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General Context

• Reflection is a powerful framework for dealing with
open systems and separation of concerns (SOC)

• Impact remains somehow marginal because of

– efficiency

– complexity/usability (granularity, scope, composition)

• Main trend AOP addresses these issues by restricting dynamicity
and/or expressiveness

• Alternative way → better understand:

– range of possibilities

– continuum between Reflection and SOC (esp. AOP)
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Specific Context

Behavioral Reflection and Runtime Metaobject Protocols

metaobjects reasoning and acting upon reifications
of a program described in terms of operations. [McAffer:Reflection96]



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Issues of behavioral reflection

• cost of reification

• view on metalink limits usability and increases complexity

• adequate MOP design depends on applications
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Issues of behavioral reflection

Cost of Reification

A message send in a method body:

A a = o.foo(5);

is reified:

Object[] args = new Object[]{ new Integer(5) };
Method m = o.getClass().getDeclaredMethod("foo");

Object result = metaobject.handle(this, o, m, args);

A a = (A) result;

→ avoid useless reification
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Issues of behavioral reflection

Classical View on Metalink

• The metalink is entity-based: per object, per class
→ leads to tangled metalevel

• Not feasible/easy to setup a concern-based metalevel decom-
position

→ flexible metalink (granularity, cardinality)
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Issues of behavioral reflection

MOP Design

MOP design is driven by a trade-off between

• expressiveness

• flexibility

• efficiency

Problem is

• appropriate trade-off depends on expected applications

• this trade-off is frozen in existing reflective systems

→ adjustable trade-off
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Our Contributions

1. performance: selective reification

2. metalink: hooksets

3. MOP design: open MOP support

4. Java incarnation: Reflex
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Contribution 1: selective reification

Selective Reification: spatial and temporal selection

Spatial Selection

what to reify?

• entity selection

• operation selection

• intra-operation selection

Temporal Selection

when to reify?

• hook activation subject to a predicate (dynamic conditions)
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Contribution 2: hookset model

Hookset Model

• selective reification → precise hooks

• how to group and manage them? → hooksets
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Contribution 2: hookset model

Hooksets

• a named set of hooks

• may gather hooks scattered in various objects

→ crosscutting metaobjects

• an object may be involved in several hooksets

→ better modularity of metalevel

• composable

→ reuse



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Contribution 2: hookset model

Metalink

• link hookset→metaobject

• described by several attributes

– scope (object, class, hookset)

– activation (condition)

– control (before, after, replace)

– . . .
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Contribution 2: hookset model

Model

• spatial selection: hookset definitions

• temporal selection: activation layer

• similar to Event–Condition–Action model

Definition

Separate definition of hooksets, metaobjects, links

• different concerns

• roles: metaprogrammer, assembler



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Contribution 3: open MOP support

Open MOP Support

Metalevel architect defines specific MOPs for specific needs.

Give him the possibility to specify:

• operations

– what is to be considered an operation

– what operations are supported

• metaobjects

– what is the interface of metaobjects

– which data is actually reified, how it is passed

Several MOPs can coexist within a given application.
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Contribution 4: Reflex for Java

Reflex: A Java Framework for PBR

• Portable Java library (bytecode transformation [Javassist])

• Java specificities:

– class-based, single inheritance, strongly typed

– classes loaded dynamically, frozen when loaded

• main restrictions to our generic model:

– changes to hooksets do not affect already loaded classes

– activation conditions are always checked

Reflex package = Core Reflex + (optional) Standard MOP



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Contribution 4: Reflex for Java

Core Reflex

• defining MOPs

– operation classes / metaobject interfaces / hook installers

• defining hooksets as a set of (composed) primitive hooksets

– a primitive hookset is operation-specific

– characterized by class and operation selectors
→ intentional and expressive (not purely syntactic)

• defining links

– hooksets / attributes / metaobject definition

• static and dynamic configuration of reflective needs
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Contribution 4: Reflex for Java

Architect API

defineOperationSupport(...)

setDefaultControl(...), setDefaultScope...

Assembler API

defineHookset(...)

undefineHookset(...)

getHookset(...)

defineLink(...)

undefineLink(...)

getLink(...)
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Contribution 4: Reflex for Java

Programmer API

setMetaobject(...)

getMetaobject(...)

setActive(...)

getActive(...)

createObject(...)

• Architect and Assembler APIs are accessible statically

• All APIs are accessible dynamically

ReflexAPI.getArchitect()

ReflexAPI.getAssembler()

ReflexAPI.getProgrammer()



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Contribution 4: Reflex for Java

Standard MOP

• ready-to-use

• expressive:

– message send/receive, cast, creation, . . .

– all available information is reified
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Examples (in the paper)

• Observer pattern

– good modularity properties (esp. locality and pluggability)

– pure OO

• Transparent futures

– cast control

– activation

– expressive/customizable selection framework
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Conclusion

Main objective: enhance behavioral reflection applicability

• Model of hooksets

– generalizing the classical view on metalinks

– support for crosscutting metaobjects

• Selective reification

– spatial and temporal dimensions

– intentional and expressive description of MOP entry points

• Open MOP support

– specialized MOPs for specific needs

• Reflex for Java
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Perspectives: Reflex

Perspectives

Core Reflex

• enhancements, extensions, and optimization

• Reflex as a MOP generator

Applications

• MOP specialization: concurrency model

• distributed systems: context-aware / adaptable applications
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Perspectives: Reflection and AOP

Reflection and AOP

• strength of AOP lies in language support,
in particular Aspect-Specific Languages (ASLs)

AOP is problem-oriented
Reflection is solution-oriented

• but ASLs complicate aspect interaction & composition
→ shift to generic approaches
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Perspectives: Reflection and AOP

Partial Behavioral Reflection and generic AOP
(AspectJ terminology)

• pointcuts:

– static → hooksets

– dynamic → link activation

• advice kind → link control

• advice → metaobject body
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Perspectives: Reflection and AOP

On-Going and Future Work

• Integration of Event-based AOP over Reflex

• Multiple language support for configuring Reflex

– Expressive language for defining hooksets and links

→ raise the level of abstraction

– ASLs on top of this generic reflective infrastructure

→ provide guarantees, lower complexity (hide the meta)
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Questions?


