
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Partial Behavioral Reflection:
Spatial and Temporal Selection of Reification

Éric Tanter
DCC/CWR, University of Chile

OBASCO Project, École des Mines de Nantes – INRIA

OOPSLA 2003, Anaheim, California, USA

Joint work with:

• Jacques Noyé – INRIA/EMN,

• Denis Caromel – INRIA/I3S/U.Nice/IUF,

• Pierre Cointe – EMN



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

General Context

• Reflection is a powerful framework for dealing with
open systems and separation of concerns (SOC)

• Impact remains somehow marginal because of

– efficiency

– complexity/usability (granularity, scope, composition)

• Main trend AOP addresses these issues by restricting dynamicity
and/or expressiveness

• Alternative way → better understand:

– range of possibilities

– continuum between Reflection and SOC (esp. AOP)



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Specific Context

Behavioral Reflection and Runtime Metaobject Protocols

metaobjects reasoning and acting upon reifications
of a program described in terms of operations. [McAffer:Reflection96]



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Issues of behavioral reflection

• cost of reification

• view on metalink limits usability and increases complexity

• adequate MOP design depends on applications



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Issues of behavioral reflection

Cost of Reification

A message send in a method body:

A a = o.foo(5);

is reified:

Object[] args = new Object[]{ new Integer(5) };
Method m = o.getClass().getDeclaredMethod("foo");

Object result = metaobject.handle(this, o, m, args);

A a = (A) result;

→ avoid useless reification



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Issues of behavioral reflection

Classical View on Metalink

• The metalink is entity-based: per object, per class
→ leads to tangled metalevel

• Not feasible/easy to setup a concern-based metalevel decom-
position

→ flexible metalink (granularity, cardinality)



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Issues of behavioral reflection

MOP Design

MOP design is driven by a trade-off between

• expressiveness

• flexibility

• efficiency

Problem is

• appropriate trade-off depends on expected applications

• this trade-off is frozen in existing reflective systems

→ adjustable trade-off



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Our Contributions

1. performance: selective reification

2. metalink: hooksets

3. MOP design: open MOP support

4. Java incarnation: Reflex



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Contribution 1: selective reification

Selective Reification: spatial and temporal selection

Spatial Selection

what to reify?

• entity selection

• operation selection

• intra-operation selection

Temporal Selection

when to reify?

• hook activation subject to a predicate (dynamic conditions)



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Contribution 2: hookset model

Hookset Model

• selective reification → precise hooks

• how to group and manage them? → hooksets



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Contribution 2: hookset model

Hooksets

• a named set of hooks

• may gather hooks scattered in various objects

→ crosscutting metaobjects

• an object may be involved in several hooksets

→ better modularity of metalevel

• composable

→ reuse



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Contribution 2: hookset model

Metalink

• link hookset→metaobject

• described by several attributes

– scope (object, class, hookset)

– activation (condition)

– control (before, after, replace)

– . . .



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Contribution 2: hookset model

Model

• spatial selection: hookset definitions

• temporal selection: activation layer

• similar to Event–Condition–Action model

Definition

Separate definition of hooksets, metaobjects, links

• different concerns

• roles: metaprogrammer, assembler



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Contribution 3: open MOP support

Open MOP Support

Metalevel architect defines specific MOPs for specific needs.

Give him the possibility to specify:

• operations

– what is to be considered an operation

– what operations are supported

• metaobjects

– what is the interface of metaobjects

– which data is actually reified, how it is passed

Several MOPs can coexist within a given application.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Contribution 4: Reflex for Java

Reflex: A Java Framework for PBR

• Portable Java library (bytecode transformation [Javassist])

• Java specificities:

– class-based, single inheritance, strongly typed

– classes loaded dynamically, frozen when loaded

• main restrictions to our generic model:

– changes to hooksets do not affect already loaded classes

– activation conditions are always checked

Reflex package = Core Reflex + (optional) Standard MOP



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Contribution 4: Reflex for Java

Core Reflex

• defining MOPs

– operation classes / metaobject interfaces / hook installers

• defining hooksets as a set of (composed) primitive hooksets

– a primitive hookset is operation-specific

– characterized by class and operation selectors
→ intentional and expressive (not purely syntactic)

• defining links

– hooksets / attributes / metaobject definition

• static and dynamic configuration of reflective needs



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Contribution 4: Reflex for Java

Architect API

defineOperationSupport(...)

setDefaultControl(...), setDefaultScope...

Assembler API

defineHookset(...)

undefineHookset(...)

getHookset(...)

defineLink(...)

undefineLink(...)

getLink(...)



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Contribution 4: Reflex for Java

Programmer API

setMetaobject(...)

getMetaobject(...)

setActive(...)

getActive(...)

createObject(...)

• Architect and Assembler APIs are accessible statically

• All APIs are accessible dynamically

ReflexAPI.getArchitect()

ReflexAPI.getAssembler()

ReflexAPI.getProgrammer()



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Contribution 4: Reflex for Java

Standard MOP

• ready-to-use

• expressive:

– message send/receive, cast, creation, . . .

– all available information is reified



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Examples (in the paper)

• Observer pattern

– good modularity properties (esp. locality and pluggability)

– pure OO

• Transparent futures

– cast control

– activation

– expressive/customizable selection framework



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Conclusion

Main objective: enhance behavioral reflection applicability

• Model of hooksets

– generalizing the classical view on metalinks

– support for crosscutting metaobjects

• Selective reification

– spatial and temporal dimensions

– intentional and expressive description of MOP entry points

• Open MOP support

– specialized MOPs for specific needs

• Reflex for Java



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Perspectives: Reflex

Perspectives

Core Reflex

• enhancements, extensions, and optimization

• Reflex as a MOP generator

Applications

• MOP specialization: concurrency model

• distributed systems: context-aware / adaptable applications



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Perspectives: Reflection and AOP

Reflection and AOP

• strength of AOP lies in language support,
in particular Aspect-Specific Languages (ASLs)

AOP is problem-oriented
Reflection is solution-oriented

• but ASLs complicate aspect interaction & composition
→ shift to generic approaches



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Perspectives: Reflection and AOP

Partial Behavioral Reflection and generic AOP
(AspectJ terminology)

• pointcuts:

– static → hooksets

– dynamic → link activation

• advice kind → link control

• advice → metaobject body



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Perspectives: Reflection and AOP

On-Going and Future Work

• Integration of Event-based AOP over Reflex

• Multiple language support for configuring Reflex

– Expressive language for defining hooksets and links

→ raise the level of abstraction

– ASLs on top of this generic reflective infrastructure

→ provide guarantees, lower complexity (hide the meta)



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Questions?


