Reflex — Towards an Open Reflective Extension
of Java

Eric Tanter?, Noury M. N. Bouraqadi-Saadani!, and Jacques Noyé!

! Ecole des Mines de Nantes
La Chantrerie - 4, rue Alfred Kastler
B.P. 20722
F-44307 Nantes Cedex 3
France
{Noury.Bouraqadi, Jacques.Noye}@emn.fr
2 University of Chile
Faculty of Physics and Mathematics
Computer Science Department
Av. Blanco Encalada 2120, Casilla 2777
Santiago, Chile
etanter@dcc.uchile.cl

Abstract. Since version 1.1 of the Java Development Kit, the Java re-
flective facilities have been successively extended. However, they still
prove to be limited. A number of systems (e.g. MetaXa, Guarand, Kava,
Javassist) have addressed this limitation by providing reflective exten-
sions of Java with richer MetaObject Protocols (MOPs). All these exten-
sions provide a particular infrastructure that reflects the commitment of
the designer to particular trade-offs between efficiency, portability, ex-
pressiveness and flexibility. Unfortunately, these trade-offs are not satis-
factory for all applications, since different applications may have different
needs. This calls for breaking down the building of a reflective extension
into different components that can be specialized in order to fit specific
needs. We qualify such a reflective extension as open. In this paper, we
present Reflex, a prototype open reflective extension of Java. As such,
Reflex is a working reflective extension implemented by composing ba-
sic building blocks organized following a framework. Reflex comprises
the definition of the framework, default generic components and some
specialized components.

1 Introduction

Our initial objective was to apply a reflective extension of Java to enhance mobile
agent systems with regards to the way the resources attached to a mobile agent
are handled upon migration (see [23]). Using a reflective extension in such an
application domain implied several strong requirements such as portability and
the ability to attach a metaobject to only some specific instances of a given class.

When looking around for appropriate reflective extensions, we could not find
one that would fit our needs. We therefore started implementing our own simple



extension based on Javassist [5]. In this extension [23], a reflective object was
attached to a unique metaobject which understood a single MOP (MetaObject
Protocol) method for trapping method invocations. That is, the metaobject was
activated on each invocation of a public method of its reflective object through
hooks introduced via code transformation. These hooks were looking as follows:

metaobj . trapMethodcall (args) ;

Later on, we discovered that, in some cases, it was necessary to give control
to metaobjects when their base object was being serialized. However this fea-
ture was not offered by our simple reflective extension. The code transformation
process was extended in order to add to each reflective class a method of the
Java serialization API, writeReplace, automatically invoked when serialization
occurs, which was made to invoke another method on the metaobject, in the
following way:

metaobj . trapSerialize(args) ;

This means that the MOP was extended with a new method. The annoying
part of this was that the previously developed metaobjects were not compatible
with the new MOP, since they did not implement the new method. It was all
the more annoying as this extended MOP was only required for some particular
objects and metaobjects.

In fact, the issue we encountered there is a recurrent one. On the one hand,
there are high-level reflective extensions providing hardwired choices about MOP
definition and hook introduction, as well as about some important trade-offs
such as performance vs. portability. What happens then if these choices are not
compatible with the application requirements? On the other hand, there are
low-level byte-code manipulation APIs allowing the definition of a custom-built
reflective extension, at some non-negligible development cost. There is no middle
ground, no reflective extension that would both limit the number of hardwired
choices and allow seamless customization and extension in order to suit the
requirements of a particular application or class of applications.

This paper suggests that providing such a reflective extension, which we ar-
guably qualify as open, is a worthwhile task. It presents Reflex, a prototype
open reflective extension of Java. Reflex is a working reflective extension im-
plemented by composing basic building blocks organized following a framework.
Reflex comprises the definition of the framework, default generic components
and some specialized components. This introduces, besides the classical roles
of metaobject programmer and end-user, a new role in the development of a
reflective application: the architect of the metalevel, who is responsible for defin-
ing, based on the framework as well as a number of existing building blocks, a
fully-defined reflective extension.

The main ideas on which Reflex is based are the definition of a generic MOP
and the reification of the code transformation process as an extensible entity.

The idea of a generic MOP replaces the idea of a global, all-encompassing,
MOP since needs in this regard are unpredictable. It is of course possible to



offer a large MOP, but it will never cover all possible needs. In general, a MOP
method is devoted to handle a particular type of event occurring at the base
level, like method invocation, serialization, creation...Even if these types of
event could be completely identified, the way each type of event has to be dealt
with cannot be predicted. For instance, in the case of method invocation, there
is a possibly infinite set of ways to deal with it: one could like to handle accessor
methods in a particular way (therefore requiring a method like trapAccessor),
or to handle methods distinctly, depending on some method categories (hence
requiring methods like trapMethodCategoryA,...). This is why Reflex is based
on a generic and minimal MOP consisting of a single method, called perform
due to its similarity with the perform method of Smalltalk. This method takes
as its first argument a string describing the event. Metaobject invocations, and
therefore hooks, look as follows:

metaobj .perform(event, args);

To put the generic MOP into practice, these hooks must be inserted where
needed. The corresponding code transformation is reified as an extensible entity,
which we call a class builder, in order to set up the appropriate hooks within a
given class, using subclassing when the class cannot be modified.

The following section, Sect. 2, comes back on the requirements that should
be met by an open reflective extension. Section 3 describes Reflex, a first step
towards such an extension, details its main concepts, the generic MOP and
class builders, its architecture, and shows how it meets the above-mentioned
requirements. Section 4 provides some examples that illustrate the use of Reflex.
Section 5 discusses related work, Sect. 6 future work and Sect. 7 concludes.

2 Requirements

This section reviews the basic requirements in terms of portability, expressive-
ness, and efficiency which led to the design of Reflex. Apart from the fact that
portability is not compromised over, great care is taken not to discard any option
too early.

2.1 Portability

A major benefit of Java is its portability. In our opinion, this major benefit
should not be lost when considering a reflective extension. It would be somehow
contradictory to provide an extension which would include portability restric-
tions! We have previously mentioned that the initial target application of Reflex,
mobile agents, requires portability. We expect many applications of a reflective
extension of Java to share such a requirement.

This discards the idea of relying on a specific virtual machine or just-in-time
compiler, as considered by systems such as Guarand [18] or MetaXa [13], as
well as extending the VM with native, and therefore platform-dependent, code



through the Java Native Interface (JNI), as in Iguana/J [19]!. This also means
that the hooks intercepting base level events should be introduced through code
transformation (either byte-code or source-code transformation). Moreover, in
order to be 100% Java compliant this transformation should be restricted to
application code. Java core classes should be kept untouched.

2.2 Expressiveness of the MOP

Let us first consider how the link between the base and the meta-level is han-
dled. In the following, we shall refer to this link as the metalink. For the sake
of generality, we shall assume that the metalink is instance-based (rather than
type-based), has cardinality n-n (that is, a metaobject can be associated to sev-
eral objects and, conversely, an object to several metaobjects), and is dynamic,
making it possible to dynamically adapt the behavior of a base object.

A second important issue is the definition of the base events. A quick review
of the literature on the applications of reflection (see, for instance, [3,20,17])
shows that a simple MOP providing only control of method invocation covers
the needs of a large range of applications. However, application developers may
need metaobjects that control other events than method invocation (e.g. object
creation), or may need to handle these events in an adapted manner (e.g. for per-
formance enhancements, or to introduce method categories). We have previously
mentioned our need to control object serialization.

This means that the architect of the metalevel should be able to define new
kinds of events together with the corresponding hooks. This includes the defini-
tion of the hooks, the definition of the code transformation responsible for their
introduction and the time when this code transformation takes place. Note that,
in a given application, the set of events of interest may vary, at least from one
type of object to the other, if not from one object to the other. In the latter
case, the introduction of different hooks should nevertheless keep the objects
type-compatible. Actually, the set of events of interest could even vary along the
lifetime of an object. We shall assume here that all the potential interesting
events are known when the hooks are introduced. However, we do not assume
any specific time (compile time, load time or object creation time) for hook in-
troduction. This means that a standard, non-reflective, object (an object which
is not hooked to the metalevel) may be turned into a reflective one.

Finally, expressiveness also covers metaobject composition, i.e. assembling
the metaobjects attached to a given base-level object. Let us note that this goes
beyond the provision for a metalink of cardinality n-n as soon as the different
metaobjects associated to a given base object interact. A composition policy
describes the strategy according to which metaobjects are assembled. As there
is no universal composition policy, an open reflective extension should make it
possible to support different composition policies and allow the definition of new
policies. For the sake of reusability, composing metaobjects designed to handle
different sets of events should be possible.

! The case for rejecting this possibility is actually weaker and would require a more
thorough discussion.



2.3 Efficiency

The use of reflection introduces two different kinds of overhead. There is one
kind of overhead which is due to the introduction of reflection, more precisely
the introduction of hooks in base-level code. There is another kind of overhead
which is due to the execution of the hooks. Paying these costs for any class
and object would be an overkill. There is therefore a basic rule which says that
these costs should only be paid for classes and objects that require it. This has
a number of implications:

— Reflective and non-reflective objects may live together within an application.
The execution of the standard objects should not be affected by the presence
of the reflective objects. Note that, with respect to the previous discussion
on portability, this requirement is difficult to guarantee when modifying the
standard Java compilation and run-time support.

— It should be possible to apply reflection on an instance basis. Care must be
taken to keep the reflective and non-reflective instances of a given base class
type-compatible.

— Even if the interesting hooks are known at object creation time, it makes
sense to delay their introduction so that a non-reflective object which is
bound to become a reflective one is not slowed down until really needed.
Conversely, if the hooks are not needed any longer, it would be nice to
be able to transform the reflective object back into a non-reflective one.
The decision of delaying hook introduction may depend on the respective
overheads of executing the hooks (with a useless indirection via a dummy
metaobject immediately transferring the control back to the base object)
and introducing the hooks after object creation time.

— It should be possible to choose to perform hook introduction at compile time
(dealing with source code or byte-code) so that the cost of hook introduction
is not incurred at run time (if it matters), or even to merge the base level
and the metalevel as is done in the so-called compile-time MOPs [6], when
both levels and their links are known at compile time. Much more aggressive
optimization techniques could actually be envisionned, based on run-time
code generation [10] and partial evaluation [14,2], but being able to seam-
lessly combine well-known compile-time and run-time reflection techniques
would already be quite a progress.

3 The Reflex framework

Reflex is a prototype working open reflection extension fulfilling the require-
ments presented in section 2. It defines a framework for its components that
can be specialized to meet particular needs. The already implemented compo-
nents respect this framework and can either be extended or simply replaced with
other components fitting into the framework. Such concrete components include
hook introduction for the generic MOP (see sections 3.1 and 3.2) and specialized



MOPs (e.g., the one presented in section 4), and metaobjects implementing a
composition scheme (see sections 3.4 and 4).

The Reflex package (with all source code) available for download at the Reflex
website [24] comes along with several sample metaobjects and programs.

This section focuses on the APIs and abstractions provided to the architect
of the metalevel. The upper part of Fig. 1 shows the main elements of the Reflex
framework. We shall come back to the lower part of the figure, showing an actual
specialization, in the next section. These elements are:

— ReflexMetaobject: an interface defining the basic services provided by a
metaobject,

— ReflexClassBuilder: an interface defining the basic protocol for hook in-
troduction,

— Reflex: a class that allows triggering code transformation (statically or dy-
namically) and attaching metaobjects to base-level objects, and

— ReflexObject: an interface that defines the protocol to access the metaob-
jects linked to a given object. Class builders are responsible for making
reflective classes, i.e. classes defining reflective objects, implement this inter-

face.
Reflex <dinterfacer=

=% create dbject<args=) : ReflexObject Reflexbject

g getReflexEquivalent{<args=) : ReflexObject gettdetacbjech) : ReflexMetaobject

S getMonReflexEquivalentReflexObject ro) : Object sethetaobjectReflextetaobject m)

k|

i

o

e Z2lnterface== <2lntafaces=

2 Reflexhdetaobject ReflexClassBuilder
performiString eperation, Object] args): Object getReflexClass(String classHame) : Class
getClaszBuilden) : ReflexClaz=Builder Z:&

__________________________________ B e

2 | i

2 L

ﬁ Zelnterfaces> InvokeClassBuilder

= InvocationHandler

E‘, handlelnvoke(Method m, Object]] args, ReflexObject receiver) : Object

4

Fig. 1. The Reflex framework and one specialization

3.1 The generic MOP

Fig. 1 shows that, by default, a metaobject implements the interface
ReflexMetaobject, which defines two methods. The Reflex package includes a
default implementation of such metaobject. The method getClassBuilder re-
turns the class builder implementing hook introduction (see below) as required



by this metaobject. A hook is an invocation of perform with two arguments: the
event type and an array of additional parameters depending on the events.

As an example, let us consider hooks for method invocations. In a more “tra-
ditional” MOP, trapping a method invocation would be done using the following
hook:

metaobj .handleInvoke (method, args, receiver);

While, with Reflex, trapping the same method invocation can be done using the
following generic hook:

metaobj .perform("handleInvoke", invokeArgs);

This hook could result, for instance, in the invocation of a method
handleInvoke of the metaobject. The argument invokeArgs describes the base-
level invocation trapped by the hook: method, arguments, and receiver.

Such a MOP makes it apparent that a metaobject interprets base-level events.
It is very flexible in that new event types can be introduced without redefining
the MOP (including generic class builders), which also means that metaobjects
defined in such a context are quite easy to reuse even in the presence of new
events. We shall also see in section 3.4 that it may also help when implementing
a composition policy.

There are however some drawbacks associated to this flexibility. First, the
use of a generic hook has some cost (an additional indirection with a dispatch
on the event type and some argument packing and unpacking) which may turn
out to be prohibitive. Second, the choice of a uniform metaobject type may be
counterproductive in a context where many intended types of metaobjects are
manipulated, with the risk of preventing early type mismatch detection.

This could indeed be a serious problem if Reflex were a closed reflective
extension, which it is not. The architect of the metalevel may choose to extend
the MOP, as will be illustrated in the next section.

3.2 Class builders

Class builders are responsible for hook introduction. A class of class builders
implements the ReflexClassBuilder interface (see Fig. 1), i.e. a class builder is
able to take as input a standard class and return a reflective class. This reflective
class can then be instantiated in order to get reflective objects which are type-
compatible with instances of the initial class.

Therefore, a class builder corresponds to the set of events attached to the
input class. It operationally defines these events as a program transformation
introducing the proper hooks at the proper places in the code. Depending on
the class builder, this code may be either source code or byte-code and the trans-
formation may happen in place (the input class is destructively turned into a
reflective class) or not. In the latter case, subclassing should be used in order to
get type compatibility between instances of the input class and the output class.
Different class builders corresponding to different events can then produce dif-
ferent compatible reflective classes that can coexist in a running system. Class



builders can therefore be built according to the precise requirements (perfor-
mance, dynamic adaptability, events of interest...) of the target applications.
They play an essential role with respect to the flexibility of the framework.

A class builder may first generate an implicit subclass of the original class if
needed (using a SubclassCreator object). It then performs a sequence of trans-
formational operations on this class. Such transformations are reified as entities,
defined in classes such as MetalinkInserter to insert the metalink in the class,
MethodcallHookInserter to wrap methods so that shifting to the metalevel is
done, MethodCopier to copy compiled methods, etc. These transformation com-
ponents are implemented with the Javassist API [5] and therefore operate on
bytecode.

For instance, the generic class builder available in the Reflex package allows
metaobjects to trap, through the generic MOP, invocations of public methods.
This builder first creates a subclass, overrides all inherited public methods, and
wraps them using the generic hook (perform) to give the control to the metalevel.
It then inserts the metalink (reference to a metaobject). Then the generated
subclass can be compiled on disk or not, before being returned for instantiation.
Defining a new class builder is a matter of extending this predefined process
(e.g., by subclassing) or defining a new one (for instance to avoid the generation
of the subclass).

Any reflective class, created via a class builder, implements the ReflexObject
interface, which defines the getMetaobject and setMetaobject methods for
respectively retrieving and setting the metaobject attached to a base reflective
object. This means that, in this still-imature version of Reflex, the metalink has
cardinality n-1, i.e. a base object is linked to a single metaobject (though several
metaobjects can cooperate using a composition scheme).

Note that there is another classical way of introducing hooks: using object
wrappers. This is the technique used in Dalang [26] and the dynamic proxy
classes offered by JDK1.3 [15]. Such a scheme suffers from a number of well-
identified problems [26], in particular from the identity problem and the lack of
type compatibility between a standard, non-reflective, object and its wrapper,
making it reflective. These problems can be circumvented either by merging
the object and its wrapper, as in the successor of Dalang, Kava [26], or by
making the wrapper inherit from the wrapped object, as in the MOP used by
ProActive [4]. In the former case, the issue is then to combine reflective and non-
reflective instances of the same class. [26] mentions the introduction of hooks on
the sender’s side, without more details. In the latter case, there is the cost of an
additional object.

The idea of relying on inheritance in order to control invocations is not
new [9,11]. As for Java reflective extensions, the idea has already been used
by Reflective Java [27]. However, Reflective Java does not provide any creation
protocol (see below), which requires, when programming at the base level, to
know the reflective classes attached to a base class and to manipulate these
classes explicitly.



3.3 Creating reflective objects

The Reflex class (see Fig. 1) defines the creation protocol, i.e. static methods
dedicated to creating reflective objects as well as turning non-reflective objects
into reflective objects (and vice-versa).

The createObject methods are used to create a reflective object from scratch.
These methods should be used instead of new statements by the application pro-
grammer when a reflective version is needed?. The createObject method exists
in different overloaded versions. The first argument is always the name of the
class to be instantiated (with the idea that, behind the scene, a reflective version
of it is going to be used). One version of the createObject method takes a sec-
ond argument which is the metaobject to attach to the created reflective object.
As previously seen, the metaobject gives access to the class builder to use to
create the appropriate reflective class in case this class has not been constructed
yet. Another version takes as second argument the class builder. The metaobject
is then a default metaobject which does not modify the behavior of the object.

The getReflexEquivalent methods are used to build a reflective instance
from an existing, non-reflective, one. As, in Java, there is no way to dynamically
change the class of an object, this reflective instance is a shallow copy® of the non-
reflective instance. The getReflexEquivalent method exists as well in different
overloaded versions. The only difference with the createObject methods is that
the first argument is an object (the one to get a reflective equivalent of) instead
of a string representing the name of a class. A dual getNonReflexEquivalent
method makes it possible to produce, again through cloning, a non-reflective
object from a reflective one.

3.4 Composition framework

Reflex does not enforce the use of a particular composition scheme, nor does it
enforce the use of a composition scheme at all. However, to simplify the creation
of such composition schemes, the Reflex framework includes a generic composi-
tion framework.

This framework simply makes explicit the distinction that we see between
three types of metaobjects, composers, extensions, and interpreters:

— A composer acts as a facade [12] of the set of composed metaobjects. It
defines the composition policy and is in charge of managing the construction
and evolution of the composition set.

— An interpreter defines a complete meaningful interpretation of base-level
events (e.g., method invocation). A remote call metaobject is an example of
an interpreter.

— An extension simply extends the interpretation of such events with some
extra behavior. A trace metaobject is an example of an extension.

2 Obviously, this is not needed if the original class has been directly modified, may it
be at compile time or load time.
3 The values of the object fields are not copied recursively.



10

The generic composition framework therefore consists of three empty inter-
faces, Composer, Interpreter, and Extension, deriving from the root interface
ReflexMetaobject. Section 4 mentions a concrete composition scheme deriving
from this framework.

A composer should be as generic as possible, hence it should make as few as-
sumptions as possible on the types of the metaobjects it will compose. Therefore,
since metaobjects in the composition set will not be retrievable directly through
the metalink, and may offer public methods for configuration that may be in-
voked from the base level, the composer has to offer a communication channel
between the base level and the composed metaobjects.

This communication channel is based on the perform method. In a chain
of composed metaobjects, when a metaobject receives a message, it checks if it
knows how to handle it. If so, it performs the associated operation, otherwise it
ignores it. In any case, it ends up forwarding this message to the next metaobject
in the chain. Messages can be sent in order to invoke a particular method on a
specific metaobject, or to perform a kind of broadcast within the composition
chain. This mechanism is illustrated in section 4.3.

4 Reflex in practice

In this section we successively illustrate the use of Reflex for an architect of the
metalevel through a MOP extension, for a metaobject programmer through the
development of a metaobject, and for an application programmer through the
creation and manipulation of a reflective object. We end by showing how the
generic hook of Reflex can be used to control a new kind of event and support
heterogeneity of metaobjects.

4.1 Perspective of the architect of the metalevel

Defining the MOP. The Reflex framework can be specialized in order to fit
application requirements. The architect specializing the framework can intro-
duce a new MOP, with a default implementation, define which hooks will be
introduced and how. The lower part of Fig. 1 shows a specialization of the Re-
flex framework that we developed for applications for which trapping method
invocations is a major feature. This specialization consists of definitions of:

— an extended MOP (interface InvocationHandler) that defines a method for
handling method invocations, handleInvoke,

— a specific class builder (class InvokeClassBuilder) that introduces hooks
for trapping invocations of public methods, through the new MOP method
handleInvoke.

The hypothesis here is that performance is an issue with metaobjects per-
forming, on average, very little work, which means that the cost of jumping to
the metalevel should be minimized.



11

Defining a composition scheme. The architect of the metalevel can then
design and implement a composition scheme. We already extended Reflex with
such a scheme, inspired by Mulet et al. [16]. In this scheme (see Fig. 2) each
extension metaobject performs its metaprocessing and then gives the control
to the next metaobject in the cooperation chain. The chain composer ensures
that there is always one and only one interpreter placed at the end of the chain.
Therefore, extensions in this scheme are directly linked to another metaobject
(which can be another extension or an interpreter) and explicitly cooperate with

Y

© composer O extension . interpreter

O base object — reference

Fig. 2. Composition chain

4.2 Perspective of the metaobject programmer

Now that the metalevel architecture has been set up, the metaobject programmer
can start implementing metaobjects. These metaobjects conform to the MOP
defined by the architect of the metalevel, and possibly make use of a composition
framework. We illustrate here the development of a configurable trace metaobject
for the MOP defined by the InvocationHandler interface, using the composition
framework presented above.

The Trace class is declared as implementing the base interface for extensions
in the chain composition scheme. The role of such a metaobject is to trace, on
a given output, the method invocations that occur on a set of base objects.
This trace is selective: it applies to some methods only. To this end, the trace
metaobject aggregates a hash set containing the names of the methods to trace.
This hash set and the target print stream on which the trace is performed can
be given at instantiation time or later, and can be updated dynamically. The
simplified (without exception handling) implementation of the handleInvoke
method is as follows (out is the target print stream object, and toTrace is the
hash set containing the names of the methods to trace):

public Object handleInvoke(Method m, Object[] args,
ReflexObject receiver){



12

if (toTrace.contains (methodname)) (¢D)
out.println("call: " + m.getName + " with: " + args ); (2)

return this.getComposed() .handleInvoke(m, receiver, args); (3)

First, the trace metaobject* checks if the hash set contains the name of the
invoked method (1). If it does, a trace is produced, giving the name of the method
and its arguments (2). The invocation is then forwarded to the next metaobject
in the chain (3). Depending on the exact use of such a metaobject, there may be
situations where a trace is generated for a fraction of the invocation, in which
case, on average, the metaobject does not do much and performance becomes
an issue. It makes sense to use a specific MOP.

Since the trace metaobject is a configurable one, different public services
for setting it up are offered. These services include setting the methods to
trace (setMethodsToTrace(HashSet), addMethodToTrace(String), etc.) and
the print stream on which to perform the trace (setOutput (PrintStream)). All
these public methods can seamlessly be invoked by the base level at any time,
by using the perform method, as illustrated later on.

4.3 Perspective of the application programmer

Once the library of metaobjects up and ready, the application programmer can
introduce metaobjects in his application. His role is basically that of identifying
which objects should be reflective, and which metaobjects should be attached to
each of these objects (even if this is actually hidden behind code transformation
tools and wizards). Let us illustrate the creation of a reflective vector to which
a trace metaobject is attached.

The first step is to create and set up the metaobject to be attached to the
base object:

ChainComposer composer = new ChainComposer(); (1)
Trace trace = new Trace(); (2)
composer .addExtension(trace) ; (3

First, the composer is instantiated (1). Since no interpreter is specified in the
constructor, the composer automatically instantiates a default interpreter, with
default semantics Then the trace metaobject is created (2). Finally, the trace
metaobject, which is an extension metaobject, is inserted into the composition
chain managed by composer (3).

Once this is done, the reflective object can be instantiated, using the services
of the Reflex class:

Vector v = (Vector) Reflex.createObject("java.util.Vector",
composer) ;

4 For a more realistic implementation of a trace metaobject, we refer the reader to the
samples included in the Reflex package



13

The createObject arguments indicate that a reflective instance of
java.util.Vector should be created, with the metaobject composer attached
to the instance. When this statement is executed, the createObject method
queries the composer for the class builder to use, and then delegates to the class
builder the task of retrieving the reflective Vector subclass. At this point, if the
reflective subclass has already been created, it is loaded if needed. Otherwise, it
is created and loaded dynamically. The createObject method instantiates the
reflective class, and attaches the metaobject to the created instance. Finally, it
returns the reflective object.

Now, v is a reference of (declared) type Vector that points to a reflective
object, instance of a reflective subclass of the Vector class. Let us suppose that,
later on, the print stream used to perform the trace has to be updated. This
must be done via an invocation of the setOutput method on the trace metaob-
ject. Unfortunately, the metaobject is not directly accessible from the base-level
object since the metalink only gives access to the composer. The composer be-
ing generic, it does not understand setOutput. This problem is circumvented
by invoking the perform method on the composer. The first argument of the
invocation is the "setOutput" string. The composer will forward this event to
metaobjects of the composition chain. Eventually, the event will reach the trace
metaobject, and will be processed:

PrintStream file = new PrintStream(
new FileQutputStream("trace.log")); (1)
Reflex.sendEvent ("setOutput", v, file); 2)

First, a print stream object is created on the desired output file (1). Then,
a "setOutput" event is sent, together with its argument (2). This sendEvent
method is static method of the Reflex class. This method is a useful shortcut
which casts v to Ref lexObject, retrieves a reference to the metaobject associated
to it, and packs the arguments into an array of objects in order to be able to
invoke the perform method.

4.4 Handling heterogeneous metaobjects

In this section, we illustrate how the generic hook of Reflex can be used to control
a new kind of event and support heterogeneity of metaobjects.

In the context of mobile agents, an agent is normally seen as a closed en-
tity which encapsulates all its data. Therefore, upon migration, all the objects
that an agent references are passed by copy with it. However, this policy is not
always desirable: some objects should be passed by reference, for instance if
they belong to other agents or if they are huge and should be accessed lazily.
This is feasible in Java using Remote Method Invocation (RMI) [22]. How-
ever, RMI is very demanding on the class to be passed by reference. It first
has to implement the Remote interface, and, moreover, it has to be a subclass of
UnicastRemoteObject. We would like a more flexible system allowing any object
to be passed by reference, without any constraint on its class. Upon migration of



14

the agent, passing the object by reference means passing a proxy to the object
rather than the object itself. This can be done by making the object reflective
and attaching to it a particular metaobject. Such a metaobject is informed when
serialization occurs and can specify an alternative object for serialization (the
proxy). Once passed, the proxy is controlled by a metaobject which performs all
method invocations remotely through the network.

We therefore need to give the control of serialization to metaobjects. The
Java serialization API [21] offers a method, writeReplace, which can be used
to specify an alternative object for serialization. Therefore, reflective objects
should implement this method and a hook has to be inserted so that when this
method is invoked automatically by the serialization process, the metalevel is
informed and has the possibility of specifying an alternative object (such as a
Proxy).

We have implemented a new class of class builders, SerializeClassBuilder,
which extends InvokeClassBuilder. The SerializeClassBuilder seamlessly
adds a writeReplace method to each generated class using a MethodCopier
object. This method, defined below, plays the role of a generic hook:

private Object writeReplace()
throws ObjectStreamException {

(1) ReflexMetaobject mo = this.getMetaobject();
(2) Object replace = mo.perform("handleSerialize",

null);
(3) if(replace == null)
(4) return this;
(56) return replace;

}

When serialization on the base object occurs, this method is invoked. It first
retrieves the metaobject associated to the base object (1), and sends to this
metaobject a "handleSerialize" event (2). If the result is null (3), i.e. no
metaobject understood the operation to perform, then the default policy applies
(4). Otherwise, the alternative object is returned (5).

If a metaobject wants to be informed when serialization occurs, it simply has
to implement the handleSerialize method. Heterogeneous metaobjects can
now cooperate, some understanding the handleSerialize method, some not.
All existing metaobjects can be used seamlessly along with metaobjects newly
developed for handling serialization.

5 Related work

The work on MetaJ [8] shares with ours the objective of making it possible to
tailor reflective extensions to the specific constraints of its target applications.
However, it only deals with meta-circular interpreters. On the one hand, this
makes it possible to adopt a semantics-based approach, and therefore to be very



15

systematic and deal with formal correctness. On the other hand, the gap with
practical considerations such as performance is far from being bridged.

On the opposite, all the practical Java reflective extensions [28,26,13,18]
provide a fixed MOP with some universal decisions made on the trade-offs be-
tween portability, expressiveness, and performance. The only point on which
Reflex does not offer any freedom is portability, on the basis that this decision
is actually set by the very definition of Java.

In spite of its fixed MOP, the case of Iguana/J [19] is peculiar. Indeed, its
MOP seems to cover all the elementary execution events, for which metaobjects
have already been designed. Iguana/J introduces then the idea of combining
these metaobjects through protocol declarations, protocols which can then be,
again declaratively, associated to base classes. This is a very elegant and flex-
ible way of structuring customized metalevels from elementary building blocks
with the protocols themselves providing higher-level building blocks. The imple-
mentation is based on the Java Native Interface and should therefore be still
reasonably portable with an efficient capture of the basic events (but more im-
plementation work). However, some points would require some clarifications. In
particular, it seems that base classes are associated with protocols, which pre-
cludes the possibility of sharing metaobjects. Also, hook introduction is said to
be performed by the native library! Finally, the model does not consider the
possibility of performing hook introduction at the source code level or combin-
ing compile- and run-time MOPs. In Reflex, the introduction of class builders
makes it much easier to combine these different approaches.

As for composing metaobjects, with the exception of MetaXa [13] and
Guarana[18], the other Java reflective extensions do not offer any help. In
MetaXa, the composition scheme is fixed. The VM systematically organizes the
metaobjects in a chain of metaobjects, following the order of introduction of
these metaobjects. Guarana is more open in that it offers metaobjects similar to
the composers introduced in the specialization of Reflex as well as an extensible
communication protocol similar to the propagation of events realized through
the use of perform.

6 Future work

In its current state, Reflex still suffers from some limitations to claim to be a
full-fledged open reflective extension of Java. We have already started working
on these limitations.

6.1 Metalink cardinality

The current version of Reflex only supports a metalink cardinality 1-n, meaning
that a base object can only be linked to one metaobject, and a metaobjet can
control several base objects. Though a composition framework can be used to
allow different metaobjects to participate in the control of a base object, a more
mature open reflective extension should support a metalink cardinality n-n.



16

Supporting such a cardinality may enhance performance since, for a given
object, different hooks can then directly give control to the relevant metaobject
(or set of metaobjects). Metaobjects that are not interested by the corresponding
event are not affected any longer.

6.2 Allowing more optimizations

Some applications do not require the flexibility provided by features such as the
ability to dynamically change the set of metaobjects attached to a base object.
In such a case, hooks should not be introduced, instead base and meta levels
should be merged, like in compile-time MOP such as OpenJava [25].

Also, allowing the coexistence of non-reflective and reflective instances (pos-
sibly with different sets of controlled events) is a motivation for not directly
modifying a base class and generating implicit subclasses. However, some ap-
plications do not require such a feature, e.g. when all instances of a class have
to be reflective with the same set of controlled events. In this case, it is better
to directly introduce hooks in the base class than to generate subclasses. This
direct introduction of hooks into the base class should possibly be made at load
time in order not to modify the standard version of the base class.

Conceptually, Reflex allows for such optimizations through the use of par-
ticular class builders. Some class builders could operate by merging the base
and meta levels at compile time, some by introducing hooks statically in a class
(or source) file, some others by introducing hooks in a base class at load time.
However all these class builders have not been implemented yet.

6.3 Class builders and dynamic adaptability

A base-level object can be controlled by several metaobjects, either through
the use of a composition framework in order to share a metalink, or through
a metalink cardinality n-n. Each of these metaobjects is designed to react to
particular kind of events, requiring the necessary hooks to be introduced in the
class of the base-level object. As a consequence, the base-level object has to be
an instance of a class that includes the union of all the hooks needed by the
metaobjects used to control it.

Two issues derive from this statement. The first one deals with the spec-
ification of the required hooks and how they are mixed together in order to
obtain the adequate class to instantiate. As of now, a metaobject has to be
able to specify which class builder should be used. The composer then needs
rules determining which available class builder meets the needs of all the com-
posed metaobjects. We plan to make this specification finer-grained by allowing
metaobjects to specify their needs in terms of basic transformations, and having
a generic class builder able to compose all these transformations.

The second issue concerns the dynamic evolution of the set of metaobjects
that control a base-level object. Conceptually, when adding a metaobject that
requires hooks that are not present in the class of the base-level object, a new
reflective class must be generated, with all the hooks. The instantiation link of



17

the base-level object has then to be changed in order to make it an instance of the
newly generated class. However, changing the instantiation link is not possible in
Java, nor is it possible to really replace an existing object by a new one. The only
implementable solution we envision at this time is that of obtaining a shallow
copy, instance of the new class, similarly to what is done when “converting” a
non-reflective object to a reflective one. However, this solution is not satisfactory
for obvious identity problems. The possibility of class reload, offered by the
upcoming JDK 1.4 [1] may help solve this issue.

6.4 Performance

One of the goals of Reflex is to minimize performance loss by providing the
minimum reflective system needed for a particular application. In order to vali-
date the gain, we plan to carry performance tests between Reflex and other
non-customizable reflective extensions. Also, we plan to compare the use of the
generic MOP of Reflex to that of a specialized MOP. Beforehand, we plan to
study how the implementation of the base components of Reflex could be opti-
mized.

7 Conclusion

This paper has presented Reflex, a prototype open reflective extension of Java.
As such, Reflex is a specializable framework and a toolkit that can be used
to build or adapt reflective extensions that meet particular needs. It fills the
gap between low-level byte-code manipulation APIs allowing the definition of
custom-built reflective extensions and high-level non-specializable reflective ex-
tensions through two main concepts: a generic MOP and class builders.

As of now, a working specialization of Reflex has been implemented and
applied to mobile object systems. We plan to pursue the validation of Reflex
with new applications, testing different composition schemes, and work on the
limitations to Reflex openness.

The Reflex package (binaries, source code, samples and documentation) can
be obtained from the web at the following URL:

http://www.dcc.uchile.cl/ etanter/Reflex

Acknowledgements

This research is supported in part by the EU-funded IST Project 1999-14191
EasyComp.

References

1. V. Aggarwal. The magic of Merlin — how the new JDK 1.4 levitates its functionality.
Java World, March 2001.



18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

M. Braux and J. Noyé. Towards partially evaluating reflection in Java. In ACM
SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manip-
ulation, Boston, MA, USA, January 2000. ACM Press. ACM SIGPLAN Notices,
34(11).

J.-P. Briot, R. Guerraoui, and K.-P. Lhr. Concurrency and distribution in object
oriented programming. ACM Computer Surveys, 30(3), September 1998.

D. Caromel, W. Klauser, and J. Vayssiere. Towards seamless computing and meta-
computing in Java. In Concurrency Practice and Ezperience, volume 10. Wiley &
Sons, September 1998.

S. Chiba. Load-time structural reflection in Java. In E. Bertino, editor, ECOOP
2000 - Object-Oriented Programming - 14th Furopean Conference, number 1850 in
Lecture Notes in Computer Science, pages 313-336, Sophia Antipolis and Cannes,
France, June 2000. Springer-Verlag.

S. Chiba and M. Tatsubori. Yet another java.lang.class. In ECOOP’98 Workshop
on Reflective Object-Oriented Programming and Systems, Brussels, Belgium, July
1998.

P. Cointe, editor. Proceedings of Reflection ’99, volume 1616 of Lecture Notes in
Computer Science, Saint-Malo, France, 1999. Springer-Verlag.

R. Douence and M. Siidholt. A generic reification technique for object-oriented
reflective languages. Higher-Order and Symbolic Computation, 14(1), 2001. To
appear.

S. Ducasse. Evaluating message passing control techniques in Smalltalk. Journal
of Objet-Oriented Programming, June:39-50, 1999.

Proceedings of the ACM SIGPLAN Workshop on Dynamic and Adaptive Com-
pilation and Optimization (Dynamo’00), Boston, MA, USA, January 2000. ACM
Press. ACM SIGPLAN Notices, 35(7).

B. Foote and R.E. Johnson. Reflective facilities in Smalltalk-80. In N. Mey-
rowitz, editor, OOPSLA’89, Conference Proceedings, pages 327-335, New Orleans,
Louisiana, USA, October 1989. ACM SIGPLAN Notices, 24(10).

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns : Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

M. Golm and J. Kleinéder. Jumping to the meta level, behavioral reflection can
be fast and flexible. In Cointe [7], pages 22-39.

N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Pro-
gram Generation. International Series in Computer Science. Prentice Hall, 1993.
SUN Microsystems. Dynamic proxy classes.
http://java.sun.com/j2se/1.3/docs/guide/reflection/proxy.html, 1999.

P. Mulet, J. Malenfant, and P. Cointe. Towards a methodology for explicit compo-
sition of metaobjects. In Proceedings of OOPSLA’95, pages 316-330. ACM Press,
October 1995.

H. Okamura and Y. Ishikawa. Object location control using meta-level program-
ming. In Proceedings of ECOOP’94, pages 299-319, 1994.

A. Oliva and L. E. Buzato. Composition of meta-objects in Guarana. In Proceed-
ings of the 5th USENIX Conference on Object-Oriented Technologies & Systems
(COO0TS’99), San Diego, California, USA, May 1999.

B. Redmond and V. Cahill. Iguana/J: Towards a dynamic and efficient reflec-
tive architecture for java. ECOOP 2000 Workshop on Reflection and Metalevel
Architectures, June 2000.

R.J. Stroud and Z. Wu. Using metaobject protocols to satisfy non-functional
requirements. In C. Zimmermann, editor, Advances in Object-Oriented Metalevel
Architectures and Reflection, pages 31-52. CRC Press, 1996.



21.

22.

23.

24.

25.

26.

27.

28.

19

SUN Microsystems. Object Serialization, 1998.
http://java.sun.com/products/jdk/1.2/docs/guide/serialization/.

Java Remote Method Invocation specification. Technical report, SUN Microsys-
tems, 1999. http://java.sun.com.products/jdk/1.2/docs/guide/rmi/.

E. Tanter. Reflex, a reflective system for Java — application to flexible resource
management in Java mobile object systems. Master’s thesis, Universidad de Chile,
Chile — Vrije Universiteit Brussel, Belgium, 2000.

E. Tanter. Reflex Website, 2001. http://www.dcc.uchile.cl/ etanter/Reflex.
M. Tatsubori. An extension mechanism for the Java language. Master’s thesis,
University of Tsukuba, Japan, 1999.

I. Welch and R. Stroud. From Dalang to Kava — the evolution of a reflective Java
extension. In Cointe [7], pages 2-21.

Z. Wu. Reflective Java and a reflective-component-based transaction architecture.
In J.-C. Fabre and S. Chiba, editors, Proceedings of the ACM OOPSLA’98 Work-
shop on Reflective Programming in Java and C++, October 1998.

Z. Wu and S. Schwiderski. Reflective Java: Making Java even more flexible. APM
1936.02, APM Limited, Castle Park, Cambridge, UK, February 1997.



