
Partial Behavioral Reflection:
Spatial and Temporal Selection of Reification

Éric Tanter1,2 Jacques Noyé3,2 Denis Caromel4 Pierre Cointe2

1University of Chile, DCC/CWR
Avenida Blanco Encalada 2120, Santiago, Chile

2
OBASCO project, École des Mines de Nantes – INRIA

4, rue Alfred Kastler, Nantes, France
3 INRIA

Campus Universitaire de Beaulieu, Rennes, France
4

OASIS project, Université de Nice – CNRS – INRIA – IUF
2004, Rt. des Lucioles, Sophia Antipolis, France

{Eric.Tanter,Jacques.Noye,Pierre.Cointe}@emn.fr – Denis.Caromel@inria.fr

ABSTRACT
Behavioral reflection is a powerful approach for adapting the
behavior of running applications. In this paper we present
and motivate partial behavioral reflection, an approach to
more efficient and flexible behavioral reflection. We expose
the spatial and temporal dimensions of such reflection, and
propose a model of partial behavioral reflection based on the
notion of hooksets. In the context of Java, we describe a re-
flective architecture offering appropriate interfaces for static
and dynamic configuration of partial behavioral reflection at
various levels, as well as Reflex, an open reflective extension
for Java implementing this architecture. Reflex is the first
extension that fully supports partial behavioral reflection in
a portable manner, and that seamlessly integrates load-time
and runtime behavioral reflection. The paper shows prelim-
inary benchmarks and examples supporting the approach.
The examples, dealing with the observer pattern and asyn-
chronous communication via transparent futures, also show
the interest of partial behavioral reflection as a tool for open
dynamic Aspect-Oriented Programming.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Pro-
gramming

General Terms
Languages, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’03, October 26–30, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-712-5/03/0010 ...$5.00.

Keywords
Aspect-oriented programming, open systems, reflection

1. INTRODUCTION
Reflection in programming languages is a paradigm that

has emerged from the studies of Brian Smith around the
foundations of consciousness and self-reference, as well as
his work on the application of these concepts to computer
science, down to the implementation of a reflective Lisp di-
alect [55]. These ideas were then applied to various pro-
gramming paradigms, including object-oriented program-
ming [40] and had a major impact on languages such as
CLOS [32] and Smalltalk [53].
The basic property of reflection is that it supports meta-

computations, that is, computations about computations.
This is done by separating metacomputations and base com-
putations into two different levels: the metalevel and the
base level. These levels are causally connected [39]. This
means that, on the one hand, a reflective program running
at the base level has access to its representation at the meta-
level, and that, on the other hand, a modification of this
representation will affect further base computations. De-
pending on which part of the representation is accessed, the
part describing the (static) structure of the program, or the
part describing its (dynamic) behavior, reflection is said to
be structural or behavioral. Another distinction is made be-
tween introspection, when the representation is simply read,
and intercession, when the representation is modified.
In this paper, we shall focus on behavioral reflection. The

main strength of behavioral reflection is to provide the means
to achieve a clean separation of concerns [16, 48], including
dynamic concerns, and hence to offer a modular support
for adaptation in software systems [3, 52]. These strengths
have already been exercised in a wide range of domains, in-
cluding distribution [6, 36, 42], mobile objects [3, 37, 59],
concurrency [41], and fault-tolerance [22].
The applicability of behavioral reflection is, however,

limited by the lack of a widely accepted appropriate in-
frastructure on which to implement reflective applications.

Smalltalk has been considered an interesting basis for build-
ing such an infrastructure. It includes quite a number of
reflective facilities, it is flexible, and it is implemented in
such a way that adding new reflective facilities can be done
with very little overhead [20, 23, 53]. However, bringing be-
havioral reflection into a language such as Java raises new
challenges. Indeed, Java only provides very limited reflec-
tive facilities and, in order to reduce runtime errors and
to take into account security requirements, is much more
static in nature. As a result, the overhead due to the addi-
tional layer necessary to get behavioral reflection increases
significantly. Selecting where and when to apply reflection
becomes mandatory. This is called partial reflection [29].
Partial reflection makes it possible to balance the effects of
compilation, which embeds a set of assumptions (a special-
ization) and reflection, which retracts some of these assump-
tions (a generalization).
As soon as reflection is not native, using such an approach

is natural and, therefore, many reflective language exten-
sions do include some kind of partial reflection, where the
user can select which entities are reflective (for Smalltalk,
see [23, 20, 54], for C++, see [26, 9], for Java, see [11, 60,
51, 56, 52]).
This paper reports on our experiment to provide partial

behavioral reflection in a more systematic way. This ex-
periment was performed in the context of Reflex, an open
reflective extension of Java [56].
The idea of such an open extension was born from the ob-

servation that each new reflective extension of Java would
provide a particular, monolithic, infrastructure reflecting
the commitment of the designer to particular trade-offs, of-
ten linked to target application domains, between efficiency,
portability, expressiveness and flexibility. In order not to
freeze these trade-offs (although we did not sacrifice porta-
bility, a major benefit of Java, for efficiency), our suggestion
was to introduce a new role in the whole process of devel-
oping a reflective application, the metalevel architect. This
architect, using the framework provided by Reflex, as well
as a number of existing building blocks, is responsible for
specifying the structure of the metalevel, depending on the
requirements of the target application domain. In a stan-
dard, closed, extension of Java, the role of the architect is
simply played by the designer of the extension. Then, the
process proceeds as usual: the metaprogrammer implements
the building blocks of the metalevel as metaobject classes
obeying the structure defined by the architect, the base pro-
grammer develops the base application, and the assembler
links both levels by implementing the causal connection.
This work includes the following contributions:

• We present a comprehensive approach to partial be-
havioral reflection, highlighting its spatial and tem-
poral dimensions, and we propose the model of hook-
sets for behavioral reflection. This model consists of
grouping execution points into composable sets, possi-
bly crosscutting the object decomposition, and attach-
ing some metabehavior to these sets through a highly
configurable link. The related ideas and techniques
are applicable to a wide range of object-oriented lan-
guages.

• We describe, in the context of Java, an open architec-
ture supporting this approach and making it possible
to combine static and dynamic configuration of reflec-

tion. In the context of Reflex, this configuration work
is shared between the metalevel architect and the as-
sembler and controlled by the metalevel architect.

• The architecture has been retrofitted into Reflex. Spa-
tial and temporal selection of reflection can be done by
combining static and dynamic configuration. Prelimi-
nary benchmarks show the benefit of the approach.

• Finally, we illustrate, through examples, how these
ideas facilitate the definition of crosscutting meta-
objects, clarifying some links between (partial) re-
flection and Aspect-Oriented Programming (AOP), a
paradigm for modularizing crosscutting concerns [34,
21].

The rest of this paper is structured as follows: in Section
2, we introduce partial behavioral reflection in a general set-
ting. Section 3 presents Reflex and preliminary benchmarks.
Sections 4 and 5 illustrate how Reflex can be used to achieve
separation of concerns on concrete problems, Section 6 dis-
cusses related work, and Section 7 concludes with future
work.

2. PARTIAL BEHAVIORAL REFLECTION

2.1 Basic principles and terminology
In [43], J. McAffer distinguishes between two approaches

to reflection, which consist of either starting from the base-
level language elements (e.g., classes), or from the basic op-
erations (message send and receive, field access, object cre-
ation, etc.) defining the computational behavior of an ob-
ject. He refers to these two approaches as a top-down and
a bottom-up approach, respectively. Actually, one could al-
ternatively refer to them as a structural and a behavioral
approach. Indeed, J. McAffer justifies the use of the second
approach in a context where he is interested in describing a
wide range of object behavior models. As we are interested
in behavioral reflection, this is the starting point of our pro-
posal. The metalevel is structured in terms of metaobjects
reasoning and acting upon reifications of the base-level com-
putation described in terms of operations.
In the following, the term operation occurrence refers to

a particular instance of an operation, further qualified as
static or dynamic, depending on whether the term relates to
program text or execution, respectively. Caller-side opera-
tions occur within method bodies (e.g., message send), and
callee-side operations at the “surface” of an object (e.g.,
message receive). Working with Java, new operations may
be introduced, such as casts.
A reflective object is an object in which some operations

are reified and controlled by a metaobject. The link between
a base object and a metaobject is called a metalink, also
referred to as a causal connection link. When an instance of
a class is reflective, the class is said to be reflective.

2.2 Spatial and temporal selection
Partial behavioral reflection is an approach to more ef-

ficient and applicable behavioral reflection that relies on
avoiding useless reifications. To this end, high flexibility
in specifying reflective needs is required. Partial behavioral
reflection addresses the issue of flexibility vs. efficiency by
limiting to the greatest extent possible the number of con-
trol flow shifts occurring at runtime. Indeed, shifting to

(a) full reflection (b) partial reflection
time time

ML: meta level BL: base level : control flow

BL

ML

BL

ML

Figure 1: “Reflectogram” of a reflective application: illustration of the evolution of the control flow in a
reflective application.

the metalevel is powerful but costly. Such a shift consists
of first reifying the operation occurrence, and then delegat-
ing (at least part of) its interpretation to the metaobject.
In the following, a hook is the base-level piece of code re-
sponsible for performing a reification and giving control to
the associated metaobject. Reification is a significant cause
for performance degradation. For instance, in the case of a
method invocation, reification usually implies wrapping all
the arguments of the invocation into an array of objects and
retrieving a reference to a method object. This data may
further be encapsulated into a unique method call object.
From an efficiency viewpoint, it is therefore crucial to limit
the number of shifts and pay the price of reification only
when it is effectively needed.
Fig. 1 represents the “reflectogram” of a reflective appli-

cation. A reflectogram illustrates the control flow between
the base level and the metalevel during execution. Using full
reflection (Fig. 1a), any operation at the base level is reified
and therefore many –possibly useless– shifts occur. This
does not occur with partial reflection (Fig. 1b). The exe-
cution of the application is otherwise unchanged, and hence
does not suffer any performance overhead.
We separate two dimensions of the careful selection of

reification: the spatial dimension, and the temporal one.

2.2.1 Spatial selection
Spatial selection consists of selecting what will be reified

in an application. Spatial selection can be done statically or
dynamically. We distinguish between three different levels
of selection:

• Entity selection refers to the selection of the reflec-
tive classes and objects. For instance, we may want
to specify that classes A and B are fully reflective (all
their instances are reflective), and instance c of class
C is reflective (class C is partially reflective). Other
classes and objects are left intact.

• Operation selection refers to the possibility of select-
ing which operations are reified for a given reflective
entity (i.e., a class or an object). For instance, we may
want to reify message receive and field access for class
A, and only message send for class B.

• Intra-operation selection refers to the possibility of
performing fine-grained selection with respect to a par-
ticular operation. This selection may be based on char-
acteristics of specific occurrences; for instance, we may
want to limit message receive reification to message

foo in class A. For caller-side operations, the selection
can also be based on the method/constructor where
such an occurrence is found; for instance, we may want
to reify only the message sending of foo (to instances
of class A) that occurs in all public methods of B.

Intra-operation selection is a crucial property of our ap-
proach to partial behavioral reflection. Indeed, it is the
finest grain of control over the reification process, making it
possible to ignore most of irrelevant operation occurrences
during transformation, so that metaobjects do not have to
do such selection at runtime.

2.2.2 Temporal selection
Temporal selection consists of selecting when reifications

are effectively active. It optimizes the overall performance
of a system making use of reflection a step further. During
the lifetime of an object, the reflective needs may change:
a reification may have to be turned off so that metalevel
behavior does not apply anymore, or conversely, some ex-
ternal condition may require activating a reification. Ob-
viously, for temporal selection to be worthwhile, the cost
of a deactivated reification should be less than that of an
activated reification with an empty metaobject. Our bench-
marks (Sect. 3.4.5) demonstrate this fact in the context of
Java.

2.2.3 A Model of Partial Behavioral Reflection
Spatial and temporal selection consist of precisely select-

ing the execution points that need to be reified, in order to
apply metalevel behavior when needed. The issue is then
how to manage such hooks, in order to define how they are
linked to the metalevel. Traditionally, behavioral systems
adopt a metalink which gathers hooks on a per class or per
object basis. However, we feel that such a classical view
on metalinks is limited. For the sake of generality, we pro-
pose a model of partial behavioral reflection based on the
notion of hooksets. Hooksets may gather execution points
scattered in various objects. This has the nice property of
making it possible to apply a metaobject modularly imple-
menting a concern that crosscuts the object decomposition.
Also, a given object may be involved in several hooksets.
This allows for a better modularity of the metalevel, since
metaobjects may be assigned a single responsibility. Since
the sets of hooks are not restrained to a particular object or
class, they need to be named in order to be manipulated.
Hooksets can be composed using the standard set oper-

ators: union, difference and intersection. This represents a
powerful reuse mechanism for hookset definitions.

In our model, the metalink, to which we will refer simply
as link, can be described by several attributes:

• the scope of the link determines whether, for the con-
sidered hookset, there is one single metaobject control-
ling each and every hook (hookset scope), or if each
class involved has a particular metaobject handling
hooks occurring within its instances (class scope), or if
each object has a dedicated metaobject (object scope).

• the activation of the link is a dynamically-evaluated
activation condition that can be specified to achieve
expressive temporal selection. The activation condi-
tion may be set at various levels (hookset, class, ob-
ject).

• the control of the link determines whether the meta-
object is given control before, after, before and after an
operation occurrence or if it can replace it.

• the mintypes attribute makes it possible to impose
type restrictions on the metaobjects that are linked to
the hookset.

• the updatable attribute makes it possible to specify
whether the link may be dynamically modified (i.e.
the hookset is linked to another metaobject).

In this model, spatial selection is done by defining hook-
sets, while temporal selection is done through the activa-
tion condition of the link. This flexible model is similar to
the Event-Condition-Action model used for example in ac-
tive databases [17]. The event layer is realized by hooksets
(hooks are indeed event sources), the condition layer is real-
ized by the activation condition attached to the link, while
actions are implemented by metaobjects (Fig. 2).

: hookset : hook : link

: metaobject : activation condition

metalevel

base level

Figure 2: The model of hooksets.

We believe it is important to allow for the separate defini-
tion of hooksets, metaobjects, and links in order to maximize
reuse of both hookset definitions and metaobjects, and to de-
couple the work of the assembler from that of the metapro-
grammer.

2.3 Static and dynamic configuration
As we can see, many aspects of behavioral reflection can

be configured. Some of these can be configured statically,
and others need to be configured dynamically. For instance,
the assembler may know that a given reification needs to be
activated all the time. On the contrary, a metaprogrammer
may want to activate some reification on runtime events.

As a consequence, both a static configuration API and a
runtime API, for dynamic configuration, are needed. The
resulting application can then be configured by a combina-
tion of static and dynamic configuration.

3. REFLEX: PARTIAL BEHAVIORAL RE-
FLECTION IN JAVA

Reflex is an open behavioral reflective extension of Java
supporting partial behavioral reflection, based on the model
of hooksets (Sect. 2). The architecture presented here is
dedicated to Java, but the concepts and underlying ideas of
this architecture are language-independent. Reflex is said
to be open because, as opposed to other reflective exten-
sions, it does not impose any specific MetaObject Protocol
(MOP) [32], thanks to a layered architecture. Indeed, Re-
flex allows metalevel architects to define their own MOP,
based on the framework provided by Core Reflex, possibly
reusing parts of a standard MOP library. This library, built
on top of the Core, turns Java into a ready-to-use behavioral
reflective system.
In this section, we first introduce the core architecture of

Reflex, and then present a standard MOP built on top of it.
Based on these elements, we present the interfaces provided
by Core Reflex for configuration (both static and dynamic).
Finally, we describe some aspects of the implementation of
Reflex, and discuss the results of our micro-benchmarks.

3.1 Core Reflex architecture
As motivated at the beginning of the paper, we introduced

the role of metalevel architect in the whole process of devel-
oping a reflective application. This architect is responsible
for defining a specific MOP reflecting a chosen compromise
between efficiency, expressiveness and flexibility. This defi-
nition is based on Core Reflex.
The overall execution-time picture assumed by Core Re-

flex is the following (Fig. 3): when a class is about to be
loaded, it goes through a selection process whereby Reflex
determines whether some hooksets should be associated to
the class. If this is the case, the class is transformed into a
reflective class before being loaded. Otherwise, the class is
loaded as usual.

API

Selection Transformation

Load time

loading class

reflective classnormal class

Runtime

no

yes

Figure 3: Overview of Core Reflex.

Load-time transformation is discussed in the following sec-
tion. The selection process is controlled by the assembler: it
is driven by defining hooksets, whose definition rely on spa-
tial selection entities (Sect. 3.1.3), and links (Sect. 3.1.5).
Temporal selection (Sect. 3.1.4) is initialized statically. A
runtime API (Sect. 3.3.2) is provided to the metaprogram-
mer in order to dynamically control link definition and ac-
tivation.

The transformation process is controlled by the meta-
architect: the architect defines the available MOP. Defin-
ing a MOP basically consists of specifying which operations
are reifiable (e.g., message sending), what the interfaces of
metaobjects are, and providing code transformation entities
able to insert hooks (Sect. 3.1.2). Several MOPs can coexist
in a given reflective application.

3.1.1 Load-time bytecode transformation
Because of our concern with the concrete applicability of

behavioral reflection, the concretization of our architecture
takes the form of a portable Java library. Reflex relies on
load-time bytecode transformation, in order to be applica-
ble to binary components and in settings where all classes
are not known until they are actually loaded (e.g., open dis-
tributed systems)1.
To make classes reflective, Reflex uses the Javassist frame-

work for load-time structural reflection [10]. Javassist relies
on a specific class loader [38]. When requested by the virtual
machine, the loader forwards the request to a class pool, in
charge of locating class definitions. When a class is located
and about to be loaded, the class pool can notify a transla-
tor which can then modify the class. To this end, the trans-
lator can obtain reification of classes as CtClass objects.
CtClass offers the same introspection capabilities as those
of the standard reflection API of Java, plus intercession ca-
pabilities (e.g., adding/modifying a member, changing the
superclass, altering method bodies. . .).
Reflex is connected to Javassist through a particular trans-

lator, called a class builder (see Sect. 3.4). As a consequence,
classes in Reflex are represented at load time as CtClass ob-
jects.

3.1.2 Defining MOPs
Reflex is an open platform on top of which specific MOPs

can be defined. In itself, Reflex does not support any lan-
guage operation nor does it impose any specific interfaces
for metaobjects.
The OperationSupport class is used to define the support

for an operation in a MOP. An instance of this class encap-
sulates: a static operation class, a convenience name used to
refer to this operation, and a hook installer.
Operations. The first step when defining a MOP con-
sists of specifying the operations that are supported. For
instance, a basic MOP might only offer support for the mes-
sage receive operation, while a well-furnished MOP might
support almost all operations available in the language.
Operations are represented at load time by static opera-

tion classes. Core Reflex only provides a marker interface
for such classes, StaticOperation. An instance of a static
operation class represents the static occurrence of an op-
eration in a base-level class definition. Hence, by defining
operation classes, the metalevel architect controls the exact
contents and interface of these load-time representations.
Similarly, so-called dynamic operation classes represent

language operations during execution. Instances of such
classes are runtime objects representing an operation oc-
currence during execution.
Metaobjects. The second step consists of specifying the
interface of metaobjects, that is to say, what data is reified

1Load-time transformations can also be performed at com-
pile time in order to avoid load-time overhead, provided that
classes that need to be processed are available.

and how this data will be passed to metaobjects at runtime
upon occurrence of language operations. Within the base
program, much information is potentially reifiable. This in-
formation is not necessarily all of interest to the metalevel
architect. For instance, a general-purpose MOP might pro-
vide full reifications (including all reifiable data), while a
more specific MOP might only provide a simple string de-
scription of the operation occurrence.
There are three alternatives for a MOP to pass reified data

to metaobjects during execution. Reified data can be passed
as a set of arguments, as a single array, or encapsulated
within a dynamic operation instance. The decision is driven
by a trade-off between abstraction and efficiency.
All these decisions shape the specific interfaces meta-

objects are expected to implement. Core Reflex only
provides marker interfaces for distinguishing metaobjects:
Metaobject, and its subinterfaces, Before, After, Replace.
Section 3.2.4 presents the hierarchy of metaobject interfaces
of the standard MOP.
Hook installers. Hook installers are bytecode transforma-
tion entities that have basically two responsibilities: parsing
a class definition to find occurrences of a given static oper-
ation class, and generating the appropriate hooks to install,
if any. This includes generating the code that will build the
reification, and the code that will do the delegation to the
metaobject, through the appropriate interface. Reflex pro-
vides the Installer interface for such entities. They can
be implemented using tools such as Javassist, Jinline [58] or
BCEL [13].

3.1.3 Spatial selection
In Reflex, spatial selection is done at load time. Each

time a class is loaded in a JVM, Reflex determines which
hooksets the class is involved in by applying class selectors,
and then which hooks should be inserted in the class byte-
code by applying operation selectors. Hooksets are indeed
defined intentionally, in the sense that the set of points is
deduced from the application of predicates (embodied in the
selectors).
A class selector is responsible for selecting classes (entity

selection). It implements the ClassSelector interface:

public interface ClassSelector {

public boolean accept(CtClass aClass);

}

The method accept returns true if the class aClass should
be selected. Having a reification of the class (as a CtClass)
allows the class selector to select a class on any intro-
spectable characteristics (e.g., the class hierarchy, the pa-
rameter types of its public methods, etc.), as illustrated in
Section 5.
An operation selector is responsible for selecting oper-

ation occurrences (intra-operation selection). It implements
the OperationSelector interface:

public interface OperationSelector {

public boolean accept(StaticOperation anOp,

CtClass aClass);

}

An operation selector can select operation occurrences
based on the characteristics of the static operation instance,
and on the class to which the selector is applied. For caller-
side operations, the operation selector can also limit the

scope of reification by selecting operation occurrences based
on the specific method/constructor in which they appear.
The use of selectors can be heavyweight if one needs to

code specific selectors for each particular case. To facilitate
specification of spatial selection, some general-purpose se-
lectors are provided with Reflex, such as the NameCS class
selector used in the forthcoming examples, which accepts
any class whose name was given as a constructor parame-
ter. Providing advanced selectors, able to interpret more
expressive parameters (e.g., regular expressions) would be
of great value.

3.1.4 Temporal selection
Since spatial selection is done statically based on the pro-

gram code, we need to provide control for activation at the
object level, in order to support reification on a per-instance
basis. Furthermore, to be more expressive, activation con-
ditions should possibly be user-defined. Hence, an activa-
tion condition may either be a constant, ON or OFF, or a
user-defined condition. Such a condition is an object imple-
menting an interface, Active, which declares an evaluate()

method that receives as argument the current object:

public interface Active {

public boolean evaluate(Object o);

}

In addition to providing fine-grained control on activa-
tion, it is very convenient to be able to control activation
more globally, that is to say, at the class level, and at the
hookset level. In order to provide such functionalities in our
API, we have two implementation alternatives. The first
one consists of keeping only an activation condition in each
object, but then to control activation globally we need to
be able to retrieve each class involved in a hookset and each
instance of a given class. This obviously has a huge over-
head in terms of memory usage. Hence, we adopt a solution
based on an activation hierarchy, in which the hookset level
is given priority over the class level, which in turn has prior-
ity over the object level. A new condition, SUB, is provided
to indicate that a given level delegates the responsibility of
determining activation. SUB is not meant to be evaluated,
and is prohibited at the object level, since it does not make
sense.
As a result, a hook belonging to hookset hs in a given

object o that is an instance of class C will be active if and
only if:

• the activation condition of hs evaluates to true, or

• the activation condition of hs is set to SUB and the
activation condition of C evaluates to true, or

• both the activation condition of hs and that of C are
set to SUB and the activation condition of o evaluates
to true.

3.1.5 Defining hooksets and links
Hooksets. We distinguish between primitive and composite
hooksets (Fig. 4). Every hookset is identified by a unique
hookset identifier. A primitive hookset is an operation-
specific set defined by a triple [operation, class selector, op-
eration selector], instance of PrimitiveHookset (PH). Prim-
itive hooksets that relate to the same operation can be com-
posed using the standard set operators (Sect. 2.2.3).

+ hooksetID: String

Hookset

CompositeHookset

PrimitiveHookset*

+ operation: Class
+ clsSel: ClassSelector
+ opSel: OperationSelector

getUnion(PH, PH): PH
getIntersection(PH, PH): PH
getDifference(PH, PH): PH

Figure 4: UML class diagram of hookset definitions.

A composite hookset is the union of several hooksets, pos-
sibly related to different operations. If an execution point is
affected by several top-level hooksets, there is a composition
issue. We are working on a convenient way to specify how
Reflex should deal with this issue.
Links. Links are described at load time by Link objects,
and make it possible to specify and characterize the associa-
tion between hooksets and metaobjects. A link associates a
hookset with a metaobject definition and a set of attributes
(Fig. 5).
Metaobject definition. In Reflex, metaobjects are cre-
ated in a lazy manner. This has the advantage of avoid-
ing unnecessary creations (e.g., if a link is never activated),
while allowing metaobjects to control the execution of con-
structors. A MetaobjectDefinition object specifies how
the metaobject should be obtained. There are basically two
means of obtaining metaobjects: either by instantiating a
metaobject class, or by using a metaobject setter (Fig. 5).
In both cases, custom parameters can be specified. They
will be passed as an array of strings. A metaobject setter is
a kind of factory responsible for initializing the metaobject.
A metaobject setter must define the following static

method:

void set(Object target, String hsID, String[] args)

The set method is called whenever the control flow
reaches a hook whose metaobject has not yet been set (or
has been reset). If the link is of scope object, the target

argument is the instance to which the metaobject should
be linked. If the link is of scope class, then target is the
concerned class object, and if the link is of scope hookset,
target is simply null. It is of course still possible to create
and set the metaobject explicitly without using a metaobject
setter.
The set method can not only set the metaobject for the

object which is passed as parameter, but also, for instance,
link this metaobject to other objects, making it a very con-
venient way to set up an instance-based crosscutting meta-
object.
Attributes. The various link attributes presented in Sec-
tion 2.2.3 are available in Reflex. All link attributes are
encapsulated within an Attributes object (Fig. 5). Con-
trol, scope, and updatability are represented by enumera-
tion classes. Mintypes is simply specified as a list of type
names. When dealing with composite hooksets, the control
attribute may be set to map a particular control value to
each composed hookset individually.
Activation support is optional in Reflex. If the activation

attribute is DISABLED, then the link is not activatable, i.e.
it is always active. If activation support is needed, then it is

Attributes

+ name: String
+ args: String[]

Hookset

BEFORE: Control
AFTER: Control
BEFORE_AFTER: Control
REPLACE: Control

Control

1

OBJECT: Scope
CLASS: Scope
HOOKSET: Scope

Scope

1

TRUE: Updatable
FALSE: Updatable

Updatable

1

MinTypes

+ types: List

1 1

DISABLED: Activation
ENABLED_ON: Activation
ENABLED_OFF: Activation

Activation

+ conditionClass: String

1 1

MetaobjectDefinition

MOSetterDefinition

MOClassDefinition

1
Link

Figure 5: UML class diagram of link definitions.

necessary to specify what activation condition is associated
to the link when the application starts:

link.setActivation(new Activation("MyCond"));

The hookset- and class-level conditions will be set to SUB

and the object-level condition will be set to an instance of
the class MyCond (which implements Active). For conve-
nience, ENABLED ON and ENABLED OFF are provided. They
correspond respectively to Active.ON and Active.OFF as
initial activation conditions.

3.2 Standard MOP
This section describes the standard MOP that is provided

by default with Reflex. This MOP is designed to be general-
purpose and expressive.

3.2.1 Static operations
Operations are represented by a hierarchy of static

operation classes, which are subclasses of the abstract
StdStaticOperation class (Fig. 6). Each static operation
class defines accessors to the various data that can be ex-
tracted from the code at load time. For instance, MsgSend,
which represents the message send operation, defines acces-
sors to the receiver type, the name of the method, the ar-
gument types, and so on. Caller-side operation classes have
a getWhere method to retrieve the method or constructor
where the operation occurrence was found, making it possi-
ble for operation selectors to refine their selection.

3.2.2 Dynamic operations
Dynamic operations are represented by a hierarchy of dy-

namic operation classes (Fig. 7). A dynamic operation ob-
ject encapsulates all the runtime information available de-
scribing the characteristics of a corresponding operation oc-
currence.

3.2.3 Static / dynamic operation dependencies
In the standard MOP, when a shift to the metalevel oc-

curs, the target metaobject receives as argument the identi-
fier of the hookset whose member triggered the shift, along
with an array of objects referencing the various runtime val-
ues of interest. Access to the elements of this array is eased
by the fact that a static operation class defines a set of con-
stants (final class variables) that correspond to the indices
of the information in the array (Fig. 6).

An instance of a dynamic operation class is an object rep-
resentation of the array which is passed to the metaobject
at runtime. Therefore, a dynamic operation class depends
on its associated static operation class in the sense that it
should define information that maps the information de-
clared in the static operation class. To convert an array into
a dynamic operation object, dynamic operation classes im-
plement a static method convert(Object[]), which meta-
objects can use as follows:

class MyMetaobject implements ReplaceCast {

Object replaceCast(String hsID,

Object[] data){

DCast cast = DCast.convert(data);

make use of the DCast object
} }

This scheme is provided since manipulating dynamic op-
eration instances is convenient but costly. We obtain both
flexibility and abstraction (it is easy to get a dynamic oper-
ation as an object), and efficiency (one does not pay for it
if direct access to the array is enough).

3.2.4 Metaobjects
Metaobjects are instances of classes implementing one of

the marker interfaces, Before, After, and Replace, which
serve as super interfaces to operation-specific interfaces
(Fig. 8).
The method signatures of these interfaces look as follows:

void beforeOP(String hsID, Object[] data)

void afterOP(String hsID, Object[] data, Object r)

Object replaceOP(String hsID, Object[] data)

Only replace metaobjects can change arguments and/or the
return value of an operation, while the other types of meta-
objects are only able to provoke side effects. Actually, only
replaceOP methods have return type Object, while the
others have return type void. In the case of after meta-
objects, a reference to the return value is passed as an extra
parameter.
Since a metaobject class can be multi-operation, it can

implement any combination of interfaces. Indeed, dynamic
operations are very much like events, and metaobjects like
listeners of various kinds of such events.

RECEIVER_CLASS
ARGUMENTS

getReceiverClass()
getParameterTypes()
getExceptionTypes()

Instantiation

METHOD
ARGUMENTS
TARGET_OBJECT

getReceiverClass()
getName()
getRetunType()
getParameterTypes()
getModifiers()

MsgSend

TARGET_TYPE
TARGET_OBJECT

getTargetType()

Cast Serialize

METHOD
ARGUMENTS

getDeclaringClass()
getName()
getReturnType()
getParameterTypes()
getExceptionTypes()
getModifiers()

MsgReceive

CallerSideOperation CalleeSideOperation

StdStaticOperation

getWhere()

THIS_OBJECT

StaticOperation

Figure 6: Part of the hierarchy of static operation classes (standard MOP).

DynamicOperation

getThisObject()

getTargetType()
getTargetObject()

DCast

getReceiverClass()
getArguments()

DInstantiation

getMethod()
getArguments()
getTargetObject()

DMsgSend DSerialize

getMethod()
getArguments()

DMsgReceive

Figure 7: Part of the hierarchy of dynamic operation classes (standard MOP).

Metaobject

Before

BeforeMsgSend

beforeMsgSend()

BeforeCast

beforeCast()

After

AfterCast

afterCast()

AfterMsgSend

afterMsgSend()

Replace

ReplaceMsgSend

replaceMsgSend()

ReplaceCast

replaceCast()

Figure 8: Part of the hierarchy of metaobject interfaces (standard MOP).

3.3 Configuration
Reflex explicitly supports the roles of metalevel architect

and assembler. Hence, Reflex provides a dedicated config-
uration interface for both the meta-architect and the as-
sembler (Fig. 9). Access to these interfaces can be done in
various ways, statically and dynamically, as explained later
in this section.

defineOperationSupport(OperationSupport)
getSupportedOperations(): List

setDefaultAttributes(Attributes)
getDefaultAttributes(): Attributes

setEnforcedAttributes(Attributes)
getEnforcedAttributes(): Attributes

ArchitectConfig

defineHookset(Hookset)
getHooksets(): List

defineLink(Link)
getLinks(): List

AssemblerConfig

Figure 9: Interfaces for configuration.

In addition to defining supported operations, the meta-
level architect can provide default values for the various at-
tributes. He can also restrict the permitted values for the
various attributes. For instance, by setting the mintypes
attribute, the metalevel architect can enforce the use of a
particular metaobject framework. This can be useful to
impose a security framework [7], or to provide a common
metaobject composition framework [44, 45, 56].
Configuration constraints (e.g., uniqueness of hookset

identifiers, respect of enforced attribute values) are checked
when new definitions are made; thus these methods throw
exceptions in case of violations.

3.3.1 Static configuration
As of now, Reflex supports two forms of static configura-

tion: using configuration classes, and using XML configura-
tion files. Creating a convenient domain-specific language
(DSL) for such configuration is an interesting perspective.
Configuration classes. Configuration of Reflex can be

done by providing configuration classes. A configuration
class is a class that implements at least one of these two
methods:

static void initReflex(ArchitectConfig arc)

static void initReflex(AssemblerConfig asc)

Reflex keeps a configuration object that configuration
classes can fill as needed, using the appropriate interface.
All consistency checks are done when defining new elements
(operations, hooksets, links, etc.) through the configuration
interface. For instance, the following class implements an
architect configuration that adds support for the message
send operation, using the standard MOP of Reflex:

public class SampleArchitectConfig {

public static void initReflex(ArchitectConfig c){

OperationSupport msgSendSupport =

new OperationSupport(

reflex.std.operation.MsgSend.class, "send",

new reflex.std.installer.MsgSendInst());

c.defineOperationSupport(msgSendSupport);

}}

Hookset and link definitions can be done in the same man-
ner. The following class illustrates the possibility to embed
the hookset and link definitions within a metaobject class
(see the discussion on locality in Section 4.2):

public class SampleMO implements BeforeMsgSend {

public static void initReflex(AssemblerConfig c){

PrimitiveHookset hs =

new PrimitiveHookset("demo", "send",

new NameCS("Foo"),

new MsgNameOS("run"));

c.defineHookset(hs);

Link l =

new Link(hs,

new MOClassDefinition("SampleMO"));

l.setScope(Scope.HOOKSET);

l.setControl(Control.BEFORE);

c.defineLink(l);

}

public void beforeMsgSend(String hsID,

Object[] data){

DMsgSend msgSend = DMsgSend.convert(data);

System.out.println("About to send message: " +

msgSend.toString());

}}

This class defines a primitive hookset "demo" that gathers
all calls to a run method occurring within a Foo class. These
operation occurrences will be reified and passed to a unique
metaobject (link scope is hookset), which will be given con-
trol before such occurrences. The defined metabehavior is a
simple trace.
XML Configuration files. Reflex also includes an XML

parsing module for configuration files. The syntax is a
straightforward mapping of the object-oriented configura-
tion presented above. XML configuration is used in the
examples of Sections 4 and 5.
Running Reflex. To run an application with Reflex us-

ing given configuration files and/or classes, the command:

java Application arg1 arg2...
should be replaced by:

java reflex.Reflex -configClasses Config1:Config2...
-configFiles file1:file2...
Application arg1 arg2...

3.3.2 Dynamic configuration
The runtime API of Reflex allows for dynamic configura-

tion by the architect, the assembler, and the metaprogram-
mer. This API is implemented as a set of static methods of
the Reflex class.
For the architect and the assembler, the API makes it pos-

sible to access the interfaces presented above in this section:

ArchitectConfig getArchitectConfig()

AssemblerConfig getAssemblerConfig()

All changes made through these interfaces (e.g., newly
defined hooksets and links) only apply to classes loaded af-
terwards (see the discussion in Section 3.4.4).

For the metaprogrammer, we can divide the runtime API
into three parts, respectively used to control temporal se-
lection, access metaobjects, and create particular reflective
instances.
Activation API. This API makes it possible to perform
temporal selection. Through the Activation API, it is pos-
sible to set and retrieve the activation condition associated
to any activatable link, at the desired level (hookset, class,
object). The methods to set an activation condition are:

setActive(String hsID, Active a)

setActive(String hsID, Class c, Active a)

setActive(String hsID, Object o, Active a)

The first parameter represents the identifier of the hookset
for which the activation condition should be set. All these
set methods accept a null value as their first parameter: in
such a case activation is set for all hooksets. For instance,
to deactivate all activatable links, one must call:

Reflex.setActive(null, Active.OFF);

The set methods have get counterparts to retrieve an
activation condition. A set of logical operators is provided
to compose activation conditions as needed.
Metaobject Access API. This API makes it possible to
retrieve and set metaobjects at the desired level. To set
metaobjects, the following methods are provided:

setMetaobject(String hsID, Metaobject m)

setMetaobject(String hsID, Class c, Metaobject m)

setMetaobject(String hsID, Object o, Metaobject m)

These methods have get counterparts to retrieve meta-
objects. The Reflex runtime ensures consistency and en-
forces the restriction rules that may have been given (e.g.,
mintypes, updatable).
Creation API. This API makes it possible to obtain a
single reflective instance of a possibly already loaded class.
This feature is implemented through on-the-fly reflective
subclass generation, as presented in [56]:

Object createObject(Class c, Link b)

This method creates a subclass of c and applies the given
link to that class. If several links should be given, an
overloaded createObject method accepts an array of links.
Once the subclass has been made reflective, it is instanti-
ated. This approach suffers some limitations: since it is
based on subclassing and method overriding, the class can-
not be final, and the only operations that can be reified
are message receive (for non-final methods) and serializa-
tion. Nonetheless, this approach is sufficient for some appli-
cations [57].

3.4 Implementation

3.4.1 Class builder
In Reflex, the transformation of a class into a reflective

class is controlled by a generic class builder. In order to be
informed each time a class is about to be loaded, the class
builder is connected to a class loader of Javassist [10]. Upon
class loading, the class builder queries all class selectors to
determine which links have to be applied. The builder then
generates some support code within the class, and lets the
appropriate hook installer take care of hook insertion for a
given operation.

3.4.2 From load time to runtime
Reflex uses a special class loader, provided with Javas-

sist. Recall that class loaders in Java define namespaces,
which are similar in some sense to small nested logical vir-
tual machines. Reference assignments between namespaces
are prohibited [38].
When an application is run with Reflex, the scenario is the

following. The main method of the Reflex class is executed,
loaded by the standard class loader (defining namespace1).
This method initializes the configuration by invoking con-
figuration classes and/or parsing configuration files. Then
a Javassist loader is created so that it uses the Reflex class
builder as a translator. This loader defines another names-
pace, namespace2. The class builder will be notified by the
loader of every class being loaded, and accesses the initial-
ized configuration to determine the transformations to ap-
ply. In namespace2, a copy of the configuration is created
for use by the runtime API.
To sum up, namespace1 is the transformation space,

where on-the-fly bytecode transformation occurs, and
namespace2 is the execution space, where the reflective ap-
plication executes, possibly interacting with the runtime
API (Fig. 3).

3.4.3 Support for hook activation
The portable support for hook activation/deactivation is

implemented with activation conditions, as presented in Sec-
tion 3.3.2. Classes and objects involved in an activatable
link include an extra field to hold their activation condi-
tion. The Reflex runtime stores the hookset-level activation
conditions.
An activatable hook differs from a normal one in that a

check of the activation conditions (in order: hookset, class,
object) is performed before building the reification and in-
voking the metaobject. Hence, the code of any activatable
hook is as follows:

if(determine activation) reify and delegate
else original code

where the else clause is not present for before or after
hooks.

3.4.4 Limitations
Our implementation is constrained by the necessity to re-

main portable and compatible with standard Java. This
precludes, at least in a first step, the possibility of resort-
ing to features of the Java Platform Debugging Architecture
(JPDA), such as class reloading, which is not meant to be
turned on in a production environment. Investigating the
benefits of the JPDA in prototyping or debugging environ-
ments is certainly valuable and may be part of future work.
Therefore, in the current version of Reflex we are neither

able to define new hooksets dynamically for already loaded
classes, nor to make activatable a non-activatable hookset.
This also explains our implementation of hook activation.
In particular, note that, even in the case of a deactivated
hook, the activation conditions are still checked repeatedly
during execution. Once loaded in the execution space, class
definitions are never altered.

3.4.5 Benchmarks
We have performed preliminary micro-benchmarks to val-

idate the interest of partial behavioral reflection. The ma-
chine used runs under Linux (kernel 2.4), with an Intel
Celeron 1.2GHz processor and 760MB of RAM, using the
HotSpot client VM from Sun Microsystems version 1.4.1
(build 1.4.1-b21, mixed mode).
The benchmarks are based on themessage send operation,

as implemented in the default MOP provided with Reflex
(v1.0 alpha 4). We have measured the execution time of
a loop method that calls a given number of times a test

method. Both methods are defined in class Sample. In order
to associate some computation to the testmethod, the body
of this method is a loop incrementing a counter. The aim
of the benchmarks is to measure the overhead of applying
reflection to calls to the test method.
Our micro-benchmark suite consists of the following test

cases:

• In the first test case (non-Reflex), we measure the ex-
ecution time of the application without Reflex.

• The second test case (non-reflective) consists of run-
ning the application with Reflex, including parsing the
configuration files and transforming class Sample to
reify the sending of test occurring in loop. However,
in this case, we use a normal, i.e. non-reflective, ob-
ject. This lets us measure the sole cost of load-time
transformation, without measuring the runtime cost
of reflection.

• The following three test cases measure the cost of an
empty before/after metaobject respectively when acti-
vation is disabled (bef/aft no act), when it is enabled
and the link is activated (bef/aft act on), and finally
when activation is enabled but the link is deactivated
(bef/aft act off).

• We finally considered three similar cases, using replace
control instead of before/after (replace no act, replace
act on, replace act off). Recall that in these cases,
method invocation is done using the Java Reflection
API.

ML: meta level BL: base level : control flow

BL

ML

timedefault
before−after MO

empty
replace MO

deactivated
link

non−reflective

(a) (b) (c) (d)

Figure 10: Representation in a reflectogram of the
various types of test settings.

Fig. 10 illustrates the various test cases in terms of re-
flectogram: non-Reflex and non-reflective are of type (a),
replace no act and replace act on are of type (b), bef/aft no
act and bef/aft act on are of type (c), while the others are
of type (d).
We have measured the cost of running the whole appli-

cation (i.e., starting a new JVM each time) with the Linux

time command. We have checked that all test cases got a
full control of the CPU (99%) and that garbage collection
was not triggered.

invocations 1000 5000 10000 20000 50000

non-Reflex 11 37 71 149 401
non-reflective 24 51 85 152 354

bef/aft no act 25 59 102 187 443
act on 26 59 102 188 444
act off 25 55 93 169 396

replace no act 26 61 105 193 455
act on 27 62 106 194 457
act off 25 55 93 169 396

Table 1: Micro-benchmarks results (time in 1/10s).

The two first lines of Table 1 illustrate the overhead of
load-time transformation. Plotting these figures gives two
parallel straight lines from 1000 to 10000 invocations. The
slope of these lines gives the cost of the elementary test:
0.67ms. The value of the ordinates at the origin are 0.4s
without Reflex, and 1.8s with Reflex. That is, bytecode
transformation has an important impact on start-up time.
Partial reflection makes it possible to reduce this impact.
For a higher number of invocations, it turns out, quite un-
expectedly, that Reflex code becomes more efficient than the
Java code. This does not seem to be an epiphenomenon (re-
sulting, from instance, of some HotSpot deoptimization) as
the same effect can be observed with interpreted code.
All the other figures correspond to straight lines: there is

no runtime disturbance coming from memory management,
HotSpot. . . , and it is therefore easy to compare the various
overheads.

• Comparing non-reflective and reflective (replace) ex-
ecution, we can deduce an overhead of 2 10−4s per
reflective invocation. This overhead is indeed pretty
high: we have benchmarked standard invocation cost
in the same configuration, obtaining a cost of 6 10−8s
per invocation. This measurement was done in in-
terpreted mode only, hence it actually represents an
upper bound for the invocation cost with HotSpot en-
abled. The fact that the overhead of reflective invo-
cation is between 3 and 4 orders of magnitude greater
than a standard invocation validates the need to pre-
cisely select where and when reification occurs.

• The results also show that before/after control is less
expensive than replace control with an overhead of
1.8 10−4s per invocation. The gain is however quite
moderate. The situation is fairly different in inter-
preted mode where another series of measurements
have shown that the overhead of before/after control
was half the overhead of replace control.

• Finally, deactivation is also worthwhile as it reduces
the cost of replace and before/after control to 8.4 10−5s
(these figures could probably be further improved). On
the other hand, one can easily see that the cost of
activation is negligible when enabled.

These tests are preliminary micro-benchmarks and there-
fore call for further measurements. In particular, bench-
marking reflection on sizeable applications, while reifying

various operations, would be of great interest. These results
may also evolve as we believe that the implementation of
Core Reflex can still be improved in a number of ways.

3.4.6 Differences with Reflex 0.3
The version of Reflex presented in this paper is quite dif-

ferent from Reflex 0.3, presented previously [56]. In the old
version, there was not a single generic class builder with
pluggable hook installers, but instead a hierarchy of class
builders, which raised composition issues. Also, the clear
separation between Core Reflex and user-defined MOPs did
not exist. With regard to configuration, Reflex 0.3 offered
limited dynamic configuration API. Extensive static and dy-
namic APIs are now available. Furthermore, the only means
to obtain reflective objects in Reflex 0.3 was through explicit
creations (Reflex.createObject()), whereas this feature is
now enhanced with the possibility of making classes reflec-
tive directly through static configuration, hence making it
possible to leave the base application code intact. Finally,
the model of hooksets as well as the spatial and temporal
selection framework were missing.

4. EXAMPLE: THE OBSERVER PATTERN
In this section we illustrate the implementation of the Ob-

server design pattern [24] with Reflex, and contrast it with
the corresponding Java and AspectJ [33] implementations,
in the line of the work presented at OOPSLA 2002 by Han-
neman and Kiczales [28].
The Observer design pattern is one of the patterns that

involve crosscutting structures in the relationship between
roles in the pattern and classes in each instance of the pat-
tern. As clearly shown in [28], the Java implementation of
this pattern leads to mixing functional code of the partic-
ipating classes with pattern-specific code, which we would
like to avoid.
Let us give the Reflex implementation of the Observer pat-

tern for the simple scenario presented in [28]. This scenario
includes Point objects that are observed by some Screen

objects. Furthermore, in order to illustrate composability
of patterns, some of the screen objects play both the role
of observers (of the point) and subjects for another screen
object.

p

s2

s3

s1

s4

s5

 observes

color

display
x, y

Figure 11: Observation relations between the point
object and the various screen objects.

The scenario includes one point p and 5 screen objects, s1,
s2, s3, s4 and s5. The observation relations are as follows
(Fig. 11):

• s1 and s2 observe color changes in p,

• s3 and s4 observe coordinate changes in p,

• s5 observes changes in the display of s2 and s4.

4.1 Implementation with Reflex

4.1.1 Configuration
We have chosen to illustrate the configuration with XML

files (Fig. 12).
The architect configuration defines support for the two

operations that are used in the present example (field write
and message receive) using the standard MOP, along with
default attribute values. Notice that, by default, reifications
are activatable with activation initially off.
The definition of three hooksets is required (Fig. 12):

1. coordinateObserved applies to instances of class
Point; notification is triggered upon occurrences of a
field write operation, where the name of the field is
either x or y.

2. colorObserved also applies to instances of class Point,
and notification is triggered upon occurrences of a field
write operation, where the name of the field is color.

3. displayObserved applies to instances of class Screen;
notification is triggered upon occurrences of a message
receive operation, where the name of the message is
display.

4.1.2 Metaobjects
In each of the three hooksets, the metaobject is an

instance-specific metaobject that informs the relevant ob-
servers after the corresponding operation occurrences. To
this end, each metaobject holds a list of the observers at-
tached to a particular subject.
The generic part of the pattern behavior (maintaining

a list of observers, notifying each of them when needed)
has been factored out in the abstract Observer metaobject
class. This class also offers a service to create observing
relations (map). The case-specific part of the update logic
is left to concrete subclasses: Observer defines an abstract
updateObserver method (Fig. 13).
We define three specific metaobject classes for this exam-

ple: CoordinateObserver and ColorObserver (Fig. 13) for
observing changes in point coordinates and color, respec-
tively, and DisplayObserver for observing display changes
on screens.

4.1.3 Running the scenario
The Main class runs the proposed scenario by first creating

the point and screen objects, and then makes the mapping
observers-subject as explained above (Fig. 14). Fig. 15 il-
lustrates the configuration at runtime. For instance, when
p changes color, this change is reified and passed to meta-
object 2 that then notifies each observer (s1 and s2).

4.2 Assessment
The Reflex implementation of the Observer pattern

presents the same modularity properties than the AspectJ
implementation [28]:

• Locality – All of the code that implements the Ob-
server pattern is located in the abstract and concrete
metaobject classes; participant classes are left intact.
This issue is further discussed below.

• Reusability – The core pattern code is abstracted and
can hence be reused in other situations. For each pat-

<reflexConfig-architect>
<operations>
<operation class="reflex.std.operation.FieldWrite" name="fieldWrite"

installer="reflex.std.installer.FieldWriteInst" />
<operation class="reflex.std.operation.MsgReceive" name="msgReceive"

installer="reflex.std.installer.MsgReceiveInst" />
</operations>
<defaultAttributes scope="object" activation="enabled-off" control="after" />

</reflexConfig-architect>

<reflexConfig-assembler>
<link>
<hookset id="coordinateObserved" operation="fieldWrite" classSelector="NameCS"

argsCS="observer.Point" operationSelector="FieldNameOS" argsOS="x | y"/>
<metaobjectDefinition class="observer.CoordinateObserver"/>
</link>
<link>
<hookset id="colorObserved" operation="fieldWrite" classSelector="NameCS"

argsCS="observer.Point" operationSelector="FieldNameOS" argsOS="color"/>
<metaobjectDefinition class="observer.ColorObserver"/>
</link>
<link>
<hookset id="displayObserved" operation="msgReceive" classSelector="NameCS"

argsCS="observer.Screen" operationSelector="MessageNameOS" argsOS="display"/>
<metaobjectDefinition class="observer.ScreenObserver"/>
</link>
</reflexConfig-assembler>

Figure 12: XML configuration of the metalevel architect (top) and the assembler (bottom) for the Observer
design pattern implementation.

public abstract class Observer {

protected List itsObservers;

public void addObserver(Object o){ itsObservers.add(o); }

public void removeObserver(Object o){ itsObservers.remove(o); }

protected void updateObservers(Object aSubject){

Iterator theIter = itsObservers.iterator();

while (theIter.hasNext()) updateObserver(theIter.next(), aSubject);

}

protected abstract void updateObserver(Object aObserver, Object aSubject);

public static void map(String hsID, Object s, Object o){

((Observer) Reflex.getMetaobject(hsID, s)).addObserver(o);

Reflex.activate(hooksetID, s, Active.ON);

}}

public class ColorObserver extends Observer implements AfterFieldWrite {

public void afterFieldWrite(String aHooksetID, Object[] aReifiedData, Object aRetValue){

updateObservers(aReifiedData[0]);

}

protected void updateObserver(Object aObserver, Object aSubject){

((Screen) aObserver).display("Screen updated because color changed.");

}}

Figure 13: Metaobject classes for the Observer design pattern example.
The Observer class is generic and reusable, while the ColorObserver is specific to the example.

public class Main {

public static void main(String[] args){

Point p; Screen s1, s2, s3, s4, s5;

create the objects
Observer.map("coordinateObserved", p, s1); Observer.map("coordinateObserved", p, s2);

Observer.map("colorObserved", p, s3); Observer.map("colorObserved", p, s4);

Observer.map("displayObserved", s2, s5); Observer.map("displayObserved", s4, s5);

play with p

}}

Figure 14: Main program for the Observer design pattern example.

s3

s4
s2

p
s1

metaobject 1: coordinateObserver
2: colorObserver
3: screenObserver

notify update

1 2

3

s5

colorx,y

display

Figure 15: Illustration of the configuration at run-
time for the Observer scenario.

tern instance, we only need to define concrete meta-
object classes and set configuration as required.

• Composition transparency – Since there is no coupling
between a participant and the pattern, a subject or ob-
server can take part in multiple observation relations.

• (Un)pluggability – Since participants are not aware of
their role in a pattern instance, it is possible to switch
between using and not using a pattern.

With regards to locality, it is important to notice that
both the Reflex implementation and the AspectJ implemen-
tation rely on an abstract class/aspect, three concrete sub-
classes/aspects, and a dynamic configuration to setup the
scenario. The major difference between Reflex and AspectJ
is that, with AspectJ, the pointcut declaration and the link
are embedded within the aspect definition. Although this
can be seen as a nice property, it is also an example of tan-
gled implementation: defining a set of points, a behavior,
and the link between them are different concerns that should
possibly be specified separately. Reflex allows for such sep-
aration, which enhances hookset and metaobject reuse. In
cases where this level of separation is not needed, meta-
object classes can embed their configuration (playing the
role of configuration classes, as in Section 3.3.1), which is
then equivalent to the AspectJ case.

Furthermore, Reflex preserves a pure object-oriented im-
plementation style: it uses metaobject classes and configu-
ration classes, both of which are implemented as standard
Java classes. The configuration files are optional declarative
alternatives to configuration classes. Conversely, aspects in
AspectJ are not standard classes. Hence, Reflex can directly
benefit from advanced support for Java development (e.g.,
incremental compilation in the Eclipse IDE2).
From a functional point of view, (un)pluggability can be

taken a step further in Reflex than in AspectJ since the sup-
port for link (de)activation makes it possible to switch off/on
the use of a pattern dynamically. Moreover, the sources of
the underlying events can be (de)activated locally (per hook-
set/object) or globally very easily.

5. EXAMPLE: TRANSPARENT FUTURES
We now show how to use Reflex to implement an impor-

tant feature of distributed object systems that offer asyn-
chronous communication: transparent futures (see for in-
stance ProActive [6]). This example illustrates the use of
runtime activation/deactivation, the need to control the cast
operation, and the interest of our selection framework.

5.1 Transparent futures
Futures were first introduced in MultiLisp [27]. In a dis-

tributed object system with futures, a call between two pro-
cesses returns immediately. The client process does not need
to wait for the value returned by the server process (unlike,
for instance, Java RMI). The returned object, called a fu-
ture, is in fact just a place holder for the actual result. While
the server process executes, the client can continue its ac-
tivity, and may even pass the future by reference to other
objects/processes. The client process must block and wait
for the server process to terminate only when the future is
effectively accessed. This is called wait-by-necessity.

5.2 The problem of futures with simple MOPs
Using a runtime MOP is a common and easy way to im-

plement transparent futures, as done in ProActive. A fu-
ture is in fact a reflective object whose metaobject imple-
ments the wait-by-necessity strategy. However, apart from
the well-known identity issue (the future is not the result),
this approach suffers some limitations in a strongly-typed
language like Java, due to the widespread use of downcasts.
A simple MOP supporting only message receive is not suffi-
cient. Indeed, when the future is created, the declared type

2www.eclipse.org

of the result is known, but not its runtime type. This im-
plies that the future might not be of an adequate type when
downcasted later on.
Let us suppose that class B is a subclass of class A. Con-

sider the following method foo of a class Server:

public A foo(){

...

finally returns a B object
}

When this method is called asynchronously, the system cre-
ates a future, type-compatible with A, and returns it to the
caller. With typical client code such as:

A a = Server.foo();

...

((B) a).m();

an exception will occur on trying to downcast the future
before the result has been received.

5.3 A solution with Reflex
The downcast problem presented above can be solved us-

ing an expressive MOP supporting cast in addition to mes-
sage receive, as does the standard MOP provided with Re-
flex. Also, the expressive power of the selection framework of
Core Reflex as well as the activation scheme provided are of
great help in this case. This section explains how to design
the solution, and the following one shows how to configure
Reflex in order to implement it.
Figure 16 illustrates the situation at the time foo is called

(Fig. 16(a)), corresponding to the classical scenario of trans-
parent remote calls with a runtime MOP, and once the fu-
ture has been returned (Fig. 16(b)). At this time, the client
and the future share a common metaobject, the future meta-
object. This metaobject controls both casts occurring in the
client and message receptions occurring in the future. While
the result has not been delivered yet (delivery is done by the
proxy metaobject, Fig. 16(b)), if the future metaobject in-
tercepts either a cast of the future within the client or a
message reception on the future, then execution is blocked
until the result is available.
Once the result has arrived, two cases have to be consid-

ered:

• the result is of type A: the metaobject fills the fu-
ture with all the fields of the result so that the fu-
ture becomes (a clone of) the result. At this time,
controlling message reception on the future is no
longer needed, hence the future is deactivated (using
Reflex.deactivate(future)). From now on, the fu-
ture is a standard object.

• the result is of type B: the metaobject keeps a reference
to the result. Then, each time it intercepts a message
receive on the future, it forwards it reflectively to the
result. Later, if it intercepts a cast by the client, then it
returns the result instead of the future, and execution
proceeds.

5.4 Implementation
The first step consists of defining the desired future hook-

set. This hookset is defined as the union of two primitive
hooksets (Fig. 17):

• futureReceives is a set including all calls to public
methods of future classes. This set is defined by a
simple operation selector selecting all public methods
for the message receive operation (PublicOS), and a
class selector matching all future classes (FutureCS).

• clientCasts is a set including all casts to a future
type (FutureCastOS) occurring in any class (AnyCS).

We then define a link between the future hookset and
the metaobject class FutureMO. The link is given hookset
scope, so that only one shared instance of FutureMO is cre-
ated. The metaobject class implements both ReplaceCast

and ReplaceMsgReceive. It holds a table of associations
between asynchronous call identifiers and future objects.

<hookset id="future">
<hookset id="fReceives" operation="MsgReceive"

classSelector="FutureCS"
operationSelector="PublicOS" />

<hookset id="clientCasts" operation="Cast"
classSelector="AnyCS"
operationSelector="FutureCastOS" />

</hookset>

<link hookset="future">
<metaobjectDefinition class="FutureMO"/>
<attributes control="replace" scope="hookset"/>

</link>

Figure 17: XML configuration for the future exam-
ple.

The definition of FutureCastOS does not present any par-
ticular difficulty. In contrast, the definition of the FutureCS
is not easy. Recall that the role of this class selector is to se-
lect the future classes. A straightforward solution consists of
selecting any class that is a possible result type (or subtype)
of a public method of a class on which an asynchronous call is
performed3. Obviously, in such a case, FutureCS might end
up selecting almost all classes in the system (for instance, if
a method has return type Object).
We are actually facing a trade-off between transparency

and partiality. Fortunately, Reflex makes it possible to
choose and implement the appropriate trade-off depending
on requirements. The straightforward solution is totally
transparent, but it may lead to a heavy use of reflection.
A more elaborate alternative can be based on some heuris-
tics or static analysis to determine the future classes. Fi-
nally, one can initialize FutureCS with a list of future classes
names, or make all future classes implement a marker inter-
face. This last alternative is definitely not transparent, but
is optimal in terms of partial reflection.

5.5 Assessment
This example shows a concrete case where controlling the

cast operation turns out to be interesting. Furthermore, link
activation is very useful here, since we are facing a scenario
where beyond a certain point in time reification is not needed
any longer.
This example also illustrates the interest of a powerful se-

lection mechanism, as opposed to type patterns in AspectJ,
and other purely syntactic-based approaches. Let us con-
sider, for instance, the class selector we mentioned as a possi-

3This is a class of active objects in ProActive.

method call object reference metalink

server

server JVM

foo

future

(a)

stub

proxy MO

client

client JVM

trap

foo

(b)

client JVM server JVM

server

future MO

stubclient

setResult

setResult
proxy MO

Figure 16: Illustration of the future scenario. (a) The client calls foo on the server. (b) The future has been
returned to the client and later, the result is delivered to the future metaobject.

ble alternative, which precisely selects those classes that are
the result types of the public methods of the classes on which
asynchronous calls are performed. Such an advanced cri-
terion cannot be expressed using patterns (even compound
ones) on type names.
Also, the possibility of adopting various selection strate-

gies (based on syntax, program analysis, introspection, etc.)
is a great advantage in terms of flexibility since system de-
signers are not constrained by a particular, closed, way of
specifying selection. In the future example, the adopted
solution eventually depends on the particular requirements
of the target distributed object systems in terms of trans-
parency and partiality.

6. RELATED WORK
AOP has found inspiration in several research efforts, in-

cluding reflection and metalevel programming, composition
filters [2], and multi-dimensional separation of concerns [47].
The question of the relation between reflection and AOP
therefore naturally arises. G. Kiczales defined AOP as a
principled subset of reflection [31]. We first review existing
tools and proposals in the fields of reflection and AOP, and
then we discuss the relation between reflection and AOP in
general, and between partial behavioral reflection and dy-
namic AOP.

6.1 Existing tools and proposals

6.1.1 Reflective systems
There are several behavioral reflective systems that can

be considered to provide some sort of limited partial behav-
ioral reflection: Reflective Java [61], Dalang and Kava [60],
MetaXa [25], Guaraná [45], and Iguana [26], first in the con-
text of C++, and its Java incarnation, Iguana/J [52]. Apart
from Iguana, all these systems only provide the possibility
to choose which classes are made reflective.
The Iguana approach is the closest to ours in its philos-

ophy. Compared to other proposals, it adds the possibility
of grouping metaobject classes into protocols and then se-
lecting the classes on which these protocols do apply. A
limitation of Iguana is that it makes it possible to restrict
the set of reified operations, but not to extend it. Further-
more, it does not support intra-operation selection, which
is a crucial feature of partial behavioral reflection, as pre-

sented in this paper. Iguana/J [52] is an implementation
of the Iguana model for Java. With respect to temporal
selection, it is more powerful than Reflex since it does not
require hooks to be specified and introduced at load time.
However, this is only possible because Iguana/J is imple-
mented as an extended JVM, hence restricting portability.
Note that MetaXa and Guaraná also rely on modified virtual
machines. Conversely, the objective of Reflex is to promote
the use of behavioral reflection in real-life applications, for
which portability is a key issue.
As for configuration, no other reflective architecture offers

the same range of static and dynamic configuration possibil-
ities. For instance, Kava only supports static configuration,
while Iguana/J only supports dynamic configuration. With
regard to supporting combinations of metaobject control,
similarly, we are not aware of any reflective architecture that
provides such flexibility. For instance, Kava only offers be-
fore/after control to metaobjects, while Iguana/J only offers
replace control. The explicit support for the role of meta-
level architect is also a distinguishing property of our work.
Finally, the mentioned systems all adopt a classical view
on the metalink and have not considered the handling of
crosscutting metaobjects, which is made possible in Reflex
thanks to the model of hooksets.

6.1.2 AOP systems
There is a wide spectrum of approaches to AOP, from

completely static to completely dynamic, as very well dis-
cussed in [52]. In this spectrum, Reflex can be character-
ized as supporting dynamic binding at load time, meaning
that bindings (i.e., hook introduction) are made at load time
and can be undone/redone at run time (i.e., changing meta-
objects, deactivating links).
JAC [49] is a dynamic AOP system based on a reflective

infrastructure set up at load time. PROSE [50] is a dy-
namic AOP system based on both a modified JIT compiler
and a modified JVM. PROSE deliberately sacrifices porta-
bility to achieve high performance. These approaches, as
well as AspectJ, provide fixed languages for pointcut def-
initions, mainly syntactic-based, and support a fixed and
limited number of base operations.
Event-based AOP (EAOP) [19] is an approach to dy-

namic aspect-oriented programming, based on the concept
of a central monitor that receives synchronous events from

join points in the application and possibly triggers some ac-
tions on sequences of related events. The great expressive
power of EAOP makes it possible to reason about event pat-
terns, thus supporting temporal reasoning. EAOP can be
seen as a particular instantiation of partial behavioral reflec-
tion, where all hooks forward control to a unique omnipotent
metaobject called the monitor. The most interesting part
of EAOP is the way the “metalevel” is structured around
advanced event pattern matching facilities. These facilities
contribute to raising the level of abstraction, with explicit
means of composing aspects, and facilities for the detection
and resolution of conflicts between aspects [18].

6.2 Reflection and AOP
One of the strengths of AOP, at least as initially formu-

lated, is that it provides the developer with domain-specific
languages, or, let us say, aspect-specific languages (ASLs).
Because an ASL is specific to a particular domain or as-
pect, it fits better the needs of the specialized program-
mers. The right concepts can be directly manipulated, ad-
ditional support provided in terms of verification, debug-
ging. . . Conversely, reflection is a general conceptual frame-
work that can be used to cleanly modularize concerns, but
it forces users to understand and assimilate the metalevel
viewpoint on the computation. In this sense, reflection is
solution-oriented since it is expressed in terms of the so-
lution space (the operations of the language used to build
the solution), whereas AOP is problem-oriented since it is
expressed in terms of the problem space (the abstract speci-
fication of the problem). However, focusing on ASLs further
complicates aspect interaction and composition. Therefore
much of the research effort around AOP has shifted to gen-
eral approaches. The evolution of the AspectJ [33] language
is a good example of this trend.
Runtime AOP is a subset of partial behavioral reflec-

tion. Building a general-purpose aspect language on top of a
generic reflective system makes it easier to provide guaran-
tees in terms of aspect behavior and to lower the complex-
ity of programming (i.e., by “hiding the meta”). The issue
is then how to develop specific languages on top of such
generic infrastructures. Reflective approaches can support
AOP development using multiple aspect languages. Aspect-
Oriented Logic Meta Programming (AOLMP) [15, 62] is
a proof of feasibility. AOLMP offers a general declarative
framework for programming aspects (the base level can be
a Java or Smalltalk program, while the metalevel is pro-
grammed in a logic programming language). This frame-
work can be used to declare rules about interactions and
compositions of aspects defined in ASLs [4].
Finally, it should not be forgotten that AOP only aims at

handling crosscutting concerns modularly, whereas reflec-
tion in general, and behavioral reflection in particular, has
several other application areas, such as dynamic program-
ming, generic programming and program adaptation where
some kind of self-reasoning is important.

7. CONCLUSION AND FUTURE WORK
We have presented a comprehensive approach to partial

behavioral reflection, based on the hookset model, with its
spatial and temporal dimensions. Then we have described a
behavioral reflective system for Java that fully supports our
model in an open and portable manner. Reflex seamlessly
integrates load-time and runtime behavioral reflection.

The main contributions of this work are:

• presentation of the model of hooksets, which general-
izes the classical view of metalinks, offering support
for relations between several execution points and ca-
pacity to handle crosscutting concerns,

• full integration of many reflective aspects in a generic
model and an open implementation,

• clearly separated specification of hooksets, links and
metaobjects, which can still be embedded in one single
place,

• intentional, possibly declarative, description of the
MOP entry points, using an expressive reification se-
lection framework (class and operation selectors),

• open MOP support, which provides extensibility in
terms of supported operations, and flexibility in the
way they are reified,

• high level of configurability, both at load time and run-
time,

• explicit support for the roles of assembler and meta-
level architect in addition to that of the metaprogram-
mer.

As far as Core Reflex is concerned, interesting perspec-
tives include the possibility of more precisely specifying the
needed content of reifications, and the extension of Reflex in
order to support MOP generation. Also, we plan to study
the interest, in terms of performance, of providing meta-
object inlining, and to study how the Reflex implementation
could be optimized.
Other future work includes further testing (and possibly

extensions) of the capabilities of Reflex through its appli-
cation to demanding domains such as concurrent program-
ming, distributed systems (some preliminary work has been
done in adaptable mobile systems [59]) and context-aware
applications [5, 8, 14]. We would also like to analyze the pos-
sibilities offered by a metaobject composition framework [44,
45, 56] when combined with a security framework for reflec-
tive applications [7].
We have started working on an integration of the Event-

based AOP model on top of Reflex. The objective here
is to explore the continuum between reflection and aspect-
oriented programming. We are particularly interested in
the possibility of keeping this infrastructure open but still
providing its users with structure and guidance as well as
guarantees on the resulting programs (for instance, in terms
of safety or security).
Finally, a more distant perspective is to study the in-

stantiation of the model of hooksets in a dynamically-typed
object-oriented language like Smalltalk.

8. ACKNOWLEDGEMENTS
We would like to thank Noury Bouraqadi, Shigeru Chiba,

Pierre-Charles David, Julia Lawall, and Patricio Salinas for
their comments on previous versions of the paper, as well as
the anonymous reviewers who have helped us enhance both
our work and the paper in a number of ways.
This work was partially funded by Millenium Nucle-

ous Center for Web Research, Grant P01-029-F, Mideplan,
Chile, the CONICYT-INRIA ProXiMoS project, and the
RNTL ARCAD project.

9. REFERENCES
[1] D. Batory, C. Consel, and W. Taha, editors.

Proceedings of the 1st ACM SIGPLAN/SIGSOFT
Conference on Generative Programming and
Component Engineering (GPCE 2002), volume 2487
of Lecture Notes in Computer Science, Pittsburgh,
PA, USA, Oct. 2002. Springer-Verlag.

[2] L. Bergmans. The composition filters object model. In
Proceedings of the RICOT symposium on Enabling
Objects for Industry, June 1994.

[3] G. S. Blair, G. Coulson, A. Andersen, L. Blair,
M. Clarke, F. Costa, H. Duran, N. Parlavantzas, and
K. Saikoski. A principled approach to supporting
adaptation in distributed mobile environments. In
International Symposium on Software Engineering for
Parallel and Distributed Systems (PDSE 2000), pages
3–12, Limerick, Ireland, 2000.

[4] J. Brichau, K. Mens, and K. De Volder. Building
composable aspect-specific languages. In Batory et al.
[1], pages 110–127.

[5] L. Capra, W. Emmerich, and C. Mascolo. Reflective
middleware solutions for context-aware applications.
In Yonezawa and Matsuoka [63], pages 126–133.

[6] D. Caromel, W. Klauser, and J. Vayssière. Towards
seamless computing and metacomputing in Java.
Concurrency Practice and Experience,
10(11-13):1043–1061, Sept. 1998.

[7] D. Caromel and J. Vayssière. Reflections on MOPs,
components, and Java security. In Knudsen [35], pages
256–274.

[8] K. Cheverst, C. Efstratiou, N. Davies, and A. Friday.
Architectural ideas for the support of adaptive
context-aware applications. In Workshop on
Infrastructure for Smart Devices - How to Make
Ubiquity an Actuality, Bristol, UK, Sept. 2000.

[9] S. Chiba. A metaobject protocol for C++. In
OOPSLA95 [46], pages 285–299.

[10] S. Chiba. Load-time structural reflection in Java. In
E. Bertino, editor, Proceedings of the 14th European
Conference on Object-Oriented Programming
(ECOOP 2000), number 1850 in Lecture Notes in
Computer Science, pages 313–336, Sophia Antipolis
and Cannes, France, June 2000. Springer-Verlag.

[11] S. Chiba and T. Masuda. Designing an extensible
distributed language with a meta-level architecture. In
O. Nierstrasz, editor, Proceedings of the 7th European
Conference on Object-Oriented Programming
(ECOOP’93), volume 952 of Lecture Notes in
Computer Science, pages 482–501, Kaiserslautern,
Germany, July 1993. Springer-Verlag.

[12] P. Cointe, editor. Proceedings of the 2nd International
Conference on Metalevel Architectures and Reflection
(Reflection ’99), volume 1616 of Lecture Notes in
Computer Science, Saint-Malo, France, 1999.
Springer-Verlag.

[13] M. Dahm. Byte code engineering. In C. Cap, editor,
Proceedings of JIT’99, Berlin, pages 267–277, 1999.

[14] P.-C. David and T. Ledoux. An infrastructure for
adaptable middleware. In R. Meersam and Z. Tari,
editors, On the Move to Meaningful Internet Systems
2002: CoopIS, DOA, ODBASE 2002, volume 2519 of

Lecture Notes in Computer Science, pages 773–790.
Springer-Verlag, Oct. 2002.

[15] K. De Volder and T. D’Hondt. Aspect-oriented logic
meta-programming. In Cointe [12], pages 250–272.

[16] E. Dijkstra. The structure of the - multiprogramming
system. Communications of the ACM, 11(5):341–346,
May 1968.

[17] K. R. Dittrich, S. Gatziu, and A. Geppert. The active
database management system manifesto: A rulebase
of ADBMS features. In Proceedings of the 2nd
International Workshop on Rules in Database
Systems, volume 985, pages 3–20. Springer-Verlag,
1995.

[18] R. Douence, P. Fradet, and M. Südholt. A framework
for the detection and resolution of aspect interactions.
In Batory et al. [1], pages 173–188.

[19] R. Douence, O. Motelet, and M. Südholt. A formal
definition of crosscuts. In Yonezawa and Matsuoka
[63], pages 170–186.

[20] S. Ducasse. Evaluating message passing control
techniques in Smalltalk. Journal of Object-Oriented
Programming, June:39–50, 1999.

[21] T. Elrad, R. E. Filman, and A. Bader.
Aspect-oriented programming. Communications of the
ACM, 44(10), Oct. 2001.

[22] J.-C. Fabre, V. Nicomette, T. Pérennou, R. J. Stroud,
and Z. Wu. Implementing fault tolerant applications
using reflective object-oriented programming. In
Proceedings of the 25th International Symposium on
Fault-Tolerant Computing, pages 489–498, Pasadena,
CA, USA, June 1995. IEEE Computer Society Press.

[23] B. Foote and R. Johnson. Reflective facilities in
Smalltalk-80. In N. Meyrowitz, editor, Proceedings of
the 4th International Conference on Object-Oriented
Programming Systems, Languages and Applications
(OOPSLA’89), pages 327–335, New Orleans,
Louisiana, USA, Oct. 1989. ACM Press.

[24] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Professional Computing
Series. Addison-Wesley, October 1994.

[25] M. Golm and J. Kleinöder. Jumping to the meta level,
behavioral reflection can be fast and flexible. In
Cointe [12], pages 22–39.

[26] B. Gowing and V. Cahill. Meta-object protocols for
C++: The Iguana approach. In Kiczales [30], pages
137–152.

[27] R. H. Halstead, Jr. Multilisp: a language for
concurrent symbolic computation. ACM Transactions
on Programming Languages and Systems,
7(4):501–538, 1985.

[28] J. Hanneman and G. Kiczales. Design pattern
implementation in Java and AspectJ. In Proceedings
of the 17th International Conference on
Object-Oriented Programming Systems, Languages and
Applications (OOPSLA 2002), pages 161–173, Seattle,
Washington, USA, Nov. 2002. ACM Press.

[29] M. H. Ibrahim. Report of the workshop on reflection
and metalevel architectures in object-oriented
programming. In OOPSLA/ECOOP’90, Ottawa,
Canada, Oct. 1990.

[30] G. Kiczales, editor. Reflection’96, San Francisco, CA,
USA, Apr. 1996.

[31] G. Kiczales. The future of reflection. Invited talk at
the Third International Conference on Metalevel
Architectures and Advanced Separation of Concerns
(Reflection 2001), Sept. 2001.

[32] G. Kiczales, J. Des Rivières, and D. Bobrow. The Art
of the Meta-Object Protocol. MIT Press, 1991.

[33] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. Griswold. An overview of AspectJ. In
Knudsen [35], pages 327–353.

[34] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In M. Aksit and
S. Matsuoka, editors, Proceedings of the 11th European
Conference on Object-Oriented Programming
(ECOOP’97), volume 1241 of Lecture Notes in
Computer Science, pages 220–242, Jyväskylä, Finland,
June 1997. Springer-Verlag.

[35] J. Knudsen, editor. Proceedings of the 15th European
Conference on Object-Oriented Programming
(ECOOP 2001), number 2072 in Lecture Notes in
Computer Science, Budapest, Hungary, June 2001.
Springer-Verlag.

[36] T. Ledoux. OpenCorba: a reflective open broker. In
Cointe [12], pages 197–214.

[37] T. Ledoux and M. N. Bouraqadi-Saâdani. Adaptability
in Mobile Agent Systems using Reflection. RM’2000,
Workshop on Reflective Middleware, Apr. 2000.

[38] S. Liang and G. Bracha. Dynamic class loading in the
Java virtual machine. In Proceedings of the 13th
International Conference on Object-Oriented
Programming Systems, Languages and Applications
(OOPSLA’98), pages 36–44, Vancouver, British
Columbia, Canada, Oct. 1998. ACM Press.

[39] P. Maes. Computional reflection. PhD thesis, Artificial
intelligence laboratory, Vrije Universiteit, Brussels,
Belgium, 1987.

[40] P. Maes and D. Nardi, editors. Meta-Level
Architectures and Reflection. North-Holland, 1988.

[41] H. Masuhara, S. Matsuoka, and A. Yonezawa. An
object-oriented concurrent reflective language for
dynamic resource management in highly parallel
computing. In IPSJ SIG Notes, volume 94-PRG-18,
1994.

[42] J. McAffer. Meta-level programming with CodA. In
W. Olthoff, editor, Proceedings of the 9th European
Conference on Object-Oriented Programming
(ECOOP’95), volume 952 of Lecture Notes in
Computer Science, pages 190–214, Aarhus, Denmark,
June 1995. Springer-Verlag.

[43] J. McAffer. Engineering the meta-level. In Kiczales
[30], pages 39–61.

[44] P. Mulet, J. Malenfant, and P. Cointe. Towards a
methodology for explicit composition of metaobjects.
In OOPSLA95 [46], pages 316–330.

[45] A. Oliva and L. E. Buzato. The design and
implementation of Guaraná. In Proceedings of the 5th
USENIX Conference on Object-Oriented Technologies
& Systems (COOTS’99), pages 203–216, San Diego,
CA, USA, May 1999.

[46] Proceedings of the 10th International Conference on
Object-Oriented Programming Systems, Languages and
Applications (OOPSLA’95), Austin, Texas, USA, Oct.
1995. ACM Press.

[47] H. Ossher and P. Tarr. Multi-dimensional separation
of concerns and the hyperspace approach. In M. Aksit,
editor, Software Architectures and Component
Technology, volume 648 of The Kluwer International
Series in Engineering and Computer Science. Kluwer,
2001.

[48] D. Parnas. On the criteria for decomposing systems
into modules. Communications of the ACM,
15(12):1053–1058, Dec. 1972.

[49] R. Pawlak, L. Seinturier, L. Duchien, and G. Floring.
JAC: A flexible solution for aspect-oriented
programming in Java. In Yonezawa and Matsuoka
[63], pages 1–24.

[50] A. Popovici, G. Alonso, and T. Gross. Just-in-time
aspects: Efficient dynamic weaving for Java. In
M. Aksit, editor, Proceedings of the 2nd International
Conference on Aspect-Oriented Software Development
(AOSD 2003), pages 100–109, Boston, MA, USA,
Mar. 2003. ACM Press.

[51] B. Redmond and V. Cahill. Iguana/J: Towards a
dynamic and efficient reflective architecture for Java.
ECOOP 2000 Workshop on Reflection and Metalevel
Architectures, June 2000.

[52] B. Redmond and V. Cahill. Supporting unanticipated
dynamic adaptation of application behavior. In
B. Magnusson, editor, Proceedings of the 16th
European Conference on Object-Oriented
Programming (ECOOP 2002), number 2374 in
Lecture Notes in Computer Science, pages 205–230,
Málaga, Spain, June 2002. Springer-Verlag.

[53] F. Rivard. Smalltalk: a reflective language. In Kiczales
[30], pages 21–38.

[54] F. Rivard. Évolution du comportement des objets dans
les langages à classes réflexifs. PhD thesis, Université
de Nantes, École des Mines de Nantes, June 1997. In
French.

[55] B. C. Smith. Reflection and semantics in Lisp. In
Proceedings of the 14th Annual ACM Symposium on
Principles of Programming Languages, pages 23–35,
Jan. 1984.

[56] E. Tanter, N. Bouraqadi, and J. Noyé. Reflex –
towards an open reflective extension of Java. In
Yonezawa and Matsuoka [63], pages 25–43.

[57] E. Tanter and J. Piquer. Managing references upon
object migration: Applying separation of concerns. In
Proceedings of the XXI International Conference of
the Chilean Computer Science Society (SCCC 2001),
pages 264–272, Punta Arenas, Chile, Nov. 2001. IEEE
Computer Society.

[58] E. Tanter, M. Ségura-Devillechaise, J. Noyé, and
J. Piquer. Altering Java semantics via bytecode
manipulation. In Batory et al. [1], pages 283–298.

[59] E. Tanter, M. Vernaillen, and J. Piquer. Towards
transparent adaptation of migration policies. In 8th
ECOOP Workshop on Mobile Object Systems
(EWMOS 2002), Málaga, Spain, June 2002.

[60] I. Welch and R. Stroud. From Dalang to Kava — the
evolution of a reflective Java extension. In Cointe [12],
pages 2–21.

[61] Z. Wu. Reflective Java and a reflective
component-based transaction architecture. In J.-C.
Fabre and S. Chiba, editors, Proceedings of the ACM
OOPSLA’98 Workshop on Reflective Programming in
Java and C++, Oct. 1998.

[62] R. Wuyts. A Logic Meta-Programming Approach to
Support the Co-Evolution of Object-Oriented Design
and Implementation. PhD thesis, Vrije Universiteit
Brussel, 2001.

[63] A. Yonezawa and S. Matsuoka, editors. Proceedings of
the 3rd International Conference on Metalevel
Architectures and Advanced Separation of Concerns,
volume 2192 of Lecture Notes in Computer Science,
Kyoto, Japan, Sept. 2001. Springer-Verlag.

