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Abstract. Being able to define and use different aspect languages, in-
cluding domain-specific aspect languages, to cleanly modularize concerns
of a software system represents a valuable perspective. However, combin-
ing existing tools leads to unpredictable results, and proposals for exper-
imentation with and integration of aspect languages mostly fail to deal
with composition satisfactorily and to provide convenient abstractions
to implement new aspect languages. This paper exposes the architecture
of a versatile AOP kernel and its Java implementation, Reflex. On top
of basic facilities for behavioral and structural transformation, Reflex
provides composition handling, including detection of interactions, and
language support via a lightweight plugin architecture. We present these
facilities and illustrate composition of aspects written in different aspect
languages.

1 Introduction

The existing variety of toolkits and proposals for Aspect-Oriented Programming
(AOP) [13] illustrate the fact that the design space of AOP is still under explo-
ration. Low-level toolkits (e.g. [8]) can be used to explore the design space and
create specific AOP systems, but they require redeveloping an ad hoc software
layer to bridge the gap with a proper high-level interface, and they do not ad-
dress the issue of aspect language design. In this respect, there are proposals of
both general-purpose and domain-specific aspect languages. Domain specificity
presents many benefits: declarative representation, simpler analysis and reason-
ing, domain-level error checking, and optimizations [10]. Several domain-specific
aspect languages were indeed proposed in the “early” ages of AOP [14, 18, 20],
and, after a focus on general-purpose aspect languages, the interest in domain-
specific aspect languages has been revived [1, 5, 21, 27].

When several aspects are handled in the same piece of software, it is attractive
to be able to combine several AO approaches, for instance various domain-specific
aspect languages [23]. Yet, combining AO approaches is hardly feasible with to-
day’s tools, since the tools are not meant to be compatible with each other: each
? É. Tanter is financed by the Milenium Nucleous Center for Web Research, Grant
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tool eventually affects the base code directly. This tends to jeopardize correctness
when different aspects implemented with different tools interact.

Since most approaches rely upon common implementation techniques, we
propose to provide a versatile AOP kernel, which supports core semantics,
through proper structural and behavioral models. Designers of aspect languages
can thus experiment more comfortably and rapidly with an AOP kernel as a
back-end, focusing on the best ways for programmers to express aspects, may
they be domain specific or generic. The crucial role of such a kernel is that of a
mediator between different coexisting approaches: detecting interactions between
aspects and providing expressive means for their resolution.

behavior structure

detection resolution

plugin architecture

transformation

composition

languages

(Section 4)
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Fig. 1. Architecture of an AOP kernel.

This paper illustrates the evolution of Reflex, originally a system for partial
behavioral reflection in Java [26], into an AOP kernel. This experiment gives a
first picture of what an AOP kernel may look like and of its benefits. Instead of
focusing the discussion on a specific closed proposal, it raises, in a practical man-
ner, the issue of determining what the building blocks of AOP are and how they
can be combined in a flexible and manageable way. The proposed architecture of
an AOP kernel consists of three layers (Fig. 1): a transformation layer in charge
of basic weaving, supporting both structural and behavioral modifications of the
base program; a composition layer, for detection and resolution of interactions;
a language layer, for modular definition of aspect languages.

The following section overviews related work, further highlighting the moti-
vation of this work. Section 3 exposes the running example of this paper. We
then present the different layers of our AOP kernel following Fig. 1. Section 4
illustrates the core of Reflex as a reflective Java extension, explaining how as-
pects are mapped to this transformation layer. Section 5 discusses support for
aspect composition. Section 6 describes a plugin architecture for modular aspect
language support, explaining how plugins are used to bridge the gap between an
aspect language and the core reflective infrastructure. Section 7 concludes.

2 Related Work

We now review several proposals related either to multi-language AOP or to
extensible aspect languages.

XAspects [23] is a plugin mechanism for domain-specific aspect languages,
based on AspectJ [15]. An aspect language is implemented as a plugin generating
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AspectJ code, while the global compilation process is managed by the XAspects
compiler. XAspects suffers a number of limitations: the compilation process is
particularly heavyweight as it requires two full run of the AspectJ compiler; it is
unclear whether controlling the visibility of structural changes made to base code
is at all feasible; detection and resolution of aspect interactions is not tackled.
More importantly, the XAspects compiler provides plugins with the plain binary
representation of a program: no higher-level intermediate abstractions are made
available to implementors of aspect languages.

Furthermore, although using AspectJ as both the transformation and compo-
sition layer of an AOP kernel (Fig. 1) is interesting because of the direct support
for expressing crosscutting abstractions, there are several reasons that limit the
validity of AspectJ as an AOP kernel. AspectJ is a mature, production-quality
aspect language whose practitioner perspective results in limited versatility. In
particular, AspectJ is poorly expressive with respect to aspect composition, as
will be discussed later, and does not address detection of aspect interactions. We
rather concur with Douence et al. that automatic detection of aspect interactions
should be provided [11].

Brichau et al. [4] present an approach to building composable aspect-specific
languages with logic metaprogramming. Aspect-specific languages are uniformly
defined and composed using the same Prolog-like base language: an aspect lan-
guage is implemented as a set of logic rules in a logic module. This approach
provides means not only to compose aspects written in different aspect lan-
guages, but also to actually compose languages themselves. A drawback of this
approach is that aspect languages do not really shield the programmer from the
inherent power of the logic metaprogramming approach: no aspect-specific syn-
tax is provided, aspects are defined in the same logic framework as languages.
Finally, this work does not address detection of aspect interactions.

The Concern Manipulation Environment (CME) developed at IBM [9] is
a large-scale project aiming to support aspect-oriented software development at
any level (analysis, design, implementation, etc.), with respect to any computing
environment (programs in various languages, UML diagrams, etc.). The moti-
vation for developing a flexible infrastructure with advanced building blocks to
experiment with various AOSD approaches is definitely shared with our work.
However, the wide variety of target formats has a serious impact on the con-
cern assembly language: assembly directives are usually specified open-endedly
as strings. We rather aim at a higher-level conceptual model to reason about
transformation. Finally, detection of aspect interactions is not considered.

Josh [7] is an open AspectJ-like language, which makes it possible to exper-
iment with new means of describing pointcuts and advices. Due to its inlining-
based implementation of aspect advices in base code, Josh lacks convenient sup-
port for stateful aspects and per-instance aspects. Also, issues related to aspect
composition are not addressed.

Finally, abc, the AspectBench Compiler is an extensible framework for exper-
imenting with new language features in AspectJ [2]. The spirit of abc is similar
to Josh, but since abc is a compiler, not a load-time tool, it provides a powerful
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framework for static analysis. By sticking to AspectJ as the basic language, abc
presents the inconvenience that both the complexity of AspectJ and that of the
abc infrastructure (basically a full compiler infrastructure) may be an overkill
for simple extensions. As of today, the proposal does not explicitly address the
possibility of mixing different aspect languages, and aspect composition is still
limited to what AspectJ supports.

This work aims to address the limitations highlighted above: there is a need
for a versatile kernel for multi-language AOP providing high-level abstractions to
implement new aspect languages, and supporting both detection and resolution
of interactions between aspects written in different languages.

3 Running Example

The running example of this paper is a multi-threaded program manipulating a
buffer, to which three aspects expressed in different languages are applied. The
Buffer class defines the put and get methods of an unsynchronized buffer.

First, the buffer is made thread safe using SOM (Sequential Object Mon-
itors) [5], which makes it possible to code separately the scheduling strategy
of the buffer. This strategy is implemented in the BufferScheduler (discussed
in [5]). A small domain-specific aspect language (DSAL) is used to specify that
a buffer instance should be scheduled by an instance of this scheduler, as follows:
schedule: Buffer with: BufferScheduler;

The second aspect is implemented using a general-purpose aspect language,
AspectJ [15]. It implements an argument checking policy: validation behavior
can be attached to join point arguments, either producing exceptions in case
of invalid arguments, or simply skipping the invalid call. In our example, we
use an argument checker aspect for the buffer, BufferArgChecker, which skips
invocations of put with a null parameter.

The last aspect is used to attach a unique identifier (UID) to objects. This
basically consists in adding a private field to hold the identifier, properly initial-
ized, as well as a getter method and the associated interface. It is implemented
directly with Reflex. This aspect is provided as a library, with a simple entry
point for configuration. To apply it to the buffer, a configuration class3 is used:

public class BufferUIDConfig {

public static void initReflex(){

UID.applyTo("Buffer");

} }

Now the question is: what happens when all three aspects are applied to
the same base program, all affecting the same Buffer class? Are calls to the
getUID method synchronized via SOM, although this is not necessary since it is
inherently thread safe? Are rejected calls synchronized as well, or can we make
sure that only accepted calls to the buffer are synchronized and scheduled?
3 Configuration classes are the basic mechanism provided to configure Reflex at start

up: their initReflex methods are called prior to the execution of the application.
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Proposal. Our proposal consists in using an AOP kernel on top of which the
different aspect languages are implemented, and having this system report on
interactions and offer expressive means for the specification of their resolution.
With both SOM and AspectJ available on top of Reflex, applying the three
aspects above is done as follows:

java reflex.Run -som buffer.som -aspectj BufferArgChecker.aj

-configClass BufferUIDConfig Main

When loading the class Buffer, Reflex detects the interactions and issues
warnings, such as:

[WARNING] don’t know how to compose SOM and BufferArgChecker.

[WARNING] composing arbitrarily (sequence).

The programmer is informed of the unspecified interaction between SOM and
ArgChecker. The desired semantics here is to avoid scheduling a request if it is
to be rejected (this is correct since validating arguments is thread safe). This can
be specified by declaring a composition rule stating a nesting relation between
the two aspects. This declaration can be done in a configuration class:

public class CompConfig {

public static void initReflex(){

API.rules().add(new Wrap("BufferArgChecker", "SOM"));

} }

As we will see in Sect. 5, Wrap is a composition operator that has the same
semantics as precedence in AspectJ. The wrapped aspect (SOM) is only in-
voked if proceed is invoked by the wrapper aspect (BufferArgChecker). If Buffer-
ArgChecker rejects a call, it returns without calling proceed; hence SOM does
not apply, meaning that a reification of the call as a request put in a pending
queue until scheduled is avoided. Running Reflex with this composition specifi-
cation is done by adding CompConfig to the list of configuration classes.

4 Overview of Reflex

The analysis of AOP features that led us to the proposal of AOP kernels [25]
is concerned with asymmetric approaches to AOP, whereby an aspect basically
consists of a cut and an action: a cut determines where an aspect applies, while
an action specifies the effect of the aspect. Depending on the aspect language,
specification of the binding between a cut and an action may not be decoupled:
in traditional reflective systems, the binding between a hook in base code and
a metaobject is usually standardized and not customizable, while in a language
like AspectJ, it is tied to the action (advice definition).

Reflex relies on the notion of an explicit link binding a cut to an action. As
a matter of fact, most practical AOP languages, like AspectJ, make it possible
to define aspects as modular units comprising more than one pair cut-action.
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In Reflex this corresponds to different links, with one action bound to each cut.
Furthermore, AspectJ supports higher-order pointcut designators, like cflow. In
Reflex, the implementation of such an aspect requires an extra link to expose the
control flow information. There is therefore an abstraction gap between aspects
and links: aspects are typically implemented by several links. This abstraction
gap is discussed in more details and illustrated in Sect. 6.

Links are a mid-level abstraction, in between high-level aspects and low-
level code transformation. This section overviews and illustrates how such an
abstraction is provided and used in Reflex.

4.1 Types of Links

Cuts and actions can be either structural or behavioral. For instance, the UID
aspect consists of a selection of structural elements, i.e. a structural cut (in that
case, a set of classes), and a modification of a structural element, i.e. a structural
action (adding several members to a class). Conversely, SOM relies on a selection
of behavioral elements, i.e. a behavioral cut (method invocations), to which a
behavioral action is associated (reifying calls as requests to be scheduled).

Our Java implementation of the model underlying Reflex is based on bytecode
transformation using Javassist [8]. Due to the limitations of the Java standard
environment with respect to modifying class definitions, we have to distinguish
between two types of links. A structural link, termed S-link, binds a structural
cut to an action, which can be either structural or behavioral. An S-link is
applied, i.e. its associated action is performed, at load time. A behavioral link,
called B-link, binds a behavioral cut to an action. A B-link applies at runtime.

We now illustrate structural links (Sect. 4.2) with the implementation of UID,
and then show behavioral links (Sect. 4.3) with the implementation of SOM and
ArgChecker. Finally, in Sect. 4.4, we discuss how Reflex operates at load time
with respect to the different types of links.

4.2 Structural Links

A structural link binds a structural cut to some action (either structural or
behavioral). In Reflex, a structural cut is a class set, defined intentionally by a
class selector. For instance, the following class selector defines a cut consisting
of the Buffer class only:

bufferSelector = new ClassSelector(){

boolean accept(RClass aClass){

return aClass.getName().equals("Buffer");

}};

A class selector can base its decision on any introspectable characteristics
of a reified class object, down to the constituents of method bodies (expressions
in a method body are reified if needed). The object model of Reflex wraps and
extends that of Javassist: RClass objects give access to their RFields, RMethods
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and RConstructors (all RMembers); both methods and fields give access to their
bodies as a sequence of RExpr objects.

An action bound to a structural cut is implemented in a load-time metaobject,
instance of a class implementing the LTMetaobject interface. For instance, a
UIDAdder is a metaobject that applies our UID aspect to a given class4:

public class UIDAdder implements LTMetaobject {

static final String UID_FIELD = "private long _uid;";

static final String UID_GET = "public long getUID(){return _uid;}";

static final RClass UID_INTERFACE =

API.getRClass("reflex.lib.uid.UIDObject");

void handleClass(RClass aRClass) {

aRClass.addField(MemberFactory.newField(UID_FIELD, aRClass));

aRClass.addMethod(MemberFactory.newMethod(UID_GET, aRClass));

aRClass.addInterface(UID_INTERFACE);

} }

Since a load-time metaobject is part of the class loading process, it is a singleton
created when the link is defined. A structural link is represented by an SLink
object. For instance, the following excerpt defines a uidLink, which binds the
previous bufferSelector to a UIAdder object:

SLink uidLink =

API.links().addSLink(bufferSelector, new UIAdder(), "UID");

Configuration of the UID aspect (Sect. 3) is implemented as follows: the UID
class holds a single S-link whose class selector is progressively updated by calls
to applyTo.

4.3 Behavioral Links

This section is both a summary and an update of the model presented in [26].
This model is based on a standard model of behavioral reflection, where hooks
are inserted in a program to delegate control to a metaobject at appropriate
places. The particularity of our model lies in the possibility to flexibly group
hooks into hooksets, and in having explicit and configurable links binding hook-
sets to metaobjects. A hookset corresponds to a set of program points, or static
cut (pointcut shadow in AspectJ terminology [19]), and the metaobject corre-
sponds to the action to be performed at these program points (advice in AspectJ
terminology). The link is characterized by several attributes; for instance an acti-
vation condition may be attached to the link in order to avoid reification when a
dynamically-evaluated condition is false. An exhaustive discussion of the mecha-
nisms provided for specifying the dynamic part of a behavioral cut (e.g. residues)
can be found in [24].

4 The UID code could have been defined in a real class rather than with plain strings.
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Defining a B-link. The BufferArgChecker aspect is defined in AspectJ5:

public aspect BufferArgChecker {

pointcut checked(): execution(Buffer.put(..));

around(): checked() { /* check args and possibly skip execution */ }

}

This aspect is translated into the following Reflex API calls by the AspectJ
plugin (Sect. 6):

(1) Hookset putBuffer = new PrimitiveHookset(

MsgReceive.class, new NameCS("Buffer"), new NameOS("put"));

(2) BLink buffCheck = API.links().addBLink("BufferArgChecker",

putBuffer, new MODefinition.Class(BufferArgChecker.class));

(3) buffCheck.setControl(Control.AROUND);

(4) buffCheck.setScope(Scope.GLOBAL);

First, the cut of the aspect, i.e. executions of put on a Buffer is defined as a
hookset (1). A primitive hookset is defined by first giving an operation class,
e.g. MsgReceive. An operation class represents a kind of operation we are inter-
ested in: this corresponds to a join point kind in AspectJ. The set of operations
in Reflex is open, meaning the core of Reflex does not support any operation
by itself, and can be extended [26]. The definition of the hookset then requires
a class selector, which we already presented in the previous section (NameCS is
a utility that selects classes based on their names); and an operation selector,
which is a predicate selecting operation occurrences (NameOS is a utility also do-
ing name-based selection) in program text. Primitive hooksets can be composed
in order to obtain more complex hooksets.

The B-link is then defined by associating this hookset to the appropriate
metaobject (2). Metaobjects can be obtained either as new instances of a class
of metaobjects, or from a factory. BufferArgChecker is a metaobject class im-
plementing the desired validation behavior. At this stage the link is defined and
operational. Still, we specify some of its attributes: the control attribute is set
to around (3), and since a single instance of the metaobject suffices, the scope
of the link is set to global (4).

As we have just seen, a B-link is represented at load time by a BLink object.
Because of our implementation approach, a B-link is set up at load time and
applied at runtime. An RTLink object represents a B-link during execution: it
makes it possible to access and change metaobjects and activation conditions
associated to a link at the appropriate level (object, class, or link). An RTLink
object hence provides a link-specific runtime API for localized metaprogram-
ming. There is a one-to-one relation between a BLink and an RTLink6.
5 For the sake of clarity, the advice accesses arguments via the thisJoinPoint object

rather than via context exposure. Context exposure is briefly mentioned later.
6 Due to implementation restrictions, the causal connection between both represen-

tations is not fully established: runtime changes to the definition of a link will not
affect already-loaded classes (some changes are prohibited to avoid inconsistencies).
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SOM is implemented similarly: the hookset for SOM consists of the entry
points of the public methods of the classes to synchronize. The metaobject
(scheduler), is instance-specific, hence the link has scope object. Furthermore,
since a SOM scheduler needs to act both before and after a method invocation,
the control is set to before-after.

Context exposure. The particularity of the implementation of SOM is that
it makes use of the facilities of Reflex to specify the protocol between a cut
and an associated action. This protocol is implemented as a metaobject protocol
(MOP). If no custom protocol is specified, the default MOP for a given operation
is used [26]. This is usually not efficient because it means reifying information
that may not be needed at the metalevel.

In SOM, the scheduler gets control before method invocations via invocation
of its enter method, which receives the name of the invoked method and its
arguments, and after via its exit method, which does not take any parame-
ter. Both enter and exit are defined in the som.Scheduler base class. This
specialized MOP is specified as follows:

somLink.setMOCall(Control.BEFORE, "som.Scheduler", "enter",

new Parameter[]{ nameParam, argsParam });

somLink.setMOCall(Control.AFTER, "som.Scheduler", "exit");

The description of parameter generation (such as nameParam and argsParam)
is open and relies on the extended Java language supported by the Javassist
compiler, which is both expressive and efficient [8].

Apart from making it possible to program metaobjects without using overly
generic protocols, MOP specialization represents a great source of performance
improvement. The good performance and scalability of SOM, demonstrated
in [5], was obtained thanks to this mechanism. A specialized MOP can be spec-
ified at the global level of operations like in traditional reflective systems where
the reification of an operation occurrence is standardized and common. But it
can also be specified more locally, at the link level, and even at the hookset level.
This makes it possible to specialize context exposure at a fine-grained level.

4.4 Process Overview

In order not to modify the standard Java execution environment, behavioral
links are set up at load time: during the B-link setup phase (BLS), hooks, along
with necessary infrastructure, are installed in base code at the places indicated
by the hookset definitions. Conversely, structural links are applied at load time.
Since they can influence B-link setup, for instance by inserting a method whose
execution is subject to a behavioral cut, the S-link application phase (SLA) is
carried out before the BLS phase.

This two-phase process is illustrated in Fig. 2. Both phases follow a similar
scheme: when a class is loaded, a selection step (a diamond in Fig. 2) determines
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Fig. 2. Reflex operates in two phases at load time; (1) S-link application (SLA);
(2) B-link setup (BLS).

the set of links that potentially apply. In SLA, links that select the loaded class
are determined, while in BLS, selection goes down to operation occurrences
in the class definition. If more than one link potentially apply, a detection-
resolution-composition step (DRC in Fig. 2) occurs. Resolution is driven by
user specifications; the kernel reports any unresolved interaction. Then links are
appropriately composed. DRC is presented in Sect. 5. Finally, S-links are applied
(in SLA), and B-links are set up (in BLS) after generating hook code.

5 Link Composition

Aspect composition is a challenging and multi-faceted issue, which is inherently
impossible to resolve automatically. Five dimensions related to aspect compo-
sition have been identified in the literature, although we are not aware of any
proposal addressing them all:

– implicit cut: an aspect that should apply whenever another applies [4, 11];
– mutual exclusion: an aspect that should not be applied whenever another

applies [4, 11, 16];
– aspects of aspects: an aspect that applies onto another aspect [11];
– visibility of aspectual changes: when an aspect performs structural changes,

their visibility to other aspects should be controllable [6];
– ordering and nesting of aspects: when several aspects apply at the same

program point, their order of application must be specified [4, 11, 28].

AspectJ does not provide any support for mutual exclusion and visibility
of aspectual changes, and is limited in terms of aspects of aspects and order-
ing/nesting of aspects. Conversely, Reflex provides initial support for these five
dimensions of aspect composition. We hereby only briefly discuss implicit cut,
aspects of aspects and visibility of aspectual changes, and pay more attention to
mutual exclusion and ordering/nesting of aspects (details can be found in [24]).

An implicit cut is obtained by defining a link whose cut is shared with another
link, and aspects of aspects are obtained by links whose cut affects the action
(metaobject) of another link.
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During the transformation process presented in Sect. 4.4, both the applica-
tion of S-links and the set up of B-links effectively introspect and modify code
raising the issue of whether these modifications should be visible to others. In
Reflex, a general-purpose collaboration protocol makes it possible to selectively
expose or see changes made by other links. By default, Reflex ensures that struc-
tural changes made to a class are not visible to other links when they introspect
the class. This avoids unwanted conflation of extended and non-extended func-
tionalities, as discussed in the meta-helix architecture [6]. For our example, the
default behavior of Reflex ensures that SOM does not see the getUID method
added by the UID aspect, and hence this method is not subject to scheduling.

5.1 Interaction Detection

Brichau et al. [4], as well as AspectJ, only address means to specify composition,
while Klaeren et al. [16] focus on means to detect interactions. But, as argued
by Douence et al., both detection and resolution of aspect interactions are cru-
cial [11]. Thus we consider them as fundamental features of an AOP kernel.

Our approach follows a detection-resolution-composition (DRC) scheme [11].
The kernel ensures that interactions are detected, and notifies an interaction
listener upon underspecification. The default interaction listener simply issues
warning as shown in Sect. 3, but it is possible to use other listeners, e.g. for on-
the-fly resolution. The kernel provides expressive and extensible means to specify
the resolution of aspect interactions; from such specifications, it composes links
appropriately.

An aspect interaction occurs when several aspects affect the same program
point (execution or structure). This work is limited to a static approximation of
aspect interactions. Hence we may detect spurious interactions, i.e. that do not
occur at runtime. In the process illustrated in Fig. 2, selection steps determine
the subset of links that (potentially) apply. If more than one link applies, then
there is an interaction. For S-links, there is an interaction when a class being
loaded belongs to more than one class set; for B-links, there is an interaction
when an operation occurrence in program text belongs to more than one hookset.

In order to support mutual exclusion between aspects, Reflex provides link
interaction selectors. An interaction selector can be attached to a link, and will
be queried whenever the link is involved in an interaction, in order to determine
whether it actually applies or not, depending on the other links present in the
interaction. Resolving an interaction is hence carried out in two steps: 1) select-
ing, within the current interaction, the subset of links that should be applied,
and 2) ordering and nesting the links of the subset. In the following section,
we explain how this is supported in the case of B-links. The case of S-links is
simpler due to the fact that S-links do not have a control attribute; nesting does
not make sense.
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5.2 Ordering and Nesting

The interaction between two before-after aspects can be resolved in two ways:
either one always applies prior to the other (both before and after), or one
“surrounds” the other [4, 11].

These alternatives can be expressed using composition operators, seq and
wrap, dealing with sequencing and wrapping. Note that AspectJ only supports
wrapping. Considering aspects that can act around an execution point (like Ar-
gumentChecker in the example), the notion of aspect nesting as in AspectJ
appears: a nested advice is only executed if its parent around advice invokes
proceed. Around advices cannot be simply sequenced in AspectJ: they always
imply nesting, and hence their execution always depends on the upper-level
around advice [28].

In Reflex, link composition rules are specified using composition operators.
The rule seq(l1, l2) uses the seq operator to state that l1 must be applied be-
fore l2, both before and after the considered operation occurrence. The rule
wrap(l1, l2) means that l2 must be applied within l1, as clarified hereafter.

Kernel operators. User composition operators are defined in terms of lower-
level kernel operators not dealing with links but with link elements. A link ele-
ment is a pair (link, control), where control is one of the control attributes: for
instance, b1 (resp. a1) is the link element of l1 for before (resp. after) control.
There are two kernel operators, ord and nest which express respectively ordering
and nesting of link elements. nest only applies to around link elements: the rule
nest(r, e) means that the application of the around element r nests that of the
link element e. The place of the nesting is defined by the occurrences of proceed
within r. Sequencing and wrapping can hence be defined as follows:

seq(l1, l2) = ord(b1, b2), ord(r1, r2), ord(a1, a2)
wrap(l1, l2) = ord(b1, b2), ord(a2, a1), nest(r1, b1), nest(r1, r2), nest(r1, a2)

Composition operators. Reflex makes it possible to define a handful of user
operators for composition on top of the kernel operators. For instance, Seq and
Wrap are binary operators that implement the seq and wrap operators as defined
above:

class Wrap extends CompositionOperator {

void expand(Link l1, Link l2){

ord(b(l1), b(l2)); ord(a(l2), a(l1));

nest(r(l1), b(l2)); nest(r(l1), r(l2)); nest(r(l1), a(l2));

} }

The methods b (before), r (around), a (after), ord, and nest are provided by
the CompositionOperator abstract class. The way user operators are defined in
terms of kernel operators is specified in the expand method.

Higher-level composition operators can also express mutual exclusion be-
tween links. For instance, in Event-based AOP, binary operators like fst (resp.
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snd) are proposed, expressing that if the left child applies, then the right child
does not apply (resp. applies) [12]. fst can be implemented by specializing Seq,
using a link interaction selector stating that l2 does not apply if l1 does.

At the kernel level no language support is provided to define rules conve-
niently: they need to be manually instantiated, node by node (recall the example
in Sect. 3). Language support for Reflex configuration (discussed in Sect. 6) can
be used to define languages dedicated to composition, or to define languages that
include syntactic support for composition. For instance, the notion of precedence
of the Reflex version of AspectJ is implemented with Wrap.

5.3 Hook Generation

When detecting link interactions, the composition algorithm of Reflex generates
a hook skeleton based on the specified composition rules. During this generation
Reflex issues warnings whenever composition is under-specified. Users are free
to ignore them and let Reflex arbitrarily compose the non-specified parts. The
hook skeleton is then used for driving the hook generation process. In order to
support nesting of aspects with proceed, Reflex adopts a strategy similar to
that of AspectJ, based on the generation of closures.

6 Plugin Architecture for Open Language Support

A versatile AOP kernel provides means to modularly define aspect languages,
either general-purpose or domain-specific, so that programmers can implement
aspects at the level of abstraction that most suits their needs. In Reflex, an
aspect language is implemented by a translator to kernel configuration, called a
plugin. A plugin takes as input an aspect program written in a given language
and outputs, either on-line or off-line, the adequate Reflex configuration: links,
metaobject classes, selectors, etc., together with calls to the kernel API. The
SOM DSAL and (a subset of) AspectJ are the two first aspect languages we
have developed for the Reflex AOP kernel7.

Bridging the Abstraction Gap. A Reflex plugin is typically expected to
bridge the abstraction gap between the aspect level and the kernel level. At the
kernel level, the main conceptual handle is the notion of links. Though making
it possible to abstract from low-level details, links are lower-level abstractions
than aspects. As a result, an aspect is typically implemented by several links.

This abstraction gap can be observed in different scenarios, for instance con-
sidering AspectJ support. First, an AspectJ aspect definition may include several
pointcuts and advices, plus inter-type declarations; each will be implemented by
(at least) one link. Second, the implementation of aspects with higher-order
pointcuts requires several links. For instance, if the ArgumentChecker aspect is
7 All the code (including plugins and the running example) can be obtained from:
http://reflex.dcc.uchile.cl.
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SP AJP

BufferUID
ConfigCompConfig

buffer.som BufferArgChecker.aj

SOM BAC

som adv cfl wrap(adv,cfl) 
wrap(BAC,SOM) uid

KERNEL
B-LINKS S-LINKSRULES

aspects

plugins

linksets

links & rules

Fig. 3. The running example with the different aspects and their mapping in
the Reflex AOP kernel.

extended with a control flow restriction so that nested calls to checked calls are
not checked (using !cflowbelow(p)), two B-links will be used: the advice link
for binding the validation behavior, and the cflow link for exposing control flow
information of the nested pointcut p. The cflow link is a before-after link using
a simple counter (increased on before, decreased on after). The restriction that
the around advice only applies when not below the control flow of an already-
checked call is implemented by adding an activation condition to the advice link
that checks the value of the counter.

The major issue with this abstraction gap is related to composition. Compo-
sition of links related to the same pointcut-advice should be addressed: in the
case of control flow above, depending on the order in which the two links are
composed, one either obtains the semantics of the cflow pointcut designator
(first cflow link, then advice link), or that of cflowbelow (first advice link, then
cflow link).

Links related to the same aspect may also need to be composed. For this
issue, AspectJ adopts a syntactic rule whereby advice precedence is defined by
the order of definitions in the aspect file. We believe this (implicit) syntactic rule
is error-prone (just imagine moving code around). Our approach rather makes
such a composition issue explicit and offers more flexible means for its resolution.

When composing aspects that may be written in different languages (im-
plemented by different plugins), the aspect programmer does not care about
links. However, all the composition mechanisms of Reflex (interaction notifica-
tion, composition rules, resolution and generation) work with links, not aspects.
In order to support traceability of a link back to its associated aspect-level en-
tity, we introduce linksets as a means to group a set of links that are part of the
same higher-level conceptual entity.

A linkset is therefore the counterpart, in the kernel world, of an entity in the
aspect world. The mapping is defined by the plugin. Reflex accepts linksets in
composition rules: they stand for all their links. This semantics is similar to that
of AspectJ, where an aspect stands for all its advices in a precedence relation.
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Illustration. Fig. 3 illustrates the overall architecture of our running example.
The application of SOM to Buffer is expressed using the SOM DSAL, imple-
mented by the SOM Plugin (SP): it results in the definition of one B-link (som),
embedded in a linkset (SOM). The BufferArgChecker (BAC) aspect is expressed in
AspectJ, implemented by the AspectJ Plugin (AJP): it results in the definition of
one linkset BAC, encapsulating two B-links, one for the advice (adv) and one for
the cflow (cfl) links, and in the definition of a composition rule wrap(adv, cfl)
to ensure the cflowbelow semantics. The UID aspect is expressed in the con-
figuration class BufferUIDConfig, directly adding an S-link (uid). And finally,
composition between SOM and BufferArgChecker is done in the configuration
class CompConfig, declaring a composition rule wrap(BAC, SOM).

7 Conclusion

We have proposed an architecture for versatile kernels for multi-language AOP:
basic facilities for behavioral and structural transformation, composition han-
dling and language support. The Reflex kernel relies on a reflective model that
provides mid-level abstractions to designers of aspect languages: links are a sim-
ple abstraction for both transformation and composition. We have exposed the
major features of composition support in the Reflex kernel: automatic detec-
tion of interactions between aspects and expressive, extensible means for their
explicit resolution. A plugin architecture makes it possible to modularly define
aspect languages, bridging the abstraction gap between links and aspects. We
have illustrated the resolution of interactions between aspects defined in dif-
ferent aspect languages. Future work includes experimenting with more aspect
languages in complex scenarios in order to study the scalability of our approach
and refine our initial treatment of aspect composition.
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