
Sequential Object Monitors

Denis Caromel1 Luis Mateu1,2 Éric Tanter2,3

1
oasis project, Université de Nice – CNRS – INRIA
2004, Rt. des Lucioles, Sophia Antipolis, France

denis.caromel@sophia.inria.fr
2 University of Chile, Computer Science Dept.
Avenida Blanco Encalada 2120, Santiago, Chile

{lmateu,etanter}@dcc.uchile.cl
3

obasco project, École des Mines de Nantes – INRIA
4, rue Alfred Kastler, Nantes, France

etanter@emn.fr

Abstract. Programming with Java monitors is recognized to be diffi-
cult, and potentially inefficient due to many useless context switches in-
duced by the notifyAll primitive. This paper presents SOM, Sequential
Object Monitors, as an alternative to programming with Java monitors.
Reifying monitor method calls as requests, and providing full access to
the pending request queue, gives rise to fully sequential monitors: the
SOM programmer gets away from any code interleaving. Moreover, use-
less context switches are avoided. Finally, from a software engineering
point of view, SOM promotes separation of concerns, by untangling the
synchronization concern from the application logic.
This paper illustrates SOM expressiveness with several classical con-
currency problems, and high-level abstractions like guards and chords.
Benchmarks of the implementation confirm the expected efficiency.

1 Introduction

Programming with Java monitors is hard because the semantics of the operations
wait/notifyAll is difficult to understand for most programmers, and, even
when understood, getting the correct expected behavior can be cumbersome.
Moreover, the resulting programs are inefficient because notifyAll awakes all
waiting threads, triggering lots of thread context switches which are expensive
in terms of execution time. Finally, from a software engineering point of view,
using Java monitors enforces a tangling of the synchronization concern with the
application logic.

In this paper we introduce a new concurrency abstraction called SOM,
Sequential Object Monitor, as an alternative to Java monitors. We developed a
100% pure Java library providing powerful and efficient sequential object moni-
tors. A SOM is a sequential monitor in the sense that the execution of a method
cannot be interleaved with that of another method: once a method starts execut-
ing, it is guaranteed to complete before starting the execution of another method.

2

We show that SOMs are (i) powerful because other high-level synchronization
abstractions (e.g., guards, chords) are easily expressed with SOMs, (ii) easier
to understand and use due to their sequential nature and finally, (iii) efficient
because they require less thread context switches than standard Java monitors.
Performance measurements are provided to support our proposal. Finally, since
it is based on a reflective infrastructure, SOM makes it possible to completely
separate synchronization specification from application logic, thus achieving a
clean separation of concerns [12], promoting reuse of both synchronization and
application code.

Section 2 discusses related work in the area of concurrency and establishes
the main motivation of our proposal. Section 3 presents SOM, through its main
principles, API, and some canonical examples. Section 4 exposes how concur-
rency abstractions such as guards [6, 13, 17] and chords [4] can be expressed
in SOM. Section 5 explores implementation issues, such as the SOM reflective
infrastructure, how efficient scheduling is obtained, and finally some benchmarks
validating our approach. Section 6 concludes with future work.

2 Related Work and Motivation

Two threads accessing simultaneously a shared data structure can lead the data
structure to an inconsistent state. Such a programming error is called a data race.
To avoid data races, programmers must synchronize the access to the shared data
structure. In this section we describe the different mechanisms that have been
proposed to allow programmers to write thread-safe programs (i.e., programs
where data races do not occur).

2.1 Classical Synchronization Mechanisms

Monitors. A monitor is a language-level construct similar to a class declaration.
In a monitor, private variables and public operations are declared. The semantics
of the monitor ensures that concurrent invocations of operations are executed in
mutual exclusion, hence avoiding data races. Monitors were invented by Brinch
Hansen [7] and Hoare [16]. These monitors avoid thread context switches by
introducing condition variables (thread queues) to explicitly resume only one
thread instead of all threads. However, Brinch Hansen states in [8] that such
monitors are baroque and lack the elegance that comes from utter simplicity only.

Guards. Guards are a simple concept, easy to understand and reason about.
The idea of associating a boolean expression to indicate when a given operation
may be executed was first introduced for the critical region construct [6]. These
boolean expressions evolved to become the guarded commands of [13] and [17].
The main problem with guards is to implement them efficiently, that is, without
requiring lots of thread context switches.

3

Schedulers. The scheduler approach relies on having an entity, called a sched-
uler, that is responsible for determining the order in which concurrent requests
to a shared object are performed, similarly to the way an operating system
scheduler manages the access to the CPU by concurrent processes. The sched-
uler approach relates to the actor and active object models1, which focus on the
separation of coordination and computation (see for instance [1, 15, 3]). They
introduce the concept of a body: “a distinguished centralized operation, which
explicitly describes the types and the sequence of requests that the object might
accept during its activity” [9]. Such an approach originated in Simula-67 [5], and
has been used in several distributed object systems like POOL [2], Eiffel// [10]
and, in Java, ProActive [11].

Such approaches are usually in the framework of active entities which implies
at least an extra thread for synchronization and extra context switches: a sched-
uler runs in its own thread of control in an infinite loop. The cost of context
switches is not really an issue for systems aiming at parallel programming of
distributed memory systems, since the overhead of thread context switches is
hidden by network latency. On the other hand such an overhead is a concern for
concurrent programming of shared memory multiprocessors.

2.2 Java Monitors

Java is one of the first massively-used languages that includes multi-threaded
programming as an integral part of the language. For synchronization, Java offers
a flavor of monitors which we will refer to as Java monitors. They are inspired
from the critical region concept invented by Brinch Hansen [6]. The main idea
behind the original critical regions is to support the guard programming pattern:
each operation has an associated guard, a boolean expression which must be
true before executing the operation. If the guard is false, the critical region
transparently delays the operation until the guard becomes true.

Java monitors are somehow lower level than critical regions because the pro-
grammer must explicitly test the guard condition before each operation, and
must explicitly notify waiting threads when guards must be evaluated. Fig. 1
shows the typical code of a guard-like implementation of the get method of a
bounded buffer.

In Java, a monitor is a normal class definition that includes methods declared
with the synchronized modifier (1). Concurrent invocations of synchronized
methods are executed in mutual exclusion. Conversely, a guard does not have a
special syntax construct in Java. It is implemented by a while statement where
the boolean expression is the (negated) guard condition (2). The programmer
must explicitly call wait (3) to suspend a thread until notifyAll is invoked by
another thread (5).

This simple example clearly highlights the main disadvantages of the stan-
dard Java synchronization mechanism:

1 The actor model is in a functional setting, while the active object model is rather in
imperative object languages.

4

(1) public synchronized Object get()

throws InterruptedException {

(2) while (!bufarray.size() > 0)

(3) wait();

(4) Object o = bufarray.get();

(5) notifyAll();

(6) return o;

}

Fig. 1. Guard-like code for a bounded buffer in Java.

– Java monitors are a low-level abstraction and therefore, programmers are
prone to introduce many bugs in their programs: e.g., forgetting to spec-
ify the synchronized modifier, using an if statement instead of a while

for evaluating guards, wrongly using notify instead of notifyAll2 or not
invoking notifyAll when needed, etc.

– The application functional code (4-6) is tangled with the synchronization
concern (1-2-3-5). Tangling non-functional concerns with application code is
a violation of the Separation of Concerns (SOC) principle [12], and leads to
less understandable, reusable and maintainable code.

– From an efficiency point of view, calling notifyAll is inefficient because it
awakes all waiting threads. When many threads are waiting on the same lock,
this entails a lot of useless, expensive, thread context switches. For instance,
in the bounded buffer problem, if many consumers are waiting for an item
to be produced, putting a single item in the buffer will awake all consumers,
although only one of them can get the item (see Sect. 5.5 for benchmarks).

– Programmers frequently disregard multi-threading when defining classes.
This entails that there are plenty of useful libraries with classes which are
not thread-safe. Making such classes thread-safe, if at all possible, is hard
and error prone.

2.3 Recent Proposals

We now review two recent proposals in the area of concurrency, chords [4] and
the Java Specification Request 166 [21].

Chords were first introduced in Polyphonic C], an extension of the C] lan-
guage. Chords are join patterns inspired by the join calculus [14]. Functional
Nets [22] is another example of join-inspired calculus. The vision of Functional
Nets as a combination of Functional and Petri-Nets explains well the intrinsic
nature of a join pattern: function applications conditioned by the presence of

2 Recall that notify only awakes a single thread, but using it is not recommended
because in most cases it introduces subtle race conditions which are very hard to
track down.

5

several inputs. Developed in a functional setting, the absence of state is some-
how hidden away by the memorization of tokens (function application) within
pending continuations.

Within Polyphonic C], a chord consists of a header and a body. The header is
a set of method declarations, which may include at most one synchronous method
name. All other method declarations are asynchronous events. The chord body
is executed only when the chord has been enabled. A chord is enabled once all
the methods in its header have been called. Method calls are implicitly queued
up until they are matched up.

Chords do not address the mutual exclusion problem per se: multiple enabled
chords are triggered simultaneously. Although mutual exclusion can be achieved
with chords, it must be implemented explicitly and is error-prone. Indeed, to
implement mutual exclusion of chord bodies, the programmer must include an
additional asynchronous event to represent the idle state, adding it to the header
of each chord requiring mutual exclusion and calling it at the end of construc-
tors and chord bodies. Furthermore, there are some classical problems which
are difficult to solve with chords, such as implementing a buffer which ensures
servicing of get requests in order of arrival.

The Java Specification Request 166 [21] is a proposal for new standard Java
abstractions for concurrency. It basically standardizes medium-level construc-
tions, such as synchronizers and concurrent collections, and adds a few native
lower-level constructions, such as locks and conditions. The aim behind the JSR
166 is to provide a wide set of constructions so that people can use the appropri-
ate abstractions for a given problem, and hence does not promote any concurrent
paradigm in particular. The basic synchronization facility are Hoare’s style mon-
itors. These monitors can be more fragile than current Java monitors, because
programmers are responsible of explicitly asking and releasing monitors. In fact,
the JSR 166 favors flexibility and efficiency at the expense of increased verbosity,
with a risk of fragility.

2.4 Motivation

Overall, this paper proposes an alternative for programming concurrency which
aims at solving the problems mentioned above:

– easy: it should be a high-level and easy-to-use concurrency mechanism, en-
suring thread safety;

– powerful: it should be expressive enough to support any concurrency ab-
straction;

– efficient: it should avoid useless threads and useless thread context switches;

– modular: synchronization code should be specified separately from appli-
cation code, in order to achieve a clean separation of concerns, and making
it easy to “plug” synchronization onto existing, not thread-safe, classes;

– portable: the system should be a standard Java library, not requiring a
specific virtual machine.

6

3 Sequential Object Monitors

Sequential Object Monitors, SOMs, are a high-level abstraction inspired by the
scheduler approach (Sect. 2.1), intended as an alternative to Java monitors at
the programming level. We do not modify the Java language, but instead provide
an optional library, so that one can use the right abstraction depending on the
problem to tackle and the actual programmer skills.

3.1 Main Ideas

A sequential object monitor, SOM, is a standard object to which a low-cost,
thread-less, scheduler is attached (Fig. 2a). A SOM does not have its own thread
of control, i.e. it is a passive object. The functional code of a SOM is a standard
Java class in which synchronization does not need to be considered at all. The
synchronization code is localized in a separate entity, a scheduler, which im-
plements a scheduling method responsible for specifying how concurrent requests
should be scheduled. A SOM system makes it possible to define schedulers and to
specify which schedulers should be attached to which objects in an application.

���
�

thread calling
a method

(1)

pending queue

request

Sequential Object Monitor

standard object

scheduler

(a) (b)

(2)

(3)

Fig. 2. Structure and operational sketch of a Sequential Object Monitor.

When a thread invokes a method on a monitor, this invocation is reified
and turned into a request object (Fig. 2b(1)). Requests are then queued in a
pending queue until they get scheduled by the scheduling method (Fig. 2b(2)).
The scheduling method can mark several requests for scheduling. A scheduled
request is safely executed (Fig. 2b(3)), in mutual exclusion with other scheduled
requests (and the scheduling method).

A scheduling method simply states how requests should be scheduled. Fig. 3 is
an example, in pseudo-code, of a scheduling method specifying a classic strategy
for a bounded buffer.

A SOM is a sequential monitor since considering thread interleaving is not
necessary when writing the functional code; a method body is always executed

7

schedule method:
if buffer empty then schedule oldest put
elseif buffer full then schedule oldest get
else schedule oldest

Fig. 3. Pseudo-code of a fair scheduling strategy for a bounded buffer.
(The equivalent code in SOM is shown later, in Fig. 8)

atomically from begin to end with regards to other invocations. Conversely, in
a quasi-parallel monitor [18, 9] (e.g., Hoare’s, Java monitors) although only one
thread can be active at a time, several method activations may coexist. It can
make it complex to reason about the program. Fig. 4 summarizes the main
principles of SOM.

1. Any method invocation on a SOM is reified as a request and delayed in a pending
queue until scheduled.

2. The scheduling method is guaranteed to be executed if a request may be scheduled.
3. A request is executed atomically with respect to other requests.

Fig. 4. Main SOM principles.

SOM provides certain guarantees, as listed in Fig. 5. Some of these guarantees
are functional, like monitor reentrancy and execution order of scheduled requests.
Others have more to do with the thread management strategy of SOM, presented
in detail in section 5.3. Recall that it aims at avoiding useless thread context
switches.

The SOM model is indeed close to the active object model. The fundamental
difference is that a sequential object monitor is a passive object, meaning it has
no autonomous behavior, no additional scheduling thread: a SOM is much more
lightweight than an active object. Nevertheless, the synchronization mechanism
of both entities are similar. Compared to existing work carried out in the context
of actors and active objects, the specific contribution of SOM rather relates
to two specific original points: the sequential nature of synchronizations, for
simplicity, and the absence of a synchronization thread, for efficiency.

3.2 Main Entities and API

We now present some elements concerning the entities and the API of the SOM
library, in order to go through concrete examples afterwards. In SOM, a scheduler
is defined in a class extending from the base abstract class Scheduler (Fig. 6).
A scheduler must simply define the no-arg schedule() method. In this method,

8

1. A SOM is reentrant, meaning that any self send on a monitor is executed immedi-
ately, without calling the scheduling method.

2. Given that the scheduling method can schedule several requests at a time:
– After execution of the scheduling method, the scheduled requests are executed

by their calling thread, in the scheduling order.
– The scheduling method will not be called again before all scheduled requests

complete.
3. There is no infinite busy execution of the scheduling method.
4. The scheduling method is executed by caller threads, in mutual exclusion. The exact

thread executing this method is unspecified.
5. After a caller thread has executed its request, it is guaranteed to return at most

after one execution of the scheduling method.
6. Whenever a SOM is free, if a request arrives and is scheduled by the scheduling

method, the request is executed without any context switch.

Fig. 5. Main SOM guarantees.

the scheduling strategy is defined. The basic idea is that a scheduler can mark
for execution one or more pending requests, stored in a pending queue. This
is called scheduling (a) request(s). Such scheduling decision may be based on
requests characteristics as well as the state of the associated base object (passed
to the scheduler as a constructor parameter) or any other external criteria.

BufferScheduler RWScheduler

U
se

r−
de

fi
ne

d
en

tit
ie

s
SO

M
 e

nt
iti

es

... ...

schedule(): void

Request

getParameter(int): Object
getName(): String

getThread(): Thread

<<interface>>
RequestFilter

accept(Request): boolean

Scheduler

schedule(): void

CustomFilter

Fig. 6. Main entities provided by SOM, and some potential user-defined exten-
sions.

Various methods are provided for the scheduler to express its scheduling
strategies (Fig. 7). For instance, scheduleOldest("put") schedules the oldest
pending request on method put, if any (otherwise it does nothing). Requests
that are not scheduled remain in the queue to be scheduled later, on a future
invocation of schedule. Requests are represented as Request objects. A sched-
uler can obtain an iterator on the pending queue using the iterator() method,

9

scheduling queue management

void schedule(Request) Iterator iterator()

void scheduleAll1 boolean hasRequest1

void scheduleOldest1 int requestCount1

void scheduleYoungest1

void scheduleOlderThan2

void scheduleAllOlderThan2

void scheduleYoungerThan2

void scheduleAllYoungerThan2

– 1 Method available in various overloaded versions:
• (): apply to all requests in the queue
• (String)/(String[]): apply to request(s) with given name(s)
• (RequestFilter): apply to request(s) accepted by filter

– 2 Method available in 2 overloaded versions, taking either two String or two
RequestFilter parameters.

Fig. 7. Scheduler API for scheduling and queue management.

and can then introspect request objects, in arrival order, to determine which
one(s) to schedule. Once a request is scheduled, it is removed from the pending
queue. Request objects encapsulate the name of the requested method, its actual
parameters, and a reference to the calling thread (Fig. 6).

To express elaborated selection scheme, most scheduling methods accept fil-
ters as an alternative to simple request names. A request filter implements the
RequestFilter interface (Fig. 6), defining the accept() method. For instance,
scheduleAll(rf)will schedule all requests in the queue that are accepted by the
rf filter, while scheduleOldest(rf) will only schedule one request, the oldest
accepted by rf (if any).

Recall that scheduled requests are executed in the scheduling order. To ex-
ecute requests in the original arriving order, they should simply be scheduled
in that order. For instance, ensuring FIFO mutual exclusion with SOM is triv-
ial: it is enough to attach a scheduler whose scheduling method simply calls
scheduleAll().

3.3 Canonical Examples

We now briefly present SOM solutions to some classical concurrency problems:
bounded buffer, readers and writers, and dining philosophers.

Bounded buffer. Fig. 8 presents the implementation in SOM of a scheduler for
the bounded buffer example. It is a straightforward mapping of the pseudo-code
shown previously in Fig. 3. Class Buffer is a trivial, unsynchronized, implemen-
tation of a buffer (not presented). In this implementation, when the buffer is
neither full nor empty, the oldest request is scheduled (scheduleOldest). Now,
imagine we use the following schedule method instead:

10

public class BufferScheduler extends Scheduler {

Buffer buffer;

public BufferScheduler(Buffer b) {

super(b);

buffer = b;

}

public void schedule() {

if (buffer.isEmpty()) scheduleOldest("put");

else if (buffer.isFull()) scheduleOldest("get");

else scheduleOldest();

} }

Fig. 8. Scheduler for the bounded buffer example.

public void schedule() {

if (!buffer.isEmpty()) scheduleOldest("get");

if (!buffer.isFull()) scheduleOldest("put");

}

In this case, when the buffer is neither full nor empty, it alternates serving get

and put requests, not respecting the order. This calls for several first comments.
The SOM abstraction provides the user with the ability to finely control and tune
the synchronization if needed. Of course, higher-level abstractions, potentially
with good non-determinism, are also needed. They will be expressed on top of
the basic SOM primitives (see Section 4 for guards and chords).

Readers and writers. The readers and writers is another classical problem
of concurrent programming. Readers are threads that query a given data struc-
ture and writers are threads that modify it. A coordinator object c is responsi-
ble for granting access to the data structure. Readers request access by calling
c.enterRead() and notify when they stop accessing data with c.exitRead(),
while writers use c.enterWrite() and c.exitWrite() respectively. This prob-
lem is easily solved by making the coordinator a sequential object monitor. The
code of the solution is presented in Fig. 9. The functional part is the coordinator
implementation, which is self-explaining. The code of the scheduler specifies the
following strategy. First, exitRead and exitWrite requests are scheduled im-
mediately and unconditionally, because they are just notifications, not requests
for access – similarly for getReaders and isWriting requests.

If a writer is currently modifying the data structure, the scheduler does not
grant other permissions for access. If there are readers accessing the data struc-
ture, it grants permission to another enterRead, if any. Finally, if there is cur-
rently no writer nor reader accessing the data structure, it schedules the oldest
request.

11

public class RWCoordinator {

int readers = 0;

boolean write = false;

void enterRead(){readers++;}

void exitRead(){readers--;}

void enterWrite(){write = true;}

void exitWrite(){write = false;}

int getReaders(){return readers;}

boolean isWriting(){return write;}

}

public FairRWScheduler

extends Scheduler {

RWCoordinator c;

// initialized in constructor

public void schedule() {

scheduleAll(new String[]{

"exitRead", "exitWrite",

"getReaders", "isWriting"});

if(!c.isWriting()) {

if(c.getReaders() > 0)

scheduleOlderThan(

"enterRead","enterWrite");

else scheduleOldest();

} } }

Fig. 9. The coordinator and its associated scheduler.

Note that readers are scheduled by calling scheduleOlderThan, not
scheduleOldest. This is to ensure that writers may not starve: an enterRead

request is scheduled only if it is older than the first enterWrite in the pending
queue.

Also, schedule only schedules one pending enterRead at a time (call to
scheduleOlderThan). This does not mean that two or more readers cannot
work in parallel. Indeed, when finishing the execution of enterRead, schedule
will be reinvoked and another enterRead may be scheduled for execution, even
if current readers have not called exitRead.

Dining philosophers. In this problem, several philosophers (concurrent
threads) spend their time thinking and eating. To eat, they first need to get
two forks. Fig. 10 shows the code of a philosopher.

A table monitor is used for granting access to two consecutive forks. The
solution presented here is fair, meaning no philosopher may starve. Moreover,
this solution ensures that forks are granted to philosophers in the same order as
they request them. To avoid deadlocks, the table provides a method to atomically
request two forks simultaneously (Fig. 11)

The table scheduler (Fig. 12) schedules all non pick requests, and all pick
requests for which both requested forks are free and none have been previously
requested by another philosopher. In the scheduling method, the local variable
array reservedFork, created every time an iteration over the request queue
begins, is used for ensuring that forks are granted in the desired order. When a
fork is requested and cannot be granted because it is still busy, it is tagged as
“reserved”. A request including a previously reserved fork is rejected immediately

12

public class Philosopher implements Runnable {

int id1; Table table;

public void run(){

int id2 = (id1+1)%5;

for(;;){

think();

table.pick(id1, id2); eat(id1, id2); table.drop(id1, id2);

} }

void think(){...} void eat(int id1, int id2){...}

}

Fig. 10. The philosopher class.

public class Table {

boolean[] forks = new boolean[5];

public void pick(int id1, int id2) { forks[id1] = forks[id2] = true; }

public void drop(int id1, int id2) { forks[id1] = forks[id2] = false; }

boolean mayEat(int id1, int id2) { return !forks[id1] && !forks[id2]; }

}

Fig. 11. The table.

public class TableScheduler extends Scheduler {

Table table; // initialized in constructor

public void schedule() {

boolean[] reservedFork = new boolean[5]; // all start false

Iterator it = iterator();

while (it.hasNext()) {

Request req = (Request) it.next();

if (!req.is("pick")) req.schedule();

else {

int id1 = req.getIntParameter(0);

int id2 = req.getIntParameter(1);

if (!reservedFork[id1] && !reservedFork[id2] &&

table.mayEat(id1, id2))

req.schedule();

reservedFork[id1] = reservedFork[id2] = true;

} } } }

Fig. 12. The table scheduler.

13

in the current scan, even if such a fork is free, because the fork must first be
granted to the philosopher that first requested it. Of course, less fair strategies
can also be easily expressed.

3.4 Modularity and Reuse of Synchronization Policies

SOM makes it easy to define various synchronization policies, thanks to the full
access given in the scheduling method to the queue of pending requests. For
instance, in the case of the readers and writers problem, several fairness policies
can be devised. We already exposed (Fig. 9) a fair policy, where both writers and
readers are ensured not to starve. Alternative policies can easily be provided, for
instance giving priority to readers or writers (Fig. 13).

public WriterPriorityRWScheduler

extends Scheduler {

RWCoordinator c;

// initialized in constructor

public void schedule() {

// schedule all notifications

if(!c.isWriting()) {

if(hasRequest("enterWrite")){

if(c.getReaders() == 0)

scheduleOldest("enterWrite");

}

else scheduleAll();

} } }

public ReaderPriorityRWScheduler

extends Scheduler {

RWCoordinator c;

// initialized in constructor

public void schedule() {

// schedule all notifications

if(!c.isWriting()) {

if(hasRequest("enterRead"))

scheduleAll("enterRead");

else if(c.getReaders()==0)

scheduleOldest();

} } }

Fig. 13. Alternative fairness policies for the readers and writers problem.

Reuse of synchronization policies in different contexts depends on their gener-
icity. As of now, the schedulers we have exposed all depend on string names (e.g.,
"put"). A scheduler class can be made independent from actual method names
through configuration. For instance, considering buffer-like containers, reusable
policies just need to be configured in order to know which methods are to be
considered put methods and which ones are get methods. Then, the schedule
method can be made independent of method names, for instance (putMethod is
an instance variable configured to hold the name of the put method):

void schedule() { if (buffer.isEmpty()) scheduleOldest(putMethod); ... }

Determining emptiness and fullness of the synchronized data structure can also
be made generic: the reflection API can be used to invoke emptiness and full-
ness methods according to configuration. Apart from being reusable, generic
synchronization classes are more robust with regards to changes.

14

4 Concurrency Abstractions with SOM

SOM is equivalent in expressiveness to the classic synchronization mechanisms
like locks, semaphores, Hoare’s monitors, Java monitors, guards, etc. This means
that if a synchronization problem can be solved with the classic mechanisms it
can also be solved with SOM and vice versa. To prove it, it is enough to show
an implementation of a classic mechanism in terms of SOM and vice versa,
because all classic mechanisms are equivalent. This proof is trivial as SOM is
implemented in terms of Java monitors and implementing a lock with SOM is
easy:

class Lock { class LockScheduler extends Scheduler {

boolean busy = false; Lock lock;

void ask() { // initialized in constructor

busy = true;

} void schedule() {

void release() { scheduleAll("release");

busy = false; if (!lock.busy)

} scheduleOldest("ask");

} } }

However, such an equivalence is not enough. It is also important to show
that solutions that are easily expressed with other synchronization mechanisms
are also easily expressed with SOM. Although effectively proving this property
is hard, a good approximation consists in showing how other synchronization
mechanisms are easily expressed with SOM. In this section, we have chosen
to present the concise implementation of two synchronization mechanisms with
SOM: guards and chords.

4.1 Guards

In SOM Guards, a guard scheduler contains method guards and is responsible
for scheduling concurrent requests. We provide an abstract class for guard sched-
ulers, GuardScheduler, with a method for registering method guards, addGuard.
A guard is defined by attaching a request filter, that indicates when a method
fulfills the conditions to be executed, to a method name. It is worthwhile to high-
light that the guard system presented here avoids unnecessary context switches
(see Section 5.3 for an explanation of the efficient scheduling strategy of SOM).
Fig. 14 illustrates an implementation of the bounded buffer based on SOM
Guards. This code simply associates a request filter for get and one for put.

The expressiveness of SOM is illustrated by the simplicity of the base class
GuardScheduler (Fig. 15), that completely implements the guard system. The
scheduler simply iterates over the request queue and schedules the oldest re-
quest whose associated guard evaluates to true. Note that this scheduler is not
optimized: the actual implementation of the guard scheduler avoids evaluating
all guards upon each invocation of the scheduling method. If an invocation of
schedule does not schedule any request, the scheduler will not re-evaluate the
corresponding guards until a new request arrives and is scheduled.

15

public class GuardedBufferScheduler extends GuardScheduler {

public GuardedBufferScheduler(final GuardedBuffer buf) {

super(buf);

addGuard("get",

new RequestFilter() { public boolean accept(Request req) {

return !buf.isEmpty();

}});

addGuard("put",

new RequestFilter() { public boolean accept(Request req) {

return !buf.isFull();

}});

} }

Fig. 14. Code of a guard scheduler for the bounded buffer example.

public abstract class GuardScheduler extends Scheduler {

HashMap guardMap = new HashMap();

public GuardScheduler(Object o){ super(o); }

public void addGuard(String name, RequestFilter guard){

guardMap.put(name, guard);

}

public void schedule(){

Iterator it = iterator();

while (it.hasNext()){

Request req = (Request) it.next();

RequestFilter guard = (RequestFilter) guardMap.get(req.getName());

if (guard == null || guard.accept(req)){ req.schedule(); break; }

}

} }

Fig. 15. The (non-optimized) guard scheduler implemented with SOM.

4.2 Chords

Chords were first introduced in Polyphonic C] [4], a C] dialect offering dedicated
syntax to define join patterns (see section 2.3).

Fig. 16 shows the implementation of a multiple-reader, single-writer lock with
chords as exposed in [4]. It consists of just five chords and illustrates pretty well
the kind of concise definition enabled by chords. The chords 1 and 2 are alter-
native chords, meaning that the actual shared chord being executed depends
on the previous asynchronous events that were fired. Chords 3 and 4 are simple

16

chords, i.e. made of a synchronous method that only appears in one chord, and
of some asynchronous events (in this case just one), while chord 5 is a standard
synchronous method (trivial chord).

class ReaderWriter {

(1) public void shared() & async idle() { sharedRead(1); }

(2) public void shared() & async sharedRead(int n) { sharedRead(n+1); }

(3) public void releaseShared() & async sharedRead(int n) {

if(n == 1) idle(); else sharedRead(n-1);

}

(4) public void exclusive() & async idle() {}

(5) public void releaseExclusive() { idle(); }

}

Fig. 16. Solution to the readers and writers problem with chords (Polyphonic C]

code).

We implemented a chord system for Java based on SOM, presenting the
same semantics as the chords of Polyphonic C]. However, SOM Chords are im-
plemented as a library, not as a language extension. Implications of this fact are
discussed at the end of this section. The aim of this section is to show how SOM
can be simply used to implement other synchronization mechanisms, thereby
illustrating its expressiveness.

client object with
chord declarations

chord
manager

scheduler
chord

(a SOM)

class ChordManager {

AsyncEvent defineEvent();

Chord defineChord(..);

ChordSet defineChordSet(..);

void trigger(AsyncEvent e, ..);

void await(ChordSet c);

boolean isEnabled(ChordSet c);

}

Fig. 17. Operational sketch of SOM Chords and public interface of the chord
manager.

The main principle of SOM Chords is that an instance of a class declaring
chords is associated to a chord manager (Fig. 17). A chord manager, instance of
ChordManager, is a sequential object monitor (scheduled by a ChordScheduler),

17

class ReaderWriter {

ChordManager mgr = new ChordManager();

AsyncEvent idle = mgr.defineEvent();

AsyncEvent sharedRead = mgr.defineEvent();

ChordSet idleOrSharedRead = mgr.defineChordSet(idle, sharedRead);

// public void shared() & async idle() { sharedRead(1); }

// public void shared() & async sharedRead(int n) { sharedRead(n+1); }

public void shared() {

EnabledChord ch = mgr.await(idleOrSharedRead);

if(ch.is(idle)) mgr.trigger(sharedRead, new Integer(1));

else {

int n = ch.getIntParameter(sharedRead);

mgr.trigger(sharedRead, new Integer(n+1));

} }

// public void releaseShared() & async sharedRead(int n) {

// if(n == 1) idle(); else sharedRead(n-1); }

public void releaseShared() {

EnabledChord ch = mgr.await(sharedRead);

int n = ch.getIntParameter(sharedRead);

if(n == 1) mgr.trigger(idle);

else mgr.trigger(sharedRead, new Integer(n-1));

}

// public void exclusive() & async idle() {}

public void exclusive() { mgr.await(idle); }

// public void releaseExclusive() { idle(); }

public void releaseExclusive() { mgr.trigger(idle); }

}

Fig. 18. Solution to the readers and writers problem with SOM Chords (Poly-
phonic C] code is given in commentaries).

whereas the object using it is not (recall that mutual exclusion of chord bodies
is not guaranteed in chords as formulated in [4]).

There are three types of chords in SOM Chords: asynchronous events (class
AsyncEvent); chords, which are enabled when a set of asynchronous events is
matched up (class Chord); and chord sets, which are an alternative set of chords,
enabled whenever one chord in the set is enabled (class ChordSet). Since a chord
is indeed a chord set made of a single chord, and similarly an asynchronous event
is a chord made of a single event, AsyncEvent is a subclass of Chord which is a
subclass of ChordSet.

18

public class ChordScheduler extends Scheduler {

ChordManager mgr;

public ChordScheduler(ChordManager mgr) {

super(mgr); this.mgr= mgr;

}

public void schedule() {

scheduleOldest(new RequestFilter(){

public boolean accept(Request req){

// schedule non await methods

if (!req.is("await")) return true;

// the chord specified as parameter in the await call

ChordSet c = (ChordSet) req.getParameter(0);

// true if all required events have been triggered

return mgr.isEnabled(c);

}

});

} }

Fig. 19. The chord scheduler implemented with SOM.

The chord manager makes it possible to define asynchronous events and
chords (Fig. 17). The methods await and trigger make it possible to respec-
tively wait for a chord to be enabled, and to trigger an asynchronous event. The
method isEnabled checks if a given chord (or chord set) is enabled.

Fig. 18 shows the ReaderWriter class implemented with SOM Chords. First
of all, a chord manager is associated with each instance. Asynchronous events,
chords and chord sets are declared as instance variables, in order to be able to
refer to them. Then, a simple chord (i.e., whose synchronous method appears
only once in all chords, such as exclusive) is expressed as a standard syn-
chronous method that starts by waiting for the set of events to be matched up
(mgr.await(..)). An alternative set of chords (i.e., that share the same syn-
chronous method, such as shared-idle and shared-sharedRead) is expressed
as one synchronous method that first waits for one of the chords to be enabled.
Then, depending on which chord was actually enabled, the appropriate body is
executed. An EnabledChord object represents an enabled chord instance, and
stores the parameters associated with each event of the chord. Finally, method
bodies are changed so that they trigger asynchronous events on the manager
(e.g., idle() is replaced by mgr.trigger(idle)).

Fig. 19 shows the straightforward implementation of the chord scheduler
controlling the chord manager. The scheduler uses a filter that accepts non-
await requests, and accepts await requests only if all required events have been

19

previously triggered. To this end, the chord manager uses bit masks to determine
if a chord is ready to be processed (isEnabled), just as explained in [4].

A major benefit of Polyphonic C] is that it is a language extension, not
a simple API. This brings a number of benefits, in particular compact syntax
and compiler support. Also, providing chords as a language extension results in
clearer, more manageable code. In this regard, our claim here is that the under-
lying system supporting chords is concisely expressed with SOM, as validated
by the code of the chord scheduler shown in Fig. 19. Obviously, the advantages
of a language extension are not met by the SOM Chords library: however the
set of transformations from a chord syntax to calls to the library is straightfor-
ward and linear. In other words, code of Fig. 18 can preferably be seen as code
generated by a chords compiler using the SOM Chords library as its back end,
rather than as hand-written code.

5 Implementation

5.1 Reifying and synchronizing method calls

In order to remain portable while being able to transparently reify method calls
as requests, the SOM library is based on a reflective infrastructure operating
at load time. Using computational reflection also brings a clean separation of
concerns between the application logic (at the base level) and the synchronization
concern (at the metalevel). The SOM metaobject protocol (MOP) is defined
within Reflex, an open behavioral reflective extension of Java [24]. When creating
a sequential object monitor, the reflective infrastructure ensures interception of
its method invocations. Doing so, a controller metaobject will be invoked (a)
before requesting a method, and (b) just after returning from the method. The
controller metaobject, provided by the SOM system, ensures scheduling and
mutual exclusion of concurrent requests.

5.2 Initialization and Configuration

There are several alternatives to obtain sequential object monitors. Especially,
there is a need for a means to specify the association between standard objects
and schedulers.

First of all, at instantiation time, one can use:

Buffer b = (Buffer) SOM.newMonitor(Buffer.class, aScheduler);

This runtime approach however suffers from some limitations with final classes
and methods, due to the fact that it is based on dynamic generation of implicit
subclasses, and requires explicit use by programmers in client code (replacing
standard new calls).

A transparent approach is also available. One can specify in a configuration
file the desired associations baseClass → schedulerClass, e.g.:

schedule: Buffer with: BufferScheduler

20

The SOM system offers two means to apply configuration files to an application:
load time and compile time. Class SOMGenerator is provided as a compile-time
utility to generate modified class files:

% java SOMGenerator <configuration-file> <target-directory>

will generate transformed class files for all classes which have to be scheduled,
as specified by the given configuration file. Load-time transformation is also
available, thanks to the SOMRun class:

% java SOMRun <configuration-file> <application>

will run the application by applying, at load time, the configuration specified in
the configuration file.

5.3 Efficient Scheduling

This section explains the inner working of SOM thread management that makes
it possible to avoid unnecessary context switches.

The controller mentioned in the section above handles two queues:

– The wait queue holds pending requests that have not been scheduled for
execution by the scheduler.

– The ready queue keeps pending requests that have just been scheduled (dur-
ing the last execution of the scheduling method), but have not been executed
yet because the monitor is busy, either still executing the scheduling method,
or executing another request.

A sequential object monitor M works as follows. Let T be a thread that has
begun the execution of a request R on a method of M . Suppose the ready queue
already contains requests made by other threads. T is said to own M and the
other threads wait. M is in a busy state. When T finishes the execution of the
method, the controller takes control and extracts the oldest request R′ in the
ready queue. Thread T thereby passes the ownership of M directly to thread T ′,
the thread requesting R′. Finally, T wakes T ′ up and returns to the caller of M .
T

′ starts the execution of its own request, R
′.

When the ready queue is empty, the controller makes thread T automati-
cally invoke the schedule method of the user-provided scheduler. Recall that
this method will schedule one or several requests; these requests will be trans-
ferred from the wait queue to the ready queue. Making T invoke the scheduling
method implies that T spends some time scheduling requests for other threads.
Thus programmers should preferably write simple scheduling methods. If after
invoking the scheduling method, the ready queue is still empty, the sequential
object monitor is said to be free.

Let us now consider a thread T requesting a method of M . First, the request
is put in the wait queue. If M is busy, T is blocked, provoking a context switch.
If M is free, the controller makes T invoke the scheduling method. If the request
is scheduled, T takes ownership of M and executes the method immediately, i.e.
no context switch occurs. If the request is not scheduled, M remains free and T

is blocked.

21

5.4 Limitations

The current implementation of SOM presents some limitations. In particular,
constructors of classes that are to be scheduled should never expose a reference
to this to another thread, otherwise the thread-safety guarantee will be broken.

Furthermore, a SOM is sequential and hence potentially entails a loss of par-
allelism. However, it must be clear that the sequential constraint relates to the
synchronization code: the overall program indeed remains parallel. This con-
straint makes it possible to simplify the task of writing, maintaining and rea-
soning about concurrent programs, thanks to a clear semantics and high expres-
siveness. Furthermore, our conjecture is that there are no problems that cannot
be solved with this constraint. One could indeed compare this constraint to the
absence of a goto statement in modern programming languages. In cases where
the loss of parallelism is a critical issue, an approach similar to the one we took
for SOM Chords should be adopted: the considered class (e.g., the class with
chord declarations) is not converted to a SOM, but rather uses an auxiliary
class (e.g., the chord manager), converted to a SOM, that is responsible of the
coordination and synchronization.

5.5 Micro-Benchmarks

We argued at the beginning of the paper that the main inefficiency of Java
monitors comes from the fact that notifyAll wakes up all waiting threads.

This section presents measurements of the execution time of five different
buffer implementations; the typical solution using legacy Java monitors, as ad-
vised in the Sun Java tutorial [23], a “smart” solution using condition variables
and mutexes as presented in [19], and three SOM-based solution: the direct so-
lution using SOM (as in Fig. 8), the solution using SOM Guards (as in Fig. 14),
and a solution with SOM Chords.

The measurements are given for a buffer of one slot, with one producer, and
with different number of consumers. As the interest is measuring the cost of the
synchronization, the time to produce and consume items in the tests is marginal.
The results (Tables 1 and 2) were obtained by performing five measurements –
each of which consists in the production of 100,000 items– discarding the best
and worst cases and taking the average of the remaining three measurements.
The benchmarks were executed on a single processor Athlon XP 2600+ machine
with 512 MB of memory, with Java 1.4.2 with native threads. We allocated a
large heap size to the JVM in order to limit the number of garbage collections.
We run the benchmarks under Windows 2000 (Table 1) and Linux, kernel 2.4
(Table 2).

The case with one consumer is a best case for the Java monitors solution,
because when the producer puts an item in the buffer, notifyAll always wakes
up one thread only, and this thread will get the item. Hence no useless context
switches occur. SOM solutions, as well as the solution based on condition vari-
ables, are slower in this case because they are implemented with multiple Java
monitors, and therefore there is an associated overhead.

22

number of Java Condition SOM SOM
consumers monitors Variables SOM Guards Chords

1 390 1057 796 802 1203

2 510 1088 864 885 1229

4 771 1114 942 948 1265

8 1416 1120 1010 1026 1317

16 2823 1213 1166 1208 1541

32 7317 1375 1604 1593 1958

64 23479 2010 2322 2270 2708

128 80422 3234 3604 3442 4083

Table 1. Benchmark results under Windows 2000 with JDK 1.4.2 (time in ms).

number of Java Condition SOM SOM
consumers monitors Variables SOM Guards Chords

1 1006 1905 1656 1642 1954

2 1225 2018 1708 1690 2029

4 1918 2276 1891 1839 2148

8 5723 2412 2125 1982 2276

16 16005 2451 2435 2199 2488

32 49767 2659 3156 2766 3123

64 133612 2946 4407 3771 4196

128 358218 3049 6653 5259 5934

Table 2. Benchmark results under Linux 2.4 with JDK 1.4.2 (time in ms).

Increasing the number of consumers while keeping a single producer is greatly
disadvantageous for the Java monitors solution, because when the producer puts
an item in the buffer, several consumers must be waken up, although only one
will get the item. The others will be put to wait again. Each failed wake up is
a useless context switch, which is expensive in terms of execution time. We can
easily see that SOM solutions scale much better with regards to the number of
consumers, because (i) only one thread is waken up, and (ii) the evaluation of
which thread to wake up is done by the thread leaving the monitor: no useless
context switches occur.

The solution based on condition variables scales similarly well, and performs
slightly better. With SOM, increasing the number of consumers lowers perfor-
mance because the evaluation of the scheduling method depends on the size of the
pending request queue (due to iterations over the queue). In contrast, the con-
dition variables implementation is independent from the number of consumers,
but still its performance slightly decreases because context switches seem to cost
more when more threads are running.

23

number of Java Condition SOM SOM Cond. Vars
consumers monitors Variables SOM Guards Chords JDK1.5

1 531 1279 1199 1157 1425 537

2 732 1234 1225 1196 1518 586

4 1131 1293 1333 1309 1573 556

8 2195 1281 1495 1378 1660 581

16 4312 1276 1851 1549 1916 592

32 9714 1350 2543 1969 2371 645

64 31637 1587 4305 2885 3601 850

128 95391 1762 7331 4414 5683 1062

Table 3. Benchmark results under Linux 2.6 with JDK 1.5 beta (time in ms).

An interesting point is that a straightforward implementation of the buffer
with SOM (recall the simplicity of Fig. 8) brings better performance than the
standard Java monitors solution, and comparable performance to the one with
condition variables, which is more complex to correctly design and program.

The micro-benchmarks presented here do not take into account the cost of
program transformation for SOM: classes were transformed statically before the
benchmarks. If SOM was supported at the virtual machine level, no transfor-
mation cost would be incurred. We could also expect SOM to be at least as
efficient as Java monitors even in the worst case. Hence, the micro-benchmarks
presented here validate the interest of the SOM approach: although SOM implies
an overhead at start, it scales very well. An efficient, VM-based, implementation
of SOM would further reduce that overhead and make the approach even more
competitive.

Finally, we have run the same benchmarks under Linux with the new 2.6
kernel, and with the beta version of JDK 1.5 (Table 3). Clearly, the results show
that Linux is more competitive with the new optimized kernel. Furthermore, we
have included another implementation: that of condition variables as included
in the JDK 1.5, coming from the JSR 166 library [21]. Recall that normal con-
dition variables are implemented with standard Java monitors, while condition
variables of the JDK 1.5 are implemented with very efficient locks. The results,
which are globally better than with JDK 1.4.2, confirm the previous analysis, and
open new optimization perspective for SOM. Improvements similar to those that
can be observed for condition variables should be obtainable in a new version of
SOM implemented over the efficient locks of JDK 1.5.

6 Conclusion and Future Work

We have presented Sequential Object Monitors as an alternative to programming
directly with standard Java monitors. Due to its sequential nature, a SOM is
easier to reason about and maintain. We have illustrated the expressiveness
of SOM through several examples, in particular through the implementation

24

of high-level abstractions like guards and chords. Furthermore, SOM promotes
good modularization properties by untangling the synchronization concern from
the application logic. Programmers can concentrate on programming functional
code without worrying too much about concurrency. SOM provides a means to
turn sequential classes into thread-safe classes without modifying them. Finally,
SOM seems more efficient and scalable than the standard Java monitors due to
its explicit control over which thread is woken up and its efficient scheduling
strategy, as opposed to the untargeted and context-switch expensive notifyAll

primitive. SOM can be characterized by the use of run-to-completion methods.
It also relies on the packaging of small closures (reified method calls) as the
building blocks of practical concurrent programming constructions, in the line
of Lea’s Java fork/join framework [20].

As future work, it would be interesting to reengineer an existing, non-trivial,
concurrent application with SOM in order to study the benefits of our approach
on large-scale software. Future work also includes studying the possibility
to provide alternative scheduler base classes, such as a non-systematically
reentrant scheduler in which some self sends can also reified as requests to
be scheduled, upon user choice. Other alternatives include a scheduler able to
dispatch in parallel a set of requests (e.g., all read requests for the readers and
writers problem). With these features, we then plan to study several alternatives
of join patterns with SOM.

Acknowledgements. We would like to thank Jacques Noyé and the anony-
mous ECOOP reviewers for their constructive comments.

This work was partially funded by the CONICYT-INRIA project ProXiMoS, and
the Millenium Nucleous Center for Web Research, Grant P01-029-F, Mideplan,
Chile.

References

[1] Gul Agha. ACTORS: a model of concurrent computation in distributed systems.
The MIT Press: Cambridge, MA, 1986.

[2] P. H. M. America and F. Van Der Linden. A parallel object-oriented lan-
guage with inheritance and subtyping. In N. Meyrowitz, editor, Proceedings of
the OOPSLA/ECOOP’90 Conference on Object-Oriented Programming Systems,
Languages and Applications. ACM Press, October 1990. ACM SIGPLAN Notices,
25(10).

[3] Colin Atkinson, Andrea Di Maio, and Rami Bayan. Dragoon: An object-oriented
notation supporting the reuse and distribution of ada software. In International
Workshop on Real-Time Ada Issues, 1990.

[4] Nick Benton, Luca Cardelli, and Cédric Fournet. Modern concurrency abstrac-
tions for C]. In B. Magnusson, editor, ECOOP 2002 - Object-Oriented Pro-
gramming: 16th European Conference, volume 2374, Málaga, Spain, June 2002.
Springer-Verlag.

[5] G. M. Birtwistle, O.-J. Dahl, B. Myhrhaug, and K. Nygaard. Simula Begin.
Petrocelli Charter, 1973.

25

[6] Per Brinch Hansen. Structured multiprogramming. Communications of the ACM,
15(7):574–578, July 1972.

[7] Per Brinch Hansen. A programming methodology for operating system design.
In Proceedings of the IFIP Congress 74, pages 394–397, Amsterdam, Holland,
August 1974. North-Holland.

[8] Per Brinch Hansen. Monitors and concurrent pascal, a personal history. ACM
SIGPLAN Notices, 28(3):1–35, March 1993.

[9] Jean-Pierre Briot, Rachid Guerraoui, and Klaus-Peter Löhr. Concurrency and dis-
tribution in object-oriented programming. ACM Computing Surveys, 30(3):291–
329, September 1998.

[10] Denis Caromel. Towards a method of object-oriented concurrent programming.
Communications of the ACM, 36(9):90–102, 1993.

[11] Denis Caromel, Wilfried Klauser, and Julien Vayssière. Towards seamless com-
puting and metacomputing in Java. Concurrency Practice and Experience, 10(11-
13):1043–1061, September 1998.

[12] Edsger W. Dijkstra. The structure of THE - multiprogramming system. Commu-
nications of the ACM, 11(5):341–346, May 1968.

[13] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation
of programs. Communications of the ACM, 18(8):453–457, August 1975.

[14] Cédric Fournet and Georges Gonthier. The reflexive chemical abstract machine
and the join-calculus. In Proceedings of POPL’96, pages 372–385. ACM, January
1996.

[15] Svend Frolund and Gul Agha. A language framework for multi-object coordi-
nation. In O. Nierstrasz, editor, Proceedings of the 7th European Conference
on Object-Oriented Programming (ECOOP’93), volume 952 of Lecture Notes in
Computer Science, pages 346–360, Kaiserslautern, Germany, July 1993. Springer-
Verlag.

[16] Charles A. R. Hoare. Monitors: An operating system structuring concept. Com-
munications of the ACM, 17(10):549–577, October 1974.

[17] Charles A. R. Hoare. Communicating sequential processes. Communications of
the ACM, 21(8):666–677, August 1978.

[18] W.H. Kaubisch, R.H. Perrott, and C.A.R. Hoare. Quasi-parallel programming.
Software: Practice and Experience, 6(3):341–356, 1976.

[19] Doug Lea. Concurrent Programming in Java, Design Principles and Patterns.
Addison Wesley, Reading, Massachusetts, 1997.

[20] Doug Lea. A Java fork/join framework. In Proceedings of the ACM 2000 Confer-
ence on Java Grande, pages 36–43, San Francisco, California, USA, 2000.

[21] Doug Lea. Java Specification Request 166: Concurrency utilities, 2003.
www.jcp.org/en/jsr/detail?id=166.

[22] Martin Odersky. Functional nets. In Gert Smolka, editor, ESOP, volume 1782 of
Lecture Notes in Computer Science, pages 1–25. Springer, 2000.

[23] Sun Microsystems, Inc. The producer/consumer example, from Java tutorials,
2003. java.sun.com/docs/books/tutorial/essential/threads.

[24] Eric Tanter, Jacques Noyé, Denis Caromel, and Pierre Cointe. Partial behavioral
reflection: Spatial and temporal selection of reification. In Proceedings of the 18th
International Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA 2003), pages 27–64, Anaheim, CA, USA, October
2003. ACM Press. ACM SIGPLAN Notices, 38(11).

	Sequential Object Monitors
	Denis Caromel Luis Mateu Éric Tanter

