the Sawzall type P4ChangelistStats, a tuple, and stores the result in the variable
log. Then we pull out the time value and, for brevity, store it in the variable t.

The next declaration has a more complicated initializion expression that uses some built-in func-
tions to extract the cardinal number of the minute of the week from the time value.

Finally, the emit statement counts the submission represented in this record by adding its contri-
bution to the particular minute of the week in which it appeared.

To summarize, this program, for each record, extracts the time stamp, bins the time to a minute
within the week, and adds one to the count for that minute. Then, implicitly, it starts again on the
next record.

When we run this program over all the submission logs – which span many months – and plot
the result, we see an aggregated view of how activity tends to vary through the week, minute by
minute. The output looks like this:

submitsthroughweek[0] = 27
submitsthroughweek[1] = 31
submitsthroughweek[2] = 52
submitsthroughweek[3] = 41
...
submitsthroughweek[10079] = 34

When plotted, the graph looks like Figure 3.

The salient point is not the data itself, of course, but the simplicity of the program that extracts
it.
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Figure 3: Frequency of submits to the source code repository through the week. The graph
starts at midnight Monday morning.

7.2 More About Aggregators

Aggregation is done outside the language for a couple of reasons. A more traditional language
would use the language itself to correlate results, but some of the aggregation algorithms are so-
phisticated and best implemented in a native language and packaged in some form. More important,
drawing an explicit line between filtering and aggregation enables a high degree of parallelism, even
though it hides the parallelism from the language itself. Nowhere in Sawzall is the multiplicity of
records apparent, yet a typical Sawzall job operates on billions of records, often on hundreds or
thousands of machines simultaneously.

Focusing attention on the aggregators encourages the creation of unusual statistical collectors.
There are a number of aggregators available; here is an incomplete list, with examples:

• Collection:

c: table collection of string;

A simple list of all the emitted values, in arbitrary order.

• Sample:

s: table sample(100) of string;

Like collection, but chooses an unbiased sample of the emitted values. The size of the desired
sample is provided as a parameter.

• Sum:

s: table sum of { count: int, revenue: float };

The summation of all the emitted values. The values must be arithmetic or composed of
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arithmetic values, as is the tuple in the example. For compound values, the components
are summed elementwise. In the example shown, if count were always 1 when emitted, the
average revenue could be computed after the run by dividing revenue by count.

• Maximum:

m: table maximum(10) of string weight length: int;

The highest-weighted values. The values are tagged with the weight, and the value with the
highest weight is chosen. The parameter (10 in the example) specifies the number of values
to keep. The weight, introduced by the obvious keyword, has its type (here int) provided
in the declaration and its value in the emit statement. For the example given,

emit m <- s weight len(s);

will report the ten longest strings in the data.

• Quantile:

q: table quantile(101) of response_in_ms: int;

Use the set of emitted values to construct a cumulative probability distribution represented
by the quantile values for each increment of probability. (The algorithm is a distributed
variant of that of Greenwald and Khanna [10].) The example could be used to see how
system response varies. With parameter 101, it computes percentiles. The 50th element
would report the median time, while the 99th element would be the time value for which
99% of the response times were equal or lower.

• Top:

t: table top(10) of language: string;

The top table estimates which values are the most popular. (By contrast, the maximum table
finds the items with the highest weight, not the highest frequency of occurrence.)

For our example,

emit t <- language_of_document(input);

will estimate the the ten most frequently occurring languages found in a document repository.

For large data sets, it can be prohibitively expensive to find the precise ordering of frequency
of occurrence, but there are efficient estimators. The top table uses a distributed variant
of the algorithm by Charikar, Chen, and Farach-Colton [5]. The algorithm is approximate:
with high probability it returns approximately the correct top elements. Its commutativity
and associativity are also approximate: changing the order that the input is processed can
change the final results. To compensate, in addition to computing the counts of the elements,
we compute the estimated error of those counts. If the error is small compared to the counts,
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the quality of the results is high, while if the error is relatively large, chances are the results
are bad. For large data sets with uneven distribution, the top table works well. It is less
successful in the unusual case that the values are uniformly distributed.

• Unique:

u: table unique(10000) of string;

The unique table is unusual. It reports the estimated size of the population of unique items
emitted to it. A sum table could be used to count the total number of elements, but a unique
table will ignore duplicates; in effect it computes the size of the set of input values. The
unique table is also unusual in that its output is always a count, regardless of the type of
the values emitted to it. The parameter specifies the size of the internal table used to do the
estimation; a value of 10000 generates a final value within ±2% of the correct answer with
95% probability. (For set size N, the standard deviation is about N×param–1/2.)

Occasionally, new ideas for aggregators arise. Adding a new aggregator is fairly easy, although
not trivial. The aggregator implementation is complicated by the need to handle the range of
types supported by the interpreter. The implementation is responsible for some type checking
(verifying parameter values and element types) and for packaging data for storage and retrieval. For
simple aggregators, such as sum, little else is required. For more sophisticated aggregators, such as
quantile and top, care must be taken to choose an algorithm that is commutative, associative,
and reasonably efficient for distributed processing. Our smallest aggregators are implemented in
about 200 lines of C++, while the largest take about 1000.

Some aggregators can process data as part of the mapping phase to reduce the network bandwidth
to the aggregators. For instance, a sum table can add the individual elements locally, emitting
only an occasional subtotal value to the remote aggregator. In MapReduce terminology, this is
the combining phase of the MapReduce run, a sort of middle optimization step between map and
reduce.

7.3 Indexed Aggregators

An aggregator can be indexed, which in effect creates a distinct individual aggregator for each
unique value of the index. The index can be of any Sawzall type and can be compounded to
construct multidimensional aggregators.

For example, if we are examining web server logs, the table

table top(1000) [country: string][hour: int] of request: string;

could be used to find the 1000 most popular request strings for each country, for each hour.
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The individual aggregators are allocated dynamically as new index values arise, somewhat anal-
ogous with maps, but independently across all the machines running the job. The aggregation
phase will collate values according to index and generate the appropriate aggregated values for
each distinct index value.

As part of the collation, the values are sorted in index order, to facilitate merging values from
different machines. When the job completes, the values are therefore arranged in index order,
which means the output from the aggregators is in index order.

The indices themselves form a useful source of information. To return to the web server example
above, after the run the set of values recorded in the country index form a record of the set of
countries from which requests were received. In effect, the properties of index generation turn the
indices into a way to recover sets of values. The indices resulting from

table sum[country: string] of int

would be equivalent to the values collected by

table collection of country: string

with duplicates removed.

8 System Model

Now that the basic features of the language have been presented, we can give an overview of the
high-level system model by which data analyses are conducted.

The system operates in a batch execution style: the user submits a job, which runs on a fixed set of
files, and collects the output at the end of the run. The input format and source (typically a set of
files) and the output destination are specified outside the language, as arguments to the command
that submits the job to the system.

When a job request is received by the system, a Sawzall processor is invoked to verify that the
program is syntactically valid. If it is, the source code is sent to the execution machines, each of
which then parses the code and begins execution.

The output generated by each execution machine is split into a set of files, one per aggregator
machine; this split enables the aggregation to be done in parallel. The values are allocated to files
deterministically based on the particular table and any index values it may have.

Depending on the table type, the data emitted may be in its final form or in some intermediate
representation carrying information to facilitate merging it with other values. This merging is the
step that must be associative to work well. Some jobs are very large and associativity allows them
to be broken into pieces that can be run separately, with final results constructed by merging the
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elements in a final phase. (This is one advantage of this system over plain MapReduce; even
MapReduce can have problems with jobs that run for days or weeks of real time.)

Typically, the data resulting from an analysis is much smaller than the input, but there are important
examples where this is not the case. For instance, a program could use an indexed collection table
to organize the input along some relevant axis, in which case the output would be as large as the
input.

One common use of the output of a Sawzall job is to inject the resulting data into a traditional
relational database for subsequent analysis. This is usually done by a separate custom program,
perhaps written in Python, that transforms the data into the SQL code to create the table. We might
one day provide a more direct way to achieve this injection.

Sometimes the result of a Sawzall job is provided as input to another, by a process called chaining.
A simple example is to calculate the exact “top 10” list for some input. The Sawzall top table
is efficient but approximate. If the exact results are important, they can be derived by a two-step
process. The first step creates an indexed sum table to count the frequency of input values; the
second uses a maximum table to select the most popular. Although a little clumsy, this is still an
effective way to calculate such tables when they are multidimensional.

9 More Examples

Here is another complete example that illustrates how Sawzall is used in practice. It processes a
web document repository to answer the question: for each web domain, which page has the highest
Page Rank [13]? Roughly speaking, which is the most linked-to page?

proto "document.proto"

max_pagerank_url:
table maximum(1) [domain: string] of url: string

weight pagerank: int;

doc: Document = input;
url: string = doc.url;

emit max_pagerank_url[domain(url)] <- url
weight doc.pagerank;

The protocol buffer format is defined in the file "document.proto". The table is called
max pagerank url and will record the highest-weighted value emitted for each index. The
index is the domain, the value is the URL, and the weight is the document’s Page Rank. The
program parses the input record, extracts the URL, and then does a relatively sophisticated emit
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statement. It calls the library function domain(url) to extract the domain of the URL to use
as the index, emits the URL itself as the value, and uses the Page Rank for the document as the
weight.

When this program is run over the repository, it shows the expected result that for most sites, the
most-linked page is www.site.com – but there are surprises. The Acrobat download site is the top
page for adobe.com, while those who link to banknotes.com go right to the image gallery
and bangkok-th.com pulls right to the Night Life page.

Because Sawzall makes it easy to express calculations like this, the program is nice and short. Even
using MapReduce, the equivalent straight C++ program is about a hundred lines long.

Here is an example with a multiply-indexed aggregator. We wish to look at a set of search query
logs and construct a map showing how the queries are distributed around the Earth.

proto "querylog.proto"

queries_per_degree: table sum[lat: int][lon: int] of int;

log_record: QueryLogProto = input;

loc: Location = locationinfo(log_record.ip);
emit queries_per_degree[int(loc.lat)][int(loc.lon)] <- 1;

The program is straightforward. We import the DDL for the query logs, declare a table indexed
by integer latitude and longitude and extract the query from the log. Then we use a built-in func-
tion that looks up the incoming IP address in a database to recover the location of the requesting
machine (probably its ISP), and then count 1 for the appropriate latitude/longitude bucket. The ex-
pression int(loc.lat) converts loc.lat, a float, to an integer, thereby truncating it to the
degree and making it suitable as an index value. For a higher-resolution map, a more sophisticated
calculation would be required.

The output of this program is an array of values suitable for creating a map, as in Figure 4.

10 Execution Model

At the statement level, Sawzall is an ordinary-looking language, but from a higher perspective it
has several unusual properties, all serving the goal of enabling parallelism.

The most important, of course, is that it runs on one record at a time. This means it has no memory
of other records it has processed (except through values emitted to the aggregators, outside the lan-
guage). It is routine for a Sawzall job to be executing on a thousand machines simultaneously, yet
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Figure 4: Query distribution.

the system requires no explicit communication between those machines. The only communication
is from the Sawzall executions to the downstream aggregators.

To reinforce this point, consider the problem of counting input records. As we saw before, this
program,

count: table sum of int;
emit count <- 1;

will achieve the job. By contrast, consider this erroneous program, which superficially looks like it
should work:

count: int = 0;
count++;

This program fails to count the records because, for each record, it sets count to zero, increments
it, and throws the result away. Running on many machines in parallel, it will throw away all the
information with great efficiency.

The Sawzall program is reset to the initial state at the beginning of processing for each record.
Correspondingly, after processing a record and emitting all relevant data, any resources consumed
during execution – variables, temporaries, etc. – can be discarded. Sawzall therefore uses an arena
allocator [11], resetting the arena to the initial state after each record is processed.
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Sometimes it is useful to do non-trivial initialization before beginning execution. For instance, one
might want to create a large array or map to be queried when analyzing each record. To avoid doing
such initialization for every record, Sawzall has a declaration keyword static that asserts that
the variable is to be initialized once and considered part of the initial run-time state for processing
each record. Here is a trivial example:

static CJK: map[string] of string = {
"zh": "Chinese",
"jp": "Japanese",
"ko": "Korean",

};

The CJK variable will be created during initialization and its value stored permanently as part of
the initial state for processing each record.

The language has no reference types; it has pure value semantics. Even arrays and maps behave
as values. (The implementation uses copy-on-write using reference counting to make this efficient
in most cases.) Although in general this can lead to some awkwardness – to modify an array in
a function, the function must return the array – for the typical Sawzall program the issue doesn’t
arise. In return, there is the possibility to parallelize the processing within a given record without
the need for fine-grained synchronization or the fear of aliasing, although the implementation does
not yet exploit this.

11 Domain-specific Properties of the Language

Sawzall has a number of properties selected specifically for the problem domain in which it oper-
ates. Some have already been discussed; this section examines a few others.

First, atypical of most such “little languages” [2], Sawzall is statically typed. The main reason is
dependability. Sawzall programs can consume hours, even months, of CPU time in a single run,
and a late-arising dynamic type error can be expensive. There are other, less obvious reasons too.
The aggregators have true Sawzall type, so it helps their implementation to have that type fixed
when they are created. A similar argument applies to the parsing of the input protocol buffers;
it helps to know the expected input type precisely. Also, it is likely that overall performance of
the interpreter is improved by avoiding dynamic type-checking at run time, although we have not
attempted to verify this claim. Finally, compile-time type checking and the absence of automatic
conversions require the programmer to be explicit about type conversions. The only exception
is variable initialization, but in that case the type is still explicit and the program remains type-
safe.

Looking at this from the other direction, strong typing guarantees that the types of variables are
always known, while permitting convenience at initialization time. It is helpful that initializations
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like

t: time = "Apr 1 12:00:00 PST 2005";

are easy to understand, yet also type-safe.

The set and properties of the basic types are also somewhat domain-dependent. The presence of
time as a basic type is motivated by the handling of time stamps from log records; it is luxurious
to have a language that handles Daylight Savings Time correctly. More important (but less unusual
these days), the language defines a Unicode representation for strings, yet handles a variety of
external character encodings.

Two novel features of the language grew out of the demands of analyzing large data sets: the
handling of undefined values, and logical quantifiers. The next two sections describe these in
detail.

11.1 Undefined values

Sawzall does not provide any form of exception processing. Instead, it has the notion of undefined
values, a representation of erroneous or indeterminate results including division by zero, conversion
errors, I/O problems, and so on. If the program attempts to read an undefined value outside of an
initialization, it will crash and provide a report of the failure.

A predicate, def(), can be used to test if a value is defined; it returns true for a defined value
and false for an undefined value. The idiom for its use is the following:

v: Value = maybe_undefined();
if (def(v)) {

compute(v);
}

Here’s an example that must handle undefined values. Let’s extend the query-mapping program
by adding a time axis to the data. The original program used the function locationinfo() to
discover the location of an IP address using an external database. That program was unsafe because
it would fail if the IP address could not be found in the database. In that case, locationinfo()
would return an undefined value, but we can protect against that using a def() predicate.

Here is the expanded, robust, program:

proto "querylog.proto"

static RESOLUTION: int = 5; # minutes; must be divisor of 60

log_record: QueryLogProto = input;
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queries_per_degree: table sum[t: time][lat: int][lon: int] of int;

loc: Location = locationinfo(log_record.ip);
if (def(loc)) {

t: time = log_record.time_usec;
m: int = minuteof(t); # within the hour
m = m - m % RESOLUTION;
t = trunctohour(t) + time(m * int(MINUTE));
emit queries_per_degree[t][int(loc.lat)][int(loc.lon)] <- 1;

}

(Notice that we just disregard the record if it has no known location; this seems a fine way to handle
it.) The calculation in the if statement uses some built-in functions (and the built-in constant
MINUTE) to truncate the microsecond-resolution time stamp of the record to the boundary of a
5-minute time bucket.

Given query log records spanning an extended period, this program will extract data suitable for
constructing a movie showing how activity changes over time.2

A careful programmer will use def() to guard against the usual errors that can arise, but some-
times the error syndrome can be so bizarre that a programmer would never think of it. If a program
is processing a terabyte of data, there may be some records that contain surprises; often the quality
of the data set may be outside the control of the person doing the analysis, or contain occasional
unusual values beyond the scope of the current analysis. Particularly for the sort of processing for
which Sawzall is used, it will often be perfectly safe just to disregard such erroneous values.

Sawzall therefore provides a mode, set by a run-time flag, that changes the default behavior of
undefined values. Normally, using an undefined value (other than in an initialization or def() test)
will terminate the program with an error report. When the run-time flag is set, however, Sawzall
simply elides all statements that depend on the undefined value. For the corrupted record, it’s as
though the elements of the calculation that depended on the bad value were temporarily removed
from the program. Any time such an elision occurs, the run-time will record the circumstances in a
special pre-defined collection table that serves as a log of the errors. When the run completes
the user may check whether the error rate was low enough to accept the results that remain.

One way to use the flag is to debug with it off – otherwise bugs will vanish! – but when it comes
time to run in production on a large data set, turn the flag on so that the program won’t be broken
by crazy data.

This is an unusual way to treat errors, but it is very convenient in practice. The idea is related
to some independent work by Rinard et al. [14] in which the gcc C compiler was modified to

2We will make a movie available on the web before the paper is published.
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generate code that protected against errors. In that compiler, if a program indexes off the end
of the array, the generated code will make up values and the program can continue obliviously.
This peculiar behavior has the empirical property of making programs like web servers much more
robust against failure, even in the face of malicious attacks. The handling of undefined values in
Sawzall adds a similar level of robustness.

11.2 Quantifiers

Although Sawzall operates on individual records, those records sometimes contain arrays or other
structures that must be analyzed as a unit to discover some property. Is there an array element with
this value? Do all the values satisfy some condition? To make these ideas easy to express, Sawzall
provides logical quantifiers, a special notation analogous to the “for each”, “for any”, and “for all”
quantifiers of mathematics.

Within a special construct, called a when statement, one defines a quantifier, a variable, and a
boolean condition using the variable. If the condition is satisfied, the associated statement is exe-
cuted.

Quantifier variables are declared like regular integers, but the base type (usually int) is prefixed
by a keyword specifying the form of quantifier. For example, given an array a, the statement

when (i: some int; B(a[i]))
F(i);

executes F(i) if and only if, for some value of i, the boolean condition B(a[i]) is true. When
F(i) is invoked, i will be bound to the value that satisfies the condition. The execution of a when
statement requires a hint from the expression to limit the range of evaluation; in this example the
bounds of the array serve that purpose. Internally, the system uses the def() operator to explore
the bounds if necessary.

There are three quantifier types: some, which executes the statement if the condition is true for any
value (if more than one satisfies, an arbitrary choice is made); each, which executes the statement
for all the values that satisfy the condition; and all, which executes the statement if the condition
is true for all valid values of the quantifier (and does not bind the quantifier in the statement).

When statements may contain multiple quantifier variables, and in general ambiguities of logic
programming may arise [6]. Sawzall’s definition of quantifiers is restricted enough that this is not
a problem in practice. Also, when multiple variables exist, Sawzall defines that they will be bound
in the order declared, which provides programmer control but avoids the hardest cases.

Here are a couple of examples. The first tests whether two arrays share a common element:

when(i, j: some int; a1[i] == a2[j]) {
...
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}

The second expands on this. Using array slicing, indicated by : notation in array indices, it tests
whether two arrays share a common subarray of three or more elements:

when(i0, i1, j0, j1: some int; a[i0:i1] == b[j0:j1] &&
i1 >= i0+3) {

...
}

It is convenient not to write all the code to handle the edge conditions in such a test. Even if
the arrays are shorter than three elements, this statement will function correctly; the evaluation of
when statements guarantees safe execution.

In principle, the evaluation of a when statement is parallelizable, but we have not explored this
option yet.

12 Performance

Although Sawzall is interpreted, that is rarely the limiting factor in its performance. Most Sawzall
jobs do very little processing per record and are therefore I/O bound; for most of the rest, the CPU
spends the majority of its time in various run-time operations such as parsing protocol buffers.

Nevertheless, to compare the single-CPU speed of the Sawzall interpreter with that of other in-
terpreted languages, we wrote a couple of microbenchmarks. The first computes pixel values for
displaying the Mandelbrot set, to measure basic arithmetic and loop performance. The second mea-
sures function invocation using a recursive function to calculate the first 35 Fibonacci numbers. We
ran the tests on a 2.8GHz x86 desktop machine. The results, shown in Table 1, demonstrate Sawzall
is significantly faster than Python, Ruby, or Perl, at least for these microbenchmarks. On the other
hand, for these microbenchmarks, Sawzall is about 1.6 times slower than interpreted Java, 21 times
slower than compiled Java, and 51 times slower than compiled C++.3

Sawzall Python Ruby Perl
Mandelbrot run time 12.09s 45.42s 73.59s 38.68s
factor 1.00 3.75 6.09 3.20
Fibonacci run time 11.73s 38.12s 47.18s 75.73s
factor 1.00 3.24 4.02 6.46

Table 1: Microbenchmarks. The first is a Mandelbrot set calculation: 500×500 pixel
image with 500 iterations per pixel maximum. The second uses a recursive function to
calculate the first 35 Fibonacci numbers.

3The Java implementation was Sun’s client JavaTM1.3.1 02 with HotSpotTM; C++ was gcc 3.2.2
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The key performance metric for the system is not the single-machine speed but how the speed scales
as we add machines when processing a large data set. We took a 450GB sample of compressed
query log data and ran a Sawzall program over it to count the occurrences of certain words. The
core of the program looked schematically like this:

result: table sum[key: string][month: int][day: int] of int;
static keywords: array of string =

{ "hitchhiker", "benedict", "vytorin",
"itanium", "aardvark" };

querywords: array of string = words_from_query();
month: int = month_of_query();
day: int = day_of_query();

when (i: each int; j: some int; querywords[i] == keywords[j])
emit result[keywords[j]][month][day] <- 1;

We ran the test on sets of machines varying from 50 2.4GHz Xeon computers to 600. The tim-
ing numbers are graphed in Figure 5. At 600 machines, the aggregate throughput was 1.06GB/s of
compressed data or about 3.2GB/s of raw input. If scaling were perfect, performance would be pro-
portional to the number of machines, that is, adding one machine would contribute one machine’s
worth of throughput. In our test, the effect is to contribute 0.98 machines.

13 Why a new language?

Why put a language above MapReduce? MapReduce is very effective; what’s missing? And why
a new language? Why not just attach an existing language such as Python to MapReduce?

The usual reasons for creating a special-purpose language apply here. Notation customized to
a particular problem domain can make programs clearer, more compact, and more expressive.
Capturing the aggregators in the language (and its run-time) means that the programmer never has
to provide one, unlike when using MapReduce. It also has led to some elegant programs as well
as a comfortable way to think about data processing problems in large distributed data sets. Also,
support for protocol buffers and other domain-specific types simplifies programming at a lower
level. Overall, Sawzall programs tend to be around 10 to 20 times shorter than the equivalent
MapReduce programs in C++ and significantly easier to write.

Other advantages of a custom language include the ability to add domain-specific features, custom
debugging and profiling interfaces, and so on.

The original motivation, however, was completely different: parallelism. Separating out the aggre-
gators and providing no other inter-record analysis maximizes the opportunity to distribute process-
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Figure 5: Performance scales well as we add machines. The solid line is elapsed time;
the dashed line is the product of machines and elapsed time. Over the range of 50 to 600
machines, the machine-minutes product degrades only 30%.

ing across records. It also provides a model for distributed processing, which in turn encourages
users to think about the problem in a different light. In an existing language such as Awk [12]
or Python [1], users would be tempted to write the aggregators in that language, which would be
difficult to parallelize. Even if one provided a clean interface and library for aggregators in these
languages, seasoned users would want to roll their own sometimes, which could introduce dramatic
performance problems.

The model that Sawzall provides has proven valuable. Although some problems are poor fits to
the model, most of the processing we do on large data sets fits well and the benefit in notation,
convenience, and expressiveness has made Sawzall a popular language at Google.

One unexpected benefit of the system arose from the constraints the programming model places on
the user. Since the data flow to the user program is so well structured, it was easy to adapt it to pro-
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vide fine-grained access control to individual fields within records. The system can automatically
and securely wrap the user’s program with a layer, itself implemented in Sawzall, that elides any
sensitive fields. For instance, production engineers can be granted access to performance and mon-
itoring information without exposing any traffic data. The details will be presented in a separate
paper.

14 Utility

Although it has been deployed only for about 18 months, Sawzall has become one of the most
widely used programming languages at Google. There are over a thousand Sawzall source files
registered in our source code control system (although, to be sure, most of these files are of modest
size).

One measure of Sawzall’s utility is how much data processing it does. We monitored its use during
the month of March 2005. During that time, on one dedicated Workqueue cluster with 1500 Xeon
CPUs, there were 32,580 Sawzall jobs launched, using an average of 220 machines each. While
running those jobs, 18,636 failures occurred (application failure, network outage, system crash,
etc.) that triggered rerunning some portion of the job. The jobs read a total of 3.2×1015 bytes
of data (2.8PB) and wrote 9.9×1012 bytes (9.3TB) (demonstrating that the term “data reduction”
has some resonance). The average job therefore processed about 100GB. The jobs collectively
consumed almost exactly one machine-century.

15 Related Work

Traditional data processing is done by storing the information in a relational database and process-
ing it with SQL queries. Our system has many differences. First, the data sets are usually too large
to fit in a relational database; files are processed in situ rather than being imported into a database
server. Also, there are no pre-computed tables or indices; instead the purpose of the system is to
construct ad hoc tables and indices appropriate to the computation.

Sawzall is very different from SQL, combining a fairly traditional procedural language with an
interface to efficient aggregators that process the results of the analysis applied to each record.
SQL is excellent at database join operations, while Sawzall is not. On the other hand, Sawzall can
be run on a thousand or more machines in parallel to process enormous data sets.

Brook [3] is another language for data processing, specifically graphical image processing. Al-
though different in application area, like Sawzall it enables parallelism through a one-element-at-
a-time computation model and associative reduction kernels.
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A different approach to the processing of large data stores is to analyze them with a data stream
model. Such systems process the data as it flows in, and their operators are dependent on the
order of the input records. For example, Aurora [4] is a stream processing system that supports a
(potentially large) set of standing queries on streams of data. Analogous to Sawzall’s predefinition
of its aggregators, Aurora provides a small, fixed set of operators, although two of them are escapes
to user-defined functions. These operators can be composed to create more interesting queries.
Unlike Sawzall, some Aurora operators work on a contiguous sequence, or window, of input values.
Aurora only keeps a limited amount of data on hand, and is not designed for querying large archival
stores. There is a facility to add new queries to the system, but they only operate on the recent past.
Aurora’s efficiency comes from a carefully designed run-time system and a query optimizer, rather
than Sawzall’s brute force parallel style.

Another stream processing system, Hancock [7], goes further and provides extensive support for
storing per-query intermediate state. This is quite a contrast to Sawzall, which deliberately discards
its state after each input record. Like Aurora, it concentrates on efficient operation of a single thread
instead of massive parallelism.

16 Future Work

The throughput of the system is very high when used as intended, with hundreds of machines in
parallel. Because the language is modest in scope, the programs written in it tend to be small and
are usually I/O bound. Therefore, although it is an interpreted language, the implementation is fast
enough most of the time. Still, some of the larger or more complex analyses would be helped by
more aggressive compilation, perhaps to native machine code. The compiler would run once per
machine and then apply the accelerated binary to each input record.

Occasionally a program needs to query external databases when processing a record. While support
is already provided for a common set of small databases, such as the IP location information, our
system could profit from an interface to query an external database. Since Sawzall processes each
record independently, the system could suspend processing of one record when the program makes
such a query, and continue when the query is completed. There are obvious opportunities for
parallelism in this design.

Our analyses sometimes require multiple passes over the data, either multiple Sawzall passes or
Sawzall passes followed by processing by another system, such as a traditional database or a
program written in a general-purpose programming language. Since the language does not di-
rectly support such “chaining”, these multi-pass programs can be awkward to express in Sawzall.
Language extensions are being developed that will make it easy to express the chaining of mul-
tiple passes, as are aggregator extensions allowing output to be delivered directly to external sys-
tems.
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Some analyses join data from multiple input sources, often after a Sawzall preprocessing step or
two. Joining is supported, but in general requires extra chaining steps. More direct support of join
operations would simplify these programs.

A more radical system model would eliminate the batch-processing mode entirely. It would be
convenient for tasks such as performance monitoring to have the input be fed continuously to the
Sawzall program, with the aggregators keeping up with the data flow. The aggregators would be
maintained in some on-line server that could be queried at any time to discover the current value
of any table or table entry. This model is similar to the streaming database work [4][7] and was
in fact the original thinking behind the system. However, before much implementation had been
completed, the MapReduce library was created by Dean and Ghemawat and it proved so effective
that the continuous system was never built. We hope to return to it one day.

17 Conclusions

When the problem is large enough, a new approach may be necessary. To make effective use of
large computing clusters in the analysis of large data sets, it is helpful to restrict the programming
model to guarantee high parallelism. The trick is to do so without unduly limiting the expressibility
of the model.

Our approach includes a new programming language called Sawzall. The language helps capture
the programming model by forcing the programmer to think one record at a time, while providing
an expressive interface to a novel set of aggregators that capture many common data processing
and data reduction problems. In return for learning a new language, the user is rewarded by the
ability to write short, clear programs that are guaranteed to work well on thousands of machines
in parallel. Ironically – but vitally – the user need know nothing about parallel programming; the
language and the underlying system take care of all the details.

It may seem paradoxical to use an interpreted language in a high-throughput environment, but
we have found that the CPU time is rarely the limiting factor; the expressibility of the language
means that most programs are small and spend most of their time in I/O and native run-time code.
Moreover, the flexibility of an interpreted implementation has been helpful, both in ease of exper-
imentation at the linguistic level and in allowing us to explore ways to distribute the calculation
across many machines.

Perhaps the ultimate test of our system is scalability. We find linear growth in performance as we
add machines, with a slope near unity. Big data sets need lots of machines; it’s gratifying that lots
of machines can translate into big throughput.
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