Partial Behavioral Reflection:
Spatial and Temporal Selection of Reification

Eric Tanter
DCC/CWR, University of Chile

OBASCO Project, Ecole des Mines de Nantes — INRIA

OOPSLA 2003, Anaheim, California, USA

Joint work with:
e Jacques Noyé — INRIA/EMN,
e Denis Caromel — INRIA/I3S/U.Nice/IUF,
e Pierre Cointe - EMN

General Context

e Reflection is a powerful framework for dealing with
open systems and separation of concerns (SOC)

e Impact remains somehow marginal because of

— efficiency
— complexity /usability (granularity, scope, composition)

e Main trend AOP addresses these issues by restricting dynamicity
and/or expressiveness

e Alternative way — better understand:
— range of possibilities
— continuum between Reflection and SOC (esp. AOP)

Specific Context

Behavioral Reflection and Runtime Metaobject Protocols

metaobjects reasoning and acting upon reifications
of a program described in terms of operations. [McAffer:Reflection96]

metaobject

Issues of behavioral reflection

e cost of reification
e view on metalink limits usability and increases complexity

e adequate MOP design depends on applications

Issues of behavioral reflection

Cost of Reification

A message send in a method body:

A a=o0.foo(5);

is reified:

Object[] args = new Object[]{ new Integer(5) };
Method m = o.getClass() .getDeclaredMethod("foo");
Object result = metaobject.handle(this, o, m, args);
A a = (A) result;

— avoid useless reification

Issues of behavioral reflection

Classical View on Metalink

e The metalink is entity-based: per object, per class
— leads to tangled metalevel

S
oo b0

e Not feasible/easy to setup a concern-based metalevel decom-

position
of QO
ke,

— flexible metalink (granularity, cardinality)

Issues of behavioral reflection

MOP Design
MOP design is driven by a trade-off between

® expressiveness
o flexibility
e efficiency
Problem is
e appropriate trade-off depends on expected applications

e this trade-off is frozen in existing reflective systems

— adjustable trade-off

Our Contributions

1. performance: selective reification
2. metalink: hooksets
3. MOP design: open MOP support

4. Java incarnation: Reflex

Contribution 1: selective reification

Selective Reification: spatial and temporal selection

Spatial Selection

what to reify?
e entity selection
e operation selection

e intra-operation selection

Temporal Selection

when to reify?

e hook activation subject to a predicate (dynamic conditions)

Contribution 2: hookset model

Hookset Model

e selective reification — precise hooks

e how to group and manage them? — hooksets

metalevel g g

base level

[O : metaobject @8 : activation mnditicn]

@: hooksst » : hook —® : link

Contribution 2: hookset model

Hooksets

® a named set of hooks

e may gather hooks scattered in various objects
— crosscutting metaobjects

® an object may be involved in several hooksets
— better modularity of metalevel

e composable

— SIS

Contribution 2: hookset model

Metalink

e link hookset— metaobject
e described by several attributes

— scope (object, class, hookset)
— activation (condition)
— control (before, after, replace)

Contribution 2: hookset model

Model

e spatial selection: hookset definitions
e temporal selection: activation layer

e similar to Event—Condition—Action model

Definition
Separate definition of hooksets, metaobjects, links
e different concerns

e roles: metaprogrammer, assembler

Contribution 3: open MOP support

Open MOP Support
Metalevel architect defines specific MOPs for specific needs.
Give him the possibility to specify:

® operations

— what is to be considered an operation
— what operations are supported
® metaobjects
— what is the interface of metaobjects
— which data is actually reified, how it is passed

Several MOPs can coexist within a given application.

Contribution 4: Reflex for Java

Reflex: A Java Framework for PBR

e Portable Java library (bytecode transformation [Javassist])
e Java specificities:

— class-based, single inheritance, strongly typed
— classes loaded dynamically, frozen when loaded

e main restrictions to our generic model:

— changes to hooksets do not affect already loaded classes
— activation conditions are always checked

Reflex package = Core Reflex + (optional) Standard MOP

Contribution 4: Reflex for Java

Core Reflex

e defining MOPs
— operation classes / metaobject interfaces / hook installers
e defining hooksets as a set of (composed) primitive hooksets
— a primitive hookset is operation-specific

— characterized by class and operation selectors
— intentional and expressive (not purely syntactic)

e defining links
— hooksets / attributes / metaobject definition

e static and dynamic configuration of reflective needs

Contribution 4: Reflex for Java

Architect API

defineOperationSupport(...)
setDefaultControl(...), setDefaultScope...

Assembler API

defineHookset (.. .)
undefineHookset(...)
getHookset (. ..)
defineLink(...)
undefineLink(...)
getLink(...)

Contribution 4: Reflex for Java

Programmer API

setMetaobject(...)
getMetaobject(...)
setActive(...)
getActive(...)
createObject(...)

e Architect and Assembler APls are accessible statically

e All APIs are accessible dynamically

ReflexAPI.getArchitect ()
ReflexAPI.getAssembler ()
ReflexAPI.getProgrammer ()

Contribution 4: Reflex for Java

Standard MOP

e ready-to-use

® expressive:

— message send/receive, cast, creation, ...

— all available information is reified

Examples (in the paper)

e Observer pattern

— good modularity properties (esp. locality and pluggability)
— pure OO

e Transparent futures

— cast control
— activation
— expressive/customizable selection framework

Conclusion

Main objective: enhance behavioral reflection applicability
e Model of hooksets

— generalizing the classical view on metalinks
— support for crosscutting metaobjects

e Selective reification

— spatial and temporal dimensions
— intentional and expressive description of MOP entry points

e Open MOP support
— specialized MOPs for specific needs

e Reflex for Java

Perspectives: Reflex

Perspectives

Core Reflex

e enhancements, extensions, and optimization

o Reflex as a MOP generator

Applications

e MOP specialization: concurrency model

e distributed systems: context-aware / adaptable applications

Perspectives: Reflection and AOP

Reflection and AOP

e strength of AOP lies in language support,
in particular Aspect-Specific Languages (ASLs)

AOP is problem-oriented
\ Reflection is solution-oriented

e but ASLs complicate aspect interaction & composition
— shift to generic approaches

Perspectives: Reflection and AOP

Partial Behavioral Reflection and generic AOP
(AspectJ terminology)

e pointcuts:

— static — hooksets
— dynamic — link activation

e advice kind — /link control

e advice — metaobject body

Perspectives: Reflection and AOP

On-Going and Future Work

e Integration of Event-based AOP over Reflex
e Multiple language support for configuring Reflex
— Expressive language for defining hooksets and links
— raise the level of abstraction
— ASLs on top of this generic reflective infrastructure

— provide guarantees, lower complexity (hide the meta)

Questions?

