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ABSTRACT
Aspect-Oriented Programming (AOP) is a promising ap-
proach to modularizing software in presence of crosscutting
concerns. Numerous proposals for AOP have been formu-
lated, some of them generic, others specific to particular
concerns. There are commonalities and variabilities among
these approaches, which are worth exploring. Unfortunately,
in practice, these various approaches are hard to combine
and to extend. This results from the fact that the corre-
sponding tools, such as aspect weavers, have not been de-
signed to be used along with others, although they usually
perform very similar low-level tasks. In this paper, we sug-
gest to include common functionality into a versatile kernel
for AOP. Such a kernel alleviates the task of implementing
an aspect-oriented approach by taking care of basic program
alterations. It also lets several approaches coexist without
breaking each other by automatically detecting interactions
among aspects and offering expressive composition means.
From a review of the main features of Aspect-Oriented Pro-
gramming, we present the main issues that the design of such
an AOP kernel should address: open support for aspect lan-
guages taking care of both behavior and structure, base lan-
guage compliance, and aspect composition. An AOP kernel
for Java is currently under development.

1. MOTIVATION
The variety of toolkits and proposals for Aspect-Oriented

Programming (AOP) [27, 37] and related modularization
technologies for separation of concerns (SOC) [47] illustrates
the range of possibilities for aspect-oriented programming,
either in terms of specification language, binding time, ex-
pressiveness, etc. The design space of AOP is under ex-
ploration, and each proposal is a fixed point or a restricted
region in this space. There are also low-level toolkits that
can be used to create ad hoc AOP systems [13, 15, 19, 39]
to experiment with the design space, but they require rede-
veloping an ad hoc software layer to bridge the gap with a
proper high-level interface.

This work is motivated by the fact that there is a wide
variety of models for AO-related programming, either gen-

eral or domain specific, that are worth experimenting with,
and that, in general, several approaches cannot be combined
simply because they have been designed with a closed world
assumption in mind. We propose a versatile kernel for AOP
that makes it possible to use, and experiment with, vari-
ous approaches, while guaranteeing that approaches do not
break each other.

1.1 Variety of Models
There are different conceptual models for programming

with aspects. For instance, AspectJ [36] relies on the notions
of join points, pointcuts, and advices; Event-based AOP
(EAOP) [24, 26] uses concepts such as crosscuts, monitors,
events, and aspects; models from the reflection community
rather talk in terms of hooks and metaobjects [50, 54, 58],
while the composition filter approach is based on compos-
able method filtering [5]. Interestingly, there are strong links
between these conceptual models, as studied by Kojarski et
al. [41] in the case of reflection and aspect orientation. This
comes from the fact that, in the end, they all boil down to se-
mantic alterations of applications written in a base language.
A model that has some convincing history in describing se-
mantic alterations is the reflective model for structural and
behavioral alterations. However research in aspect orienta-
tion has exhibited important behavioral notions related to
sequences and nesting of events, as exemplified by control
flow and pattern matching of events.

Some approaches adopt general-purpose aspect lan-
guages [6, 36, 46], while others rely on Aspect-Specific Lan-
guages (ASLs, aka. DSALs, Domain-Specific Aspect Lan-
guages). Aspect-specific languages present various advan-
tages, in particular due to the fact that aspects are defined
more concisely and more intentionally, since the language
is close to a particular problem area. Domain-specific ap-
proaches present many benefits: declarative representation,
simpler analysis and reasoning, domain-level error check-
ing and optimizations [18]. Several aspect-specific languages
were actually proposed in the “early” ages of AOP [35, 42,
44], as well as recently, for instance DJCutter [45] for dis-
tributed systems. Wand argued that AOP should refocus
again on domain-specific languages [57].



The key idea is that the most adequate conceptual model
and level of genericity for a given application domain ac-
tually depends on the situation: there is no definitive, om-
nipotent approach that best suits all needs. Furthermore,
when several aspects are to be handled in the same piece
of software, combining several AO approaches often reveals
fruitful [49, 53].

1.2 Compatibility Between Approaches
Combining several AO approaches seems promising. A

positive feedback on a hybrid approach to separation of con-
cerns was reported in [49]. However, in this experiment,
specific tools were developed from scratch to fit the experi-
ment. This confirms that combining several AO approaches
is hardly feasible with today’s tools, since the tools are not
meant to be compatible with each other: each tool even-
tually affects the base code directly, with a “closed world
assumption”.

If several aspects happen to affect the same program
points, they interact [23]. If they are implemented through
different tools that directly transform the program, the re-
sulting semantics is very likely to depend on the order in
which the tools are applied. Interactions among aspects will
be silently and blindly handled (Fig. 1a). If the resulting
semantics appears to be incorrect, then identifying the in-
teraction and resolving it has to be done manually, if at all
possible. This issue presents similarities with the issue of
data races in concurrent programming, acknowledged to be
one of the hardest errors to debug in the area of concurrency.
Indeed, the symptom of the incorrectness may be very hard
to track down to its source.
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Figure 1: The compatibility issue between AOP ap-
proaches.
(a) Different AOP approaches, making a closed
world assumption, are applied together: aspect in-
teractions are blindly treated, jeopardizing the re-
sulting semantics.
(b) A common AOP kernel is used as a mediator to
detect and resolve interactions: each AOP system
only needs to talk to the kernel.

1.3 A Versatile AOP Kernel
To sum up the situation, on the one hand, there are many

approaches to AOP that are worth exploring and experi-
menting with, and on the other hand, there is the issue
that each AOP language is generally bound to its imple-

mentation, typically done from scratch with a closed world
assumption. This gives rise to the compatibility issue men-
tioned above. In order to allow AOP to mature, it seems
crucial that several approaches can be applied to a wide
range of systems and situations, at various scales. Further-
more, efforts should be better focused, without having to
“reinvent the wheel” for each new AOP system.

Our claim is that, since the transformation work done by
AOP systems is very similar, it can be factored out in a
versatile AOP kernel. Each AOP system then talks to the
kernel, instead of attacking directly the base application.
Only the kernel effectively affects the base application, after
having ensured aspects are properly composed (Fig. 1b).

An AOP kernel enables a wide range of approaches, from
well-established to experimental, to work together without
breaking each other. Such a kernel provides core semantics,
through proper structural and behavioral models, generic
enough to support all needed notions (e.g. cflow, aspects of
aspects) in an extensible manner. Designers of aspect lan-
guages can then experiment more comfortably and rapidly
with this kernel as a back-end, focusing on the best ways
for programmers to express aspects, may they be domain
specific or generic.

In this work, we are concerned with the study of a ver-
satile AOP kernel for a unique base language: we do not
aim at multi-language support, or even more ambitiously at
any software representation like IBM’s CME [33, 16], which
attempts to address similarly UML diagrams for instance.
We first want to get valuable feedback from an AOP kernel
dealing with a single base language. When it comes to il-
lustrating our argumentation, we refer to the language with
which we are concretely experimenting, Java.

In the following section, we identify the different features
of an AOP systems. From these features, Section 3 draws a
list of requirements for a versatile AOP kernel.

2. FEATURES OF AOP
AOP proposals are characterized by several features. One

feature relates to the basic implementation technique (dedi-
cated runtime environment, code transformation, etc.), but
this is a non-functional concern for AOP systems, which an
AOP kernel takes care of. We will come back to this point
in section 3.

Another feature is the symmetry of the approach, as dis-
cussed in [32]. In asymmetric approaches to separation of
concerns, there is the notion of a base application to which
aspects are applied, conversely to symmetric approaches
to separation of concerns, like hyperspaces [46] or subject-
oriented programming [31] where such a distinction is not
done. Still, both kinds of approaches use some specific lan-
guage to glue pieces together. We are here interested in
asymmetric approaches: in such a setting, the relation be-
tween aspects and the base application can be characterized
by aspect obliviousness and the binding between the base
application and the aspects.

Aspect obliviousness has sometimes been identified as a
key property of AOP [27]. It refers to the fact that the
base application remains unaware of the aspects that are
applied to it. However it has since been considerably soft-
ened1. First, base code needs to be structured in a sense that

1A discussion on the AOSD mailing list confirms this re-
mark: the idea of “non-invasiveness” is now put forward.



makes it possible for aspects to intervene, implying some
“awareness” of aspects. This was indeed already noticed
in [37], and was a basic idea of the work on open imple-
mentations [48]. As Wand puts it, aspects reason about the
ontology of a base program: this joint ontology is knowl-
edge that is held in common between the base program and
the aspects [57]. Second, industrial applications of AOP
have clearly highlighted that explicitly annotating base code
with semantic meta-information can be of great value, as an
explicit “interface” exposed to aspects: in Wand’s termi-
nology, annotations can be seen as a way to define a joint
ontology that is more abstract, domain-specific, than the
general-purpose, language-based, join point model of typi-
cal AOP languages like AspectJ. Finally, we can add that,
similarly to the difference between metasystems (systems
acting upon other systems) and reflective systems (systems
acting upon themselves), it seems too restrictive to prohibit
the explicit manipulation of an aspect layer by parts of an
application itself subject to aspects.

The binding between the base application and the aspects
can be characterized along two lines [50]. The binding time
refers to the time at which an aspect can be bound to a base
program. In Java, this can be at compile time (pre/post),
at load time, or at runtime (either by the virtual machine or
by the JIT compiler). The binding mode refers to the rigid-
ity of the binding between aspects and the base program.
In particular, it indicates whether a binding can be done
and/or undone dynamically.

Finally, aspect languages can address two types of alter-
ations: behavioral and structural ones. Most work on AOP
has been around behavioral alterations. But an aspect lan-
guage may include a part dedicated to structurally altering
the base program, e.g., adding new members or interfaces
to classes. This is known as introductions or inter-type dec-
larations. Aspect languages like AspectJ [36] or Josh [14]
include both behavioral and structural aspects. A differ-
ence is that AspectJ does not deal uniformly with inter-type
declarations, while Josh does.

2.1 Main Features
An aspect language can be described according to several

features. This section focuses on the most common ones:
the cut, action and binding languages; and mechanisms for
aspect parameterization, instantiation, and scope.

2.1.1 Cut language
The cut language is the language provided to specify the

places where aspects affect the base application2.
A behavioral cut denotes a set of execution points in a

program. Such a dynamic behavioral cut can be projected
(non-injectively) in the program text to a static behavioral
cut, which denotes a set of program points corresponding to
expressions in the program called the shadows [43] of the
execution points.

Whereas a behavioral cut denotes points in the code space,
a structural cut denotes points in the data space where data
structures reside. In other words, a structural cut denotes
program points that correspond to structure definitions, not
expressions. In the case of structures, there is indeed a bijec-
tion between execution points and program points, so it is

2Depending on the proposal, the cut language is either re-
ferred to as a crosscut language [10, 21] or as a pointcut
language [14, 37].

not necessary to distinguish between them: structural shad-
ows do not make sense3.

Cut languages may include the possibility to refer to
points in aspect programs (to apply aspects to aspects), may
allow complex algorithmic cut to be specified [14], and may
be tailored to a particular domain [45].

For instance, AspectJ cuts (pointcuts for behavior and
type patterns for structure) are generic (i.e., not domain-
specific) and can neither refer to aspect program nor de-
scribe algorithmic cuts. Specific features of behavioral cut
languages include the expressiveness to refer to both pro-
gram and execution points (for instance related to control
flow). For instance, Soul/Aop as presented in [10] only af-
fects program points while AspectJ pointcuts can refer to
both program and execution points. But AspectJ pointcuts
are limited with regards to control flow, compared to what
has been proposed by others, for instance [25].

2.1.2 Action language
The action language is used to implement the aspect se-

mantics. Both structural actions and behavioral actions may
be supported. The action language may allow the definition
of stateful aspects.

Behavioral actions basically consist in extending and/or
modifying the behavior of the base application. The expres-
siveness of this language may be restricted or designed to fit
a particular domain, or may be complete.

A structural action language provides means to alter the
data structures of a program, for instance by adding new
members to a class or making a class implement an inter-
face. In a language like Smalltalk [29], such alterations can
be done dynamically, while in Java they can only be done
statically.

2.1.3 Binding language
The binding language is used to specify which action

should be bound to which cut. Many aspect languages do
not decouple this language from one of the two above. For
instance, in AspectJ, the binding specification is tied to the
advice definition: the binding language is merged with the
action language.

Interestingly, the four binding combinations are valid (see
Fig. 2). The definitely most-used combination is to bind
a behavioral action to a behavioral cut. This is the usual
perception of dynamic crosscutting. However, considering a
runtime environment that supports runtime structural mod-
ifications of classes, a structural action can very well be as-
sociated to a behavioral cut. Binding a structural action to
a structural cut is the classical case of introdutions. Less
frequent but yet worthwhile is the binding of a behavioral
action to a structural cut: for instance, checking invariants
or coding rules, like AspectJ’s compile-time warnings and
errors, can be seen as behavioral actions associated to a
structural cut. To sum up, the different possible bindings
between structural and behavioral cut and action are shown
in Fig. 2, with their typical usage.

In the case of behavioral actions, the binding language
usually also makes it possible to specify the kind of control
the aspect has over the considered execution points (before,

3Our analysis of structural cut is actually restricted to the
class level: we do not consider approaches where only some
particular instances of a class are affected by an introduc-
tion.
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Figure 2: Summary of the possible bindings between
structural and behavioral action and cut, and their
typical usage.

after, instead of, etc.), although such a notion becomes ir-
relevant for structural cuts, simplifying the binding specifi-
cation.

2.1.4 Aspect parameterization
Aspect parameterization refers to the possibility of pass-

ing context information from cuts to actions. Providing
context information enhances the expressiveness of the ac-
tion language, and allows for more reusable aspects through
genericity. However, for behavioral cuts, this has a cost at
runtime, especially if the context information is passed in
a generic manner. AspectJ addresses this issue with selec-
tive parameter exposition in pointcuts, similarly to the con-
text exposure mechanism of Josh. For structural cuts, the
issue of aspect parameterization can be simplified: the in-
formation needed is usually reduced to the considered data
structure (in a class-based language, the class subject to
modification).

2.1.5 Aspect instantiation and scope
Aspect instantiation and scope are features of the aspect

language that specify how aspects are instantiated and what
their scope is. For actions bound to behavioral cuts, As-
pectJ supports the common aspect scopes: instance, class
and global, while Josh does not support per-object aspects.
The possibility of discriminating aspect scope with respect
to threads may also be provided. Conversely, an action
bound to a structural cut is usually applied statically, hence
a single global instance suffices.

2.2 Composition of Aspects
Few aspect languages explicitly support aspect composi-

tion. Josh does not provide composition support at all, while
AspectJ provides a limited aspect composition language that
can only state precedence between aspects. More expres-
sive approaches to composition have been justified [10, 21,
22]. These proposals focus on behavioral aspects. Composi-
tion of structural actions has been poorly addressed in the
AOP community, but still, very related work exists in the
language community: work on metaclass composition [8],
mixins [9], traits [51], etc. Finally some approaches aim at
automatic resolution of conflits [17], while others argue for
automatic detection and explicit resolution [21, 51].

2.3 Interactions Application/Aspects
Interactions between an application and applied aspects

need to be characterized in both ways: interactions from as-
pects to the application, and interactions from the applica-
tion to aspects. The action language determines the possible
interactions between the aspect and the base application.

− automatic detection of aspect interactions (behavioral and structural)
− expressive and extensible composition facilities
− implicit and explicit collaboration among aspects

composition

open support for aspect languages

− expressive cut language (general, algorithmic, aspects of aspects)

behavior and structure

− separate binding language and optimized aspect protocol
− complete action language, including structural intercession
− general means of building control flow abstractions

interactions application/aspects

− reified aspects
− safe API for accessing aspects
− proceed−like mechanism

− inheritance, concurrency, security, etc.
− integration into existing environments

base language compliance

Figure 3: Summary of identified requirements for a
versatile AOP kernel.

Interactions between the application and aspects may be
provided in systems where aspects are runtime entities as
such, i.e. aspects are reified. If aspects are inlined within
application code, the application cannot explicitly interact
with them. Conversely, reified aspects are made accessible
through an API for explicit access by the base application.
For instance, in AspectJ, the object representing an aspect
Foo can be accessed with Foo.aspectOf(). An access API
may be limited to read access, or may make it possible to
dynamically change aspects. Changing aspects may relate
to changing actions or cuts, depending on which parts are
reified. For instance, in AspectJ, only advices are reified,
and are not changeable. Conversely, Steamloom [7] fully
reifies aspects, making it possible to access cuts at runtime.

3. REQUIREMENTS FOR A VERSATILE
AOP KERNEL

All the features exposed in the previous section represent
the main variabilities among the family of aspect languages
and systems. The objective of a versatile AOP kernel is to
support the range of aspect approaches by supporting these
variabilities. In this section we extract various requirements
for an AOP kernel in a general setting, summarized in Fig. 3.

3.1 Open Support for Aspect Languages
An AOP kernel makes it possible to use particular AO ap-

proaches for handling particular aspects. The family of as-
pect languages being open-ended –all the more as it includes
generic and specific aspect languages–, the kernel must pro-
vide open support for aspect languages.

The language and underlying conceptual model of an AOP
kernel (hereafter L0) has to be general enough to handle all
the variabilities presented in Section 2. We have identified
three main concerns for L0, namely behavior, structure and
composition (Fig. 4). For behavior and structure, both in-
trospection and intercession should be supported: introspec-
tion deals with program analysis and is therefore interest-
ing for supporting cut languages, while intercession deals
with program transformation, and hence supports action
languages. For composition to be manageable by an AOP
kernel, each aspect language Li must not be implemented as
a code transformer directly affecting base application code,
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Figure 4: Elements of the AOP kernel approach.
Each AOP system offering an aspect language Li is
implemented as a translator AOPi to the common
kernel language L0.
The kernel language has 3 main parts: one for be-
havioral manipulation of the base application, one
for its structural manipulation, and one for specify-
ing composition.

but rather as a translator from Li to L0 (AOPi).
The behavioral and structural parts of L0 must be an

adequate target for any aspect language, while the com-
positional part has to ensure that a) aspect languages can
express their composition facilities with it, b) interactions
among aspects, possibly defined with different languages,
are detected and can be resolved, c) collaboration between
aspects is correctly handled. All these issues are discussed
in the remaining of this section.

3.2 Behavior and Structure

3.2.1 Cut
The kernel language must support expressive cuts, sup-

porting aspects of aspects and complex algorithmic cuts.
With regards to behavioral cut, behavioral notions high-
lighted by research in aspect-oriented programming (e.g.,
control flow) ought to be supported by the conceptual model
at a generic level in order to allow various notions to be im-
plemented in various ways. Generic introspective abilities
of both program text and program behavior pave the way
for such powerful cut support. For class-based languages,
the intuitive representation of program text is based on the
class-object model [56], which represents a program by class
objects aggregating member objects (fields, methods). This
model follows the seminal model for structural reflection
developed in Smalltalk-80 [29]. Tools like Javassist have
extended this model down to the reification of expressions
within method bodies [15].

The necessity of introspecting program behavior implies
being able to discriminate amongst execution points that
result from the same program point (expression). This dis-
crimination can be done by filtering execution points based
on their runtime description, and by looking at control flow
relations. As a matter of fact, different variants of control
flow can be designed. For instance, control flow can be ex-
posed as a simple call stack depth counter, or as an event
stack, offering the various elements of the call stack for in-
trospection. This allows for more expressive control flow
conditions in the cut language. Furthermore, control flow,
as considered in most proposals (e.g., AspectJ and Josh),
is only about nesting events, not about their sequences gen-
erally speaking. Research on event-based AOP and trace-
based aspects [21, 22, 23, 24, 52, 28] has justified the ben-
efits of being able to define aspects that apply depending
on the execution history. Douence et al. have studied the

formalization of such aspects [21, 22, 23, 24]. Sereni et al.
have proposed control flow as regular expressions on the call
stack [52]. Filman et al. have further extended the design
of a language of events in order to fully express relation-
ships among events, such as timeframe of occurrence [28].
Recently, Douence and Teboul have proposed an expressive
cut language for control flow [25]. Thus, a generic means to
build control flow abstractions is required.

3.2.2 Action
To handle all possible action languages, the kernel ac-

tion language should support stateful aspects, so that they
can maintain information across execution. Since this lan-
guage should also be complete, using the base language is
the logical choice. To some extent, a behavioral action can
be merged within base code statically, like in Josh. Further-
more, for structural actions, a complete set of structural
transformations has to be provided. This part consists in
offering full structural intercession on the application. Since
the base language may not directly support this (like Java),
the use of a structural reflection tool (like Javassist) may be
required.

3.2.3 Binding
The binding language deserves special attention, in par-

ticular when considering behavioral cut. As mentioned be-
fore, the binding language of AspectJ is merged with the
action language: the advice body of an aspect is tied to the
binding to a pointcut. This brings performance benefits,
since only selected parameters are exposed by a pointcut
to an advice. Also, from an ease-of-use perspective, it has
the benefit of almost hiding to the programmer the vertigo
of writing metaprograms. However, from a software engi-
neering perspective, this limits the possibilities of reusing
a given advice in a different context. Looking back at the
history of reflection and runtime metaobject protocols, the
position is the opposite: the binding language is tied to
the cut language. The reified information is both rich and
standardized, determining the actual protocol of metaobjects
(hence the term “metaobject protocol”, MOP). Metaobjects
are highly generic and hence reusable, but more costly and
complex to write.

Both approaches have their advantages. For building mid-
dleware or other kind of infrastructure software, the gener-
icity and high reusability of metaobjects is of great value.
For localized AOP, the non-genericity of aspects is not a
problem, it is even a plus, simplifying the task of aspect
programming. This duality of approaches with respect to
the binding language naturally calls for a versatile AOP ker-
nel that keeps the binding language separated from both the
cut and action languages, and that provides mechanisms for
specializing and optimizing the information bridge between
execution points and aspect bodies, which we refer to as the
aspect protocol.

3.3 Composition
Two aspects are said to interact if they affect the same

program (or execution) point [23]. It is true that aspects
may interact semantically without affecting the same points.
However, it is very hard to capture this kind of “abstract”
interactions between aspects. We therefore only focus on
the former kind of interactions. In this respect, we concur
with Douence et al. that the resolution of aspect interactions



ultimately depends on the application semantics and hence
cannot be decided automatically, although such interactions
can be detected automatically [21, 38]. Hence, the AOP
kernel should detect interactions and warn the programmer,
so that composition strategies can be specified to resolve the
interactions.

Composition should be supported in an expressive and
flexible manner. A poorly expressive composition language,
like in AspectJ, where only aspect precedence can be speci-
fied, is not sufficient to handle complex interactions between
aspects [10, 21, 22]: composing aspects does not solely re-
fer to specifying the order in which they apply, but also,
for instance, to possibly condition their application to the
presence and application of other aspects. Composition is-
sues relate to both structure and behavior. With regards to
aspect precedence as supported by AspectJ, it is in fact a
nesting of aspects: for aspects that act around a given oper-
ation, a proceed mechanism is provided in order to dynam-
ically build the appropriate flow of control between nested
advices and the base level.

Finally, in AOP it is common practice to introduce struc-
tural properties (such as an implemented interface) that may
then be visible to other aspects. Conversely, some structural
changes may be totally local to a given aspect and should not
be exposed to others. This implies that a collaboration pro-
tocol should be provided to control the visibility of structural
changes made to base entities among aspects. If behavioral
actions are reified and aspects of aspects are supported, the
collaboration between behavioral changes is explicitly han-
dled in aspect definitions: an aspect does not see another
aspect unless its cut affects it.

3.4 Base Language Compliance
An AOP kernel should support the various semantic

elements of its base language. For instance, Java is a
class-based language, offering inheritance. But is has also
been designed for concurrent and distributed programming,
and supports security policies. These elements are usually
underestimated in the various proposals and ad hoc toolkits,
or simply left aside. However, they can have a non-negligible
impact on the design of the kernel and its features. We
therefore discuss this issue for inheritance, concurrency and
security. Persistence and distribution are not addressed in
this paper. A discussion of the impact of distribution over
the design of a cut language can be found in [45]. Finally,
the issue of the implementation approach and integration of
the kernel into existing environments is discussed.

3.4.1 Inheritance
A Java AOP kernel is expected to behave well with re-

spect to the interaction between inheritance and aspects.
The main concern in this regard comes from the fact that
aspects are introduced by modifying class definitions, and
that inheritance implies that subclasses inherit the struc-
ture and behavior of their superclasses. Conceptually, since
aspects are dedicated to handle concerns that crosscut the
class modularization, their scope does not necessarily fol-
low that of the inheritance hierarchy. Hence an AOP kernel
should make it possible to declare if the cut of an aspect ap-
plies to subclasses or not, as well as offering the possibility
to stop downward propagation from a certain class.

3.4.2 Concurrency
A Java AOP kernel must also be usable in concurrent en-

vironments. Aspects can be subject to concurrency, and
they may as well be used to control concurrency in an appli-
cation. This entails that the visibility of an aspect with re-
spect to threads (global or local) should be specifiable, and,
in the case of dynamic aspects, their initialization should be
thread-safe.

3.4.3 Security
Java features a security model based on a “sandbox” cus-

tomizable with policies [30]. There is also a dual relation,
like for concurrency, between aspects and security. Much
work has been done on implementing security policies with
reflection or aspects [59, 2, 20]. But the reverse is indeed
crucial: aspectizing an application must not break its se-
curity properties. Vayssière et al. studied this issue in the
case of a simple Java runtime metaobject protocol [11, 12].
A first issue is to ensure that using a metalevel does not tam-
per with properties of the base application. A second issue
is to devise security policies, compatible with the existing
Java policy mechanism, to protect the base application by
restricting the actions available at the metalevel (such as
changing the receiver of a method call or its arguments).

The fundamental point is the necessity of keeping meta-
code separated from base code at runtime. This is required
because the security mechanism of Java relies on the call
stack to dynamically compute the permissions associated to
a call [30]. Hence, if metacode is inlined within base code,
it gets exactly the same permissions as base code. The so-
lution is that only infrastructure code should be inserted in
the base application. Infrastructure code is assumed to be
trusted –and hence can get the same permissions as base
code– since it is generated by the reflective (or aspect) sys-
tem and solely delegates to the possibly untrusted meta-
object (or aspect) code.

3.4.4 Implementation Approach
There are two main implementation approaches to AOP

systems, one that consists in extending or modifying the
runtime environment of the language, and one that consists
in transforming code and leaving the runtime environment
intact. To fully support dynamicity, an AOP kernel should
be closely integrated into the language environment, in par-
ticular into the runtime environment.

In the context of Java, this means that the AOP kernel
should be provided by the Java Virtual Machine (JVM) it-
self. However, the abilities of standard JVMs with respect
to behavioral and structural intercession are limited. Hence,
experimenting with an AOP kernel at the VM level requires
working on a dedicated environment. To be compatible with
standard Java environments, we decide to slightly limit the
dynamicity supported by our kernel and thus adopt a code
transformation approach. We feel that this choice can be
beneficial, at least in a first phase, to study an AOP kernel in
various settings, since it allows simpler and more widespread
experiments to be carried out. If such an AOP kernel turns
out to be of practical interest for the Java community, then
VM support for AOP kernel services should be considered.

In order to be used as a weaver, an AOP kernel should
first be parameterized by a set of aspect languages:

(1) kernel({Li}) ⇒ kernel{Li}

(2) kernel{Li}(application, aspects) ⇒ applicationaspectized



(1) The AOP kernel is parameterized by a set of supported
aspect languages ({Li}). A language Li is implemented as
a translator from Li to L0. Depending on the kernel, pa-
rameterization may or may not be available dynamically to
incrementally update the set of supported aspect languages.
(2) The specialized AOP kernel then acts as a weaver, pro-
ducing the aspectized application from the application and
the various aspects (written in any of the aspect languages
belonging to {Li}). The weaver is conceptually a composi-
tion of the translators of the {Li} languages.

For the sake of efficiency, a kernel should be able to use
staging, fixing some concerns statically in order to enhance
performance, in case a particular approach does not require
dynamicity. For instance, regarding aspect composition, it
can be resolved statically [10, 36] or dynamically [21, 54].
An AOP kernel may allow composition issues to be resolved
statically (at weave time) thanks to an extensible set of com-
position operators, and also let the possibility of using com-
position frameworks for dynamic aspect composition. Stag-
ing in an AOP kernel can thus be seen as a tradeoff between
choices fixed at weaving time and others left open at run-
time. Also, an AOP kernel should possibly be used offline
(e.g., as a post-processor), or online (e.g., as a special class
loader).

3.5 Interactions Application/Aspects
Several requirements identified beforehand indicate that

an AOP kernel should not inline aspect code within appli-
cation code, but rather adopt a model where aspects are
runtime entities separated from the objects they influence,
i.e. aspects should be reified: reifying aspects makes it pos-
sible to expose their actions to other cuts, hence supporting
aspects of aspects; aspects being runtime entities can also
maintain some state during execution; reified aspects are
compatible with stack-based security mechanisms. Further-
more, the incurred performance penalty is far from obvious
in the context of ever-improving dynamic compilers [34].

Finally, for an AOP kernel to fully support interactions
between applications and aspects, reifying aspects is also
mandatory. As discussed in Section 3.3 a proceed-like mech-
anism is necessary in order to support approaches that al-
low aspects to wrap operation occurrences. With respect to
the interactions with aspects from within an application, it
should be possible to access reified aspects in order to explic-
itly interact with them, and also to change them. However,
the access API supported by a kernel should be safe: it must
be possible to specify that an aspect cannot be changed dur-
ing execution, as well as to impose some restrictions for dy-
namically replacing aspects. For instance, type restrictions
can be used to guarantee that an aspect protocol will not
be broken by replacing an aspect action with another one.

4. CONCLUSION
We have motivated the need for providing a versatile ker-

nel for AOP, as a means to foster consolidation in both use
and exploration of AOP. We have identified the main re-
quirements that an AOP kernel should address. We are
working on the design and implementation of such a kernel
for Java, based on an appropriate extended model of partial
reflection and our previous work on Reflex [55].
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In M. Akşit, editor, Software Architectures and
Component Technology, volume 648 of The Kluwer
International Series in Engineering and Computer
Science. Kluwer, 2001.

[47] D. Parnas. On the criteria for decomposing systems
into modules. Communications of the ACM,
15(12):1053–1058, Dec. 1972.

[48] R. Rao. Implementational reflection in Silica. In
P. America, editor, Proceedings of the 5th European
Conference on Object-Oriented Programming
(ECOOP 91), volume 512 of Lecture Notes in
Computer Science, pages 251–266, Geneva,
Switzerland, July 1991. Springer-Verlag.

[49] A. Rashid. A hybrid approach to separation of
concerns: The story of SADES. In Yonezawa and
Matsuoka [60], pages 231–249.

[50] B. Redmond and V. Cahill. Supporting unanticipated
dynamic adaptation of application behavior. In
B. Magnusson, editor, Proceedings of the 16th
European Conference on Object-Oriented
Programming (ECOOP 2002), number 2374 in
Lecture Notes in Computer Science, pages 205–230,
Málaga, Spain, June 2002. Springer-Verlag.

[51] N. Schärli, S. Ducasse, O. Nierstrasz, and A. Black.
Traits: Composable units of behavior. In Proceedings
of the 17th European Conference on Object-Oriented
Programming (ECOOP 2003), number 2743 in
Lecture Notes in Computer Science, pages 248–274,
Darmstadt, Germany, July 2003. Springer-Verlag.

[52] D. Sereni and O. de Moor. Static analysis of aspects.
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